[精品]2018年安徽省芜湖市南陵县中考数学模拟试卷与参考答案(4月份)

合集下载

安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷(含答案解析)

安徽省芜湖市中考数学一模试卷一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:94.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.165.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:29.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y=x2向左平移1个单位,所得的新抛物线的解析式为.12.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π).13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.安徽省芜湖市中考数学一模试卷参考答案与试题解析一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分.)1.已知5x=6y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,则5y=6x,故此选项错误;B、=,则5x=6y,故此选项正确;C、=,则5y=6x,故此选项错误;D、=,则xy=30,故此选项错误;故选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°【分析】根据相似多边形对应角的比相等,就可以求解.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.【点评】主要考查了相似多边形的性质和四边形的内角和是360度的实际运用.3.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2B.3:5C.9:4D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC∽△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.4.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8B.12C.14D.16【分析】直接利用三角形中位线定理得出DE∥BC,DE=BC,再利用相似三角形的判定与性质得出答案.【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∵=,∴=,∵△ADE的面积为4,∴△ABC的面积为:16,故选:D.【点评】此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC 是解题关键.5.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.【点评】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.6.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒【分析】已知函数式为二次函数解析式,最高点即为抛物线顶点,求达到最高点所用时间,即求顶点的横坐标.【解答】解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.【点评】本题考查的是二次函数在实际生活中的应用,比较简单.7.联欢会主持人小亮、小莹、大明三位同学随机地站成一排,小亮恰好站在中间的概率是()A.B.C.D.【分析】先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.【解答】解:列表如下:共有6种等可能的结果,其中小亮恰好站在中间的占2种,所以小亮恰好站在中间的概率为=,故选:C.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.【点评】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等.9.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【分析】表示出AD的长,利用勾股定理求出即可.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=AB =2,BH=AH=2,则BC=2BH=4,利用速度公式可得点P从B点运动到C需4s,Q 点运动到C需8s,然后分类讨论:当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,DQ=BQ=x,利用三角形面积公式得到y=x2;当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4,DQ=CQ=(8﹣x),利用三角形面积公式得y=﹣x+8,于是可得0≤x≤4时,函数图象为抛物线的一部分,当4<x≤8时,函数图象为线段,则易得答案为D.【解答】解:作AH⊥BC于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°,∴AH=AB=2,BH=AH=2,∴BC=2BH=4,∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,∴点P从B点运动到C需4s,Q点运动到C需8s,当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,在Rt△BDQ中,DQ=BQ=x,∴y=•x•x=x2,当4<x≤8时,作QD⊥BC于D,如图2,CQ=8﹣x,BP=4在Rt△BDQ中,DQ=CQ=(8﹣x),∴y=•(8﹣x)•4=﹣x+8,综上所述,y=.故选:D.【点评】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 二、填空题(本大题共4小题,每小题5分,满分20分.)11.抛物线y =x 2向左平移1个单位,所得的新抛物线的解析式为 y =(x +1)2 .【分析】先确定抛物线y =x 2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y =x 2的顶点坐标为(0,0),把点(0,0)向左平移1个单位所得对应点的坐标为(﹣1,0),所以新抛物线的解析式为y =(x +1)2. 故答案为y =(x +1)2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是 8﹣2π (结果保留π).【分析】根据S 阴=S △ABD ﹣S 扇形BAE 计算即可; 【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.13.如图所示,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴、y轴分别交于点A、B,且AB=BC,已知△AOB的面积为1,则k的值为4.【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(﹣a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(a,),∴点B的坐标为(0,),∴=1,解得,k=4,故答案为:4.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.如图所示,已知AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC相似,则AP=或2或6.【分析】由AD∥BC,∠ABC=90°,易得∠PAD=∠PBC=90°,又由AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,然后分别从△APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【解答】解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.所以AP=或AP=2或AP=6.故答案是:或2或6.【点评】此题考查了相似三角形的性质.注意利用分类讨论思想求解是关键.三、(本大题共2小题,每小题8分,满分16分.)15.解方程:x(x+2)=0.【分析】原方程转化为x=0或x+2=0,然后解一次方程即可.【解答】解:∵x=0或x+2=0,∴x1=0,x2=﹣2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.16.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【解答】解:(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.四、(本大题共2小题,每小题8分,满分16分.)17.某地区投入教育经费2500万元,投入教育经费3025万元,求至该地区投入教育经费的年平均增长率.【分析】一般用增长后的量=增长前的量×(1+增长率),要投入教育经费是2500(1+x)万元,在的基础上再增长x,就是的教育经费数额,即可列出方程求解.【解答】解:设增长率为x,根据题意为2500(1+x)万元,为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.18.为了估计河的宽度,勘测人员在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=24米,BD=12米,DE=40米,求河的宽度AB为多少米?【分析】根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【解答】解:设宽度AB为x米,∵DE∥BC,∴△ABC∽△ADE,∴=,又∵BC=24,BD=12,DE=40代入得∴=,解得x=18,答:河的宽度为18米.【点评】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分.)19.如图,⊙O中弦AB与CD交于M点.(1)求证:DM•MC=BM•MA;(2)若∠D=60°,⊙O的半径为2,求弦AC的长.【分析】(1)根据圆周角定理得到∠D=∠B,证明△DMA∽△BMC,根据相似三角形的性质列出比例式,即可证明结论;(2)连接OA,OC,过O作OH⊥AC于H点,根据圆周角定理、垂径定理计算即可.【解答】(1)证明:∵=,∴∠D=∠B,又∵∠DMA=∠BMC,∴△DMA∽△BMC,∴=,∴DM•MC=BM•MA;(2)连接OA,OC,过O作OH⊥AC于H点,∵∠D=60°,∴∠AOC=120°,∠OAH=30°,AH=CH,∵⊙O半径为2,∴AH=∵AC=2AH,∴AC=2.【点评】本题考查的是相似三角形的判定和性质、圆周角定理、垂径定理,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.20.在平面直角坐标系xOy中,已知抛物线y=x2﹣4x+2m﹣1的顶点为C,图象与x轴交于A、B 两点(点A在点B的左侧).(1)求m的取值范围;(2)当m取最大整数时,求△ABC的面积.【分析】(1)根据抛物线与x轴有两个交点,得到△>0,由此求得m的取值范围.(2)利用(1)中m的取值范围确定m=2,然后根据抛物线解析式求得点A、B的坐标,利用三角形的面积公式解答即可.【解答】解:(1)∵抛物线y=x2﹣4x+2m﹣1与x轴有两个交点,令y=0.∴x2﹣4x+2m﹣1=0.∵与x轴有两个交点,∴方程有两个不等的实数根.∴△>0.即△=(﹣4)2﹣4•(2m﹣1)>0,∴m<2.5.(2)∵m<2.5,且m取最大整数,∴m=2.当m=2时,抛物线y=x2﹣4x+2m﹣1=x2﹣4x+3=(x﹣2)2﹣1.∴C坐标为(2,﹣1).令y=0,得x2﹣4x+3=0,解得x1=1,x2=3.∴抛物线与x轴两个交点的坐标为A(1,0),B(3,0),∴△ABC的面积为=1.【点评】考查了抛物线与x轴的交点坐标,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点,解题时,注意二次函数与一元二次方程间的转化关系.六、(本题满分12分)21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y的概率.【分析】(1)列表得出所有等可能的情况数即可;(2)找出点(x,y)落在反比例函数y=的图象上的情况数,即可求出所求的概率;(3)找出所确定的数x,y满足y的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的结果有16种,分别为(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(2,3);(2,4);(3,1);(3,2);(3,3);(3,4);(4,1);(4,2);(4,3);(4,4);(2)其中点(x,y)落在反比例函数y=的图象上的情况有:(2,3);(3,2)共2种,则P(点(x,y)落在反比例函数y=的图象上)==;(3)所确定的数x,y满足y的情况有:(1,1);(1,2);(1,3);(1,4);(2,1);(2,2);(3,1);(4,1)共8种,则P(所确定的数x,y满足y)==.【点评】此题考查了列表法与树状图法,以及反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.如图,Rt△ABP的直角顶点P在第四象限,顶点A、B分别落在反比例函数y=图象的两支上,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F和E.已知点B的坐标为(1,3).(1)填空:k=3;(2)证明:CD∥AB;(3)当四边形ABCD的面积和△PCD的面积相等时,求点P的坐标.【分析】(1)由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;(2)设A点坐标为(a,),则D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合∠P=∠P 可得出△PDC∽△PAB,由相似三角形的性质可得出∠CDP=∠A,再利用“同位角相等,两直线平行”可证出CD∥AB;(3)由四边形ABCD的面积和△PCD的面积相等可得出S△PAB =2S△PCD,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.【解答】(1)解:∵B点(1,3)在反比例函数y=的图象,∴k=1×3=3.故答案为:3.(2)证明:∵反比例函数解析式为,∴设A点坐标为(a,).∵PB⊥x轴于点C,PA⊥y轴于点D,∴D点坐标为(0,),P点坐标为(1,),C点坐标为(1,0),∴PB=3﹣,PC=﹣,PA=1﹣a,PD=1,∴,,∴.又∵∠P=∠P,∴△PDC∽△PAB,∴∠CDP=∠A,∴CD∥AB.(3)解:∵四边形ABCD的面积和△PCD的面积相等,∴S△PAB =2S△PCD,∴×(3﹣)×(1﹣a)=2××1×(﹣),整理得:(a﹣1)2=2,解得:a1=1﹣,a2=1+(舍去),∴P点坐标为(1,﹣3﹣3).【点评】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题的关键是:(1)根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;(2)利用相似三角形的判定定理找出△PDC∽△PAB;(3)由三角形的面积公式,找出关于a的方程.八、(本题满分14分)23.如图1,四边形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,分别过点A 和点C作直线BP的垂线,垂足为点E和点F.(1)证明:△ABE∽△BCF;(2)若=,求的值;(3)如图2,若AB=BC,设∠DAP的平分线AG交直线BP于G.当CF=1,=时,求线段AG的长.【分析】(1)由余角的性质可得∠ABE=∠BCF,即可证△ABE∽△BCF;(2)由相似三角形的性质可得==,由等腰三角形的性质可得BP=2BE,即可求的值;(3)由题意可证△DPH∽△CPB,可得==,可求AE=,由等腰三角形的性质可得AE平分∠BAP,可证∠EAG=∠BAH=45°,可得△AEG是等腰直角三角形,即可求AG 的长.【解答】证明:(1)∵AB⊥BC,∴∠ABE+∠FBC=90°又∵CF⊥BF,∴∠BCF+∠FBC=90°∴∠ABE=∠BCF又∵∠AEB=∠BFC=90°,∴△ABE∽△BCF(2)∵△ABE∽△BCF,∴==又∵AP=AB,AE⊥BF,∴BP=2BE∴==(3)如图,延长AD与BG的延长线交于H点∵AD∥BC,∴△DPH∽△CPB∴==∵AB=BC,由(1)可知△ABE≌△BCF∴CF=BE=EP=1,∴BP=2,代入上式可得HP=,HE=1+=∵△ABE∽△HAE,∴=,=,∴AE=∵AP=AB,AE⊥BF,∴AE平分∠BAP又∵AG平分∠DAP,∴∠EAG=∠BAH=45°,∴△AEG是等腰直角三角形.∴AG=AE=3【点评】本题是相似综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键.。

