专题2.7几何体与球切、接的问题(测)2017年高考数学(理)二轮复习讲练测(附解析)
高考热点之球与几何体的切、接问题及近年常考题
球与几何体的切、接问题及近年常考题王宪良一、理清位置,学会画图1、正方体的内切球2、球与正方体的棱相切3. 正方体的外接球分别作图如下说明:1.正方体的内切球:球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。
设正方体的棱长为a ,球半径为R 。
如图,截面图为正方形EFGH 的内切圆,得2aR =; 2.与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。
3.正方体的外接球:正方体的八个顶点都在球面上,如图,以对角面1AC 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。
二、解决球心位置和半径大小的常用方法1. 出现“墙角”结构利用补形知识,联系长方体。
【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对角线长l 即2222c b a R ++=【例题】:在四面体ABCD 中,共顶点的三条棱两两垂直,其长度分别为3,61,,若该四面体的四个顶点在一个球面上,求这个球的表面积。
解:因为有三条棱两两垂直,所以可补成球内接长方体。
因为:长方体外接球的直径为长方体的体对角线长所以:四面体外接球的直径为AE 的长,即:22224AD AC AB R ++=1663142222=++=R 所以2=R所以球的表面积为ππ1642==R S2. 出现两个垂直关系,利用直角三角形结论。
【原理】:直角三角形斜边中线等于斜边一半。
球心为直角三角形斜边中点。
【例题】:已知三棱锥的四个顶点都在球O 的球面上,BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,求球O 的体积。
解:BC AB ⊥且7=PA ,5=PB ,51=PC ,10=AC ,因为22210517=+ 所以知222PC PA AC +=,所以 PC PA ⊥ 所以可得图形为:在ABC Rt ∆中斜边为AC ; 在PAC Rt ∆中斜边为AC 取斜边的中点O ,在ABC Rt ∆中OC OB OA == 在PAC Rt ∆中OC OB OP ==所以在几何体中OA OC OB OP ===,即O 为该四面体的外接球的球心, 521==AC R 所以该外接球的体积为3500343ππ==R V3. 出现多个垂直关系时建立空间直角坐标系,利用向量知识求解AC【例题】:已知在三棱锥BCD A -中,ABC AD 面⊥,︒∠该棱锥的外接球半径。
人教版高中数学必修第二册 专题强化训练二 与球有关的内切、外接问题 同步精练(含解析)
人教版高中数学必修第二册专题强化训练二与球有关的内切、外接问题同步精练技巧归纳1.多面体与球接、切问题求解策略(1)截面法:过球心及多面体中的特殊点(一般为接、切点)或线作截面,利用平面几何知识寻找几何体中元素间的关系.(2)补形法:“补形”成为一个球内接长方体,则利用4R 2=a 2+b 2+c 2求解.2.球的切、接问题的常用结论(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)若直棱柱(或有一条棱垂直于一个面的棱锥)的高为h ,底面外接圆半径为x ,则该几何体外接球半径R 满足R 2=h 22+x 2.(3)外接球的球心在几何体底面上的投影,即为底面外接圆的圆心.(4)球(半径为R )与正方体(棱长为a )有以下三种特殊情形:一是球内切于正方体,此时2R =a ;二是球与正方体的十二条棱相切,此时2R =2a ;三是球外接于正方体,此时2R =3a .题型归纳题型一:直接法(公式法)1.(2022·全国·模拟预测)一个正方体的内切球的表面积和它的外接球的表面积之和是16π,则该正方体的体积为()A .22B .8C .4D .162.(2022·四川成都·高三阶段练习(文))长方体1111ABCD A B C D -的底面ABCD 为正方形,1AB =,直线1AD 与直线1CC 所成的角为30°,则该长方体外接球的表面积为()A .4πB .6πC .5πD .8π3.(2022·湖南·高一课时练习)若一个球的外切正方体的表面积等于6cm 2,则此球的体积为()A .6πcm 3B .68πcm 3C .43πcm 3D .66πcm 3题型二:构造法(补形法)4.(2022·陕西西安·一模)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P ABCD -为阳马,侧棱PA ⊥底面ABCD ,且22PA =,2AB BC ==,则该阳马的外接球的表面积为()A .4πB .8πC .16πD .32π5.(2022·江西上饶·高三阶段练习(文))已知三棱维A BCD -中,侧面ABC ⊥底面BCD ,△ABC 是边长为6的正三角形,△BCD 是直角三角形,且,42BCD CD π∠==,则此三棱锥外接球的表面积为()A .36πB .48πC .64πD .128π6.(2022·陕西·武功县普集高级中学一模(理))已知正四面体S ABC -的外接球表面积为6π,则正四面体S ABC -的体积为()A .223B .233C .23D .324题型三:确定球心位置法7.(2022·全国·模拟预测)如图,已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC ,2AC BC ==,2AB =,球心O 到平面ABC 的距离为3,则球O 的体积为()A .323πB .163πC .16πD .32π8.(2022·陕西陕西·一模)四面体D ABC -内接于球O ,(O 为球心),2BC =,4AC =,60ACB ∠=︒.若四面体D ABC -体积的最大值为4,则这个球的体积为()A .256327πB .1639πC .128πD .128327π9.(2022·云南师大附中高三阶段练习)三棱锥P ABC -的四个顶点在球О的球面上,PC ⊥平面ABC ,4PC =,10AB =,32AC =,点M 是BC 的中点,13AM =,则球О的表面积为()A .24πB .28πC .36πD .40π题型四:球表面积和体积最值问题10.(2021·重庆·西南大学附中高一期末)已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE 折起,当三棱锥D ABE -的体积最大时,该三棱锥外接球的表面积为()A .525π48B .5π4C .25π4D .25π11.(2021·四川成都·高一期末(理))已知A ,B 是球O 的球面上两点,23AOB π∠=,P 为该球面上动点,若三棱锥O PAB -体积的最大值为233,则球O 的表面积为()A .12πB .16πC .24πD .36π12.(2021·山东莱西·高一期末)已知ABC 是面积为934的等边三角形,其顶点均在球O 的表面上,当点P 在球O 的表面上运动时,三棱锥P ABC -的体积的最大值为934,则球O 的表面积为()A .16πB .323πC .274πD .4π专题精选强化一、单选题13.(2021·黑龙江鸡西·高一期末)已知三棱锥P ABC -的顶点都在球O 的球面上,2AB AC ==,22BC =,PB ⊥平面ABC ,若球O 的体积为36π,则该三棱锥的体积是()A .473B .5C .873D .8314.(2022·全国·高一)在体积为722的直三棱柱111ABC A B C -中,ABC 为等边三角形,且ABC 的外接圆半径为213,则该三棱柱外接球的表面积为()A .12πB .8πC .6πD .3π15.(2021·全国·高一课时练习)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为()A .36πB .64πC .128πD .144π16.(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为()A .72πB .56πC .14πD .16π17.(2021·广东顺德·高一期末)已知三棱锥P ABC -的底面是正三角形,3AB =,2PA =,PA BC ⊥,PB AC ⊥,PC AB ⊥,则三棱锥P ABC -的外接球的表面积为()A .43πB .32327πC .4πD .163π18.(2021·江苏常州·高一期末)如图,在四棱锥P ABCD -中,已知PA ⊥底面,,ABCD AB BC AD CD ⊥⊥,且120,2BAD PA AB AD ∠=︒===,则该四棱锥外接球的表面积为()A .8πB .20πC .205πD .205π319.(2021·江苏·金陵中学高一期末)前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于()A .818πB .812πC .1218πD .1212π20.(2021·云南省昆明市第十中学高一期中)已知三棱锥P ABC -,PA ,PB 、PC 两两垂直,1PA =,3PB =,2PC =,则三棱锥P ABC -的外接球表面积为()A .πB .5πC .6πD .8π21.(2021·黑龙江·哈师大附中高一期末)矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的体积为()A .5103πB .10πC .510πD .40π22.(2021·重庆八中高一期中)设直三棱柱111ABC A B C -的所有顶点都在一个球面上,且球的体积是2053π,1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是()A .1B .2C .22D .423.(2020·江苏宿迁·高一期末)在直三棱柱111ABC A B C -中,2AB =,3AC =,30BAC ∠=,15AA =,则其外接球的体积是()A .6πB .92πC .823πD .132π24.(2021·吉林·高一期中)蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱2SA =,则该蹴鞠的表面积为()A .6πB .12πC .32πD .36π二、多选题25.(2021·全国·高一课时练习)已知三棱柱111ABC A B C -的6个顶点全部在球O 的表面上,AB AC =,120BAC ∠=,三棱柱111ABC A B C -的侧面积为843+,则球O 体积可能是()A .12πB .32π3C .28π3D .10π26.(2021·江苏·无锡市第一中学高一期中)一个圆锥的底面圆周和顶点都在一个球面上,已知圆锥的底面面积与球面面积比值为29,则这个圆锥体积与球体积的比值为()A .427B .827C .49D .8927.(2020·江苏连云港·高一期末)正方体的外接球与内切球上各有一个动点M ,N ,若线段MN 的最小值为31-,则()A .正方体的外接球的表面积为12πB .正方体的内切球的体积为3πC .正方体的棱长为1D .线段MN 的最大值为31+28.(2021·辽宁·高一期末)在菱形ABCD 中,23AB =,60ABC ∠=,将菱形ABCD 沿对角线AC 折成大小为()0180θθ<<的二面角B AC D --,若折成的四面体ABCD 内接于球O ,则下列说法正确的是().A .四面体ABCD 的体积的最大值是33B .BD 的取值范围是()32,6C .四面体ABCD 的表面积的最大值是1263+D .当60θ=时,球O 的体积为523927π三、填空题29.(2022·全国·高一)点A ,B ,C 在球O 表面上,2AB =,23BC =,90ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为___________.30.(2021·天津·高一期末)已知正四棱锥P ABCD -中,底面边长为2,侧面积为45,若该四棱锥的所有顶点都在球O 的表面上,则球O 的体积为______.31.(2021·江苏溧阳·高一期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P ABCD -是阳马,PA ⊥平面ABCD ,5PA =,4AB =,3AD =,则该阳马的外接球的表面积为___________.32.(2021·广东惠州·高一期中)在三棱锥D ABC -中,已知平面BCD ⊥平面ABC ,90CBD ∠=︒,45BCA ∠=︒,22AB =,2BD =,则三棱锥A BCD -的外接球的表面积为______.参考答案1.B 【解析】【分析】设正方体的边长为2a ,分别求出正方体内切球与外接球的半径,再建立等式求得正方体的棱长即可求其体积.【详解】设正方体的边长为2a ,则正方体的内切球的半径为a ,外接球的半径为3a ,依题意得()2244316a aπππ+=,解得1a =,∴正方体的体积为()33288a a ==.故选:B .2.C 【解析】【分析】根据条件求出长方体外接球的半径即可求解.【详解】直线1AD 与直线1CC 所成的角,即直线1BC 与直线1CC 所成的角,从而可知在1Rt C CB △中,130BC C ︒∠=,所以13C C =,设长方体外接球的半径为r ,则有()222225411354r r =++=⇒=,该长方体外接球的表面积为245r ππ=.故选:C 3.A 【解析】【分析】设球的半径为R cm ,正方体棱长为a cm ,根据表面积和棱长的关系求出棱长,进而可得半径,再用体积公式求球的体积即可.【详解】设球的半径为R cm ,正方体棱长为a cm ,∴6a 2=6,∴a =1cm ,即2R =1,∴R 12=cm ,∴球的体积333441cm .3326V R πππ⎛⎫==⨯= ⎪⎝⎭故选:A.4.C 【解析】【分析】补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,求出外接球半径,即可得出答案.【详解】解:因为四棱锥P ABCD -为阳马,侧棱PA ⊥底面ABCD ,如图,补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,设外接球半径为R ,则()2222244816R AB BC PA =++=++=,所以2R =,所以该阳马的外接球的表面积为2416R ππ=.故选:C.5.C 【解析】【分析】把三棱锥放置在长方体中,根据长方体的结构特征求出三棱锥外接球的半径,再由三棱锥外接球的表面积公式计算.【详解】三棱锥A BCD -中,侧面ABC ⊥底面BCD ,把该三棱锥放入长方体中,如图所示3332AM AB ==,设三棱锥外接球的球心为O ,则22332333AG AM ==⨯=,122OG CD ==,∴三棱锥外接球的半径2222(23)42R OA OG AG ==+=+=,则三棱锥外接球的表面积为2244464S R πππ==⨯=,故选:C .6.A 【解析】【分析】由题意求出外接球的半径,将正四面体补成正方体,求出其棱长,用正方体的体积减去四个小的三棱锥体积即为所求.【详解】设外接球半径为R ,则246S R ππ==,解得62R =,将正四面体S ABC -恢复成正方体,知正四面体的棱为正方体的面对角线,则正四面体S ABC -的外接球即为正方体的外接球,则正方体的体对角线等于外接球的直径,故2326AB ⨯⨯=,解得2AB =,正方体棱长为2222⨯=,故该正四面体的体积为3122(2)42223213-⨯⨯⨯⨯⨯=,故选:A .7.A 【解析】【分析】由已知可证得PA AB ⊥,BC PC ⊥,从而可得球心O 是PB 的中点,取AB 的中点D ,连接OD ,然后在Rt ODB △中可求得球的半径,进而可求得球的体积【详解】如图,因为2AC BC ==,2AB =,所以222AC BC AB +=,所以AC BC ⊥.因为PA ⊥平面ABC ,,AB BC ⊂平面ABC ,所以PA AB ⊥,PA BC ⊥.又AC PA A ⋂=,所以BC ⊥平面PAC ,所以BC PC ⊥,所以球心O 是PB 的中点.取AB 的中点D ,连接OD ,则OD ∥PA ,所以OD ⊥平面ABC ,所以3OD =.设球O 的半径为R ,在Rt ODB △中,()2222312R OB OD DB ==+=+=,所以球O 的体积为3344322333R πππ=⨯⨯=,故选:A.8.A 【解析】【分析】在ABC 中利用余弦定理求得第三边,并判断ABC 为直角三角形且面积为定值,由面积公式求得ABC 的面积,从而分析知当D 到平面ABC 的距离取得最大值时球的体积最大.在ABC 中,∵2BC =,4AC =,60ACB ∠=︒,∴22212cos 164242122BA AC BC AC BC ACB =+-⋅⋅∠=+-⨯⨯⨯=,∴222AC AB BC =+,90ABC ∠=︒.∴ABC 外接圆半径122r AC ==.∴1223232ABCS=⨯⨯=.如图所示,设AC 的中点为1O ,则1O 为过ABC 的截面圆的圆心,设球的半径为R ,所以球心O 到平面ABC 的距离为22214OO R r R =-=-当点1DO ⊥平面ABC 时,四面体D ABC -体积的最大即:1111()23()433ABC S R OO R OO ⋅+=⨯+=△,解得433R =,34432563=()3327V ππ⨯=球.故选:A.9.C 【解析】【分析】先求得ABC 的外接圆的半径r ,再由222PC R r ⎛⎫=+ ⎪⎝⎭求得外接球的半径求解.如图所示:由余弦定理可得222222(13)(10)(13)(32)2221321322BC BC BC BC ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,解得2BC =.故222(10)(32)22cos 210325BAC +-∠==⨯⨯,1sin 5BAC ∠=.设ABC 的外接圆半径为r ,由正弦定理可得2sin BCr BAC=∠,故52sin BCr BAC==∠,所以球O 的半径为2232PC R r ⎛⎫=+= ⎪⎝⎭,球O 的表面积为24π36πS R ==,故选:C .10.C 【解析】【分析】设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,因为ABE △的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,过D 作DF AE ⊥于F ,设点M 为ABE △的外心,则有222222(),DF OM FM R OM EM R -+=+=通过计算可得点M 为外接球的球心,从而可求得结果【详解】解:过D 作DF AE ⊥于F ,设点M 为ABE △的外心,G 为AE 的中点,连接,MG MF ,因为正方形ABCD 中,2AB =,E 是CD 边的中点,所以1DE =,则22125AE BE ==+=,52EG =,22555AD DE DF AE ⋅===,所以2245155EF DE DF =-=-=,1524MG EG ==,54EM =,所以55352510FG EG EF =-=-=,所以225453051610020FM MG FG =+=+=,设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,设OM x =,因为ABE △的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,此时平面ADE ⊥平面BCEF ,因为DF AE ⊥,平面ADE 平面BCEF AE =,所以DF ⊥平面BCEF ,所以222222(),DF OM FM R OM EM R -+=+=,所以2222()DF OM FM OM EM -+=+,所以2222DF DF OM FM EM -⋅+=,所以42561252558016OM -⨯⋅+=,解得0OM =,所以ABE △的外心为三棱锥D ABE -外接球的球心,所以54R EM ==所以三棱锥外接球的表面积为2252544164R πππ=⨯=故选:C11.B 【解析】【分析】当点P 位于垂直于面AOB 的直径端点时,三棱锥O PAB -的体积最大,利用三棱锥O PAB -体积的最大值为233求出半径,即可求出球O 的表面积.