芜湖市2018年初三三模数学试卷

芜湖市2018年初三三模数学试卷

2018年九年级毕业暨升学模拟考试(三)数学试卷(时间:120分钟,满分:150分)注意事项:本卷共8大题,计23小题。

一、选择题(本大题共10小题,每小题4分,共40分.)每小题都给出 A 、B 、C 、D 四个选项,其中只有一个是正确的. 答题栏1. 中国第34次南极考察队乘“雪龙”极地考察船开展了海陆空立体协同考察,总航程达 3.8万海里.其中数据3.8万用科学记数法可表示为( ). A. 3.8×104 B. 3.8×105 C. 38×103D. 0.38×1052. 如图所示的几何体由五个相同的小正方体搭成,它的主视图是( ).A. B. C. D . 3. 下列计算正确的是( ).A .a 2+a 2=a 4B .(a 2)3=a 5C .2+a =2aD .(ab)3=a 3b 34. 如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C (∠ACB =90°)落在直尺 的一边上.若∠1=40°,则∠2的度数是( ). A .30°B. 40°C. 50°D. 60°5. 如图所示,在数轴上有A 、B 、C 、D 、E 五个点表示相应的整数,无理数13在两个点所 表示的整数之间,则这两个整数所对应的点是( ). A .点A 和点B B .点B 和点CC .点C 和点D D .点D 和点E第2题E D C B A第5题第4题6. 我国古代数学名著《九章算术》中有“米谷粒分”问题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为..( ). A. 134石 B. 169石 C. 338石 D. 1365石7. 不等式2x ≥x -1的解集在数轴上表示正确的是( ).A. B. C. D. 8.抛物线y =2x 2﹣x +1与坐标轴...的交点个数是( ). A .0 B .1C .2D .39.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公 路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的 过程中,甲、乙两车各自与C 地的距离y (km)与甲车行驶时间t (h)之间的函数关系如图所 示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ; ③乙车出发752h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是( ). A .①③④ B .②③ C .②③④D .①②④10. 如图所示,在四边形ABCD 中,AB =3,BC =2,若AC =AD 且∠ACD =60°,则对角线BD 的长最大值为( ). A. B. C .4D .5二、填空题(本大题共4小题,每小题5分,满分20分.)11. 函数2+=x y 中自变量x 的取值范围是 .12. 为参加2018年“芜湖市初中毕业生升学体育考试”,小王同学在跳绳备考训练中,测得5次跳绳的成绩(单位:个/分钟)分别为150,158,162,158,166.这则组数据的中 位数是 .第9题第10题13.如图所示,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长 .14. 如图所示矩形纸片ABCD中,AB=16 cm,BC=40cm,M是边BC的中点,沿过M的直线翻折.若点B恰好落在边AD上,则折痕长度为 cm.三、(本大题共2小题,每小题8分,满分16分)15. 化简:22112x xx x x --÷+.16. 如图所示,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上(即网格的交点).将线段AB绕点B顺时针旋转90°,得线段A′B,点A的对应点为A′,连接AA′交线段BC于点D.(1)作出旋转后的图形,并标明字母;(2)填空:CDDB= .(只需直接写出答案)第13题第14题D第16题四、(本大题共2小题,每小题8分,满分16分)17. 今年4月初,某商品价格每件上涨20%,用3000元买到的该商品件数比涨价前少20件.受市场行情影响,4月下旬该商品开始降价,经过两次降价后,该商品价格为每件19.2 元.(1)求4月初,该商品上涨后的价格;(2)若该商品两次降价率相同,求该商品价格的平均降价率.18. 如图所示,古希腊毕达哥拉斯学派将1,3,6,10,…这样可以形成一个“三角形”的数,称之为三角形数.我们设第k 个三角形数为T k ,观察图形可知T k =1+2+…+k =()12k k +⋅.下面我们通过构图,来探究三角形数一些有趣的性质.T 4-T 1=9=32;(1)T 7-T 2=_______=________;(2)在一般情况下,T 3n +1-T n =__________________(n ≥1),请证明你的猜想. 【证明】五、(本大题共2小题,每小题10分,满分20分)19. 如图所示,在四边形ABCD 中,E 是对角线AC 上一点,且DE =EC ,以AE 为直径的⊙O 经过点B ,且与边CD 相切于点D . (1)求证:DE =OE ;(2)若CD ∥AB .求证:四边形ABCD 是菱形.C第19题20. 如图所示,甲、乙两只捕捞船同时从A 港出海捕鱼.甲船以每小时215千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度东北方向前进.甲船航行2小时到 达C 处,此时甲船发现渔具丢在乙船上,于是甲船当即沿北偏东75°方向追赶(匀速 行驶),结果两船恰好在B 处相遇. (1)求B 处与A 港之间的距离;(2)甲船追赶上乙船的速度是每小时多少千米?(注:结果保留根号)六、(本大题满分12分)21. 为了传承优秀传统文化,某校举行“经典诵读”比赛,诵读材料有:A 《唐诗》、B 《宋词》、C 《论语》.将A 、B 、C 这三个字母分别写在3张完全相同的不透明卡片的正面 上,把这3张卡片背面朝上洗匀后放在桌面上.小红和小亮参加诵读比赛,比赛时小 红先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机 抽取一张卡片,选手按各自抽取的卡片上的内容进行比赛. (1)小红诵读《论语》的概率是 ;(2)请用列表法或画树状图的方法,求小红和小亮诵读两个相同材料的概率.第20题七、(本大题满分12分)22. 甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米.现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).(1)求羽毛球飞行的路线所在的抛物线的表达式;(2)求羽毛球飞行的最大高度.x第22题八、(本大题满分14分)23. 如图所示,在等边△ABC中,M和N分别是AB边和BC边上的点,连接AN和CM交于P点,且∠APM=60°,点P为AN的中点.(1)求证:AM=BN;(2)求AMMB的值,并写出计算推理的过程.第23题。

(完整版)2018年安徽中考数学试题与答案

(完整版)2018年安徽中考数学试题与答案
2018年安徽省初中毕业学业考试
数 学
本试卷共8大题,计23小题,满分150分,考试时间120分钟
题号








总分
得分
一、选择题<本题共10小题,每小题4分,满分40分)
每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分.L6OJgyk1v3
A.7 B.9
C.10 D. 11
7. 如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧 的长是…………………………………………………………………………………【 】L6OJgyk1v3
A. B. C. D.
8.一元二次方程 的根是………………【 】
A.-1B. 2C. 1和2D. -1和2
<1)请补充完成下面的成绩统计分析表:
<2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.L6OJgyk1v3
【解】
六、<本题满分12分)
21. 如图函数 的图象与函数 <x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1>,C点坐标为(0,3>.7N09uxu2uW
【解】
四、<本题共2小题,每小题8分,满分16分)
17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
<1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;

南陵县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

南陵县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

南陵县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)【答案】D【考点】点的坐标,点的坐标与象限的关系【解析】【解答】解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(2,﹣3)、(﹣2,﹣3)、(﹣2,3)中只有(﹣2,3)在第二象限.故答案为:D.【分析】第二象限内的点的坐标特征是:横坐标为负数,纵坐标为正数. 由此即可得出.2、(2分)已知关于x,y的方程组,当x+y=3时,求a的值()A. -4B. 4C. 2D.【答案】B【考点】解一元一次方程,解二元一次方程组【解析】【解答】解:解方程组得:又∵x+y=3,∴a-3+2=3,∴a=4;故答案为:B。

【分析】首先解出关于x,y的二元一次方程组,求解得出x,y的值,再将x,y,的值代入x+y=3,得出一个关于a的方程,求解即可得出a的值。

3、(2分)已知等腰三角形的两边长x、y,满足方程组则此等腰三角形的周长为()A.5B.4C.3D.5或4【答案】A【考点】解二元一次方程组,三角形三边关系,等腰三角形的性质【解析】【解答】解:解方程组,得,所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故答案为:A【分析】首先解方程组得出x,y的值,由于x,y是等腰三角形的两条边,但没有明确的告知谁是等腰三角形的底边,谁是腰长,故需要分①若腰长为1,底边长为2,②若腰长为2,底边长为1,两种情况再根据三角形三边的关系判断能否围成三角形,能围成三角形的由三角形周长的计算方法算出答案即可。

芜湖市南陵县2018-2019学年度七年级下期中数学复习试卷-附参考答案

芜湖市南陵县2018-2019学年度七年级下期中数学复习试卷-附参考答案

安徽省芜湖市南陵县2018-2019学年度第二学期七年级数学期中复习试卷考试范围:5-7章;考试时间:120分钟1.化简的结果为()A.±5 B.25 C.﹣5 D.52.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对3.下列计算正确的是()A.=±3 B.=﹣2 C.=﹣3 D. +=4.估计﹣2的值应该在()A.﹣1﹣0之间 B.0﹣1之间C.1﹣2之间D.2﹣3之间5.如图,动点P从(0,3)出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()A. C.6.将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A. C.7.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135° D.125°8.如图,在下列条件中:①∠1=∠2;②∠BAD+∠ADC=180°;③∠ABC=∠ADC;④∠3=∠4,能判定AB∥CD的有()A.1个 B.2个 C.3个 D.4个9.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°10.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S211.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是.12.如果=0,那么xy的值为.13.已知点P(m﹣3,m+1)在第一象限,则m的取值范围是.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.计算:(1)|﹣4|×7﹣(﹣8);(2)﹣14﹣2×.16.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算:=;=.(2)若,写出满足题意的x的整数值.如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对100连续求根整数,次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是.17.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.18.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,﹣1)→(0,﹣1)→(﹣1,﹣2)→(﹣3,﹣1)的路线转了一下,又回到家里,写出路上她经过的地方.19.如图,△A′B′C′是△ABC经过平移得到的,△ABC三个顶点的坐标分别为A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)(1)请写出三角形ABC平移的过程;(2)写出点A′,C′的坐标;(3)求△A′B′C′的面积.20.如图所示,EF⊥BD,垂足为E,∠1=50°,∠2=40°,试判断AB与CD是否平行,并说明理由.21.已知:如图,∠1=∠2,∠A=∠F,试说明∠C=∠D.解:∵∠1=∠2 (已知)∠1=∠()∴∠2=∠(等量代换)∴BD∥()∴∠ABD=∠(两直线平行,同位角相等)∵∠A=∠F (已知)∴DF∥()∴∠ABD=∠(两直线平行,内错角相等)∴∠C=∠D ().22.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案一.选择题(共10小题)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.3.【解答】解:(A)原式=3,故A错误;(B)原式=﹣2,故B正确;(C)原式==﹣3,故C错误;(D)与不是同类二次根式,故D错误;故选:B.4.【解答】解:∵1<3<4,∴,∴1﹣2<<2﹣2,即﹣1<0,故选:A.5.【解答】解:如图,经过6次反弹后动点回到出发点(0,3),∵2018÷6=336…2,∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4).故选:C.6.【解答】解:将点A(﹣1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(﹣1+4,2﹣3),即(3,﹣1),故选:C.7.【解答】解:∵∠AOC=35°,∴∠BOD=35°,∵EO⊥AB,∴∠EOB=90°,∴∠EOD=∠EOB+∠BOD=90°+35°=125°,故选:D.8.【解答】解:依据∠1=∠2,能判定AB∥CD;依据∠BAD+∠ADC=180°,能判定AB∥CD;依据∠ABC=∠ADC,不能判定AB∥CD;依据∠3=∠4,不能判定AB∥CD;故选:B.9.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE﹣∠CFE=121°﹣87°=34°,故选:B.10.【解答】解:∵△ABC沿着BC方向平移得到△A′B′C′,∴AA′∥BC′,∵点P是直线AA′上任意一点,∴△ABC,△PB′C′的高相等,∴S1=S2,故选:C.二.填空题(共4小题)11.【解答】解:设被覆盖的数是a,根据图形可得1<a<3,∴1<a2<9,∴三个数,,中符合范围的是.故答案为:.12.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,xy=3×(﹣2)=﹣6.故答案为:﹣6.13.【解答】解:∵点P(m﹣3,m+1)在第一象限,∴,解得m>3.14.【解答】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴①正确.②∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴②正确.③∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴③错误.④由②得AC∥DE.∴∠4=∠C.∴④正确.故答案为:①②④.三.解答题(共8小题)15.【解答】解:(1)|﹣4|×7﹣(﹣8)=4×7+8=28+8=36;(2)﹣14﹣2×=﹣1﹣2×9+(﹣3)÷(﹣)=﹣1﹣18+9=﹣10.16.【解答】解:(1)∵22=4,52=25,62=36,∴5<<6,∴=[2]=2,[]=5,故答案为:2,5;(2)∵12=1,22=4,且,∴x=1,2,3,故答案为:1,2,3;(3)第一次:[]=10,第二次:[]=3,第三次:[]=1,故答案为:3;(4)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.17.【解答】解:(1)∵点P(3m﹣6,m+1)在y轴上,∴3m﹣6=0,解得m=2,∴m+1=2+1=3,∴点P的坐标为(0,3);(2)点P(3m﹣6,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴3m﹣6=3×(﹣1)﹣6=﹣9,∴点P的坐标为(﹣9,0);(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,∴m+1﹣(3m﹣6)=5,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2);(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,∴m+1=2,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2).18.【解答】解:(1)汽车站(1,1),消防站(2,﹣2);(2)小英经过的地方:游乐场,公园,姥姥家,宠物店,邮局.19.【解答】解:(1)∵△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4),∴平移后对应点的横坐标加6,纵坐标加4,∴△ABC先向右平移6个单位,再向上平移4个单位得到△A′B′C′或△ABC先向上平移4个单位,再向右平移6个单位得到△A′B′C′;(2)由(1)可知,A′(2,3),C′(5,1);=3×4﹣×1×3﹣×1×4﹣×2×3=5.5.(3)如图所示,S△A′B′C′20.【解答】解:平行.理由:∵EF⊥BD,∴∠FED=90°,∴∠D=90°﹣∠1=40°,∴∠2=∠D,∴AB∥CD.21.【解答】解:∵∠1=∠2(已知),∠2=∠3 (对顶角相等),∴∠1=∠3 (等量代换),∴BD∥EC (同位角相等,两直线平行),∴∠ABD=∠C (两直线平行,同位角相等),∵∠A=∠F(已知),∴DF∥AC (内错角相等,两直线平行),∴∠ABD=∠D (两直线平行,内错角相等),∴∠C=∠D(等量代换).故答案为:3;对顶角相等;3;EC;同位角相等,两直线平行;C;AC;内错角相等,两直线平行;D;等量代换22.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,。