【详解】解:如图所示,当点P 位于垂直于面AOB 的直径端点时,三棱锥O PAB -的体积最大,设球O 的半径为R ,此时2113233223O PAB P AOB V V R R --==⨯⨯⨯=,解得2R =,则球O 的表面积为2416R ππ=,故选:B .12.A 【解析】【分析】作出图形,结合图形知,当点P 与球心O 以及△ABC 外接圆圆心M 三点共线且P 与△ABC 外接圆圆心位于球心的异侧时,三棱锥P ABC -的体积取得最大值,结合三棱锥的体积求出三棱锥P ABC -的高h ,并注意到此时该三棱锥为正三棱锥,利用Rt OAM ,求出球O 的半径R ,最后利用球体的表面积公式可求出答案.【详解】如图所示,设点M 为ABC 外接圆的圆心,当点P O M 、、三点共线时,且P M 、分别位于点O 的异侧时,三棱锥P ABC -的体积取得最大值.因为ABC 的面积为934,所以边长为3,由于三棱锥P ABC -的体积的最大值为41939334PM ⨯=⨯,得3PM =,易知SM ⊥平面ABC ,则三棱锥P ABC -为正三棱锥,ABC 的外接圆直径为3223sin3AM π==,所以3AM =,设球O 的半径为R ,则22222()3(3)R OA AM PM PO R ==+-=+-,解得2R =,所以球的表面积为2416S R ππ==.故选:A 13.A 【解析】【分析】三棱锥P ABC -放入长方体内,所以长方体的体对角线即为外接球直径,即PC 为球直径,由球的体积求出PC 的长度,再求出PB ,由三棱锥体积公式求解即可.【详解】因为2AB AC ==,22BC =,易知三角形ABC 为等腰直角三角形,又PB ⊥平面ABC ,所以PB 为三棱锥P ABC -的高,则可将三棱锥P ABC -放入长方体内,如图,长方体的体对角线即为外接球直径,即PC 为球直径,343632PC V ππ⎛⎫∴== ⎪⎝⎭,6PC ∴=又22268PC PB BC PB =+=+=,解得27PB =,所以三棱锥的体积11472227323V =⨯⨯⨯⨯=,故选:A 14.A 【解析】【分析】由棱柱体积求得棱柱的高,然后求得外接球的半径,得表面积.【详解】设ABC 的边长为a ,由ABC 的外接圆半径为213可得212π3sin3a =⨯,故7a =,则ABC 的面积237344S a ==.由三棱柱的体积为722可得11737242S AA AA ⋅=⋅=,故1263AA =,设三棱柱外接球的半径为R ,则2221217233233AA R ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,故该三棱柱外接球的表面积为24π12πR =.故选:A .15.D 【解析】【分析】根据给定条件确定出三棱锥O ABC -体积最大时的点C 位置,再求出球半径即可得解.【详解】设球的半径为R ,因90AOB ∠=︒,则AOB 的面积212△AOB S R =,而O ABC C AOB V V --=,且AOB 面积为定值,则当点C 到平面AOB 的距离最大时,O ABC V -最大,于是,当C 是与球的大圆面AOB 垂直的直径的端点时,三棱锥O ABC -体积最大,最大值为3113632R ⨯=,解得6R =,所以球O 的表面积为22446144R πππ=⨯=.故选:D 16.C 【解析】【分析】根据题意可得长方体的三条棱长,再结合题意与有关知识可得外接球的直径就是长方体的对角线,求出长方体的对角线,即可得到球的直径,进而可根据球的表面积公式求出球的表面积.【详解】解析:设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴长方体的体对角线长为22212314++=,∴其外接球的半径为142∴2414S R ππ球==.故选:C 17.D 【解析】【分析】根据题意画出图形,证得三棱锥P ABC -为正三棱锥,结合球的截面性质求得外接球的半径,利用球的表面积公式,即可求解.【详解】如图所示,过点P 作PG ⊥平面ABC ,连接AG 交BC 于D ,所以PG BC ⊥,又由PA BC ⊥且PAPB P =,所以BC ⊥平面PAG ,可得BC AD ⊥,同理可证AB CG ⊥,则G 为等边ABC 的垂心,即中心,则三棱锥P ABC -为正三棱锥,设其外接球的球心为O ,则O 再PG 上,连接OA ,在等边ABC 中,由3AB =,可得2233()132AG =-=,则223PG PA AG =-=,设三棱锥P ABC -的外接球的半径为R ,则222(3)1R R =-+,解得233R =,所以三棱锥P ABC -的外接球的表面积为22231644()33S R πππ==⨯=.故选:D.18.B 【解析】【分析】取PC 中点O ,连接,,.OA OB OD BD ,先证明点O 就是四棱锥外接球的球心,再求出外接球的半径即得解.【详解】取PC 中点O ,连接,,.OA OB OD BD ,由题得PA AC ⊥,又OP OC =,所以OP OC OA ==,因为,,,,CD AD CD PA ADPA A AD PA ⊥⊥=⊂平面PAD ,所以CD ⊥平面PAD ,又PD ⊂平面PAD ,所以CD PD ⊥,又,PO OC OP OC OD =∴==.同理OP OC OB ==,所以OP OC OA OB OD ====,所以点O 就是四棱锥外接球的球心.因为120,2BAD AB AD ∠=︒==,所以60,30,4DAC DCA AC ∠=∴∠=∴=.所以224225,PC =+=所以外接球的半径为5.所以该四棱锥外接球的表面积24(5)20S ππ==.故选:B 19.A 【解析】【分析】设球半径为R ,圆锥的底面半径为r ,利用扇形的弧长和面积公式求得R ,即可求解.【详解】圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,设母线为l ,则212323l ππ⨯⨯=,可得:3l =,由扇形的弧长公式可得:223r l ππ=,所以1r =,圆锥的高2213122OO =-=,由()22222r RR +-=,解得:942R =,所以球O 的表面积等于2818144328R πππ=⨯=,故选:A 20.D 【解析】【分析】若三棱锥从一个顶点出发的三条棱互相垂直,则该三棱锥的外接球与以这三条棱为邻边的长方体的外接球相同.【详解】因为三棱锥P ABC -中,PA ,PB 、PC 两两垂直,所以其外接球半径R 满足222222R PA PB PC =++=,2R =.故三棱锥P ABC -的外接球表面积为()2428ππ⨯=.故选:D.21.A 【解析】【分析】设AC 的中点为O ,连接,OB OD ,则由矩形的性质可知OA OC OB OD ===,所以可得O 为四面体D ABC -外接球的球心,求出OA 的长可得球的半径,从而可求出球的体积【详解】解:设AC 的中点为O ,连接,OB OD ,因为四边形ABCD 为矩形,所以OA OC OB OD ===,90ABC ∠=︒,所以O 为四面体D ABC -外接球的球心,因为3,1AB BC ==,所以22223110AC AB BC =+=+=,所以11022OA AC ==,所以面体D ABC -外接球的半径为102,所以该四面体外接球的体积为3344105103323R πππ⎛⎫== ⎪ ⎪⎝⎭,故选:A 22.B 【解析】【分析】先确定底面ABC 的外接圆圆心及半径,再确定球心位置,并利用球心和圆心的连线垂直于底面,得到直角三角形,利用勾股定理求解.【详解】设12AB AC AA m ===,三角形ABC 外接圆1O 的半径为r ,直三棱柱111ABC A B C -外接球O 的半径为R .因为120BAC ∠=︒,所以30ACB ∠=︒,于是24sin 30r ABm ==︒,2r m =,12O C m =.又球心O 到平面ABC 的距离等于侧棱长1AA 的一半,所以1OO m =.在1Rt OO C 中,由22211OC OO O C =+,得2224R m m =+,5R m =.所以球的体积34205(5)33V m ππ==,解得1m =.于是直三棱柱的高是122AA m ==.故选:B.23.B【解析】【分析】首先在ABC 中利用余弦定理求出BC 的长,进一步可判断ABC 为直角三角形,根据直角三角形和直棱柱的性质即可求出球心和半径,由体积公式即可求解.【详解】在ABC 中,2AB =,3AC =,30BAC ∠=,由余弦定理可得:22232cos 30344312BC AC AB AC AB =+-⋅⨯=+-⨯=,所以1BC =,所以222BC AC AB +=,可得ABC 为直角三角形,所以AB 的中点D 即为ABC 外接圆的圆心,设11A B 的中点为E ,则DE 的中点O 即为直三棱柱111ABC A B C -外接球的球心,设外接球的半径为R ,11522OD AA ==,112CD AB ==,所以222253122R OD CD ⎛⎫=+=+= ⎪ ⎪⎝⎭,所以外接球的体积是3344393322R πππ⎛⎫=⨯= ⎪⎝⎭,故选:B.24.B【解析】【分析】推导出SA 、SB 、SC 两两垂直,然后将正三棱锥S ABC -补成正方体SADB CEFG -,计算出正方体SADB CEFG -的体对角线长,即为三棱锥S ABC -的外接球直径,利用球体的表面积公式可得结果.【详解】取AC 中点N ,连接BN 、SN ,N Q 为AC 中点,SA SC =,AC SN ∴⊥,同理AC BN ⊥,SN BN N =,AC ∴⊥平面SBN ,SB ⊂平面SBN ,AC SB ∴⊥,SB AM ⊥且AC AM A ⋂=,SB ∴⊥平面SAC ,SA 、SC ⊂平面SAC ,SA SB ∴⊥,SB SC ⊥,三棱锥S ABC -是正三棱锥,SA ∴、SB 、SC 三条侧棱两两互相垂直.将正三棱锥S ABC -补成正方体SADB CEFG -,如下图所示:因为2SA =,所以正方体SADB CEFG -的体对角线长为323SF SA ==,所以,正三棱锥S ABC -的外接球的直径223R =,所以,正三棱锥S ABC -的外接球的表面积是()224212S R R πππ==⨯=,故选:B.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.25.AB【解析】【分析】设三棱柱111ABC A B C -的高为h ,AB AC a ==,三棱柱侧面积得()23ah +843=+,可得4ah =,设N ,M 分别是三棱柱上下底面的外心,则三棱柱外接球球心O 是MN 中点,由正弦定理求得ABC 外接圆的半径r ,由勾股定理结合基本不等式求得外接球半径R 的最小值,再由球的体积公式结合选项即可求解.【详解】设三棱柱111ABC A B C -的高为h ,AB AC a ==.因为120BAC ∠=,所以2cos303BC AB a =⋅=,则该三棱柱的侧面积为()23843ah +=+,故4ah =,设,N M 分别是三棱柱上下底面的外心,则三棱柱外接球球心O 是MN 中点,设ABC 的外接圆半径为r ,则MC =32sin 2sin120BC a r a BAC ===∠⨯,设球O 的半径为R ,则22222222164244h h h OC R r a h ⎛⎫==+=+=+≥ ⎪⎝⎭,所以2R ≥,故球O 的体积为:334432ππ2π333R ≥⋅=.结合选项可知:球O 体积可能是12π,32π3,故选:AB .26.AB 【解析】【分析】设圆锥的底面半径为r,球的半径为R,由圆锥的底面面积与球面面积比值为29,得到r与R的关系,计算出圆锥的高,从而求出圆锥体积与球体积的比.【详解】设圆锥的底面半径为r,球的半径为R,∵圆锥的底面面积与球面面积比值为2 9,∴22249rRππ=,则223r R=;设球心到圆锥底面的距离为d ,则221 3d R r R =-=,所以圆锥的高为43h d R R=+=或23h R d R=-=,设圆锥体积为1V与球体积为2V,当43h R=时,圆锥体积与球体积的比为2213321224133383442733R Rr hVV R Rππππ⎛⎫⎪⎝⎭===,当23h R=时,圆锥体积与球体积的比为2213321222133343442733R Rr hVV R Rππππ⎛⎫⎪⎝⎭===.故选:AB 27.AD 【解析】【分析】设正方体的棱长为a ,由线段MN 的最小值为31-求出a ,按照球的性质逐一判断每个选项即可.【详解】设正方体的棱长为a ,则其外接球的半径为32R a =,内切球的半径为2a R '=,正方体的外接球与内切球上各有一个动点M ,N ,由于两球球心相同,可得MN 的最小值为33122a a -=-,解得2a =,故C 错误;所以外接球的半径为3,表面积为4312ππ⨯=,故A 正确;内切球的半径为1,体积为43π,故B 错误;MN 的最大值为31R R '+=+,故D 正确;故选:AD.【点睛】本题考查正方体的外接球与内切球,正确求出正方体的外接球与内切球的半径是关键,考查了学生的空间想象能力,属于中档题.28.ACD【解析】【分析】求出当90θ=时,四面体ABCD 的体积最大,利用锥体的体积公式可判断A 选项的正误;利用余弦定理可判断B 选项的正误;利用90BAD ∠=时,四面体ABCD 的表面积的最大,可判断C 选项的正误;求出球O 的半径,利用球体的体积公式可判断D 选项的正误.【详解】对于A 选项,23AC AB ==,60ABC ∠=,则ABC 为等边三角形,取AC 的中点E ,则BE AC ⊥,同理可知,ACD △为等边三角形,所以,DE AC ⊥,且23sin 603BE DE ===,1332ABC S AC BE =⋅=△,所以,二面角B AC D --的平面角为BED θ=∠,设点D 到平面ABC 的距离为d ,则sin 3sin d DE θθ==,11333sin 33sin 3333D ABC ABC V S d θθ-=⋅=⨯⨯=≤,当且仅当90θ=时,等号成立,即四面体ABCD 的体积的最大值是33,A 选项正确;对于B 选项,由余弦定理可得()2222cos 1818cos 0,36BD BE DE BE DE θθ=+-⋅=-∈,所以,()0,6BD ∈,B 选项错误;对于C 选项,33ACD ABC S S ==△△,AB AD BC CD ===,BD BD =,ABD CBD ∴≅△△,所以,1sin 6sin 62CBD ABD S S AB AD BAD BAD ==⋅∠=∠≤△△,因此,四面体ABCD 的表面积的最大值是233261263⨯+⨯=+,C 选项正确;对于D 选项,设M 、N 分别为ABC 、ACD △的外心,则113EN EM BE ===,在平面BDE 内过点M 作BE 的垂线与过点N 作DE 的垂线交于点O ,BE AC ⊥,DE AC ⊥,BE DE E ⋂=,AC ∴⊥平面BDE ,OM ⊂平面BDE ,OM AC ∴⊥,OM BE ⊥,BE AC E ⋂=,OM ∴⊥平面ABC ,同理可得ON ⊥平面ACD ,则O 为四面体ABCD 的外接球球心,连接OE ,EM EN =,OE OE =,90OME ONE ∠=∠=,OME ONE ∴≅△△,所以,302OEM θ∠==,23cos303EM OE ∴==,AC ⊥平面BDE ,OE ⊂平面BDE ,OE AC ∴⊥,22393OA OE AE ∴=+=,即球O 的半径为393R =,因此,球O 的体积为345239327V R ππ==,D 选项正确.故选:ACD.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.29.323π【解析】【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,23BC =,90ABC ∠=︒,所以224AC AB BC =+=,所以三角形外接圆半径22AC r ==,又球心O 到截面ABC 的距离为22,所以球的半径为()2222223R =+=.球体积为()33442332333V R πππ==⨯=.故答案为:323π.30.92π【解析】【分析】由正四棱锥的底边长与侧面积可得侧棱长,求出正四棱锥的高,球心在高所在直线上,利用勾股定理求半径,则球的体积可求.【详解】设正四棱锥的侧棱长为b ,又侧面积为45,∴21421452b ⨯⨯⨯-=,解得6b =,∴正四棱锥P ABCD -的高622h =-=,正四棱锥P ABCD -的外接球的球心O 在正四棱锥P ABCD -的高所在直线上,设球O 的半径为R ,则()()22222R R -+=,解得32R =,则球O 的体积为334439R 3322V πππ⎛⎫==⨯= ⎪⎝⎭.故答案为:92π.31.50π【解析】【分析】把四棱锥P ABCD -放置在长方体中,求出长方体外接球的表面积得答案.【详解】把四棱锥P ABCD -放置在长方体中,则长方体的外接球即为四棱锥的外接球,5PA =,4AB =,3AD =,∴长方体的对角线长为22254352++=,则长方体的外接球的半径522R =,∴该阳马的外接球的表面积为225244()502S R πππ==⋅=.故答案为:50π.32.20π【分析】如图,由题意可得BD ⊥平面ABC ,E 为三角形ABC 的外心,则三棱锥A BCD -的外接球的球心在过E 垂直于平面ABC 的直线上,设为点O ,则外接球的半径为OB ,然后利用已知的数据求出半径,进而可求出表面积【详解】解:因为平面BCD ⊥平面ABC ,平面BCD 平面ABC BC =,90CBD ∠=︒,所以BD ⊥平面ABC ,设E 为三角形ABC 的外心,连接,AE BE ,则290AEB BCA ∠=∠=︒,因为22AB =,所以2AE BE ==,过E 作垂直于平面ABC 的直线,则三棱锥A BCD -的外接球的球心在此直线上,设外接球的球心为O ,连接,OB OD ,设外接球的半径为R ,则OB OD R ==,因为2BD =,所以22215OB =+=,即5R =,所以三棱锥A BCD -的外接球的表面积为()2244520R πππ=⋅=,故答案为:20π。
高考数学复习考点题型专题讲解17 球的切、接、截问题