最新-安徽省芜湖市南陵县2018届中考数学一模试卷含答案解析 精品

最新-安徽省芜湖市南陵县2018届中考数学一模试卷含答案解析 精品

2018年安徽省芜湖市南陵县中考数学一模试卷一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.地球到月球的平均距离是384400千米,把384400这个数用科学记数法表示为()A.3844×102B.0.3844×104C.3.844×108 D.3.844×1053.下列计算正确的是()A.3a+2b=5ab B.(a+2b)2=a2+4b2C.a2•a3=a5D.4x2y﹣2xy2=2xy4.如图所示,是六个棱长为1的立方块组成的一个几何体,其左视图的面积是()A.6 B.5 C.4 D.35.“a是实数,|a|≥0”这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件6.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120°D.150°7.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:258.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是()A.B.C.D.9.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠010.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x 轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.二.填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:a3﹣10a2+25a=.12.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是.13.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.14.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开口方向,开口大小不一定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).三.(本大题共2小题,每小题8分,满分16分)15.计算:.16.正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2018个三角形?若能,求此时正方形ABCD 内部有多少个点?若不能,请说明理由.四.(本大题共2小题,每小题8分,满分16分)17.如图在7×9的小正方形网格中,△ABC 的顶点A 、B 、C 在网格的格点上,将△ABC 向左平移3个单位,再向上平移3个单位得到△A ′B ′C ′,将△ABC 按一定规律顺次旋转,第1次将△ABC 绕点B 顺时针旋转90°得到△A 1BC 1,第2次将△A 1BC 1绕点A 1顺时针旋转90°得到△A 1BC 2,第3次将△A 1BC 2绕点C2顺时针旋转90°得到△A 2B 2C 2,第4次将△A 2B 2C 2绕点B 2顺时针旋转90°得到△A 3B 2C 3,依次旋转下去.(1)在网格画出△A ′B ′C ′和△A 2B 2C 2(2)请直接写出至少在第几次旋转后所得的三角形刚好是△A ′B ′C ′.18.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A 测得高华峰顶F 点的俯角为30°,保持方向不变前进1200米到达B 点后测得F 点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)五.(本大题共2小题,每小题10分,满分20分)19.今年植树节,安庆某中学组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整;(2)求抽样的50名学生植树数量的众数和中位数,并从描述数据集中趋势的量中选择一个恰当的量来估计该校1200名学生的植树数量.20.如图,在平面直角坐标系xOy中,一次函数y=kx﹣2的图象与x、y轴分别交于点A、B,与反比例函数(x<0)的图象交于点.(1)求A、B两点的坐标;(2)设点P是一次函数y=kx﹣2图象上的一点,且满足△APO的面积是△ABO的面积的2倍,直接写出点P的坐标.六.(本题满分12分)21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.七.(本题满分12分)22.某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价﹣制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?八.(本题满分14分)23.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.2018年安徽省芜湖市南陵县中考数学一模试卷参考答案与试题解析一.选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念即可,属于基础题.2.地球到月球的平均距离是384400千米,把384400这个数用科学记数法表示为()A.3844×102B.0.3844×104C.3.844×108 D.3.844×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将384400用科学记数法表示为3.844×105.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a+2b=5ab B.(a+2b)2=a2+4b2C.a2•a3=a5D.4x2y﹣2xy2=2xy【考点】完全平方公式;合并同类项;同底数幂的乘法.【分析】根据完全平方公式、同底数幂的乘法、合并同类项,即可解答.【解答】解:A、3a与2b不是同类项,不能合并,故错误;B、(a+2b)2=a2+4ab+4b2,故错误;C、a2•a3=a5,正确;D、4x2y﹣2xy2不能合并,故错误;故选:C.【点评】本题考查了完全平方公式、同底数幂的乘法、合并同类项,解决本题的关键是熟记完全平方公式、同底数幂的乘法、合并同类项.4.如图所示,是六个棱长为1的立方块组成的一个几何体,其左视图的面积是()A.6 B.5 C.4 D.3【考点】简单组合体的三视图.【分析】先得出从左面看得到的所有图形,再根据面积公式即可求出左视图的面积.【解答】解:从左边看第一行有2个正方形,第二行有1个正方形,共3个正方形,因为棱长为1,所以面积为3.故选D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,同时考查了面积的计算.5.“a是实数,|a|≥0”这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.【点评】用到的知识点为:必然事件指在一定条件下一定发生的事件.6.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A.60°B.90°C.120°D.150°【考点】切线的性质.【专题】计算题.【分析】根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求解.【解答】解:∵PA是圆的切线.∴∠OAP=90°同理∠OBP=90°根据四边形内角和定理可得:∠AOB=360°﹣∠OAP﹣∠OBP﹣∠P=360°﹣90°﹣90°﹣60°=120°故选C.【点评】本题主要考查了切线的性质定理,对定理的正确理解是解题的关键.7.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】相似三角形的判定与性质;三角形的面积;平行四边形的性质.【专题】计算题;压轴题.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==,==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.【点评】本题考查了相似三角形的性质和判定,三角形的面积,平行四边形的性质的应用,关键是求出和的值,注意:相似三角形的面积比等于相似比的平方,若两三角形不相似,求面积比应根据三角形的面积公式求.8.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是()A.B.C.D.【考点】直角三角形斜边上的中线;锐角三角函数的定义.【分析】根据直角三角形斜边上中线性质求出AB,根据锐角三角函数的定义得出sinB=,代入求出即可.【解答】解:∵在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=4,∵AC=3,∴sinB==,故选D.【点评】本题考查了直角三角形的性质、锐角三角函数定义的应用,解此题的关键是求出AB的长,是一道简单的题目.9.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0 C.k<D.k≥且k≠0【考点】根的判别式.【专题】压轴题.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k 的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.10.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x 轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l ﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:a3﹣10a2+25a=a(a﹣5)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式继续分解.【解答】解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底.12.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是15.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,×100%=20%,解得,a=15个.故答案为15.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过4米.【考点】勾股定理的应用.【分析】如图,先设平板手推车的长度不能超过x米,则得出x为最大值时,平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点G,利用△CBP为等腰直角三角形即可求得平板手推车的长度不能超过多少米.【解答】解:设平板手推车的长度不能超过x米,则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点G.∵直角走廊的宽为2m,∴PO=4m,∴GP=PO﹣OG=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CG=2GP=4(m).故答案为:4【点评】本题主要考查了勾股定理的应用以及等腰三角形知识,解答的关键是由题意得出要想顺利通过直角走廊,此时平板手推车所形成的三角形为等腰直角三角形.14.若抛物线y1=a1x2+b1x+c1与y2=a2x2+b2x+c2满足=k(k≠0,1),则称y1,y2互为“相关抛物线”.给出如下结论:①y1与y2的开口方向,开口大小不一定相同;②y1与y2的对称轴相同;③若y2的最值为m,则y1的最值为k2m;④若y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离也为d.其中正确的结论的序号是①②④(把所有正确结论的序号都填在横线上).【考点】二次函数综合题.【专题】压轴题.【分析】根据相关抛物线的条件,a1、a2的符号不一定相同,即可得到开口方向、开口大小不一定相同,代入对称轴﹣和即可判断②、③,根据根与系数的关系求出与x轴的两交点的距离|g﹣e|和|d﹣m|,即可判断④.【解答】解:由已知可知:a1=ka2,b1=kb2,c1=kc2,①根据相关抛物线的条件,a1、a2的符号不一定相同,所以开口方向、开口大小不一定相同;②因为==k,代入﹣得到对称轴相同;③因为如果y2的最值是m,则y1的最值是=k•=km,故本选项错误;④因为设抛物线y1与x轴的交点坐标是(e,0),(g,0),则e+g=﹣,eg=,抛物线y2与x轴的交点坐标是(m,0),(d,0),则m+d=﹣,md=,可求得:|g﹣e|=|d﹣m|=,故本选项正确.故答案为:①②④.【点评】本题主要考查了二次函数图象上点的坐标特征,抛物线与x轴的交点,二次函数的最值等知识点解此题的关键是能根据相关抛物线的条件进行判断.三.(本大题共2小题,每小题8分,满分16分)15.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别利用有理数的乘方运算法则以及零指数幂的乘方以及绝对值、特殊角的三角函数值分别化简求出答案. 【解答】解:原式==.【点评】此题主要考查了有理数的乘方运算以及零指数幂的乘方以及绝对值、特殊角的三角函数值,正确化简各数是解题关键.16.正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠):(1)填写下表:(2)原正方形能否被分割成2018个三角形?若能,求此时正方形ABCD 内部有多少个点?若不能,请说明理由.【考点】规律型:图形的变化类.【分析】(1)根据图形特点找出正方形ABCD 内点的个数与分割成的三角形的个数的关系,总结规律即可;(2)根据规律列出方程,解方程得到答案. 【解答】解:(1)如图;(2)能.1007个点. 设点数为n , 则2(n+1)=2018,解得n=1007,答:原正方形能否被分割成2018个三角形,此时正方形ABCD内部有1007个点.【点评】本题考查的是图形的变化类问题,正确理解题意、根据图形的特点正确找出规律是解题的关键.四.(本大题共2小题,每小题8分,满分16分)17.如图在7×9的小正方形网格中,△ABC的顶点A、B、C在网格的格点上,将△ABC向左平移3个单位,再向上平移3个单位得到△A′B′C′,将△ABC按一定规律顺次旋转,第1次将△ABC绕点B顺时针旋转90°得到△A1BC1,第2次将△A1BC1绕点A1顺时针旋转90°得到△A1BC2,第3次将△A1BC2绕点C2顺时针旋转90°得到△A2B2C2,第4次将△A2B2C2绕点B2顺时针旋转90°得到△A3B2C3,依次旋转下去.(1)在网格画出△A′B′C′和△A2B2C2(2)请直接写出至少在第几次旋转后所得的三角形刚好是△A′B′C′.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)把A、B、C三点先向右平移3个单位,再向上平移4个单位得到A1,B1,C1,顺次连接得到的各点即可;根据网格结构找出点A、C绕点B顺时针旋转90°的对应点A2、C2的位置,然后顺次连接即可;(2)根据题中的规律旋转,作出相应的图形,由图形可得出至少在第8次旋转后所得的三角形刚好是△A′B′C′.【解答】解:(1)如图所示,△A′B′C′和△A2B2C2为所求的三角形;(2)根据题意画出图形,由图形可得出至少在第8次旋转后所得的三角形刚好是△A′B′C′.【点评】此题主要考查了平移变换,以及旋转变换作图,关键是找到各点平移、旋转后的对应点,然后作图即可.18.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)【考点】解直角三角形的应用-仰角俯角问题.【分析】设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.【解答】解:设CF=x,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x,=tan30°,即AC=x,∵AC﹣BC=1200米,∴x﹣x=1200,解得:x=600(+1),则DF=h﹣x=2001﹣600(+1)≈362(米).答:钓鱼岛的最高海拔高度约362米.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出AC、BC的长度,难度一般.五.(本大题共2小题,每小题10分,满分20分)19.今年植树节,安庆某中学组织师生开展植树造林活动,为了了解全校1200名学生的植树情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整).(1)将统计表和条形统计图补充完整;(2)求抽样的50名学生植树数量的众数和中位数,并从描述数据集中趋势的量中选择一个恰当的量来估计该校1200名学生的植树数量.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题.【分析】(1)求出植树量为5棵的人数,进而求出对应的频率,补全统计表与条形统计图即可;(2)根据题意得种3棵的有5人,种4棵的有20人,种5棵的有15人,种6棵的有10人,找出植树棵数最多的为4棵,即为众数,找出最中间的两个数,求出平均数得到中位数,求出平均每个学生植树的棵数,乘以1200即可得到结果. 【解答】解:(1)统计表和条形统计图补充如下:植树量为5棵的人数为:50﹣5﹣20﹣10=15,频率为:15÷50=0.3,频数(人)(2)根据题意知:种3棵的有5人,种4棵的有20人,种5棵的有15人,种6棵的有10人, ∴众数是4棵,中位数是=4.5(棵);∵抽样的50名学生植树的平均数是: ==4.6(棵),∴估计该校1200名学生参加这次植树活动的总体平均数是4.6棵, ∴4.6×1200=5520(棵),则估计该校1200名学生植树约为5520棵.【点评】此题考查了频数(率)分布直方图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.20.如图,在平面直角坐标系xOy 中,一次函数y=kx ﹣2的图象与x 、y 轴分别交于点A 、B ,与反比例函数(x <0)的图象交于点.(1)求A、B两点的坐标;(2)设点P是一次函数y=kx﹣2图象上的一点,且满足△APO的面积是△ABO的面积的2倍,直接写出点P的坐标.【考点】反比例函数综合题.【分析】(1)将点M的坐标代入反比例函数,可得出n的值,再将点M的具体坐标代入一次函数,从而得出k的值,然后求A、B的坐标即可.(2)根据△APO的面积,求出点P的纵坐标,代入直线解析式可得出点P的坐标.【解答】解:(1)∵点在反比例函数(x<0)的图象上,∴n=1,∴.∵一次函数y=kx﹣2的图象经过点,∴.∴k=﹣2,∴一次函数的解析式为y=﹣2x﹣2,∴A(﹣1,0),B(0,﹣2).(2)S△AOB=OA×OB=1,设点P的坐标为(a,﹣2a﹣2),由题意得,×1×|﹣2a﹣2|=2,解得:a1=1,a2=﹣3,故P1(﹣3,4),P2(1,﹣4).【点评】本题考查了反比例函数的综合,解答本题的关键是求出点M的坐标,第二问中要设出点P 的纵坐标,根据△AOP的面积求出纵坐标.六.(本题满分12分)21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.【点评】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,主要考查学生的推理能力.七.(本题满分12分)22.某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价﹣制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据每月的利润z=(x﹣18)y,再把y=﹣2x+100代入即可求出z与x之间的函数解析式,(2)把z=350代入z=﹣2x2+136x﹣1800,解这个方程即可,将z═﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512,即可求出当销售单价为多少元时,厂商每月能获得最大利润,最大利润是多少.【解答】解:(1)z=(x﹣18)y=(x﹣18)(﹣2x+100=﹣2x2+136x﹣1800,∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(18≤x≤50);(2)由z=350,得350=﹣2x2+136x﹣1800,解这个方程得x1=25,x2=43所以,销售单价定为25元或43元,将z=﹣2x2+136x﹣1800配方,得z=﹣2(x﹣34)2+512(18≤x≤50).答:当销售单价为34元时,每月能获得最大利润,最大利润是512万元;【点评】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式,综合利用二次函数和一次函数的性质解决实际问题.八.(本题满分14分)23.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】方法一:(1)分析抛物线过两点,由待定系数求出抛物线解析式;(2)根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;(3)有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出tan∠PBF,再设出P点坐标,根据几何关系解出P点坐标;法二过点D作BD的垂线交直线PB于点Q,过点D作DH⊥x轴于H.过Q点作QG⊥DH于G,由角的关系,得到△QDG≌△DBH,再求出直线BP 的解析式,解出方程组从而解出P点坐标.方法二:(1)略.(2)利用直线BC斜率求出直线DE斜率进而求出DE直线方程,并求出交点F坐标,再利用中点公式求出E点坐标.(3)过D点作BP的垂线,构造等腰直角三角形,利用“开锁法”即点在坐标系中平移,旋转,再平移,求出H点坐标,并求出BH的直线方程,再与抛物线方程联立,从而求出P点坐标.【解答】方法一:解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