高考数学复习考点题型专题讲解专题17 球的切、接、截问题1.球的切接问题(1)长方体的外接球①球心:体对角线的交点;②半径:r=a2+b2+c22(a,b,c为长方体的长、宽、高).(2)正方体的外接球、内切球及与各条棱相切的球(a为正方体的棱长)①外接球:球心是正方体中心,半径r=32a,直径等于体对角线长;②内切球:球心是正方体中心,半径r=a2,直径等于正方体棱长;③与各条棱都相切的球:球心是正方体中心,半径r=22a,直径等于面对角线长.(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分,a为正四面体的棱长)①外接球:球心是正四面体的中心,半径r=64a;②内切球:球心是正四面体的中心,半径r=612a.2.平面截球平面截球面得圆.截面圆的圆心与球心的连线与截面圆圆面垂直且R2=d2+r2(R为球半径,r为截面圆半径,d为球心到截面圆的距离).类型一外接球问题考向1 墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:例1 已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π答案 D解析因为点E,F分别为PA,AB的中点,所以EF∥PB.因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示. 因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的半径R=6 2,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.考向2 对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R)2=a2+b2+c2(长方体的长、宽高分别为a,b,c),即R2=18(x2+y2+z2),如图.例2 在三棱锥A -BCD 中,AB =CD =2,AD =BC =3,AC =BD =4,则三棱锥A -BCD 外接球的表面积为________. 答案29π2解析 构造长方体,三个长度为三对面的对角线长,设长方体的长宽高分别为a ,b ,c ,则a 2+b 2=9,b 2+c 2=4,c 2+a 2=16, 所以2(a 2+b 2+c 2)=9+4+16=29, 即a 2+b 2+c 2=4R 2=292, 则外接球的表面积为S =4πR 2=29π2.考向3 汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h2,所以R 2=r 2+h 24.例3(2022·金华调研)在三棱柱ABC -A 1B 1C 1中,AB =BC =AC ,侧棱AA 1⊥底面ABC ,若该三棱柱的所有顶点都在同一个球O 的表面上,且球O 的表面积的最小值为4π,则该三棱柱的侧面积为( ) A.63B.3 3 C.32D.3 答案 B解析 如图,设三棱柱上、下底面中心分别为O 1,O 2,则O 1O 2的中点为O ,设球O 的半径为R ,则OA =R ,设AB =BC =AC =a ,AA 1=h ,则OO 2=12h ,O 2A =23×32AB =33a .在Rt△OO 2A 中,R 2=OA 2=OO 22+O 2A 2=14h 2+13a 2≥2×12h ×33a =33ah , 当且仅当h =233a 时,等号成立,所以S 球=4πR 2≥4π×33ah , 所以43π3ah =4π, 所以ah =3,所以该三棱柱的侧面积为3ah=3 3.考向4 垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.例4(2022·广州模拟)已知四棱锥S-ABCD的所有顶点都在球O的球面上,SD⊥平面ABCD,底面ABCD是等腰梯形,AB∥CD且满足AB=2AD=2DC=2,且∠DAB=π3,SC=2,则球O的表面积是( ) A.5π B.4πC.3πD.2π答案 A解析依题意,得AB=2AD=2,∠DAB=π3,由余弦定理可得BD=3,则AD2+DB2=AB2,则∠ADB=π2.又四边形ABCD是等腰梯形,故四边形ABCD的外接圆直径为AB,半径r=AB2=1,设AB的中点为O1,球的半径为R,因为SD ⊥平面ABCD , 所以SD =SC 2-CD 2=1, R 2=12+⎝ ⎛⎭⎪⎫SD 22=54,则S =4πR 2=5π. 考向5 切瓜模型切瓜模型是有一侧面垂直底面的棱锥模型,常见的是两个互相垂直的面都是特殊三角形,在三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,设三棱锥的高为h ,外接球的半径为R ,球心为O ,△BCD 的外心为O 1,O 1到BC 的距离为d ,O 与O 1的距离为m ,△BCD 和△ABC 外接圆的半径分别为r 1,r 2,则⎩⎨⎧R 2=r 21+m 2,R 2=d 2+(h -m )2,解得R ,可得R =r 21+r 22-l 24(l 为两个面的交线段长).例5(2022·济宁模拟)在边长为6的菱形ABCD 中,∠A =π3,现将△ABD 沿BD 折起,当三棱锥A -BCD 的体积最大时,三棱锥A -BCD 的外接球的表面积为________. 答案 60π解析 边长为6的菱形ABCD ,在折叠的过程中, 当平面ABD ⊥平面BCD 时,三棱锥的体积最大; 由于AB =AD =CD =BC =6, ∠C =∠A =π3.所以△ABD 和△CBD 均为正三角形,设△ABD 和△CBD 的外接圆半径为r , 则2r =BDsin C,所以r =2 3.△ABD 和△CBD 的交线段为BD ,且BD =6. 所以三棱锥A -BCD 的外接球的半径R =(23)2+(23)2-624=15.故S 球=4·π(15)2=60π.训练1 (1)(2022·青岛一模)设三棱柱的侧棱垂直于底面,所有棱的长都为1,顶点都在一个球面上,则该球的表面积为( ) A.5π B.π C.113π D.73π (2)在三棱锥P -ABC 中,平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC ,且PA =4,底面△ABC 的外接圆的半径为3,则三棱锥P -ABC 的外接球的表面积为________. 答案 (1)D (2)52π解析 (1)由三棱柱所有棱的长a =1,可知底面为正三角形, 底面三角形的外接圆直径2r =1sin 60°=233,所以r =33, 设外接球的半径为R ,则有R 2=r 2+⎝ ⎛⎭⎪⎫a 22=13+14=712,所以该球的表面积S =4πR 2=73π,故选D.(2)因为平面PAB ⊥平面ABC ,平面PAC ⊥平面ABC , 所以PA ⊥平面ABC .设三棱锥P -ABC 的外接球的半径为R ,结合底面△ABC 的外接圆的半径r =3,可得R 2=⎝ ⎛⎭⎪⎫PA 22+r 2=22+33=13,所以三棱锥P -ABC 的外接球的表面积为S 表=4πR 2=52π. 类型二 内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r ,建立等式V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )r ; 第三步:解出r =3V P -ABCS △ABC +S △PAB +S △PAC +S △PBC.例6 (1)(2022·成都石室中学三诊)《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,PA ⊥平面ABC ,PA =BC =4,AB =3,AB ⊥BC ,若三棱锥P -ABC 有一个内切球O ,则球O 的体积为( ) A.9π2B.9π4 C.9π16D.9π (2)在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =6,BC =8,AC =10,则该三棱柱内能放置的最大球的表面积是( ) A.16π B.24π C.36π D.64π答案(1)C (2)A解析(1)设球O的半径为r,则三棱锥P-ABC的体积V=13×12×3×4×4=13×(12×3×4+12×4×3+12×5×4+12×4×5)×r,解得r=34,所以球O的体积V=43πr3=9π16,故选C.(2)由题意,球的半径为底面三角形内切圆的半径r,因为底面三角形的边长分别为6,8,10,所以底面三角形为直角三角形,r=AB+BC-AC2=6+8-102=2.又因为AA1=6,2r=4<6,所以该三棱柱内能放置的最大球半径为2,此时S表面积=4πr2=4π×22=16π.训练 2 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面PAB,如图所示,则△PAB的内切圆为圆锥的内切球的大圆.在△PAB中,PA=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝ ⎛⎭⎪⎫223=23π.类型三 球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).例7(2022·杭州质检)在正三棱锥P -ABC 中,Q 为BC 中点,PA =2,AB =2,过点Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为________. 答案⎣⎢⎡⎦⎥⎤π,3π2解析 因为正三棱锥P -ABC 中,PB =PC =PA =2,AC =BC =AB =2,所以PB 2+PA 2=AB 2,即PB ⊥PA , 同理PB ⊥PC ,PC ⊥PA ,因此正三棱锥P -ABC 可看作正方体的一角,如图.记正方体的体对角线的中点为O ,由正方体结构特征可得,点O 即是正方体的外接球球心,所以点O 也是正三棱锥P -ABC 外接球的球心,记外接球半径为R , 则R =122+2+2=62,因为球的最大截面圆为过球心的圆,所以过点Q 的平面截三棱锥P -ABC 的外接球所得截面的面积最大为S max =πR 2=3π2. 又Q 为BC 中点,由正方体结构特征可得OQ =12PA =22;由球的结构特征可知,当OQ 垂直于过点Q 的截面时,截面圆半径最小为r =R 2-OQ 2=1, 所以S min =πr 2=π.因此,过Q 的平面截三棱锥P -ABC 的外接球所得截面面积的取值范围为⎣⎢⎡⎦⎥⎤π,3π2. 训练3 (1)设球O 是棱长为4的正方体的外接球,过该正方体棱的中点作球O 的截面,则最小截面的面积为( ) A.3π B.4π C.5π D.6π(2)(2022·武汉质检)已知棱长为2的正方体ABCD -A 1B 1C 1D 1,球O 与该正方体的各个面相切,则平面ACB 1截此球所得的截面的面积为________. 答案 (1)B (2)2π3解析 (1)当球O 到截面圆心连线与截面圆垂直时,截面圆的面积最小, 由题意,正方体棱的中点与O 的距离为22,球的半径为23, ∴最小截面圆的半径为12-8=2, ∴最小截面面积为π·22=4π.(2)∵正方体ABCD -A 1B 1C 1D 1的棱长为2,球O 与该正方体的各个面相切,则球O 的半径为1,设E ,F ,G 分别为球O 与平面ABCD 、平面BB 1C 1C 、平面AA 1B 1B 的切点, 则等边三角形EFG 为平面ACB 1截此球所得的截面圆的内接三角形, 由已知可得EF =EG =GF =2, ∴平面ACB 1截此球所得的截面圆的半径r =22sin 60°=63,∴截面的面积为π×⎝ ⎛⎭⎪⎫632=2π3.一、基本技能练1.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A.π B.3π4C.π2D.π4 答案 B解析 如图画出圆柱的轴截面ABCD ,O 为球心.球的半径R =OA=1,球心到底面圆的距离为OM =12.∴底面圆半径r =OA 2-OM 2=32故圆柱体积V =π·r 2·h =π·⎝ ⎛⎭⎪⎫322×1=3π4.2.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C解析 由题意知球的直径2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.故选C.3.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A.3π B.4π C.33π D.6π 答案 A解析 构造棱长为1的正方体,该四面体的外接球也是棱长为1的正方体的外接球, 所以外接球半径R =32, 所以外接球表面积为S =4πR 2=3π.4.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132D.310 答案 C解析 将直三棱柱补为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13,则R =132.5.(2022·南阳二模)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的∠BDC =π2,则过A ,B ,C ,D 四点的球的表面积为( )A.3πB.4πC.5πD.6π 答案 C解析 折后的几何体构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造长方体,其对角线即为球的直径,三条棱长分别为1,1,3,所以2R =1+1+3=5,球的表面积S =4π⎝ ⎛⎭⎪⎫522=5π.6.(2022·青岛模拟)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O 的表面积为( )A.2πB.4πC.6πD.8π 答案 B解析 根据图形可知,该十四面体是由一个正方体切去八个角得到的,如图所示,十四面体的外接球球心与正方体的外接球球心相同, 建立空间直角坐标系,∵该十四面体的棱长为1,故正方体的棱长为2, ∴该正方体的外接球球心的坐标为O ⎝ ⎛⎭⎪⎫22,22,22,设十四面体上一顶点为D ,则D ⎝ ⎛⎭⎪⎫2,22,0,所以十四面体的外接球半径R =OD =⎝ ⎛⎭⎪⎫2-222+⎝ ⎛⎭⎪⎫22-222+⎝ ⎛⎭⎪⎫0-222=1,故外接球的表面积为S =4πR 2=4π.故选B.7.四面体ABCD 的四个顶点都在球O 上且AB =AC =BC =BD =CD =4,AD =26,则球O 的表面积为( )A.70π3B.80π3C.30πD.40π答案 B解析如图,取BC的中点M,连接AM,DM,由题意可知,△ABC和△BCD都是边长为4的等边三角形. ∵M为BC的中点,∴AM⊥BC,且AM=DM=23,又∵AD=26,∴AM2+DM2=AD2,∴AM⊥DM,∵BC∩DM=M,BC,DM⊂平面BCD,∴AM⊥平面BCD,∵AM⊂平面ABC,∴平面ABC⊥平面BCD,△ABC与△BCD外接圆半径r=23DM=433,又△ABC与△BCD的交线段BC=4. 所以四面体外接球半径R =⎝ ⎛⎭⎪⎫4332+⎝ ⎛⎭⎪⎫4332-424=2153,四面体ABCD 的外接球的表面积为4π×R 2=803π. 8.已知三棱锥P -ABC 的棱AP ,AB ,AC 两两垂直,且长度都为3,以顶点P 为球心,2为半径作一个球,则球面与三棱锥的表面相交所得到的四段弧长之和等于( ) A.2π3B.5π6C.πD.3π2答案 D解析 如图,∠APC =π4,AP =3,AN =1,∠APN =π6,∠NPM =π12,MN ︵=π12×2=π6,同理GH ︵=π6,HN ︵=π2,GM ︵=2π3,故四段弧长之和为π6+π6+π2+2π3=3π2.9.(多选)(2022·石家庄调研)已知一个正方体的外接球和内切球上各有一个动点M 和N ,若线段MN 长的最小值为3-1,则( ) A.该正方体的外接球的表面积为12π B.该正方体的内切球的体积为π3C.该正方体的棱长为1D.线段MN长的最大值为3+1 答案AD解析设该正方体的棱长为a,则其外接球的半径R=32a,内切球的半径R′=a2,该正方体的外接球与内切球上各有一个动点M,N,由于两球球心相同,可得MN的最小值为3a2-a2=3-1,解得a=2,故C错误;所以外接球的半径R=3,表面积为4π×3=12π,故A正确;内切球的半径R′=1,体积为43π,故B错误;MN的最大值为R+R′=3+1,故D正确.故选AD.10.(多选)设圆锥的顶点为A,BC为圆锥底面圆O的直径,点P为圆O上的一点(异于B,C),若BC=43,三棱锥A-PBC的外接球表面积为64π,则圆锥的体积为( ) A.4π B.8πC.16πD.24π答案BD解析如图,设圆锥AO的外接球球心为M,半径为r,则M在直线AO上,4πr2=64π,解得r=4.由勾股定理得BM2=OM2+OB2,即42=(23)2+OM2,可得OM=2,即OM=|AO-r|=|AO-4|=2,解得AO=6或AO=2.当AO=6时,圆锥AO的体积为V=13π×(23)2×6=24π;当AO=2时,圆锥AO的体积为V=13π×(23)2×2=8π.故选BD.11.在三棱锥A-BCD中,△BCD和△ABD均是边长为1的等边三角形,AC=2,则该三棱锥外接球的表面积为________.答案2π解析取AC的中点O,连接OB,OD,在△ABC中,AB=BC=1,AC=2,所以∠ABC=90°,所以OA=OB=OC=2 2,同理得OD=22,故点O为该三棱锥外接球的球心,所以球O的半径r=22,S球=4πr2=2π.12.如图,已知球O是棱长为3的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为________.答案3π2解析 根据题意知,平面ACD 1是边长为9+9=32的正三角形,且所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD 1内切圆的半径r =13(32)2-⎝⎛⎭⎪⎫3222=62, 所以平面ACD 1截球O 的截面面积为 S =π×⎝ ⎛⎭⎪⎫622=3π2.二、创新拓展练13.(多选)(2022·华大新高考联考)已知三棱锥S -ABC 中,SA ⊥平面ABC ,SA =AB =BC =2,AC =2,点E ,F 分别是线段AB ,BC 的中点,直线AF ,CE 相交于G ,则过点G 的平面α截三棱锥S -ABC 的外接球O 所得截面面积可以是( ) A.23π B.89π C.π D.32π答案 BCD解析 因为AB 2+BC 2=AC 2,故AB ⊥BC , 故三棱锥S -ABC 的外接球O的半径R =2+2+22=62,取AC 的中点D ,连接BD 必过G , 因为AB =BC =2,故DG =13BD =13,因为OD =22, 故OG 2=⎝ ⎛⎭⎪⎫222+⎝ ⎛⎭⎪⎫132=1118,则过点G 的平面截球O 所得截面圆的最小半径r 2=⎝ ⎛⎭⎪⎫622-1118=89,故截面面积的最小值为89π,最大值为πR 2=32π,故选BCD.14.(多选)(2022·济南模拟)已知三棱锥P -ABC 的四个顶点都在球O 上,AB =BC =AC =1,∠APC =π6,平面PAC ⊥平面ABC ,则( )A.直线OA 与直线BC 垂直B.点P 到平面ABC 的距离的最大值为1+32C.球O 的表面积为13π3D.三棱锥O -ABC 的体积为18答案 ACD解析 设△ABC 外接圆的圆心为O 1,连接OO 1,O 1A . 因为O 为三棱锥P -ABC 外接球的球心, 所以OO 1⊥平面ABC ,所以OO 1⊥BC ,因为AB =BC =AC =1,所以O 1A ⊥BC ,所以BC ⊥平面OO 1A , 所以OA ⊥BC ,故A 选项正确; 设△PAC 外接圆的圆心为O 2,AC 的中点为D ,连接O 2D , 由于AC =1,∠APC =π6,所以圆O 2的半径r 2=12×1sinπ6=1,则易知O 2D =32, 所以点P 到平面ABC 的距离的最大值为1+32(此时P ,O 2,D 三点共线),故B 选项错误;由于AB =BC =AC =1,平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC , 所以圆O 1的半径r 1=12×1sin π3=33, 圆O 2的半径r 2=1,△ABC 与△PAC 的交线段AC =1, 所以三棱锥P -ABC 外接球半径R 2=⎝ ⎛⎭⎪⎫332+12-14=1312.故球O 的表面积S =4π×1312=13π3,故C 选项正确;由于OO 1⊥平面ABC ,且OO 1=O 2D =32,S △ABC =34,所以三棱锥O-ABC的体积为13×OO1×S△ABC=13×32×34=18,故D选项正确,故选ACD.15.(多选)(2022·湖州调研)已知正四面体ABCD的棱长为3,其外接球的球心为O.点E 满足AE→=λAB→(0<λ<1),过点E作平面α平行于AC和BD,设α分别与该正四面体的棱BC,CD,DA相交于点F,G,H,则( )A.四边形EFGH的周长为定值B.当λ=12时,四边形EFGH为正方形C.当λ=13时,平面α截球O所得截面的周长为13π4D.四棱锥A-EFGH的体积的最大值为22 3答案ABD解析将正四面体ABCD放入正方体中.因为正四面体ABCD的棱长为3,所以正方体的棱长为322.如图所示,过点E作平面α平行于AC和BD,平面α与正方体的棱交于M,N,P,Q四点.