2018年安徽省中考模拟试卷-(数学)-有答案

2018年安徽省中考模拟试卷-(数学)-有答案

2018年安徽中考模拟卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.-5的绝对值是( )A .-5B .5C .±5D .-152.计算2a 2+a 2,结果正确的是( ) A .2a 4 B .2a 2 C .3a 4 D .3a 23.如图所示的工件,其俯视图是( )4.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .0.1×1085.不等式组⎩⎪⎨⎪⎧2x -1≥1,x -2<0的解集在数轴上表示为( )6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°第 6题图 第7题图7.某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A .样本中位数是200元B .样本容量是20C .该企业员工捐款金额的平均数是180元D .该企业员工最大捐款金额是500元8.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入为200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为( )A .200(1+2x )=1000B .200(1+x )2=1000C .200(1+x 2)=1000D .200+2x =10009.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +a 与反比例函数y =a +b +cx在同一坐标系内的图象大致为( )10.如图,在矩形ABCD 中,AD =6,AE ⊥BD ,垂足为E ,DE =3BE ,点P ,Q 分别在BD ,AD 上,则AP +PQ 的最小值为( )A .2 2 B. 2 C .2 3 D .3 3二、填空题(本大题共4小题,每小题5分,满分20分) 11.16的算术平方根是________.12.分解因式:2x 2-8y 2=__________________. 13.如图,已知AB 是⊙O 的直径,延长AB 至C 点,使AC =3BC ,CD 与⊙O 相切于D 点.若CD =3,则劣弧AD ︵的长为________.第13题图 第14题图14.如图,在四边形纸片ABCD 中,AB =BC ,AD =CD ,∠A =∠C =90°,∠B =150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD =________________.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2-1+3·tan30°-38-(2018-π)0.16.“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?四、(本大题共2小题,每小题8分,满分16分)17.小明、小华利用五一假期结伴游览某旅游景点,他们想测量景点内一条小河的宽度,如图,已知观测点C 距离地面高度CH =40m ,他们测得正前方河两岸A 、B 两点处的俯角分别为45°和30°,请计算出该处的河宽AB 约为多少(结果精确到1m ,参考数据:2≈1.414,3≈1.732).18.如图,在边长均为1的正方形网格中有一个△ABC ,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC 向上平移4个单位,得到△A 1B 1C 1(不写作法,但要标出字母); (2)将△ABC 绕点O 旋转180°,得到△A 2B 2C 2(不写作法,但要标出字母); (3)求点A 绕着点O 旋转到点A 2所经过的路径长l .五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n =n (n +1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是________;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是________;(3)求图④中所有圆圈中各数之和(写出计算过程).20.如图,在四边形ABCD 中,AD =BC ,∠B =∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE .(1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE .六、(本题满分12分)21.“热爱劳动,勤俭节约”是中华民族的光荣传统.某小学为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图①)和扇形统计图(图②).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”“经常做”“偶尔做”都统计成帮助父母做家务,那么该校三至六年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.七、(本题满分12分)22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y (单位:分钟)是关于x 的一次函数,其关系如下表:(1)求y 1关于x (2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=12x 2-11x +78来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.八、(本题满分14分)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图①,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F . ①求证:BE =CF ; ②求证:BE 2=BC ·CE .(2)如图②,在边BC 上取一点E ,满足BE 2=BC ·CE ,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.参考答案与解析1.B 2.D 3.B 4.A 5.C 6.A 7.A 8.B9.D 解析:观察二次函数图象可知开口方向向上,对称轴直线x =-b2a>0,当x =1时y =a +b +c<0,∴a >0,b <0,∴一次函数y =bx +a 的图象经过第一、二、四象限,反比例函数y =a +b +cx的图象在第二、四象限,只有D 选项图象符合.故选D.10.D 解析:设BE =x ,则DE =3x .∵四边形ABCD 为矩形,∴∠BAD =90°,∴∠BAE +∠DAE =90°.∵AE ⊥BD ,∴∠AED =∠BEA =90°,∴∠ABE +∠BAE =90°,∴∠ABE =∠DAE ,∴△ABE ∽△DAE ,∴AE 2=BE ·DE ,即AE 2=3x 2,∴AE =3x .在Rt △ADE 中,由勾股定理可得AD 2=AE 2+DE 2,即62=(3x )2+(3x )2,解得x =3,∴AE =3,DE =3 3.如图,设A 点关于BD 的对称点为A ′,连接A ′D ,P A ′,则A ′A =2AE =6,A ′D =AD =6,∴△AA ′D 是等边三角形.∵AP =A ′P ,∴AP +PQ =A ′P +PQ ,∴当A ′,P ,Q 三点在一条线上时,AP +PQ 的值最小.由垂线段最短可知当PQ ⊥AD 时,AP +PQ 的值最小,∴AP +PQ =A ′P +PQ =A ′Q =DE =3 3.故选D.11.4 12.2(x +2y )(x -2y ) 13.2π314.4+23或2+3 解析:如图①,当四边形ABCE 为平行四边形时,作AE ∥BC ,延长AE 交CD于点N ,过点B 作BT ⊥EC 于点T .∵AB =BC ,∴四边形ABCE 是菱形.∵∠BAD =∠BCD =90°,∠ABC =150°,∴∠ADC =30°,∠BAN =∠BCE =30°,∴∠NAD =60°,∴∠AND =90°.设BT =x ,则CN =x ,BC =EC =2x .∵四边形ABCE 面积为2,∴EC ·BT =2,即2x ×x =2,解得x =1,∴AE =EC =2,EN =22-12=3,∴AN =AE +EN =2+3,∴CD =AD =2AN =4+2 3.如图②,当四边形BEDF 是平行四边形,∵BE =BF ,∴平行四边形BEDF 是菱形.∵∠A =∠C =90°,∠ABC =150°,∴∠ADB =∠BDC =15°.∵BE =DE ,∴∠EBD =∠ADB =15°,∴∠AEB =30°.设AB =y ,则DE =BE =2y ,AE =3y .∵四边形BEDF 的面积为2,∴AB ·DE =2,即2y 2=2,解得y =1,∴AE =3,DE =2,∴AD =AE +DE =2+ 3.综上所述,CD 的值为4+23或2+ 3.15.解:原式=12+1-2-1=-32.(8分)16.解:设鸡有x 只,兔有y 只,根据题意得⎩⎪⎨⎪⎧x +y =35,2x +4y =94,(4分)解得⎩⎪⎨⎪⎧x =23,y =12.(7分) 答:笼中有鸡23只,兔12只.(8分) 17.解:由题意得∠CAH =45°,∠CBH =30°.(2分)在Rt △ACH 中,AH =CH =40m ,在Rt △CBH 中,BH =CHtan ∠CBH=403m ,∴AB =BH -AH =403-40≈29(m).(7分)答:河宽AB 约为29m.(8分)18.解:(1)△A 1B 1C 1如图所示.(3分) (2)△A 2B 2C 2如图所示.(6分)(3)l =180π×4180=4π.(8分) 19.解:(1)79(3分) (2)67(6分)(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+…+23)+(1+2+3+…+67)=-23×242+67×682=2002.(10分) 20.证明:(1)由圆周角定理的推论1得∠B =∠E .又∵∠B =∠D ,∴∠E =∠D .∵CE ∥AD ,∴∠D +∠ECD =180°,∴∠E +∠ECD =180°,∴AE ∥CD ,∴四边形AECD 为平行四边形.(5分)(2)过点O 作OM ⊥BC 于M ,ON ⊥CE 于N .(6分)∵四边形AECD 为平行四边形,∴AD =CE .又∵AD =BC ,∴CE =CB ,∴OM =ON .又∵OM ⊥BC ,ON ⊥CE ,∴CO 平分∠BCE .(10分)21.解:(1)中位数为12(45+55)=50.(3分)(2)3000×(1-25%)=2250(人).(5分)答:该校三至六年级学生帮助父母做家务的大约是2250人.(6分) (3)画树状图如下:(10分)由树状图可知共有12种等可能结果,其中抽中甲和乙的结果有2种,所以P (抽取的两人恰好是甲和乙)=212=16.(12分) 22.解:(1)设y 1=kx +b ,将(8,18),(9,20)代入得⎩⎪⎨⎪⎧8k +b =18,9k +b =20,解得⎩⎪⎨⎪⎧k =2,b =2.故y 1关于x 的函数解析式为y 1=2x +2.(5分)(2)设李华从文化宫回到家所需的时间为y 分钟,则y =y 1+y 2=2x +2+12x 2-11x +78=12x 2-9x +80=12(x-9)2+39.5,(8分)∴当x =9时,y 有最小值,y min =39.5.(10分)故李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.(12分)23.(1)证明:①∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =∠BCF =90°,∴∠ABG +∠CBF =90°.∵∠AGB =90°,∴∠ABG +∠BAG =90°,∴∠BAG =∠CBF ,∴△ABE ≌△BCF ,∴BE =CF .(4分)②∵∠AGB =90°,点M 为AB 的中点,∴MG =MA =MB ,∴∠GAM =∠AGM .∵∠CGE =∠AGM ,∴∠GAM =∠CGE .由①可知∠GAM =∠CBG ,∴∠CGE =∠CBG .又∵∠ECG =∠GCB ,∴△CGE ∽△CBG ,∴CE CG =CGCB,即CG 2=BC ·CE .∵MG =MB ,∴∠MGB =∠MBG .∵四边形ABCD 是正方形,∴AB ∥CD ,∴∠MBG =∠CFG .又∵∠CGF =∠MGB ,∴∠CFG =∠CGF ,∴CF =CG .由①可知BE =CF ,∴BE =CG ,∴BE 2=BC ·CE .(9分)(2)解:延长AE ,DC 交于点N .(10分)∵四边形ABCD 是正方形,∴AB =BC ,AB ∥CD ,∴△CEN ∽△BEA ,∴CE BE =CNBA,即BE ·CN =AB ·CE .∵AB =BC ,BE 2=BC ·CE ,∴CN =BE .∵AB ∥DN ,∴△CGN ∽△MGA ,△CGF ∽△MGB ,∴CN MA =CG MG ,CG MG =CF MB ,∴CN MA =CFMB.∵点M 为AB 的中点,∴MA =MB ,∴CN =CF ,∴CF=BE .设正方形的边长为a ,BE =x ,则CE =BC -BE =a -x .由BE 2=BC ·CE 可得x 2=a ·(a -x ),解得x 1=5-12a ,x 2=-5-12a (舍去),∴BE BC =5-12,∴tan ∠CBF =CF BC =BEBC =5-12.(14分)。