因为AE→=λAB→,故AH→=λAD→,即有EH=λBD,同理FG=λBD,EF=(1-λ)AC,HG=(1-λ)AC,且EH∥BD,EF∥AC,故四边形EFGH 为平行四边形.因为AC ⊥BD ,故EF ⊥EH ,则四边形EFGH 为矩形.对于A ,四边形EFGH 的周长为2(EF +EH )=2[(1-λ)AC +λBD ]=2[(1-λ)AC +λAC ]=2AC =6,为定值,故A 选项正确;对于B ,当λ=12时,E 为AB 的中点,故EF =EH ,所以四边形EFGH 为正方形,故B 选项正确;对于C ,当λ=13时,球心O 到平面EFGH 的距离即球心到平面MNPQ 的距离,即BC 中点到MF 的距离,经计算为24,球半径为322×32=364,故截面圆的半径为⎝ ⎛⎭⎪⎫3642-⎝ ⎛⎭⎪⎫242=132,所以截面圆的周长为132×2π=13π,故C 选项错误;对于D ,四棱锥A -EFGH 的高为AQ ,所以其体积V =13×322λ×3(1-λ)×3λ=922λ2(1-λ),0<λ<1, 令f (λ)=922λ2(1-λ),则f ′(λ)=922(2λ-3λ2),令f ′(λ)=0得λ=23,故当λ=23时,四棱锥A -EFGH 的体积最大,最大值为922×49×13=223,故D 选项正确,故选ABD.16.(多选)(2022·嘉兴测试)如图,在等腰梯形ABCD 中,AB =2AD =2BC =2CD =4.现将△DAC沿对角线AC所在的直线翻折成△D′AC,记二面角D′-AC-B的大小为α(0<α<π),则( )A.存在α,使得D′A⊥BCB.存在α,使得D′A⊥平面D′BCC.存在α,使得三棱锥D′-ABC的体积为3 3D.存在α=π2,使得三棱锥D′-ABC的外接球的表面积为20π答案ACD解析如图1,取AB的中点E,连接DE交AC于点F.因为AB=2CD,所以CD=EB=AE,所以四边形AECD为菱形,四边形EBCD为菱形,所以△AED,△DEC,△EBC均为等边三角形,所以AC⊥ED,∠DAC=∠BAC=π6,∠ACB=π2,在翻折过程中,如图2,AC⊥D′F,AC⊥FE,所以∠D′FE为二面角D′-AC-B的平面角,所以∠D′FE=α.对于A,当α=π2时,平面D′AC⊥平面ABC.因为BC⊥AC,所以BC⊥平面D′AC.又因为D′A⊂平面D′AC,所以D′A⊥BC,所以存在α,使得D′A⊥BC,故A选项正确;对于B,假设存在α,使得D′A⊥平面D′BC.因为D′C⊂平面D′BC,所以D′A⊥D′C,与∠AD′C=2π3矛盾,故B选项不正确;对于C,由分析可得,D′F=12DE=12AD=1,AC=2AF=2×32×AD=2 3.设D′到平面ABC的距离为d,则V三棱锥D′-ABC=13×S△ABC×d=13×12×AC×BC×d=13×12×23×2×d=33,解得d=1 2,所以sin α=dD′F=12,所以α=π6或5π6,故C选项正确;对于D,当α=π2时,平面D′AC⊥平面ABC,所以BC⊥平面D′AC,D′F⊥平面ABC.如图2所示,因为E,F分别为AB,AC的中点,所以EF∥BC,且EF=12BC=1,所以EF⊥平面D′AC.设△D′AC外接圆圆心为O1,则O1A=O1D′=AD′=2.因为E是Rt△ABC斜边的中点,所以E为Rt△ABC的外心.过O1作平面D′AC的垂线,过点E作平面ABC的垂线,则两垂线的交点O即为三棱锥D′-ABC外接球的球心,显然四边形EFO1O是矩形,所以OO1=EF=1.设三棱锥D′-ABC的外接球半径为R,则在Rt△OO1D′中,R=OD′=O1O2+O1D′2=1+4=5,所以三棱锥D′-ABC的外接球的表面积S=4πR2=20π,故D选项正确.综上所述,故选ACD.17.在菱形ABCD中,AB=23,∠ABC=60°,若将菱形ABCD沿对角线AC折成大小为60°的二面角B-AC-D,则四面体DABC的外接球球O的体积为________.答案5239π27解析如图,设M,N分别为△ABC,△ACD的外心,E为AC的中点,则EN=EM=13BE=1,在平面BDE内过点M作BE的垂线与过点N作DE的垂线交于点O. ∵BE⊥AC,DE⊥AC,BE∩DE=E,∴AC⊥平面BDE.∵OM⊂平面BDE,∴OM⊥AC,∵OM⊥BE,BE∩AC=E,∴OM⊥平面ABC,同理可得ON⊥平面ACD,则O为四面体DABC的外接球的球心,连接OE,∵EM=EN,OE=OE,∠OME=∠ONE=90°,∴△OME≌△ONE,∴∠OEM=30°,∴OE=EMcos 30°=233.∵AC⊥平面BDE,OE⊂平面BDE,∴OE⊥AC,∴OA=OE2+AE2=39 3,即球O的半径R=39 3.故球O的体积V=43πR3=5239π27.18.(2022·湖南三湘名校联考)在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1=4,M 为棱AB的中点,N是棱BC的中点,O是三棱柱外接球的球心,则平面MNB1截球O所得截面的面积为________.答案8π解析如图1,将直三棱柱补形成正方体ABCD-A1B1C1D1,连接BD1,则直三棱柱的外接球也是正方体的外接球,球心O是BD1的中点,半径R=2 3. 连接BD交MN于点E,连接B1E交BD1于点F,过点O作OO1⊥B1E于点O1,连接B1D1,因为MN∥AC,AC⊥平面BB1D1D,所以MN⊥平面BB1D1D,所以OO1⊥MN,所以OO1⊥平面MNB1.如图2,31 / 31 在矩形BB 1D 1D 中,BF FD 1=BE B 1D 1=14, 所以BF OF =23,过点B 作BG ⊥B 1E 于点G , 则BG =BE ·BB 1B 1E =43,BGOO 1=BF OF =23,所以OO 1=2,设截面圆的半径为r , 则r 2=R 2-OO 21=(23)2-22=8,所以截面的面积为8π.。
高考必考题—几何体中与球有关的切、接问题(含解析)
几何体中与球有关的切、接问题球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,则2R =3a ;②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π例2、【2020年高考天津】若棱长为 A .12π B .24π C .36πD .144π例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π例4、(2020届山东省日照市高三上期末联考)已知四棱锥P ABCD -的体积是ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .BCD .例5、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.例7、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.二、达标训练1、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是( ) A .16πB .20πC .32πD .64π2、【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D 3、【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D4、【2018年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .5、【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 半径的球面与侧面BCC 1B 1的交线长为________.6、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________.7、(2020届山东省枣庄、滕州市高三上期末)如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC =,则PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的表面积是________.8、(2020届山东省烟台市高三上期末)已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________.9、(2020届山东省滨州市高三上期末)在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC=________,该四面体外接球的表面积为________.10、(2020届山东省济宁市高三上期末)下图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形-的外接球的体积为ABCD,现将四边形ABCD沿BD折成直二面角A BD C--,则三棱锥A BCDcm.__________3一、题型选讲题型一 、几何体的外接球解决多面体的外接球问题,关键是确定球心的位置,方法是先选择多面体中的一面,确定此面外接圆的圆心,再过圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点确定球心的准确位置.对于特殊的多面体还可采用补成正方体或长方体的方法找到球心位置.例1、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.例2、【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 例3、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π【答案】C【解析】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R ==2452S ππ==,故选C.例4、(2020届山东省日照市高三上期末联考)已知四棱锥P ABCD -的体积是ABCD 是正方形,PAB ∆是等边三角形,平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球体积为( )A .BCD .【答案】A【解析】设AB 的中点为Q ,因为PAB ∆是等边三角形,所以PQ AB ⊥,而平面PAB ⊥平面ABCD , 平面PAB ⋂平面ABCD AB =,所以PQ ⊥平面ABCD ,四棱锥P ABCD -的体积是13AB AB PQ =⨯⨯⨯13AB AB AB =⨯⨯,所以边长6AB =,PQ =OH x =,OM x =,()(222222R OA OM AM x==+=+,2222223R OP OH PH x ==+=+,x =2212321R =+=343V R π==球.故选:A.例5、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.【答案】20π 【解析】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且AD =ED =,所以,ADE ∆的外接圆半径为122AE r ===设鳖臑P ADE -的外接球的半径1R ,则3143R π=,解得12R =.PA ⊥平面ADE ,1R ∴=2PA ==PA ∴=正方形ABCD 的外接圆直径为22r AC ==22r ∴=,PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径2R ==因此,阳马P ABCD -的外接球的表面积为22420R ππ=.故答案为:20π. 题型二、几何体的内切球求解多面体的内切球的问题,一般是将多面体分割为以球心为顶点,多面体的各面为底面的棱锥,利用多面体的体积等于各棱锥的体积之和求内切球的半径.例6、【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r,其体积:343V r =π=.故答案为:3. 与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例7、(2020届山东省潍坊市高三上期中)如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的表面积为__________;若该六面体内有一小球,则小球的最大体积为___________.【解析】(1)因为16(12S =⨯⨯=. (2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,每个三角形面积是4,六面体体积是正四面体的2倍,所以六面体体积是6. 由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥,设球的半径为R ,所以16()6349R R =⨯⨯⨯⇒=,所以球的体积334433V R ππ===.故答案为:. 二、达标训练1、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为6,则该正三棱锥外接球的表面积是( ) A .16π B .20πC .32πD .64π【答案】D【解析】如图所示,因为正三棱锥S ABC -的侧棱长为6,则263AE ==6SE ===, 又由球心O 到四个顶点的距离相等,在直角三角形AOE 中,,6AO R OE SE SO R ==-=-,又由222OA AE OE =+,即222(6)R R =+-,解得4R =, 所以球的表面积为2464S R ππ==, 故选D.2、【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ==.故选:C .本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3、【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D.本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.4、【2018年高考全国Ⅰ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B . C.D .【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==,Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯= B.5、【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.. 6、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________. 【答案】13π【解析】如图:SA ⊥平面ABC ,则SBA ∠为直线SB 和平面ABC 所成的角,即3SBA π∠=在Rt SAB ∆中:tan3SA AB π=== 如图,设O 为三棱锥S ABC -外接球的球心,G 为ABC ∆外接圆圆心, 连结,,,,OA OB GA GB OG ,则必有OG ⊥面ABC 在ABC ∆,2222cos 312162AC AB BC AB BC π=+-⋅⋅=+-=, 则1AC = 其外接圆半径122,1sin sin 6AC r r ABC π====∠, 又1322OG SA ==, 所以三棱锥S ABC -外接球半径为R ===该球的表面积为21344134S R πππ==⨯=, 故答案为:13π.7、(2020届山东省枣庄、滕州市高三上期末)如图,在三棱锥P -ABC 中,,PA AB ⊥PC BC ⊥,,AB BC ⊥22,AB BC ==PC =,则PA 与平面ABC 所成角的大小为________;三棱锥P -ABC 外接球的表面积是________.【答案】45︒ 6π【解析】如图,作平行四边形ABCD ,连接PD ,由AB BC ⊥,则平行四边形ABCD 是矩形. 由BC CD ⊥,BC PC ⊥,PCCD C =,∴BC ⊥平面PCD ,而PD ⊂平面PCD ,∴BC PD ⊥,同理可得AB PD ⊥,又AB BC B ⋂=,∴PD ⊥平面ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,CD AB PC ===1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.由,PA AB ⊥PC BC ⊥知PB 的中点到,,,A B C P 的距离相等,PB 是三棱锥P -ABC 外接球的直径.由BC ⊥平面PCD 得BC PC ⊥,PB ===24()62PB S ππ==. 故答案为:45︒;6π.8、(2020届山东省烟台市高三上期末)已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC,6PA =,AB =2AC =,4BC =,则:(1)球O 的表面积为__________;(2)若D 是BC 的中点,过点D 作球O 的截面,则截面面积的最小值是__________. 【答案】52π 4π【解析】(1)由题,根据勾股定理可得AC AB ⊥,则可将三棱锥P ABC -可放入以,,AP AC AB 为长方体的长,宽,高的长方体中,则体对角线为外接球直径,即2r ==则r =,所以球的表面积为224452r πππ=⨯=;(2)由题,因为Rt ABC ,所以D 为底面ABC 的外接圆圆心,当DO ⊥截面时,截面面积最小,即截面为平面ABC ,则外接圆半径为2,故截面面积为224ππ⨯=故答案为:(1)52π;(2)4π9、(2020届山东省滨州市高三上期末)在四面体S ABC -中,2SA SB ==,且SA SB ⊥,BC =,AC =________,该四面体外接球的表面积为________.【答案】68π【解析】因为2SA SB ==,且SA SB ⊥,BC =,AC =AB ==,因此222BC AC AB +=,则AC BC ⊥;取AB 中点为O ,连接OS ,OC ,则OA OB OC OS ====,所以该四面体的外接球的球心为O ,半径为OC=所以该四面体外接球的表面积为248S ππ=⋅=; 又因为SA SB =,所以SO AB ⊥;因为底面三角形ABC 的面积为定值122AC BC ⋅=,SO ,因此,当SO ⊥平面ABC 时,四面体的体积最大,为136ABC V S SO =⋅=.故答案为:(1).6(2). 8π10、(2020届山东省济宁市高三上期末)下图是两个腰长均为10cm 的等腰直角三角形拼成的一个四边形ABCD ,现将四边形ABCD 沿BD 折成直二面角A BD C --,则三棱锥A BCD -的外接球的体积为__________3cm .【答案】 【解析】由题设可将该三棱锥拓展成如图所示的正方体,则该正方体的外接球就是三棱锥的外接球,由于正方体的对角线长为2l R ==即球的半径R =该球的体积343V R π==,应填答案.。
专题2.7几何体与球切、接的问题(测)2017年高考二轮复习数学(文)(附解析)
专题2.7 几何体与球切、接的问题(测)总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______(一) 选择题(12*5=60分)1.【广西梧州市2017届高三上学期摸底联考】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图1所示,则此几何体的表面积是( )A .(4π+B .6π+C .6πD .(8π+ 【答案】C 【解析】圆柱的侧面积为ππ42121=⨯⨯=S ,半球的表面积为ππ21222=⨯=S ,圆锥的侧面积为ππ2213=⨯⨯=S ,所以几何体的表面积为ππ26321+=++=S S S S ,故选C. 2.【河北省沧州市第一中学2017届高三10月月考】已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,PA PD ==棱锥P ABCD -外接球的表面积为( )A .10πB .4π C. 16π D .8π 【答案】Dππ8242=⨯=S ,应选D.3.【2016届甘肃省天水市一中高三上学期期末考试】利用一个球体毛坯切削后得到一个四棱锥P —ABCD ,其中底面四边形ABCD 是边长为1的正方形,1PA =,且D A BC P A ⊥平面,则球体毛坯体积的最小值应为( )A B C .43πD 【答案】D4.【2016届河北省邯郸市一中高三下学期研六考试】在菱形ABCD 中,60,A AB =︒=将ABD 折起到PBD 的位置,若二面角P BD C --的大小为23π,则三棱锥P BCD -的外接球的体积为( )A .43π B C D 【答案】C 【解析】取BD 中点E ,连接AE CE ,,则2332AEC AE CE π∠===,,设BCD V 的外接圆的圆心与球心的距离为h ,三棱锥P BCD -的外接球的半径为R ,则22222154()()R h h R =+-+=,∴R h ==∴三棱锥P BCD -的外接球体积为3(6432π⋅=.故选:C . 5.【2016届湖南师大附中高三上学期月考四】若长方体1111D C B A ABCD -中,AB=1,C B 1,D C 1分别与底面ABCD 所成的角为︒45,︒60,则长方体1111D C B A ABCD -的外接球的体积为 ( ) A .677π B .37π C .374π D .67π 【答案】A6.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D .54【答案】D 【解析】左视图由三视图知:几何体为正三棱柱,∵俯视图是边长为6的正三角形,∴几何体的内切球的半径R=6×33123=⨯, ∴三棱柱的侧棱长为32.∴几何体的表面积35432632366212=⨯⨯+⨯⨯⨯⨯=S ,故选:D . 7.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π 【答案】B8.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) A.2a π B. 237a π C. 2311a π D. 25a π 【答案】B 【解析】根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为222127)60sin 2()2(a a a R =+=,球的表面积为22371274a a S ππ=⋅=,故选B . 9.【广东省惠州市2017届高三第一次调研】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A B .1 C D 【答案】A【解析】因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S ∴在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C的距离相等.SH = ,1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC = ,1SM ∴=,30OSM ∠=︒,SO OH ∴==O 到平面ABC 的距离,故选A .10.【2016届河北省正定中学高三上学期期末考试】球O 半径为13=R ,球面上有三点A 、B 、C ,312=AB ,12==BC AC ,则四面体OABC 的体积是A .360B .350C .660D .650 【答案】A11.【2016届贵州省贵阳市一中高三第五次月考】如图,已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【答案】C 【解析】设正ABC △的中心为1O ,连接1O A ,11O O O C ,,∵1O 是正ABC △的中心,A B C ,,三点都在球面上,∴1O O ABC ⊥平面,结合1O C ABC ⊂平面,可得11O O O C ⊥,∵球的半径2R =,球心O 到平面ABC 的距离为1,得11O O =,∴在1Rt O OC △中,1OC 又∵E 为AB 的中点,ABC △是等边三角形,13cos302AE AO =︒=∴,∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小,此时截面圆的半径32r =,可得截面面积为29ππ4S r ==,故选C .12.【江西省新余市2016届高三第二次模拟】已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A .π10 B .π24 C .π36 D .π48 【答案】D(二) 填空题(4*5=20分)13.【2016届河北省邯郸一中高三下学期研七】球O 面上四点P 、A 、B 、C 满足:PA 、PB 、PC 两两垂直,3,4,PA PB PC ===O 的表面积等于______.【答案】100π 【解析】空间四个点P A B C 、、、在同一球面上,PA PB PC 、、两两垂直,且3,4,PA PB PC ===PA PB PC 、、可看作是长方体的一个顶点发出的三条棱,所以过空间四个点P A B C 、、、的球面即为棱长分别为3,4,PA PB PC ===体的外接球,如下图:10=,所以这个球面的面积21024100S ππ⎛⎫=⎪⎝⎭=.14.【河南省新乡市2017届高三上学期第一次调研】已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在球面上),若球的半径5R =,圆锥的高是底面半径的2倍,则圆锥的体积为__________. 【答案】1283π15.【湖北省襄阳市第四中学2017届高三七月第二周周考】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________. 【答案】169π 【解析】由下图可知,球心在O 的位置,球的半径为22252514416962444R ⎛⎫=+=+=⎪⎝⎭,故表面积为24169R ππ=.16.【吉林省长春市普通高中2017届高三质量监测(一)】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .(三) 解答题(共6道小题,共70分)17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.R 【解析】由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积.【答案】92π.【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.. 【解析】如图,因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,不难求得三.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.【答案】9π.C D C E22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.【答案】【解析】设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆。
专题17 几何体与球切、接的问题 (练)2021年高考数学二轮复习讲练测(教师版含解析)(新高考版)
专题十七 几何体与球切、接的问题一、讲高考1.【2020年高考全国Ⅰ卷文数12理数10】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC ∆的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( ) A .64π B .48π C .36π D .32π【答案】A【思路导引】由已知可得等边ABC ∆的外接圆半径,进而求出其边长,得出1OO 的值,根据球截面性质,求出球的半径,即可得出结论.【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π∴=,由正弦定理可得2sin60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R =π=π,故选A .【专家解读】本题的特点是多面体与球的位置关系,本题考查了三棱锥的外接球,考查球的表面积公式,考查数学运算、数学直观等学科素养.解题关键是正确应用球的截面性质.2.【2020年高考全国Ⅱ卷文数11理数10】已知ABC ∆是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为16π,则球O 到平面ABC 的距离为( ) A .3B .23C .1D .23 【答案】C 【思路导引】根据球O 的表面积和ABC ∆的面积可求得球O 的半径R 和ABC ∆外接圆半径r ,由球的性质可知所求距离d【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC ∆外接圆半径为r ,边长为a ,ABC ∆的等边三角形,212a ∴=,解得:3a =,2233r ∴==∴球心O 到平面ABC 的距离1d ==,故选C . 【专家解读】本题的特点是多面体与球的位置关系,本题考查了球的相关问题的求解,考查球的表面积公式,考查数学运算、数学直观等学科素养.解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.3.【2020年高考天津卷5】若棱长为( ) A .12πB .24πC .36πD .144π【答案】C【思路导引】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以这个球的表面积为2244336S R πππ==⨯=,故选C .【专家解读】本题的特点是多面体与球的位置关系,本题考查了正方体的外接球,考查球的表面积公式,考查数学运算、数学直观等学科素养.解题关键是正确作出截面,找到正方体外接球直径与正方体体对角线的关系.【方法总结】求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.4.【2020年高考全国Ⅲ卷文数16理数15】已知圆维的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .【思路导引】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【解析】解法一:易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r ,其体积:343V r π==. 解法二:分析知圆锥内半径最大的球的应为该圆锥的内切球,如图,由题可知该圆锥的母线长为3BS =,底面半径为=1BC ,高为SC =BS 切于D 点,令OD OC r ==,则由SOD SBC ∆∆,可得OD BCOS BS =13=,得r =,此时343V r =π. 【专家解读】本题的特点是圆锥与球的位置关系,本题考查了圆锥内切球,考查球的体积公式,考查数学运算、数学直观、数学建模等学科素养.解题关键是认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,正确作出截面,构造直角三角形,应用勾股定理解题.5.【2020年高考山东卷16】已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=,以1D 为半径的球面与侧面11BCC B 的交线长为 .【思路导引】根据已知条件易得1D E =1D E ⊥侧面11BC CB ,可得侧面11BC CB 与球面的交线上的点到E11BC CB 与球面的交线是扇形EFG 的弧FG ,再根据弧长公式可求得结果.【解析】解法一:如图,取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A BC D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A BC D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BBB C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11BC CB ,设P 为侧面11BC CB 与球面的交线上的点,则1DE EP ⊥,1D E =,所以||EP ==所以侧面11BC CB 与球面的交线上的点到E 因为||||EF EG ==所以侧面11BC CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2FG π==. 解法二:在直四棱柱1111ABCD A B C D -中,取11BC 中点为O ,1BB 中点为F ,1CC 中点为E ,由题意易知111D O B C ⊥,又11BB D O ⊥,则1D O ⊥面11BB C C ,在面11BB C C 内取一点P ,使1//OP BB ,且OP =,∴1D P ==,又1D E =,1D F =∴以1D 为半径的球面与侧面11BCC B的交线是以O 为半径的圆弧FPE ,由题意易得2FOE π∠=,故该交线长为2π=.解法三:【专家解读】本题的特点是注重空间中基本计算,本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,考查数学运算、直观想象等学科素养.解题关键是作出合理的截面解决问题.6.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=,2212122x x x ∴+=∴==,,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴=,R ∴=,34433V R ∴=π==,故选D 【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、练模拟1.(2021·广西梧州模拟)已知,,在球的球面上,,,,直线与A B C O 120BAC ∠=︒2AC =1AB =OA截面所成的角为,则球的表面积为( )A .B .C .D . 【答案】D【分析】设的外心为,由余弦定理可得,再由正弦定理可得外接圆直径,进而可得球的半径和表面积. 【解析】设的外心为,, ,则. 设球的半径为,由题意可知平面,又直线与截面所成的角为,所以,在中,所以,所以球的表面积为,故选D . 【点睛】关键点点睛:本题考查球的表面积,求出球的半径是关键.本题中利用正余弦定理求出三角形的外接圆半径,再利用线面角,构造直角三角形,求出球半径.考查了学生的运算求解能力和逻辑推理能力,属于中档题目.2.(2021·安徽安庆市·高三一模(文))四面体中,,,,且面,则四面体的外接球表面积为( )A .B .C .D . 【答案】D【分析】由面,构造一个直三棱柱,设,分别为上下两个底面的外接圆圆心,易得球心为的中点,然后分别在中求得外接圆的半径,进而中求得球的半径即可.【解析】根据题意,构造一个直三棱柱,如图,ABC 60︒O 43π163π563π1123πABC 1O BC12sin120BC O A ==︒ABC 1O 2222cos BC AB AC AB AC BAC =+-⋅∠2212212cos1207=+-⨯⨯︒=BC=12sin120BC O A ==︒R 1OO ⊥ABC OA ABC 60︒160OAO ∠=︒1RtAOO 12R OA O A ===O 2281124433S R πππ==⨯=A BCD -2AB CD ==1BC =23BCD π∠=AB ⊥BCD A BCD -36π9π1243π403πAB ⊥BCD 1O 2O O 12O O BCD △2BOO,分别为上下两个底面的外接圆圆心,根据球的性质,球心必为的中点,所以球的半径为,设为,的外接圆半径设为,在中,,,,由余弦定理得, 由正弦定理可得,在中,, 所以球的表面积,故选D . 【点睛】关键点睛:解决本题的关键在于利用正弦定理求出的外接圆的半径,结合勾股定理得出三棱锥的外接球的半径.3.(2021·江西上饶模拟)设为等腰三角形,,,为边上的高,将沿翻折成,若四面体,则线段的长度为( )A .B .1 CD【答案】C【分析】由题意画出图形,结合已知求出三角形的外接圆的半径,再由正弦定理求解得答案.【解析】如图,1O 2O O 12O O OB R BCD △r BCD △2AB CD ==1BC =23BCD π∠=214122172BD ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭2sin BD r BCD ===∠2BOO 221013R r =+=24043S R ππ==BCD △ABC 2AB AC ==3A π∠=AD BC ADC AD ADC 'ABC D 'BC '2BDC '设等腰三角形的外心为,四面体的外接球的球心为,连接,则平面, 由已知求得, ,即等腰三角形又由已知可得,由正弦定理可得,得可得,则,故选C .【点睛】方法点睛:求几何体的外接球的半径常用的方法有:(1)直接法;(2)模型法;(3)解三角形法.要根据已知条件灵活选择方法求解.4.(多选题)( 2021福清西山学校高三期中)已知的等边三角形,且其顶点都在球的球面上.若球的表面积为,则( )A .B .与平面所成的角为C .到平面的距离为1D .二面角的大小为 【答案】ABC【分析】过作平面于点,则点是等边的中心,也是外心、重心,、即可判断选项A ;因为平面于点,所以即为与平面所成的角,在直角三角形中,求即可判断选项B ;求的长即可判断选项C ;取的中点连接,可得即为二面角的平面角,求出即可判断选项D ,进而可得正确选项.【解析】如图,因为的顶点都在球的球面上,且是等边三角形,过作平面于点,则点是等边的中心,也是外心,重心 因为, BDC 'G ABC D 'O GO OG ⊥BDC 'AD =ABC D 'DG ∴=BDC '1BD DC ==1sin DBC =∠sin DBC ∠=45DBC DCB ∠=∠=︒BC 'ABC O O 16πOA BC ⊥OA ABC 30O ABC O AB C --60︒O OH ⊥ABC H H ABC OH BC ⊥AD BC ⊥OH ⊥ABC H OAH ∠OA ABC AHO OAH ∠OA AB M ,OM HM OMH ∠O AB C --OMH ∠ABC O ABC O OH ⊥ABC H H ABCABC 2AB =3AB =延长交于点,则点是的中点,因为,所以,又因为平面,平面,所以,因为,所以平面,又因为平面,所以,故选项A 正确;因为球的表面积为,即,所以,即,因为等边中,,所以,在直角三角形中,,所以到平面的距离为1,故选项C 正确;因为平面于点,所以即为与平面所成的角,在直角三角形中,,,所以,所以,故选项B 正确; 取的中点连接,因为,所以,因为平面,平面,所以,因为,所以平面,所以,结合,可得即为二面角的平面角,由,,所以,,所以,所以,故选项D 不正确,故选ABC .【点睛】方法点睛:求空间中直线与平面所成角的常见方法为(1)定义法:直接作平面的垂线,找到线面成角;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离,距离与斜线长的比值即线面成角的正弦值;(3)向量法:利用平面法向量与斜线方向向量所成的余弦值的绝对值,即是线面成角的正弦值. AH BC D D BC AB AC =AD BC ⊥OH ⊥ABC BC ⊂ABC OH BC ⊥AD OH H ⋂=BC ⊥AOH AO ⊂AOH OA BC ⊥O 16π2416R ππ=2R =2OA=ABC 3AB =33cos30AD AB ==23AH AD ==AHO 1OH=O ABC OH ⊥ABC H OAH ∠OA ABC AHO 1OH =2OA =1sin 2OHOAH OA ∠==30OAH ∠=AB M ,OM HM OA OB =OM AB ⊥OH ⊥ABC AB ABC OH AB ⊥OM OH O ⋂=AB ⊥OHM HM AB ⊥OM AB ⊥OMH ∠O AB C --2OA =32AM =OM ==1OH =sin OH OMH OM ∠==≠60OMH ∠≠5.