2018年安徽省中考数学试卷(带答案解析)

2018年安徽省中考数学试卷(带答案解析)

2018年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的绝对值是()A.﹣8 B.8 C.±8 D.﹣1 8【解答】解:∵﹣8<0,∴|﹣8|=8.故选:B.2.(4分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【解答】解:695.2亿=695 2000 0000=6.952×1010,故选:C.3.(4分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b3【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.(4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.5.(4分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.6.(4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.7.(4分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或1【解答】解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.8.(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【解答】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.9.(4分)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.10.(4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为√2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD 沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD 的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【解答】解:当0<x≤1时,y=2√2x,当1<x≤2时,y=2√2,当2<x≤3时,y=﹣2√2x+6√2,∴函数图象是A,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)不等式x−82>1的解集是 x >10 .【解答】解:去分母,得:x ﹣8>2, 移项,得:x >2+8, 合并同类项,得:x >10, 故答案为:x >10.12.(5分)如图,菱形ABOC 的边AB ,AC 分别与⊙O 相切于点D ,E .若点D 是AB 的中点,则∠DOE= 60 °.【解答】解:连接OA , ∵四边形ABOC 是菱形, ∴BA=BO ,∵AB 与⊙O 相切于点D , ∴OD ⊥AB ,∵点D 是AB 的中点,∴直线OD 是线段AB 的垂直平分线, ∴OA=OB ,∴△AOB 是等边三角形, ∵AB 与⊙O 相切于点D , ∴OD ⊥AB ,∴∠AOD=12∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD +∠AOE=60°,故答案为:60.13.(5分)如图,正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=32x﹣3.【解答】解:∵正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=3 2,故正比例函数解析式为:y=32 x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=32x+b,则0=3+b,解得:b=﹣3,故直线l 对应的函数表达式是:y=32x ﹣3.故答案为:y=32x ﹣3.14.(5分)矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为 65或3 . 【解答】解:∵四边形ABCD 为矩形, ∴∠BAD=90°,∴BD=√AB 2+AD 2=10,当PD=DA=8时,BP=BD ﹣PD=2, ∵△PBE ∽△DBC ,∴BP BD =PE CD ,即210=PE 6, 解得,PE=65,当P′D=P′A 时,点P′为BD 的中点,∴P′E′=12CD=3,故答案为:65或3.三、解答题(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:50﹣(﹣2)+√8×√2. 【解答】解:原式=1+2+4=7.16.(8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何? 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【解答】解:设城中有x户人家,依题意得:x+x3=100解得x=75.答:城中有75户人家.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA 1B 1A 2的面积是(√22+42)2=(√20)2=20. 故答案为:20.18.(8分)观察以下等式:第1个等式:11+02+11×02=1,第2个等式:12+13+12×13=1,第3个等式:13+24+13×24=1,第4个等式:14+35+14×35=1,第5个等式:15+46+15×46=1,……按照以上规律,解决下列问题: (1)写出第6个等式:16+57+16×57=1 ; (2)写出你猜想的第n 个等式: 1n +n−1n+1+1n ×n−1n+1=1 (用含n 的等式表示),并证明.【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:16+57+16×57=1(2)根据题意,第n 个分式分母为n 和n +1,分子分别为1和n ﹣1 故应填:1n +n−1n+1+1n ×n−1n+1=1证明:1n +n−1n+1+1n ×n−1n+1=n+1+n(n−1)+(n−1)n(n+1)=n 2+nn(n+1)=1∴等式成立五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时∠AEB=∠FED ),在F 处测得旗杆顶A 的仰角为39.3°,平面镜E 的俯角为45°,FD=1.8米,问旗杆AB 的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【解答】解:由题意,可得∠FED=45°. 在直角△DEF 中,∵∠FDE=90°,∠FED=45°, ∴DE=DF=1.8米,EF=√2DE=9√25米. ∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB ﹣∠FED=90°.在直角△AEF 中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan ∠AFE ≈9√25×10.02=18.036√2(米).在直角△ABE 中,∵∠ABE=90°,∠AEB=45°, ∴AB=AE•sin ∠AEB ≈18.036√2×√22≈18(米).故旗杆AB 的高度约为18米.20.(10分)如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BĈ的交点E (保留作图痕迹,不写作法);(2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,̂=CÊ,∴BE∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF=√52−22=√21,在Rt△CEF中,CE=√32+(√21)2=√30.六、解答题(本大题满分12分)21.(12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为8+450×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率=812=23.七、解答题(本题满分12分)22.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣414)2+732818,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.八、解答题(本题满分14分)23.(14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=12DB,EM=12DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=√3a,EF=2a,∵CN=NM ,∴MN=√32a , ∴FM MN =2√33,EF AE =2√33, ∴FM MN =EF AE, ∴EM ∥AN .。