(多选题)( 2021双峰县第一中学高三月考)已知正方体的棱长为2,,分别是,的中点,过,的平面与该正方体的每条棱所成的角均相等,以平面截该正方体得到的截面为底面,以为顶点的棱锥记为棱锥,则( )A .正方体的外接球的体积为B .正方体的内切球的表面积为C .棱锥的体积为3D .棱锥的体积为【答案】AC【分析】根据正方体外接球的直径为正方体体对角线可知其直径为再根据正方体内切球球心为正方体中心,半径为棱长一半,可求得其内切球表面积;根据题干做出该正方体图形,可知棱锥的正六边形,可求得该锥体体积.【解析】因为正方体的棱长为2,所以正方体,内切球的半径为1,所以正方体的外接球的体积为,内切球的表面积为,故A 正确,B 错误.如图,分别是棱的中点.因为在同一个平面内,并且该平面与正方体的各条棱所成的角均相等,所以平面被此正方体所截得的截面图形为正六边形. 因为正六边形的面积,到平面所以棱锥的体积为.故正确,D 错误,故选AC . 1111ABCD A BC D -E F 1AA1CC E F αα1B Ω1111ABCD A BC D -1111ABCD A BC D -43πΩΩ32Ω1111ABCD A BC D -1111ABCD A BC D -=1111ABCD A BC D -343π⨯=2414ππ⨯=,,,M N S T 1111,,,AB BC C D A D EMNFST αEMNFST EMNFST 1623S π=⨯=1B α=Ω13⨯3=C【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.6.(2021·黑龙江哈尔滨市·哈尔滨三中高三月考(文))沿正三角形的中线翻折,使点与点间的距离,则四面体外接球表面积为_______.【答案】【分析】由题意分析:四面体可补形为长方体,只需要找长方体的外接球即可.【解析】如图示,∵为正三角形的中线,∴,又,∴,∵∴,∴,∴四面体可扩充为长方体.则四面体外接球即为长方体的外接球.设四面体外接球的半径为R,则,∴∴四面体外接球表面积.【点睛】多面体的外接球问题解题关键是找球心和半径,求半径的方法有:(1)公式法;(2) 多面体几何性质法;(3)补形法;(4)寻求轴截面圆半径法;(5)确定球心位置法.7.(2021·新疆高三模拟(理))三棱锥的底面是边长为的等边三角形,二面角为,则三棱锥的外接球的表面积为___________.【答案】ABC AD B CABCD5πABCDAD ABC,AD BD AD CD⊥⊥=BD CD D AD BCD⊥1BC BD CD==,222=BC BD CD+BD CD⊥ABCDABCDABCD()22222R BD CD AD=++2R=ABCD245S Rππ==S ABC-12SB SC==S BC A--60S ABC-208π【分析】设为中点,为正外心,可得是二面角的平面角为,作底面,垂足为,在上,设外接球球心,则,作于,设,利用,由已知线段长及二面角的大小求出图形中各线段长,然后利用勾股定理求得(以图中位置计算出值,如果,说明在平面上方,如果,则在平面正方).然后可得外接球半径,从而得球面积.【解析】如图,设为中点,为正外心,依题意有,,∴,∴,则易证为二面角的平面角,,设在底面的射影为,则可证在上,则,,,,,设为三棱锥的外接球球心,可证,过点在面内作,为垂足,则,,设求半径为,,则,,解得,.则球心在底面的下方,事实上当在底面的下方时 解得,.三棱锥的外接球的表面积为.【点睛】本题考查求三棱锥外接球的表面积,解题关键是找到球心位置,求出球的半径.三棱锥的外接球球心一定在过各面外心与此面垂直的直线上.8.(2021·湖北高三月考)已知球的半径为点均在球面上,若为等边三角形,且其面积则三棱锥的最大体积是___________. D BC G ABC SDA ∠S BC A --60︒SE ⊥ABC E E AD O //OG SE OF SE ⊥F OG d =OS OA R ==d d 0d >O ABC 0d <O ABC D BC G ABC 6BD DC ==SB SC ==SD BC ⊥6SD =SDA ∠S BC A --60SDA ∠=S ABC E E AD 3ED =SE =GD =AG =3GE =O //OG SE O SAD OF SE ⊥F 3OF GE ==AG =R OG d =222R OA OS ==22223))d d +=+2d =-252R =O ABC O ABC 22223))d d +=+2d =252R =S ABC -208πO 4,3,,,A B C D ABC D ABC -【分析】根据三角形面积求出边长,即可求出三角形外接圆半径,继而可求出高的最大值,求出体积.【解析】设外接圆的圆心为由解得,则 当三棱棱锥体积最大时,球心在上,因此有 所以的最大值为,三棱锥的最大体积为故.三、练原创1.已知圆锥的高为3积等于( )A .B .C .D . 【答案】B 【解析】如图:设球心到底面圆心的距离为,则球的半径为,由勾股定理得解得,故半径, 故选. ABC 1,O ABC 21sin603,2AB ⋅⋅=2AB =1122sin60AB O B =⨯=D ABC -O 1DO 12,3OO ==1DO 42233+=D ABC -111233ABC V S DO =⋅⋅==83π323π16π32πx 3x -()2233x x +=-1x =2r =343233V r ππ==球B2.(2021·江西九校联考)已知三棱锥A -BCD 中,侧面ABC ⊥底面BCD ,三角形ABC 是边长为3的正三角形,三角形BCD 是直角三角形,且∠BCD =90°,CD =2,则此三棱锥外接球的体积等于( )A .B .C .16πD .32π【答案】A【分析】把三棱锥放入长方体中,根据长方体的结构特征求出三棱锥外接球的半径,再计算三棱锥外接球的体积.【解析】三棱锥中,侧面底面,把该三棱锥放入长方体中,如图所示;设三棱锥外接球的球心为,取BC 的中点M ,BD 的中点N ,三角形ABC 的重心G ,连接OG ,则,,, 所以三棱锥外接球的半径为,所以三棱锥外接球的体积为,故选A . 3.(多选题)(2021湖南长沙市·长郡中学高三月考)已知球是正三棱锥(底面为正三角形,点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆的面积可能是( )A .B .C .D .【答案】BCD【分析】依题意首先求出外接球的半径,即可求出截面圆的面积最大值,设过且垂直的截面圆的半径为323π643πA BCD -ABC ⊥BCD O AM ==2233AG AM ===112OG CD ==2R OA ==3344232333R V πππ⨯===O A BCD -3BC =AB =E BD 6BD BE =E O π2π3π4πE OE,即可求出截面圆的面积最小值,从而得解;【解析】如下图所示,其中是球心,是等边三角形的中心,可得,,设球的半径为,在三角形中,由,即,解得,故最大的截面面积为,在三角形中,,,由余弦定理得, 在三角形中,,设过且垂直的截面圆的半径为,,故最小的截面面积为,所以过点作球的截面,所以截面圆面积的取值范围是,故选.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 4.(2021·江苏南通一模)已知在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线的平面截圆柱得到四边形,其面积为8.若P 为圆柱底面圆弧的中点,则平面与球O 的交线长为___________.r O O 'BCD O B O D BC ''===3AO '=R ODO '222OO DO OD ''+=()2223R R -+=2R =24=R ππBEO '1162BE BD ==6EBO π'∠=2O E '==OO E 'OE ==E OE r 222115444r R OE =-=-=254r ππ=E O 5,44ππ⎡⎤⎢⎥⎣⎦BCD 12O O 12O O ABCD CD PAB【分析】先根据球与圆柱的上、下底面及母线均相切,可得四边形为正方形,由,求出球的半径r ;由题意分析出平面与球O 的交线为一个圆,利用垂径定理,计算出圆的半径,求出周长即可.【解析】设球的半径为r ,则,而,∴作于H ,∵⊥底面,∴⊥AB .∵P 为圆柱底面圆弧的中点,∴AP =BP ,又为AB 中点,∴⊥AB ,又,∴,∴,又且,∴,∵,, ∴,∴∴平面与球O 的交线为一个圆,其半径,圆周长为. 【点睛】(1)多面体的外接球(内切球)问题解题关键是找球心和半径,求半径的方法有:①公式法;②多面体几何性质法;③补形法;④寻求轴截面圆半径法;⑤确定球心位置法;(2)一个平面与球相交,所得的截面为一个圆.5.(2021·盐城市伍佑中学高三期末)已知三个顶点都在球的表面上,且,,ABCD 8ABCD S =PAB 2r =2AB BC r ==248ABCD S AB BC r ===r =2OH O P ⊥12O O 12O O CD 2O 2O P 1222OO PO O =12AB O O P ⊥AB OH ⊥2OH O P ⊥22AB PO O =OH ABP ⊥122OO r ==1O P =121OO O P ⊥2O P 1122si n O P O O P O P ∠===12255sin O O O O H O P =⨯∠==PAB 2r ===222l r ππ===ABC O 1AC BC ==AB =是球面上异于、、的一点,且平面,若球的表面积为,则球心到平面的距离为____________.【答案】 【分析】根据题中的垂直关系,确定球心,再根据球的表面积公式计算,再求点到平面的距离.【解析】由,,并且平面,平面,,且 平面,,是直角三角形和的公共斜边,取的中点,根据直角三角形的性质可知,所以点是三棱锥外接球的球心,设,则则三棱锥外接球的表面积,,解得:,点到平面的距离.【点睛】方法点睛:本题考查了球与几何体的综合问题,考查空间想象能力以及化归和计算能力,(1)当三棱锥的三条侧棱两两垂直时,并且侧棱长为,那么外接球的直径(2)当有一条侧棱垂直于底面时,先找底面外接圆的圆心,过圆心做底面的垂线,球心在垂线上,根据垂直关系建立的方程.(3)而本题类型,是两个直角三角形的公共斜边的中点是外接球的球心. S A B C SA ⊥ABC O 16πO ABC 2O SA O ABC 222AC BC AB +=AC BC ∴⊥SA ⊥ABC BC ⊂ABC SA BC ∴⊥AC SA A ⋂=BC ∴⊥SAC BC SC ∴⊥SB ∴SBC SAB SB O OA OB OC OS ===O S ABC -SA x =12r SB ==S ABC -2416S r ππ==()21264x +=x =O ABC 122d SA ==,,a b c 2R R。
2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(练)含解析
2018年高考数学(理)二轮复习讲练测热点七 几何体与球切、接的问题1.练高考1.【2017课标3,文理】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【答案】B 【解析】2. 【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 3.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R ++=== 【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4.【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .【答案】325.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π【解析】取SC 的中点O ,连接,OA OB因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=所以31933r r =⇒=,所以球的表面积为2436r ππ=6.【2017天津,文理】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π 【解析】设正方体边长为a ,则226183a a =⇒= , 外接球直径为344279233,πππ3382R a V R ====⨯=. 2.练模拟1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为( ) A .24316π B .8116π C .814π D .274π【答案】A 【解析】2.【2018届河南省南阳市第一中学校高三第七次】已知三棱锥P ABC -的两个顶点均在某球面上, PC 为该球的直径, ABC ∆是边长为4的等边三角形,三棱锥P ABC -的体积为163,则该三棱锥的外接球的表面积为( ) A.163π B. 403π C. 643π D. 803π【答案】D【解析】设D 为ABC ∆外接圆圆心,则三棱锥的外接球球心O 满足OD 垂直平面ABC ,所以222216132438024,43343333OD OD R S R ππ⎛⎫⎛⎫=⨯⨯∴==+== ⎪ ⎪ ⎪⎝⎭⎝⎭,选D.3.【河南省师范大学附属中学2015届高三12月月考】已知四面体P ABC -中,4PA =,AC =23PB BC ==PA ⊥平面PBC ,则四面体P ABC -的外接球体积为( )A .1256π B .1623 C .6423 D .25623 【答案】C4.【2018届河北省张家口市高三上学期期末】体积为8的正方体1111ABCD A B C D -内有一个体积为V 的球,则V 的最大值为( ) A. 8π B. 4π82π43π【答案】D【解析】要使球的体积V 最大,则球为正方体的内切球, 正方体的体积为8, ∴正方体的棱长为2, ∴内切球的半径为1,体积为344133ππ⨯=,故选D. 5.面积为332的正六边形的六个顶点都在球O 的球面上,球心O 到正六边形所在平面的距离为 2,记球O 的体积为V ,球O 的表面积为S ,则VS的值是( ) A .2 B .1 C 3 D 2【答案】B . 【解析】设正六边形的边长为a ,则23336142a a ⋅=⇒=,∴球O 的半径21(22)3r =+=, ∴3243143r V r S r ππ===,故选B . 6.【2018届江西省赣州市高三上学期期末】中国古代数学经典《九章算术》中,将四个面都为直角三角形的三棱锥为鳖臑,若三棱锥P ABC -为鳖臑,且PA ⊥平面ABC , 3PA AC ==,又该鳖臑的外接球的表面积为34π,则该鳖臑的体积为__________. 【答案】6【解析】因为外接球的表面积为34π,所以22344434R R ππ=∴= ,将鳖臑补成长方体,长宽高为3,3,h ,则鳖臑的外接球直径为长方体对角线,即222221143316,4,433632R h h h V =++∴===⨯⨯⨯⨯= 3.练原创1. 某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2D .π25【答案】A2的正四面体,可以看做是一个棱长为1的正方体截去四个角后余下的几何体,其外接球与正方体的外接球相同,故其直径为2R 3S =4πR 2=(2R )2π=3π.选A2.已知四面体P ABC -中, 4=PA ,72=AC ,32==BC PB ,PA ⊥平面PBC,则四面体P ABC -的内切俯视图正视图侧视图球半径与外接球半径的比( )B.328C.32162【答案】C【解析】如图1,由已知及勾股定理得,27,23,AB PC ==PBC △为等边三角形,ABC △为等腰三角形.所以,111323234433322P ABC PBC V S PA -=⋅=⋅⨯⎡⎢⎣⎦⨯=△ 表面积(211123422323522232S =⨯⨯+⨯⨯+⎡⎡⎤⎢⎢⎥⎣⎦⨯⎦⎣163=,设内切球半径为r ,13V S r =⋅表面积,所以,1333r =⨯,34r =; 如图2,PBC △所在的小圆的直径0234,sin 60PD ==因此大圆直径2224442,22,R R +==故内切球半32C .3.如图,正方体1111ABCD A B C D -3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面积相交所得到的两段弧之和等于( )A .56π B .23π C .π D .76π 【答案】A所以30EAF ∠=所以圆弧EF 长等于30223603ππ⨯⨯⨯= 所以两段圆弧之和为5236πππ+=故答案选A4.三棱锥S ABC -的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB BC ⊥,又1S A A B B C ===,则球O 的表面积为 . 【答案】3π 【解析】由题意得:三棱锥S ABC -为棱长为1的正方体内一个三棱锥,所以球O 为正方体的外接球,直径为正方体对角O 的表面积为224=(2)3.R R πππ=5.已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的表面积为 . 【答案】π8.。
几何体与球切,接的问题(解析版)