最新-2018年芜湖市初中毕业学业考试数学试卷及参考答案 精品

最新-2018年芜湖市初中毕业学业考试数学试卷及参考答案 精品

2018年芜湖市初中毕业学业考试数 学 试 卷考生注意:1.数学试卷共8页,共24题.请您仔细核对每页试卷下方页码和题数,核实无误后再答题.2.请您仔细思考、认真答题,不要过于紧张,祝考试顺利! 题 号一 二 三 总 分(1~10)(11~16)17 18 19 20 21 22 23 24 得分一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中.1. 下列几何图形中,一定是轴对称图形的有 ( )A . 2个B . 3个C . 4个D . 5个2. 今年5月,随着第四条水泥熟料生产线的点火投产,芜湖海螺水泥熟料已达年产6000000吨,用科学记数法可记作( )A .80.610⨯吨 B . 70.610⨯吨 C . 6610⨯吨 D . 7610⨯吨3. 如果2a b =,则2222a ab b a b -++= ( )A .45B . 1C . 35 D . 24. 下列计算中,正确的是( )A . 3232a a a +=B . 632a a a ÷= C . 1(2)2a a -=- D . 236(2)8a a -=-5. 如图, 在△ABC 中AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD、CE 交于点H ,已知EH =EB=3、AE =4,则CH 的长是 ( ) A . 1 B . 2 C . 3 D .4 6. 已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( )A . m >-1B . m <-2C .m ≥0D .m <0得 分 评卷人7.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km ,距离芜湖市区约35km ,距离无为县城约18km ,距离巢湖市区约50km ,距离铜陵市区约36km ,距离合肥市区约99km .以上这组数据17、35、18、50、36、99的中位数为( ).A .18B .50C .35D .35.5 8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( ) A .14cm B .4cm C . 15cm D . 3cm9.函数13x y x +=-中自变量x 的取值范围是( ) A . x ≥1- B . x ≠3 C . x ≥1-且x ≠3 D . 1x <- 10.如图, Rt △ABC 绕O 点旋转90°得Rt △BDE ,其中∠ACB =∠E = 90°,AC =3,DE =5, 则OC 的长为( )A .252+ B . 42 C . 322+ D . 43+二、填空题(本大题共6小题,每小题5分,共30分)11.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离 是 米.13.据芜湖市环保局6月5日发布的2018年环境状况公报,去年我市城市空气质量符合国家二级标准.请根据图中数据计算出该年空气质量达到一级标准的天数是 天.(结果四舍五入取整数).得 分 评卷人14.因式分解: 2(2)(3)4x x x +++-= .15. 如图,3PQ =,以PQ 为直径的圆与一个以5为半径的圆相切于点P ,正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与CD 切于点Q .则AB = .16. 定义运算“@”的运算法则为: x @y =4xy + ,则 (2@6)@8= .三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤.17.(本题共两小题,每小题6分,满分12分)(1) 计算:01132()22sin 605--+-+°.解:(2) 解不等式组43;213(1)6.x x x x -⎧+⎪⎨⎪--<-⎩≥①②解:18. (本小题满分8分) 芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.18元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时, 谷段电量60千瓦时,按分时电价付费42.73元. (1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算, 5月份小明家将多支付电费多少元? 解:得 分 评卷人得 分评卷人19. (本小题满分8分)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠, (1) 求证:AC=BD ;(2)若12sin 13C =,BC =12,求AD 的长. (1)证:(2)解:20. (本小题满分8分)已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成,一圆过A 、D 、E 三点,求该圆半径的长. 解:21. (本小题满分10分)如图,在直角坐标系中△ABC 的A 、B 、C 三点坐标为A (7,1)、B (8,2)、C (9,0). (1) 请在图中画出△ABC 的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC 同在P 点一侧);(2)求线段BC 的对应线段B C ''所在直线的解析式. 解:得 分评卷人得 分评卷人得 分 评卷人22.(本小题满分10分)一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1) 求使图1花圃面积为最大时R -r 的值及此时花圃面积,其中R 、r 分别为大圆和小圆的半径;(2) 若L =160m ,r =10m ,求使图2面积为最大时的θ值. 解:23. (本小题满分12分)阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m 种不同的方法,在第二类方案中有n 种不同的方法.那么完成这件事共有N= m + n 种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m 种不同的方法,做第二步有n 种不同的方法.那么完成这件事共有N=m×n 种不同的方法, 这就是分步乘法计数原理. ”如完成沿图1所示的街道从A 点出发向B 点行进这件事(规定必须向北走,或向东走), 会有多种不同的走法,其中从A 点出发到某些交叉点的走法数已在图2填出.(1) 根据以上原理和图2的提示, 算出从A 出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A 点出发到B 点的走法共有多少种?(2) 运用适当的原理和方法算出从A 点出发到达B 点,并禁止通过交叉点C 的走法有多少种? (3) 现由于交叉点C 道路施工,禁止通行. 求如任选一种走法,从A 点出发能顺利开车到达B 点(无返回)概率是多少? 解:得 分 评卷人 得 分 评卷人24.(本小题满分12分)已知圆P 的圆心在反比例函数ky x=(1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1).(1) 求经过A 、B 、C 三点的二次函数图象的解析式;(2) 若二次函数图象的顶点为D ,问当k 为何值时,四边形ADBP 为菱形. 解:得 分 评卷人2018年芜湖市初中毕业学业考试数学试题参考答案一、选择题(本大题共10小题,每题4分,满分40分)二、填空题(本大题共6小题,每题5分,满分30分)11.25+ 12.0.5 13.117 14.(2)(21)x x ++ 15.6 16.6三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤. 17.(本小题满分12分) (1)解:原式= 13231222-+-+⨯…………………………………4分 = 13332--+ = 122. ………………………………6分 (2)解:解不等式①, 得:46x x -+≥2x ≤2. ………………………………2分解不等式②,得1336x x -+<-x >-1. ………………………………4分所以原不等式组的解集为-1<x ≤2. ………………………………6分 18.(本小题满分8分)解:(1)设原销售电价为每千瓦时x 元,根据题意得: ……………………………1分40(0.03)60(0.25)42.73x x ⨯++⨯-= ………………………………3分 40 1.2601542.73x x ++-=10042.7313.8x =+0.5653x =. ………………………………4分∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时0.5953元、谷段电价每千瓦时0.3153元.……6分 (2) 1000.565342.7313.8⨯-=(元)答:如不使用分时电价结算,小明家5月份将多支付13.8元. ……………………8分 19.(本小题满分8分)解:(1)∵AD 是BC 上的高,∴AD ⊥BC .∴∠ADB =90°,∠ADC =90°. …………………………………………1分 在Rt △ABD 和Rt △ADC 中,∵tan B =AD BD ,cos DAC ∠=ADAC…………………………………………3分 又已知tan cos B DAC =∠ ∴AD BD =AD AC.∴AC=BD . ………………………………4分题 号 1 2 3 4 5 6 7 8 9 10 答 案BCCDAADACB(2)在Rt △ADC 中, 12sin 13C =,故可设AD =12k ,AC =13k . ∴CD =22AC AD -=5k . ………………………………5分∵BC=BD+CD ,又AC=BD ,∴BC=13k+5k=18k ………………………………6分 由已知BC=12, ∴18k=12.∴k=23. ………………………………7分 ∴AD=12k=1223⨯=8. ………………………………8分 20.(本小题满分8分)解:方法一.如图1,将正方形BDEC 上的等边△ABC 向下平移得等边△ODE ,其底边与DE 重合.………………………1分 ∵A 、B 、C 的对应点是O 、D 、E .∴OD =AB ,OE =AC ,AO =BD . …………………3分 ∵等边△ABC 和正方形BDEC 的边长都是2, ∴AB =BD =AC =2.∴OD =OA =OE =2. ………………………4分 ∵A 、D 、E 三点不在同一直线上,∴A 、D 、E 三点确定一圆, ………………………6分∵O 到A 、D 、E 三点的距离相等,∴O 点为圆心,OA 为半径.∴该圆的半径长为2. ………………………8分方法二.如图2,作AF ⊥BC ,垂足为F ,并延长交DE 于H 点. ………………………1分 ∵△ABC 为等边三角形, ∴AF 垂直平分BC ,∵四边形BDEC 为正方形,∴AH 垂直平分正方形的边DE .……………………3分又DE 是圆的弦,∴AH 必过圆心,记圆心为O 点,并设⊙O 的半径为r .在Rt △ABF 中, ∵∠BAF =°30, ∴°3cos30232AF AB =⋅=⨯=. ∴OH =AF FH OA +-=32+-r. ……………………………………………………5分 在Rt △ODH 中, 222OH DH OD +=.∴222(23)1r r +-+=.解得r=2..……………………………………………………7分∴该圆的半径长为2. ………………………8分21.(本小题满分10分)解:(1)画出A B C '''△,如图所示. ………………………2分(2)作BD x ⊥轴, B E 'x ⊥轴,垂直分别是D ,E 点.∴B E '∥BD .∴B E PE PB BD PD PB''==.………………………………………………………………………3分 ∵B (8,2),∴8OD =,2BD =. ∴1284PD =-=.∵A B C '''△与△ABC 的相似比为3,∴3PB PB'=. ∴324B E PE '==.∴6B E '=,PE =12. …………………………………………………………………………5分∵PO =12.,∴E 与O 点重合,线段B E '在y 轴上.∴B '点坐标为(0,6). ………………………………………………………………………6分 同理':3PC PC =:1.又∵PC OP OC =-=1293-=,∴'9PC =. ∴'1293OC =-=.∴'C 点坐标为(3,0). ………………………………………… ………………………7分设线段B C ''所在直线的解析式为y kx b =+. 则6003k bk b=⋅+⎧⎨=⋅+⎩ ………………………8分∴26k b =-=,.∴线段B C ''所在直线解析式为26y x =-+. ………………………10分 22.(本小题满分10分)(1) 解:若使形如图1花圃面积为最大,则必定要求图2扇环面积最大. 设图2扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++-, ………………………2分 =()2()180R r R r πθ+⋅+-. ∴[]1802()()L R r R r θπ--=+. ……………………………3分∴22360360R r S θπθπ=-=22()360R r πθ⋅⋅- ……………………………4分=[]221802()()360()L R r R r R r ππ--⋅⋅-+=[]12()()2L R r R r --⋅-=21()()2R r L R r --+- 22[()]416L L R r =---+22[()]416L L R r =---+. ……………………………5分∵式中0,2L R r <-<∴S 在4L R r -=时为最大,最大值为216L . ………6分∴花圃面积最大时R r -的值为4L ,最大面积为224164L L ⨯=. ……………7分(2)∵当4LR r -=时,S 取值最大, ∴1604044L R r -===(m),40401050R r =+=+=(m). …………………………8分 ∴[]1802()()L R r R r θπ--=+=180(160240)60π⨯-⨯⨯=240π(度). ………………………10分23.(本小题满分12分)解: (1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.故使用分类加法计数原理,由此算出从A 点到达其余各交叉点的走法数,填表如图1, 答:从A 点到B 点的走法共有35种. ……………………………………5分(2) 方法一: 可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点,但不经过交叉点C 的走法数.完成从A 点出发经C 点到B 点这件事可分两步,先从A 点到C 点,再从C 点到B 点. 使用分类加法计数原理,算出从A 点到C 点的走法是3种,见图2;算出从C 点到B 点的走法为6种,见图3,再运用分步乘法计数原理,得到从A 点经C 点到B 点的走法有3×6=18种.∴从A 点到B 点但不经过C 点的走法数为35-18=17种. ………………………10分方法二:由于交叉点C 道路施工,禁止通行,故视为相邻道路不通,可删除与C 点紧相连的线段.运用分类加法计数原理,算出从A 点到B 点并禁止通过交叉点C 的走法有17种. 从A 点到各交叉点的走法数见图4.∴从A 点到B 点并禁止经过C 点的走法数为35-18=17种.………10分(3) P(顺利开车到达B 点)= 1735. 答:任选一种走法,顺利开车到达B 点的概率是1735. ………………12分24.(本小题满分12分)解:(1)连结PC 、PA 、PB ,过P 点作PH ⊥x 轴,垂足为H . …………………1分∵⊙P 与y 轴相切于点C (0,1),∴PC ⊥y 轴.∵P 点在反比例函数k y x=的图象上, ∴P 点坐标为(k ,1). …………………2分∴PA=PC=k .在Rt △APH 中,AH =22PA PH -=21k -,∴OA=OH —AH =k -21k -.∴A (k -21k -,0). ……………………………………………………………………3分 ∵由⊙P 交x 轴于A 、B 两点,且PH ⊥AB ,由垂径定理可知, PH 垂直平分AB . ∴OB=OA +2AH = k -21k -+221k -=k +21k -,∴B (k +21k -,0). ……………………………………………………………………4分 故过A 、B 两点的抛物线的对称轴为PH 所在的直线解析式为x=k .可设该抛物线解析式为y=a 2()x k -+h . …………………………………………………5分 又抛物线过C (0,1), B (k +21k -,0), 得:2221;(1)0.ak h a k k k h ⎧+=⎪⎨+--+=⎪⎩ 解得a =1,h =1-2k . …………………7分∴抛物线解析式为y =2()x k -+1-2k .……8分(2)由(1)知抛物线顶点D 坐标为(k , 1-2k )∴DH =2k -1.若四边形ADBP 为菱形.则必有PH=DH .………………………………………………10分 ∵PH =1,∴2k -1=1.又∵k >1,∴k =2 …………………………………………………………11分 ∴当k 取2时,PD 与AB 互相垂直平分,则四边形ADBP 为菱形. …………………12分[注:对于以上各大题的不同解法,解答正确可参照评分!]。

2018年安徽中考数学试题与答案

2018年安徽中考数学试题与答案

2018年安徽省初中毕业学业考试数 学一、选择题<本题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 地四个选项同,其中只有一个正确地,请把正确选项地代号写在题 后地括号内.每一小题,选对得4分,不选、选错或选出地代号超过一个地<不论是否写在括号内)一律得0分.1.-2,0,2,-3这四个数中最大地是………………………………………………………【 】 A.-1 B.0 C.1 D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确地是…………………………………………………………………………………………………【 】A.3804.2×103 B.380.42×104 C.3.842×106 D.3.842×105 3. 下图是五个相同地小正方体搭成地几体体,其左视图是…………………………………【 】4.设,a 在两个相邻整数之间,则这两个整数是………………………………【 】A.1和2B.2和3C.3和4D.4 和 5 5.从下五边形地五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确地是……………………………………………………………………………【 】A.事件M 是不可能事件 B. 事件M 是必然事件 C.事件M 发生地概率为D. 事件M 发生地概率为6如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 地中点,则四边形EFGH 地周长是……………【 】 A.7 B.9 C.10 D. 117. 如图,⊙半径是1,A 、B 、C 是圆周上地三点,∠BAC=36°,则劣弧地长是…………………………………………………………………………………【 】A.B.C.D.8.一元二次方程地根是………………【 】A.-1B.2C.1和2D.-1和29.如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P 在四边形ABCD 上,若P 到BD 地距离为,则点P 地个数为……………………………【 】A.1B.2C.3D.4第3题图 第6题图第7题图10.如图所示,P 是菱形ABCD 地对角线AC 上一动点,过P 垂直于AC 地直线交菱形ABCD 地边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN 地面积为y ,则y 关于x 地函数图象地大致形状是…………………………………………………………………………………………【 】二、填空题<本题共4小题,每小题5分,满分20分) 11.因式分解:=_________.12.根据里氏震级地定义,地震所释放地相对能量E 与地震级数n 地关系为:,那么9级地震所释放地相对能量是7级地震所释放地相对能量地倍数是.13.如图,⊙O 地两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 地半径是_________.14.定义运算,下列给出了关于这种运算地几点结论: ①②③若,则④若,则a=0.其中正确结论序号是_____________.<把在横线上填上你认为所有正确结论地序号)三、<本题共2小题,每小题8分,满分16分) 15.先化简,再求值:,其中x=-2【解】16.江南生态食品加工厂收购了一批质量为10000千克地某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工地该种山货质量比粗加工地质量3倍还多2000千克.求粗加工地该种山货质量.【解】四、<本题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度地小正方形组成地网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;<1)把△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2>以图中地O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来地两倍,得到△A 2B 2C 2. 【解】18、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右地方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1>填写下列各点地坐标:A 1<____,_____),A 3<____,_____),A 12<____,____);<2>写出点A n 地坐标(n 是正整数>; 【解】(3>指出蚂蚁从点A 100到A 101地移动方向. 【解】五、<本题共2小题,每小题10分,满分20分) 19.如图,某高速公路建设中需要确定隧道AB 地长度.已知在离地面1500m ,高度C 处地飞机,测量人员测得正前方A 、B 两点处地俯角分别为60°和45°,求隧道AB 地长.【解】20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分>为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布地条形统计图如下第10题图第3题图第13题图第17题图第18题图<1)请补充完成下面地成绩统计分析表:<2)甲组学生说他们地合格率、优秀率均高于乙组,所以他们地成绩好于乙组.但乙组学生不同意甲组学生地说法,认为他们组地成绩要高于甲组.请你给出三条支持乙组学生观点地理由.【解】六、<本题满分12分) 21. 如图函数地图象与函数<x >0)地图象交于A 、B 两点,与y 轴交于C 点.已知A 点地坐标为(2,1>,C 点坐标为(0,3>.<1)求函数地表达式和B 点坐标; 【解】<2)观察图象,比较当x >0时,和地大小.七、<本题满分12分)22.在△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕顶点C 顺时针旋转,旋转角为θ<0°<θ<180°),得到△A /B /C.(1>如图(1>,当AB ∥CB /时,设AB 与CB /相交于D.证明:△A / CD 是等边三角形; 【解】<2)如图(2>,连接A /A 、B /B ,设△ACA /和△BCB /地面积分别为 S △ACA /和S △BCB /. 求证:S △ACA /∶S △BCB /=1∶3;【证】<3)如图(3>,设AC 中点为E ,A / B /中点为P ,AC=a ,连接EP ,当θ=_______°时,EP 长度最大,最大值为________.【解】八、<本题满分14分)23.如图,正方形ABCD 地四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间地距离依次为h 1、h 2、h 3<h 1>0,h 2>0,h 3>0). (1>求证h 1=h 3; 【解】(2> 设正方形ABCD 地面积为S.求证S=<h 2+h 3)2+h 12; 【解】 (3>若,当h 1变化时,说明正方形ABCD 地面积为S 随h 1地变化情况.【解】2018年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC 11. ; 12. 100; 13.14. ①③.15. 原式=.第21题图第22题图(1> 第22题图(2>第22题图(3> 第23题图16. 设粗加工地该种山货质量为x 千克,根据题意,得 x+(3x+2000>=10000. 解得 x=2000.答:粗加工地该种山货质量为2000千克. 17. 如下图18.⑴A 1(0,1> A 3(1,0>A 12(6,0> ⑵A n (2n,0> ⑶向上 19. 简答:∵OA , OB=OC=1500,∴AB=(m>.答:隧道AB 地长约为635m.20. <1)甲组:中位数 7; 乙组:平均数7, 中位数7<2)<答案不唯一)①因为乙组学生地平均成绩高于甲组学生地平均成绩,所以乙组学生地成绩好于甲组;②因为甲乙两组学生成绩地平均分相差不大,而乙组学生地方差低于甲组学生地方差,说明乙组学生成绩地波动性比甲组小,所以乙组学生地成绩好于甲组;③因为乙组学生成绩地最低分高于甲组学生地最低分,所以乙组学生地成绩好于甲组. 21. (1>由题意,得 解得∴又A 点在函数上,所以,解得所以解方程组得所以点B 地坐标为<1, 2)<2)当0<x <1或x >2时,y 1<y 2;当1<x <2时,y 1>y 2; 当x=1或x=2时,y 1=y 2. 22.<1)易求得,, 因此得证.(2>易证得∽,且相似比为,得证.<3)120°,23.<1)过A 点作AF ⊥l 3分别交l 2、l 3于点E 、F ,过C 点作CH ⊥l 2分别交l 2、l 3于点H 、G ,证△ABE ≌△CDG 即可.<2)易证△ABE ≌△BCH ≌△CDG ≌△DAF,且两直角边长分别为h 1、h 1+h 2,四边形EFGH 是边长为h 2地正方形, AA 1BCB 1C 1A 2B 2C 2 · O所以.(3>由题意,得所以又解得0<h1<∴当0<h1<时,S随h1地增大而减小;当h1=时,S取得最小值;当<h1<时,S随h1地增大而增大.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