2018高考数学二轮复习(文科)几何体与球切、接问题一、选择题(12*5=60分)1.【广西梧州市2017届高三上学期摸底联考】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图1所示,则此几何体的表面积是( )A .(4π+B .6π+C .6πD .(8π 【答案】C 【解析】圆柱的侧面积为ππ42121=⨯⨯=S ,半球的表面积为ππ21222=⨯=S ,圆锥的侧面积为ππ2213=⨯⨯=S ,所以几何体的表面积为ππ26321+=++=S S S S ,故选C.2.【河北省沧州市第一中学2017届高三10月月考】已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,PA PD ==锥P ABCD -外接球的表面积为( )A .10πB .4π C. 16π D .8π 【答案】Dππ8242=⨯=S ,应选D.3.【2016届甘肃省天水市一中高三上学期期末考试】利用一个球体毛坯切削后得到一个四棱锥P —ABCD ,其中底面四边形ABCD 是边长为1的正方形,1PA =,且D A BC P A ⊥平面,则球体毛坯体积的最小值应为( )A .3 B C .43πD .2【答案】D4.【2016届河北省邯郸市一中高三下学期研六考试】在菱形ABCD 中,60,A AB =︒=将ABD 折起到PBD 的位置,若二面角P BD C --的大小为23π,则三棱锥P BCD -的外接球的体积为( )A .43π B D 【答案】C 【解析】取BD 中点E ,连接AE CE ,,则2332AEC AE CE π∠===,,设BCD V 的外接圆的圆心与球心的距离为h ,三棱锥P BCD -的外接球的半径为R ,则22222154()()R h h R =+-+=,∴22R h ==∴三棱锥P BCD -的外接球体积为3(6432π⋅=.故选:C . 5.【2016届湖南师大附中高三上学期月考四】若长方体1111D C B A ABCD -中,AB=1,C B 1,D C 1分别与底面ABCD 所成的角为︒45,︒60,则长方体1111D C B A ABCD -的外接球的体积为( ) A .677π B .37π C .374π D .67π【答案】A6.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( ) A . 18B .36C . 45D . 54【答案】D 【解析】由三视图知:几何体为正三棱柱,∵俯视图是边长为6的正三角形,∴几何体的内切球的半径R=6×33123=⨯, ∴三棱柱的侧棱长为32. ∴几何体的表面积35432632366212=⨯⨯+⨯⨯⨯⨯=S ,故选:D .7.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π 【答案】B8.设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为左视图( )A.2a πB. 237a π C. 2311a π D. 25a π 【答案】B 【解析】根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为2202127)60sin 2()2(a a a R =+=, 球的表面积为22371274a a S ππ=⋅=,故选B . 9.【广东省惠州市2017届高三第一次调研】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A .1 C【答案】A【解析】因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S∴ 在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C 的距离相等.S∴ SH 1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC = ,1SM ∴=,30OSM ∠=︒,SO OH ∴==,即为O 到平面ABC 的距离,故选A .10.【2016届河北省正定中学高三上学期期末考试】球O 半径为13=R ,球面上有三点A 、B 、C ,312=AB ,12==BC AC ,则四面体OABC 的体积是A .360B .350C .660D .650 【答案】A11.【2016届贵州省贵阳市一中高三第五次月考】如图,已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【答案】C 【解析】设正ABC △的中心为1O ,连接1O A ,11O O O C ,,∵1O 是正ABC △的中心,A B C ,,三点都在球面上,∴1O O ABC ⊥平面,结合1O C ABC ⊂平面,可得11O O O C ⊥,∵球的半径2R =,球心O 到平面ABC 的距离为1,得11O O =,∴在1Rt O OC △中,1OC =又∵E 为AB 的中点,ABC △是等边三角形,13cos302AE AO =︒=∴,∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小,此时截面圆的半径32r =,可得截面面积为29ππ4S r ==,故选C .12.【江西省新余市2016届高三第二次模拟】已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A .π10 B .π24 C .π36 D .π48 【答案】 D二、填空题(4*5=20分)13.【2016届河北省邯郸一中高三下学期研七】球O 面上四点P 、A 、B 、C 满足:PA 、PB 、PC 两两垂直,3,4,PA PB PC ===O 的表面积等于______.【答案】100π 【解析】空间四个点P A B C 、、、在同一球面上,PA PB PC 、、两两垂直,且3,4,PA PB PC ===则PA PB PC 、、可看作是长方体的一个顶点发出的三条棱,所以过空间四个点P A B C 、、、的球面即为棱长分别为3,4,PA PB PC ===10=,所以这个球面的面积21024100S ππ⎛⎫=⎪⎝⎭=.14.【河南省新乡市2017届高三上学期第一次调研】已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在球面上),若球的半径5R =,圆锥的高是底面半径的2倍,则圆锥的体积为__________. 【答案】1283π15.【湖北省襄阳市第四中学2017届高三七月第二周周考】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________. 【答案】169π 【解析】由下图可知,球心在O 的位置,球的半径为22252514416962444R ⎛⎫=+=+=⎪⎝⎭,故表面积为24169R ππ=.16.【吉林省长春市普通高中2017届高三质量监测(一)】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q到平面ABC 的距离的最大值为 .三、解答题(共6道小题,共70分)17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.【答案】3R 【解析】由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=.18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积.【答案】92π. 【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE的外接球的体积.. 【解析】如图,因为AE=EB=DC=1,0DAB=CBE=DEA=60∠∠∠,所以AE=EB=BC=DC=DE=CE=1AD =,即三棱锥P-DCE 为正四面体,至此,不难求得三棱.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.【答案】9π.CDCE22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.【答案】【解析】设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r . 如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆。
2018年高考数学(理)专题练习题:几何体与球切、接问题(无答案)
几何体与球切、接的问题1.已知正四棱柱的顶点在同一球面上,且球的表面积为,当正四棱锥的体积最大时,正四棱柱的高为__________.2.若正三棱台的上、下底面边长分别为和,高为1,则该正三棱台的外接球的表面积为_______.3.已知四面体,则该四面体外接球的大圆的面积为__________.4.已知三棱锥,满足两两垂直,且,是三棱锥外接球上一动点,则点到平面的距离的最大值为.5.已知一个球的表面上有A、B、C三点,且,若球心到平面ABC的距离为1,则该球的表面积为A. B. C. D.6已知三棱锥的底面是以为斜边的等腰直角三角形,,,则三棱锥的外接球的球心到平面的距离是()A.B.1 C.D.7.已知球面上的三个点,且,球的半径为,则球心到平面的距离等于()A. B. C. 1 D.8.正三棱柱的顶点都在同一个球面上,若球的半径为4,则该三棱柱侧面面积最大值为()学#科网A. B. C. D.9.已知球面上有A、B、C三点,且AB=AC=,BC=,球心到平面ABC的距离为,则球的体积为()A. B. C. D.10.已知圆柱的高为2,底面半径为,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于()A. B. C. D.11.已知圆锥的高为3,它的底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A. B. C. D.12.几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D. 以上都不对13.如图,在等腰梯形中,, 为中点.将与分别沿、折起,使、重合于点,则三棱锥的外接球的体积为()A. B. C. D.14.已知直角三角形的三个顶点在半径为的球面上,两直角边的长分别为和,则球心到平面的距离为()A. 5B. 6C. 10D. 1215.若正四棱锥内接于球,且底面过球心,则球的半径与正四棱锥内切球的半径之比为()A. B. C. D.16.已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A . π10 B .π24 C .π36 D .π4817. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?19.已知球的面上四点A 、B 、C 、D ,,,,求球的体积. 20. 在等腰梯形中,,,为的中点,将与分布沿、向上折起,使重合于点,求三棱锥的外接球的体积.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.。
专题2.7 几何体与球切、接的问题(测) 2019年高考数学(理)二轮复习讲练测Word版含解析
2019高三二轮精品【新课标理科】热点七几何体与球切、接的问题总分_______ 时间_______ 班级_______ 学号_______ 得分_______一、选择题(12*5=60分)1.【2018届福建省福州市高三上学期期末】已知圆柱的高为2周都在同一个球面上,则这个球的表面积等于()A. 4πB. 163π C.323π D. 16π【答案】D【解析】设球半径为,R该圆柱的两个底面的圆周都在同一个球面上,∴可得,球的表面积为,故选D.2.【山东省临沂市第十九中学2019届高三上第六次调研】已知三棱柱的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为,则此球的体积等于( )A .B .C .D .【答案】B【解析】设AA1=h,则∵棱柱的体积为,AB=2,AC =,∠BAC=60°,∴×2××h =∴h=1,∵AB=2,AC =,∠BAC=60°∴BC=如图,连接上下底面外心,O 为PQ 的中点,OP ⊥平面ABC ,AP=则球的半径为OA ,由题意OP=,∴OA=所以球的体积为:πR 3=.故选B.3.【2018届福建省福州市高三上学期期末】已知圆锥的高为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( ) A. 83π B. 323π C. 16π D. 32π 【答案】B【解析】如图:设球心到底面圆心的距离为x ,则球的半径为3x -,由勾股定理得解得1x =,故半径2r =,故选B .18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.【解析】先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.如图作轴截面,设球未取出时水面高h PC =,球取出后,水面高x PH = ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为,球取出后水面下降到EF ,水体积为.又,则, 解得r x 315=.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,,AB BC ⊥,,求球O 的体积.【答案】92π. 【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为,则此长方体为正方体,所以CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,,0DAB=60∠,E 为AB 的中点,将ADE∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积.. 【解析】如图,因为,,所以,即三棱锥P-DCE 为正四面体,至此,不难求得三棱锥外接球的体.21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积. 【答案】9π.【解析】设外接球半径为R ,在△OO 1A 中有解得32R =. ∴=9S π球.22. 已知一圆锥的母线长为10,底面圆半径为6.(1)求圆锥的高;CDCE(2)若圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,求球的表面积. 【答案】(1)8(2)【解析】(1)据题意知,圆锥的高(2)据(1)求解知,圆锥的高为,设圆锥内切球的半径为,则,所以所以所求球的表面积.。
专题2.7 几何体与球切、接的问题(讲) 2019年高考数学(理)二轮复习讲练测Word版含解析
热点七 几何体与球切、接的问题纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则;三是球为正方体的外接球,截面图为长方形11ACAC 和其外接圆,则.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;=.数据关系:设正方体的棱长为a,球的半径为r,这时有2r a(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r=.2 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1正四面体与球的切接问题(1)正四面体的内切球,如图4. 位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有;(可以利用体积桥证明)(2)正四面体的外接球,如图5. 位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有;(可用正四面体高h减去内切球的半径得到)(3)正四面体的棱切球,如图6. 位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a,高为h;球的半径为R,这时有例 4【吉林省长春外国语学校2019届高三上期末】在四面体中,若,,,则四面体的外接球的表面积为__________.【答案】【解析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以,2,为三边的三角形作为底面,且以分别x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=3,x2+z2=5,y2+z2=4,则有(2R)2=x2+y2+z2=6(R为球的半径),得2R2=3,所以球的表面积为S=4πR2=6π.故答案为:.点评:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图. 一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径.2.2其它棱锥与球的切接问题球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.例5【山东省临沂市第十九中学2019届高三上学期第六次调研】长方形中,,将沿折起,使二面角大小为,则四面体的外接球的表面积为________【答案】【解析】如图所示:设矩形ABCD的对角线AC、BD交于点O,则OA=OB=OC=OD=,∴三棱锥B-ACD的外接球的半径为R=,其表面积为S=4πR2=4π•=.故答案为.例6【甘肃省张掖市2019届高三上学期第一次联考】三棱锥的每个顶点都在球的表面上,平面,,,,,则球的表面积为_____.【答案】例7【2018届山西省太原十二中高三上学期1月】在四棱锥P ABCD -中, PC ⊥底面ABCD ,底面为正方形, //QA PC ,60,记四棱锥P ABCD -的外接球与三棱锥B ACQ -的外接球的表面积分别为12,S S ,则21S S =___. 【答案】157 【解析】设正方形的边长为a ,设2O 为CQ 的中点,因为PC ⊥平面ABCD ,而,CD CB ⊂平面ABCD ,所以,又//AQ PC ,故,又,故AQ ⊥平面ABCD , AC ⊂平面ABCD ,所以AQ AC ⊥,故QAC ∆为直角三角形, CQ 为斜边,所以.同理QAC ∆也为直角三角形,结合,所以AQ a =,又CB BA ⊥,,所以CB ⊥平面AQB , QB ⊂平面AQB ,所以CB QB ⊥, QBC ∆为直角三角形,所。
【推荐】专题2.7 几何体与球切、接的问题(练)-2018年高考数学(理)二轮复习讲练测
2018年高三二轮复习讲练测之练案【新课标理科数学】热点七 几何体与球切、接的问题1.练高考1.【2017课标3,文理】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πBCD【答案】B 【解析】2. 【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为的球,若,,,,则的最大值是()(A )4π (B) (C )6π (D )【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B .3.【2017课标II ,文15】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 【答案】14π.【考点】球的表面积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程 (组)求解.4.【2017江苏,6】 如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,的值是 .5.【2017课标1,文16】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π【解析】取SC 的中点O ,连接,OA OB 因为,SA AC SB BC == 所以,OA SC OB SC ⊥⊥ 因为平面SAC ⊥平面SBC 所以OA ⊥平面SBC 设OA r =6.【2017天津,文理】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【解析】设正方体边长为a ,则226183a a =⇒= ,2.练模拟1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为( ) A .B .C .D .【答案】A 【解析】2.【2018届河南省南阳市第一中学校高三第七次】已知三棱锥的两个顶点均在某球面上,为该球的直径, 是边长为4的等边三角形,三棱锥的体积为 ,则该三棱锥的外接球的表面积为( ) A.B.C. D.【答案】D 【解析】设D 为外接圆圆心,则三棱锥的外接球球心O 满足垂直平面ABC ,所以,选D.3.【河南省师范大学附属中学2015届高三12月月考】已知四面体P ABC -中,4PA =,,PA ⊥平面PBC ,则四面体P ABC -的外接球体积为( )A B C D 【答案】C4.【2018届河北省张家口市高三上学期期末】体积为的正方体内有一个体积为的球,则的最大值为( ) A.B.C.D.【答案】D【解析】要使球的体积最大,则球为正方体的内切球,正方体的体积为, 正方体的棱长为, 内切球的半径为,体积为,故选D.5.的正六边形的六个顶点都在球O 的球面上,球心O 到正六边形所在平面的距离为 记球O 的体积为V ,球O 的表面积为S ,则) A .2 B .1 C D 【答案】B . 【解析】设正六边形的边长为a ,则,∴球O 的半径 B . 6.【2018届江西省赣州市高三上学期期末】中国古代数学经典《九章算术》中,将四个面都为直角三角形的三棱锥为鳖臑,若三棱锥为鳖臑,且平面,,又该鳖臑的外接球的表面积为,则该鳖臑的体积为__________. 【答案】【解析】因为外接球的表面积为,所以,将鳖臑补成长方体,长宽高为3,3,h ,则鳖臑的外接球直径为长方体对角线,即3.练原创1. 某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的表面积为( )A .3πB .π4C .π2【答案】A【解析】可以看做是一个棱长为1的正方体截去四个角后余下的几何体,其外接球与正方体的外接球相同,故其直径为2RS =4πR 2=(2R )2π=3π.选A 2.已知四面体P ABC -中,4=PA,72=AC ,32==BC PB ,PA ⊥平面PBC,则四面体的内切球半径与外接球半径的比( ) 【答案】C【解析】如图1为等边三角形,ABC △为等腰三角形.设内切球半径为r , 如图2,PBC △所在的小圆的直径,选C . 俯视图正视图侧视图3.如图,正方体1111ABCD A B C D -的棱长为,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面积相交所得到的两段弧之和等于( )5π2π C .π D 【答案】A所以30EAF ∠=所以圆弧EF 长等于30360π⨯⨯故答案选A4.三棱锥S ABC -的所有顶点都在球O 的表面上,SA ⊥平面ABC ,AB BC ⊥,又1SA AB BC ===,则球O 的表面积为 . 【答案】3π【解析】由题意得:三棱锥S ABC -为棱长为1的正方体内一个三棱锥,所以球O 为正方体的外接球,直径为正方体对角,因此球O 的表面积为224=(2)3.R R πππ=5.已知三棱锥A BCD -中,2,2AB AC BD CD BC AD =====, 直线AD 与底面BCD 所成角为时三棱锥外接球的表面积为 . 【答案】π8.。