2018年安徽省芜湖市南陵县中考数学模拟试卷(4月份)(解析版)

2018年安徽省芜湖市南陵县中考数学模拟试卷(4月份)(解析版)

2018年安徽省芜湖市南陵县中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.﹣2018B.2018C.﹣D.2.(4分)下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x43.(4分)2018年3月5日,十三届全国人大一次会议出席代表2970人,其中2970用科学记数法表示为()A.2.97×103B.29.7×102C.0.297×104D.2.97×104 4.(4分)在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球D.圆锥5.(4分)方程(x+1)(x﹣2)=x+1的解是()A.2B.3C.﹣1,2D.﹣1,36.(4分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°7.(4分)数学小组的同学为了解学生每周阅读的时间,随机调查了50名同学,绘制了如图所示的统计图,这组数据的中位数和众数分别是()A.中位数是25人,众数是20人B.中位数和众数都是8小时C.中位数是13人,众数是20人D.中位数是6小时,众数是8小时8.(4分)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm9.(4分)如图,正方形ABCD是一块绿化带,阴影部分EOFB,GHMN都是正方形的花圃,其中EOFB的顶点O是正方形中心.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.10.(4分)已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k 的取值范围是()A.﹣≤k<0或0<k≤4B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4D.﹣2≤k<0或0<k≤4二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)如果代数式有意义,那么字母x的取值范围是.12.(5分)分解因式:x3﹣2x2y+xy2=.13.(5分)如图,已知CD为⊙O的直径,弦AB⊥CD交CD于点E,连接BD,OB,AC,若AB=8,DE=2,则⊙O的半径为.14.(5分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,则折叠后所得到的四边形AEDF 的周长为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(2018﹣π)0+﹣2cos45°+()﹣116.(8分)解方程:+=四、(本大题共2小题,每小题8分,满分16分)17.(8分)钓鱼岛是我国固有领土,现在我边海渔民要在钓鱼岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海警干扰,请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向,A位于B的北偏西30°方向,求A、C之间的距离.18.(8分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的填空.(1)表中第6行的最后一个数是,第n行的最后一个数是;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则2018所在的位置是.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.20.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.六、(本题满分12分)21.(12分)在“学科能力”展示活动中,某县教育局决定在甲、乙两校举行“学科能力”比赛活动,规定甲、乙两学校选派相同人数的选手参加,比赛结束后,发现参赛选手的成绩是70分、80分、90分、l00分这四种成绩中的一种,已知甲、乙两校的选手获得100分的人数相等.现根据甲、乙两校选手的成绩,绘制成两幅不完整统计图如下:(1)请补全条形统计图;(2)比赛结束后,教育局决定对甲、乙两校获得100分的选手进行集中培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或画树状图的方法,求所选两位选手来自同一学校的概率.七、(本题满分12分)22.(12分)如图,A,B两点在x轴的正半轴上运动,四边形ABCD是矩形,C,D两点在抛物线y=﹣x2+8x上.(1)若OA=1,求矩形ABCD的周长;(2)设OA=m(0<m<4),求出四边形ABCD的周长L关于m的函数表达式;(3)在(2)的条件下求L的最大值.八、(本题满分14分)23.(14分)如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A n﹣2MN=°时,结论A n﹣2M=MN仍然成立.(不要求证明)2018年安徽省芜湖市南陵县中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.﹣2018B.2018C.﹣D.【解答】解:﹣2018的倒数是﹣.故选:C.2.(4分)下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x4【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2•x2=x4,计算正确,本选项正确.故选:D.3.(4分)2018年3月5日,十三届全国人大一次会议出席代表2970人,其中2970用科学记数法表示为()A.2.97×103B.29.7×102C.0.297×104D.2.97×104【解答】解:2970=2.97×103,故选:A.4.(4分)在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球D.圆锥【解答】解:A、正方体,左视图与主视图是边长相等的两个正方形,故本选项不符合题意;B、长方体,左视图与主视图是两个不完全相同的两个长方形,故本选项符合题意;C、球,左视图与主视图是两个半径相等的圆,故本选项不符合题意;D、圆锥,左视图与主视图是两个全等的等腰三角形,故本选项不符合题意.故选:B.5.(4分)方程(x+1)(x﹣2)=x+1的解是()A.2B.3C.﹣1,2D.﹣1,3【解答】解:(x+1)(x﹣2)﹣(x+1)=0,∴(x+1)(x﹣2﹣1)=0,即(x+1)(x﹣3)=0,∴x+1=0,或x﹣3=0,∴x1=﹣1,x2=3.故选:D.6.(4分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.7.(4分)数学小组的同学为了解学生每周阅读的时间,随机调查了50名同学,绘制了如图所示的统计图,这组数据的中位数和众数分别是()A.中位数是25人,众数是20人B.中位数和众数都是8小时C.中位数是13人,众数是20人D.中位数是6小时,众数是8小时【解答】解:因数据总数为50,故中位数为第25和26个数据的平均数,而条形统计图是按从小到大的顺序排列的,前3组的和为24,前4组的和为44,故第25和26个数据落在第4组,故中位数是8(小时);条形统计图中出现频数最大的条形对应第四组,故众数是8(小时);故选:B.8.(4分)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.9.(4分)如图,正方形ABCD是一块绿化带,阴影部分EOFB,GHMN都是正方形的花圃,其中EOFB的顶点O是正方形中心.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【解答】解:设正方形ABCD的边长为a,∵四边形ABCD为正方形,∴∠ACB=∠ACD=45°,AC=a,∵四边形BEOF为正方形,∴CF=OF=BF,∴S正方形BEOF=(a)2=a2,设正方形MNGH的边长为x,∵△ANG和△CMH都是等腰直角三角形,∴CM=AN=MN=x,∴3x=a,解得x=x,∴S正方形MNGH=(a)2=a2,∴小鸟不落在花圃上的概率=(a2+a2)÷a2=.故选:C.10.(4分)已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k 的取值范围是()A.﹣≤k<0或0<k≤4B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4D.﹣2≤k<0或0<k≤4【解答】解:①当k>0时,如下图:将x=1代入反比例函数的解析式得y=k,∵y随x的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如下图所示:设直线AB的解析式为y=kx+b.将点A和点B的坐标代入得:,解得:k=1,b=3.所以直线AB所在直线为y=x+3.将y=x+3与y=联立,得:x+3=,整理得:x2+3x﹣k=0.∴32+4k≥0,解得:k≥﹣.综上所述,当﹣≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)如果代数式有意义,那么字母x的取值范围是x≥﹣2且x≠5.【解答】解:∵代数式有意义,∴,解得x≥﹣2且x≠5.故答案为:x≥﹣2且x≠5.12.(5分)分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.13.(5分)如图,已知CD为⊙O的直径,弦AB⊥CD交CD于点E,连接BD,OB,AC,若AB=8,DE=2,则⊙O的半径为5.【解答】解:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB,设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.故答案为:514.(5分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,则折叠后所得到的四边形AEDF的周长为+3或+4.【解答】解:∵Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AB==2,AC=AB=.∵∠B=30°,DE⊥BC,∴∠BED=60°.由翻折的性质可知:∠BED=∠FED=60°,∴∠AEF=60°.∵△AEF为直角三角形,∴∠AFE=90°或∠EAF=90°.①∠AFE=90°时,点F在边BC上.∴∠EAF=30°,∴AE=2EF.由翻折的性质可知:BE=EF,∴AB=3BE,∴EB=AB=,AE=2EB=,∴ED=EB=,BD=ED=1=DF,∴AF=EF=EB=2,∴四边形AEDF的周长=AE+ED+DF+F A=++1+2=+3;②∠EAF=90°时,点F在BC的延长线上.∴∠EF A=30°.∴∠EFD=∠EF A.又∵ED⊥BF,EA⊥AF,∴AE=DE.设DE=x,BE=AB﹣AE=AB﹣DE=2﹣x.∵DE∥AC,∴=,即=,解得,x═,则AE=DE═,BD===2=DF,AF=AE=2,∴四边形AEDF的周长=AE+ED+DF+F A=++2+2=+4.综上所述,折叠后所得到的四边形AEDF的周长为+3或+4.故答案为+3或+4.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(2018﹣π)0+﹣2cos45°+()﹣1【解答】解:原式=1+2﹣2×+2=1+2﹣+2=3+.16.(8分)解方程:+=【解答】解:去分母得:x+2x﹣4=x+2,解得:x=3,经检验x=3是分式方程的解.四、(本大题共2小题,每小题8分,满分16分)17.(8分)钓鱼岛是我国固有领土,现在我边海渔民要在钓鱼岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海警干扰,请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向,A位于B的北偏西30°方向,求A、C之间的距离.【解答】解:过A作AD⊥BC,设CD=x(海里),则有BD=20(1+)﹣x(海里),在Rt△ACD中,∠ACD=45°,∴AD=CD=x(海里),在Rt△ABD中,tan30°=,即=,整理得:20(1+)﹣x=x,解得:x==10(1+)(﹣1)=10(﹣1+﹣),∴AC=x=10(﹣1+﹣)=(10﹣10+10﹣10)海里,则A、C之间的距离为(10﹣10+10﹣10)海里.18.(8分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的填空.(1)表中第6行的最后一个数是21,第n行的最后一个数是;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则2018所在的位置是(64,2).【解答】解:(1)第一行,最后一个数是1=;第二行,最后一个数是3=;第三行,最后一个数是6=;…第六行,最后一个数是==21;通过观察可知:第n行,最后一个数=,故答案为:21、;(2)当n=63时,最后一个数=2016;当n=64时,最后一个数=2080;2016<2018<2080.∴2018位于第64行,且第64行第一个数字为2017.∴2018为第64行第2个数字.∴2018的位置是(64,2).故答案为:(64,2)五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解答】解:(1)旋转中心坐标是O(0,0),旋转角是90度;(2)画出的图形如图所示;(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.∵S正方形CC1C2C3=S正方形AA1A2B+4S△ABC,∴(a+b)2=c2+4×ab,即a2+2ab+b2=c2+2ab,∴a2+b2=c2.20.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.六、(本题满分12分)21.(12分)在“学科能力”展示活动中,某县教育局决定在甲、乙两校举行“学科能力”比赛活动,规定甲、乙两学校选派相同人数的选手参加,比赛结束后,发现参赛选手的成绩是70分、80分、90分、l00分这四种成绩中的一种,已知甲、乙两校的选手获得100分的人数相等.现根据甲、乙两校选手的成绩,绘制成两幅不完整统计图如下:(1)请补全条形统计图;(2)比赛结束后,教育局决定对甲、乙两校获得100分的选手进行集中培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或画树状图的方法,求所选两位选手来自同一学校的概率.【解答】解:(1)乙校得100分人数所占的百分比为×100%=,所以甲校参加人数为(2+3+5)÷(1﹣)=12(人),所以甲校得100分的人数为12﹣2﹣3﹣5=2(人),条形统计图为:(2)画树状图为:(甲乙各有2名学生得100分)共有12种等可能的结果数,其中所选两位选手来自同一学校的结果数为4,所以所选两位选手来自同一学校的概率==.七、(本题满分12分)22.(12分)如图,A,B两点在x轴的正半轴上运动,四边形ABCD是矩形,C,D两点在抛物线y=﹣x2+8x上.(1)若OA=1,求矩形ABCD的周长;(2)设OA=m(0<m<4),求出四边形ABCD的周长L关于m的函数表达式;(3)在(2)的条件下求L的最大值.【解答】解:(1)当x=1时,y=﹣1+8=7,即AD=7,D点坐标为(1,7).当y=7时,﹣x2+8x=7,解得x1=1,x2=7,即AB=7﹣1=6,矩形ABCD的周长=2(AD+AB)=2(7+6)=26;(2)把x=m代入抛物线y=﹣x2+8x中,得AD=﹣m2+8m把y=﹣m2+8m代入抛物线y=﹣m2+8m中,得﹣m2+8m=﹣x2+8x解得x1=m,x2=8﹣m∴C的横坐标是8﹣m,故AB=8﹣m﹣m=8﹣2m∴矩形的周长是L=2(﹣m2+8m)+2(8﹣2m)即L=﹣2m2+12m+16.(3)L=﹣2m2+12m+16化为顶点式,得L=﹣2(m﹣3)2+34 (0<m<4),当m=3时,L最大=34,在(2)的条件下求L的最大值是34.八、(本题满分14分)23.(14分)如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A n﹣2MN=为[]°时,结论A n﹣2M=MN仍然成立.(不要求证明)【解答】(1)证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知当∠A n﹣2MN等于n边形的内角时,结论A n﹣2M=MN仍然成立;即∠A n﹣2MN=时,结论A n﹣2M=MN仍然成立;故答案为[].。

2018年安徽省初中毕业学业考试数学模拟卷(4)含答案

2018年安徽省初中毕业学业考试数学模拟卷(4)含答案

2018年安徽省初中毕业学业考试数学模拟卷(4)含答案2018年安徽省初中毕业学业考试数学模拟卷四(卷Ⅰ)本卷共计3大题,时间45分钟,满分92分一、选择题(本大题共10小题,每小题4分,满分40分)1.在-3,0,-22,2四个数中,最小的数是·································································( ) A .-3 B .0 C .-2 2 D . 2 2.计算(-5a 3)2的结果是·····················································································( )A .-10a 5B .10a 6C .-25a 5D .25a 63.据悉,中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为····························( ) A .0.6×1013元 B .60×1011元 C .6×1012元D .6×1013元4.如图,是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是······································( )A .B .C .D . 5.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为···········( ) A .20° B .25° C .30° D .35°6.某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的··································································( ) A .中位数 B .众数 C .平均数 D .极差7.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是·····················( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠08.如图1,在Rt △ABC 中,∠ACB =90°,点P 以每秒1 cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止,过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm)与点P 的运动时间x (秒)的函数图象如图2所示,当点P 运动5秒时,PD 的长是·········( )A .1.5 cmB .1.2 cmC .1.8 cmD .2 cm9.观察如图所示的图形,它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有·······················( ) A .57个B .60个C .63个D .85个10.如图,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为················································( )A .B .C .D . 二、填空题(本大题共4小题,每小题5分,满分20分)11.若x -2y+9与|x -y -3|互为相反数,则x +y 的值为________.12.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴正半轴上,反比例函数 (x >0)的图象经过该菱形对角线的交点A ,且与边BC 交于点F .若点D 的坐标为(6,8),则点F 的坐标是________.13.如图,半径为6cm 的⊙O 中,C ,D 为直径AB 的三等分点,点E ,F 分别在AB 两侧的半圆上,∠BCE =∠BDF =60°,连结AE ,BF ,则图中两个阴影部分的面积总和为 cm 2.x k y =第10题图第5题图 第4题图 第8题图 第9题图 图1 图214.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且 . 给出下列结论:①△ADE ∽△ACD ; ②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或 ;④0< 6.4CE ≤.以上结论正确的序号是________________. 三、本大题共2小题,每小题8分,满分16分15.解不等式组⎩⎨⎧2x +1≥-1,①1+2x 3>x -1,②并把不等式组的解集在数轴上表示出来.16.先化简,再求值:1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1,其中a 是方程2x 2+4x -6=0的一个根.四、本大题共2小题,每小题8分,满分16分17.如图,已知△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出将△ABC 先向左,再向下都平移5个单位长度后得到的△A 1B 1C 1; (2)请画出将△ABC 绕O 按逆时针方向旋转90°后得到的△A 2B 2C 2; (3)在x 轴上求作一点P ,使△P AB 周长最小,请画出△P AB 并直接 写出点P 的坐标.18.为了解某县2017年初中毕业生的实验考查成绩等级的分布情况,随机抽取了若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:请根据以上统计图表提供的信息,解答下列问题:225第14题图第13题图 第12题图(1)本次抽查的学生有___________________名;(2)表中x ,y 和m 所表示的数分别为:x =_____,y =______,m =______; (3)请补全条形统计图;(4)根据抽样调查结果,请你估计2017年该县5400名初中毕业生实验考查 成绩为D 类的学生人数?2018年安徽省初中毕业学业考试数学模拟卷四(卷Ⅱ)本卷共计4大题,时间50分钟,满分58分五、本大题共2小题,每小题10分,满分20分19.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?20.如图1,在正方形ABCD 中,E ,F 分别是边AD ,DC 上的点,且AF ⊥BE . (1)求证:AF =BE ;(2)如图2,在正方形ABCD 中,M ,N ,P ,Q 分别是边AB ,BC ,CD ,DA 上的点, 且MP ⊥NQ ,MP 与NQ 是否相等?并说明理由.“字母棋”的游戏规则为: ①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回; ②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋; ③相同棋子不分胜负.六、本大题满分12分21.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.七、本大题满分12分22.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A 点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;八、本大题满分14分23.如图1,O为菱形ABCD的对称中心,∠A=60°,将等边△OEF的顶点放在点O处,OE ,OF分别交AB,BC于点M ,N.(1)求证:OM=ON;(2)写出线段BM ,BN与AB之间的数量关系,并进行证明;(3)将图1中的△OEF绕O点顺时针旋转至图2所示的位置,请写出线段BM ,BN与AB之间的数量关系,并进行证明.C A图1图22018年安徽省初中毕业学业考试数学模拟卷四参考答案题号 1 2 3 4 5 6 7 8 9 10 答案ADCBAADBBC二、填空题答案题号 11 12 13 14 答案27(12,83)611①②③④三、简答题答案15.答案:-1≤x <4 图略;16.答案:(1) 原式=2a 2+2a +1 又因为2a 2+4a -6=0 所以a 2+2a =3 ∴原式=12 ;17.答案:(1) 图略 ; (2) 图略 ; (3) P (2,0);18.答案:(1) 200 ; (2) 100 30 5% ; (3)270人;19.答案:(1)310 ; (2) 49; (3) B 棋;20.答案:(1) 证明略 ; (2) 相等,证明略 ;21.答案:(1)证明略 ; (2) 932 ;(3) 32;22.答案:(1) y =x 2-4x +3 ; (2) 最大值为94 ; (3) P (1,0)或P (2,-1)23.答案:(1) 证明略 ; (2)BM +BN =12AB 证明略 ; (3) BM -BN =12AB 证明略 ;。

2018年安徽省芜湖市南陵县中考一模数学试卷(解析版)

2018年安徽省芜湖市南陵县中考一模数学试卷(解析版)

2018年安徽省芜湖市南陵县中考数学一模试卷一、选择题(本题共10小题,每小题4分,共40分)每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在下面的答题表中,每一小题选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.(4分)﹣3﹣(﹣4)的结果是()A.1B.﹣1C.7D.﹣72.(4分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.2a2•3a3=6a53.(4分)代数式2﹣1的值在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和54.(4分)南海是我们固有领土,南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109 5.(4分)如图,l1∥l2,将直角三角板如图所示的方式放置,则∠1+∠2=()A.75°B.80°C.90°D.100°6.(4分)如图所示的长方体中间有一个圆形孔洞,则它的主视图为()A.B.C.D.7.(4分)2016年夏季奥运会将在巴西的里约热内卢举行,为此小明查阅资料,制作了我国在第24~30届奥运会荣获金牌总数的折线统计图,如图,下列说法正确的是()A.金牌总数逐届增加B.我国历届荣获金牌数的众数是51C.我国历届荣获金牌数的中位数是28D.我国历届荣获金牌数的平均数是328.(4分)某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计2014年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)29.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36B.48C.60D.7210.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0B.a≤0或a=2C.0<a<2D.a<0二、填空题(每小题5分,满分20分)11.(5分)因式分解:8m﹣2m3=.12.(5分)计算:+=.13.(5分)已知关于x的方程的解是正数,则m的取值范围是.14.(5分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)解方程组.16.(8分)化简:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现,问:(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1;(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,渔政310船在南海海面上沿正东方向以20海里/小时的速度匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场,若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值)20.(10分)已知:CD是圆O的直径,弦AB与CD交于点H,CE⊥AB于点E,OF⊥AB于点F,CB=5,CA=,BE=4.(1)求证:CD•CE=CA•CB(2)求OF的长.六、(本题满分12分)21.(12分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.七、(本题满分12分)22.(12分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.八、(本题满分14分)23.(14分)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC 中点,E为AB边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.2018年安徽省芜湖市南陵县中考数学一模试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在下面的答题表中,每一小题选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.(4分)﹣3﹣(﹣4)的结果是()A.1B.﹣1C.7D.﹣7【解答】解:﹣3﹣(﹣4),=﹣3+4,=1.故选:A.2.(4分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.2a2•3a3=6a5【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2•3a3=2×3a2•a3=6a5,正确.故选:D.3.(4分)代数式2﹣1的值在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和5【解答】解:∵2=,4<8<9,∴2<2<3,∴1<2﹣1<2,即在1和2之间.故选:A.4.(4分)南海是我们固有领土,南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109【解答】解:将350万用科学记数法表示为3.5×106.故选:A.5.(4分)如图,l1∥l2,将直角三角板如图所示的方式放置,则∠1+∠2=()A.75°B.80°C.90°D.100°【解答】解:如图所示:过点B作BD∥l1,由题意可得:BD∥l1∥l2,则∠1=∠3,∠2=∠4,故∠1+∠2=∠3+∠4=90°.故选:C.6.(4分)如图所示的长方体中间有一个圆形孔洞,则它的主视图为()A.B.C.D.【解答】解:从正面看是三个矩形,中间矩形的左右两边是虚线,故选:B.7.(4分)2016年夏季奥运会将在巴西的里约热内卢举行,为此小明查阅资料,制作了我国在第24~30届奥运会荣获金牌总数的折线统计图,如图,下列说法正确的是()A.金牌总数逐届增加B.我国历届荣获金牌数的众数是51C.我国历届荣获金牌数的中位数是28D.我国历届荣获金牌数的平均数是32【解答】解:A、金牌总数在第25、26届不变、第30届减少,此选项错误;B、我国历届荣获金牌数的众数是16,此选项错误;C、我国历届荣获金牌数的中位数是28,此选项正确;D、我国历届荣获金牌数的平均数是=,此选项错误;故选:C.8.(4分)某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计2014年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【解答】解:设