【推荐】专题2.7 几何体与球切、接的问题(测)-2018年高考数学(理)二轮复习讲练测
2018年高三二轮复习讲练测之测案【新课标理科数学】热点七几何体与球切、接的问题总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.【2018届福建省福州市高三上学期期末】已知圆柱的高为2,底面半径为,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于()A. B. C. D.【答案】D【解析】设球半径为该圆柱的两个底面的圆周都在同一个球面上,可得,球的表面积为,故选D.2.【2018届安徽省皖西高中教学联盟三上学期期末】已知球面上有A、B、C 三点,且AB=AC=,BC=,球心到平面ABC的距离为,则球的体积为()A. B. C.D.【答案】B3.【2018届福建省福州市高三上学期期末】已知圆锥的高为3,它的底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()测---能力提升A. B. C. D.【答案】B【解析】如图:设球心到底面圆心的距离为,则球的半径为,由勾股定理得解得,故半径,故选.4.【2018届安徽省皖西高中教学联盟三上学期期末】正三棱柱的顶点都在同一个球面上,若球的半径为4,则该三棱柱侧面面积最大值为()A. B. C. D.【答案】A5.【2018届福建省三明市A片区高中联盟校高三上学期期末】几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D. 以上都不对【答案】A【解析】由题可知该几何体为轴截面为正三角形的圆锥,底面圆的直径为2,高为∴外接球半径∴外接球表面积故选A6.已知球面上的三个点,且,球的半径为,则球心到平面的距离等于()A. B. C. 1 D.【答案】B【解析】由题意,得球心在面的射影为的外心,因为,所以,即是以为钝角的等腰三角形,则外心在高的延长线上,设,则,解得,即.故选B.7.【2018届四川省乐山四校第三学期半期联考】如图,在等腰梯形中,, 为中点.将与分别沿、折起,使、重合于点,则三棱锥的外接球的体积为()A. B. C. D.【答案】C8.已知直角三角形的三个顶点在半径为的球面上,两直角边的长分别为和,则球心到平面的距离为()A. 5B. 6C. 10D. 12【答案】D【解析】由题意可知,直角三角形的斜边为直角三角形所在小圆的直径,其直径为:,在大圆内应用勾股定理可得:球心到平面的距离为.本题选择D选项.9.已知三棱锥的底面是以为斜边的等腰直角三角形,,,则三棱锥的外接球的球心到平面的距离是()A. B.1 C. D.【答案】A10.【2018届”超级全能生”高考全国卷26省9月联考】若正四棱锥内接于球,且底面过球心,则球的半径与正四棱锥内切球的半径之比为()A. B. C. D.【答案】A【解析】设外接球半径为R,由题意可知,OA=OB=OC=OD=OP=R,设四棱锥P-ABCD的内切球半径为r,由等体积法,所以选A.11.【2018届云南民族大学附属中学高三上学期期末】已知一个球的表面上有A 、B 、C 三点,且,若球心到平面ABC 的距离为1,则该球的表面积为A.B.C.D.【答案】A【解析】由题意可得平面ABC 截球面所得的截面圆恰为正三角形ABC 的外接圆O′, 设截面圆O′的半径为r ,由正弦定理可得2r=4,解得r=2, 设球O 的半径为R ,∵球心到平面ABC 的距离为1, ∴由勾股定理可得r 2+12=R 2,解得R 2=5, ∴球O 的表面积S=4πR 2=20π。
球与各种几何体切、接问的题目专的题目(一))
球与各种几何体切、接问题近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见。
首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.一、球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1、 球与正方体(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的棱切球,如图2. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有22r a =.2(3)正方体的外接球,如图3. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.图3例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .2思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==得知直线EF 被球O 截得的线段就是球的截面圆的直径.2、 球与长方体例2 自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.结论:长方体的外接球直径是长方体的对角线.例 3(全国卷I高考题)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为().A. 16πB. 20πC. 24πD. 32π思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.3、球与正棱柱(1)结论1:正棱柱的外接球的球心是上下底面中心的连线的中点.(2)结论2:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.二、 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.1、正四面体与球的切接问题(1) 正四面体的内切球,如图4.位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有643R h a ==;例4 正四面体的棱长为a ,则其内切球的半径为______.【解析】 如图正四面体A -BCD 的中心为O ,即内切球球心,内切球半径R 即为O 到正四面体各面的距离.∵AB =a, ∴正四面体的高h =63a ,又V A -BCD =4V O -BCD ,()∴R =14h =612a . (2)正四面体的外接球,位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有436R h a ==;(可用正四面体高h 减去内切球的半径得到)例5 求棱长为1的正四面体外接球的半径。
几何体与球的切接问题
几何体与球的切接问题纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一,高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力。
【核心考点回顾】表面积柱体 2S ch S =+直棱柱底2(S c l S c ''=+斜棱柱底为直截面周长)2222()S r rl r r l πππ=+=+圆锥椎体 12S nah S '=+正棱锥底 2()S r rl r r l πππ=+=+圆锥球24S R π=体积柱体 V Sh =柱椎体 13V Sh =锥球343V R π=2.求空间几何体体积的常用方法(1)公式法:直接根据相关的体积公式计算。
(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积比等。
(3)割补法:把不能直接计算体积的空间几何体进行适当的分割或补形,转化为可计算体积的几何体。
3.常见几何体与球有关的切、接问题: (1)设正方体的棱长为a ,球的半径为R ,①若球为正方体的外接球,正方体的八个顶点在同一个球面上; 正方体中心与球心重合;则2R =3a ;②若球为正方体的内切球,正方体的六个面都与一个球都相切, 正方体中心与球心重合;则2R =a ;Sh③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. 用长方体的对角线的公式,求出长方体的对角线长,即为外接球的直径, 从而得到外接球的半径;解决途径是作出截面图,在轴截面中建立关系。
常用结论有:长(正)方体的外接球直径是长(正)方体的体对角线。
(3)正四面体外接球:正四面体四个顶点都在一个球面上,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为,高为;球的半径为,这时有;(4)正三棱锥的内切球:球与正三棱锥四个面相切,球心到四个面距离相等,都为球半径.这样求球的半径可转化为球球心到三棱锥面的距离,可采用等体积法解决, 即:四个小三棱锥的体积和为正三棱锥的体积,31⋅⋅=内切表正三棱锥R S V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2.7 几何体与球切、接的问题(测)总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______(一) 选择题(12*5=60分)1.【广西梧州市2017届高三上学期摸底联考】若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正(主)视图和侧(左)视图如图1所示,则此几何体的表面积是( )A .(4π+B .6π+C .6πD .(8π+ 【答案】C 【解析】圆柱的侧面积为ππ42121=⨯⨯=S ,半球的表面积为ππ21222=⨯=S ,圆锥的侧面积为ππ2213=⨯⨯=S ,所以几何体的表面积为ππ26321+=++=S S S S ,故选C. 2.【河北省沧州市第一中学2017届高三10月月考】已知四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,其中ABCD 为正方形,PAD ∆为等腰直角三角形,PA PD ==棱锥P ABCD -外接球的表面积为( )A .10πB .4π C. 16π D .8π 【答案】Dππ8242=⨯=S ,应选D.3.【2016届甘肃省天水市一中高三上学期期末考试】利用一个球体毛坯切削后得到一个四棱锥P —ABCD ,其中底面四边形ABCD 是边长为1的正方形,1PA =,且D A BC P A ⊥平面,则球体毛坯体积的最小值应为( )A B C .43πD 【答案】D4.【2016届河北省邯郸市一中高三下学期研六考试】在菱形ABCD 中,60,A AB =︒=将ABD 折起到PBD 的位置,若二面角P BD C --的大小为23π,则三棱锥P BCD -的外接球的体积为( )A .43π B C D 【答案】C 【解析】取BD 中点E ,连接AE CE ,,则2332AEC AE CE π∠===,,设BCD V 的外接圆的圆心与球心的距离为h ,三棱锥P BCD -的外接球的半径为R ,则22222154()()R h h R =+-+=,∴R h ==∴三棱锥P BCD -的外接球体积为3(6432π⋅=.故选:C . 5.【2016届湖南师大附中高三上学期月考四】若长方体1111D C B A ABCD -中,AB=1,C B 1,D C 1分别与底面ABCD 所成的角为︒45,︒60,则长方体1111D C B A ABCD -的外接球的体积为 ( ) A .677π B .37π C .374π D .67π 【答案】A6.已知一个空间几何体的三视图如图所示,其中俯视图是边长为6的正三角形,若这个空间几何体存在唯一的一个内切球(与该几何体各个面都相切),则这个几何体的全面积是( )A . 18B .36C . 45D .54【答案】D 【解析】左视图由三视图知:几何体为正三棱柱,∵俯视图是边长为6的正三角形,∴几何体的内切球的半径R=6×33123=⨯, ∴三棱柱的侧棱长为32.∴几何体的表面积35432632366212=⨯⨯+⨯⨯⨯⨯=S ,故选:D . 7.一几何体的三视图如右图所示,若主视图和左视图都是等腰直角三角形,直角边长为1,则该几何体外接球的表面积为( )A .4πB .π3C .π2D .π 【答案】B8.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( ) A.2a π B. 237a π C. 2311a π D. 25a π 【答案】B 【解析】根据题意条件可知三棱柱是棱长都为a 的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为222127)60sin 2()2(a a a R =+=,球的表面积为22371274a a S ππ=⋅=,故选B . 9.【广东省惠州市2017届高三第一次调研】已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( )A B .1 C D 【答案】A【解析】因为三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC ===,S ∴在面ABC 内的射影为AB 中点H ,SH ∴⊥平面ABC ,SH ∴上任意一点到,,A B C的距离相等.3SH =,1CH =,在面SHC 内作SC 的垂直平分线MO ,则O 为S ABC -的外接球球心.2SC =,1SM ∴=,30OSM ∠=︒,SO OH ∴==O 到平面ABC 的距离,故选A .10.【2016届河北省正定中学高三上学期期末考试】球O 半径为13=R ,球面上有三点A 、B 、C ,312=AB ,12==BC AC ,则四面体OABC 的体积是A .360B .350C .660D .650 【答案】A11.【2016届贵州省贵阳市一中高三第五次月考】如图,已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最小值是( )A .74πB .2πC .94πD .3π【答案】C 【解析】设正ABC △的中心为1O ,连接1O A ,11O O O C ,,∵1O 是正ABC △的中心,A B C ,,三点都在球面上,∴1O O ABC ⊥平面,结合1O C ABC ⊂平面,可得11O O O C ⊥,∵球的半径2R =,球心O 到平面ABC 的距离为1,得11O O =,∴在1Rt O OC △中,1OC 又∵E 为AB 的中点,ABC △是等边三角形,13cos302AE AO =︒=∴,∵过E 作球O 的截面,当截面与OE 垂直时,截面圆的半径最小,此时截面圆的半径32r =,可得截面面积为29ππ4S r ==,故选C .12.【江西省新余市2016届高三第二次模拟】已知C B A 、、是球O 的球面上三点,2=AB ,32=AC , 60=∠ABC ,且棱锥ABC O -的体积为364,则球O 的表面积为( ) A .π10 B .π24 C .π36 D .π48 【答案】D(二) 填空题(4*5=20分)13.【2016届河北省邯郸一中高三下学期研七】球O 面上四点P 、A 、B 、C 满足:PA 、PB 、PC 两两垂直,3,4,PA PB PC ===O 的表面积等于______.【答案】100π 【解析】空间四个点P A B C 、、、在同一球面上,PA PB PC 、、两两垂直,且3,4,PA PB PC ===PA PB PC 、、可看作是长方体的一个顶点发出的三条棱,所以过空间四个点P A B C 、、、的球面即为棱长分别为3,4,PA PB PC ===体的外接球,如下图:10=,所以这个球面的面积21024100S ππ⎛⎫=⎪⎝⎭=.14.【河南省新乡市2017届高三上学期第一次调研】已知一个圆锥内接于球O (圆锥的底面圆周及顶点均在球面上),若球的半径5R =,圆锥的高是底面半径的2倍,则圆锥的体积为__________. 【答案】1283π 【解析】设圆锥底面半径为r ,高为2r .2R r =,解得4r =,所以圆锥的体积为211284833ππ⋅⋅=. 15.【湖北省襄阳市第四中学2017届高三七月第二周周考】已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________. 【答案】169π16.【吉林省长春市普通高中2017届高三质量监测(一)】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .(三) 解答题(共6道小题,共70分)17. 过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.R 【解析】由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 18. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?.19. 【改编自浙江高考题】已知球O 的面上四点A 、B 、C 、D ,DA ABC ⊥平面,AB BC ⊥,O 的体积.【答案】92π.【解析】本题用一般方法时,需要找出球心,求出球的半径.而利用长方体模型很快便可找到球的直径,由于DA ABC ⊥平面,AB BC ⊥,联想长方体中的相应线段关系,构造如图所示的长方体,又因为CD 长即为外接球的直径,利用直角三角形解出CD=3.故球O 的体积等于92π.20. 【改编自山东高考题】在等腰梯形ABCD 中,AB=2DC=2,0DAB=60∠,E 为AB 的中点,将ADE ∆与BEC ∆分布沿ED 、EC 向上折起,使A B 、重合于点P ,求三棱锥P-DCE 的外接球的体积..21. 一个正四棱锥的底面边长为2,侧棱长为3,五个顶点都在同一个球面上,求此球的表面积.【答案】9π.【解析】设外接球半径为R ,在△OO 1A 中有()2221+R R -=解得32R =.∴=9S π球.C BA22. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,求这个球的半径.【答案】【解析】设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .。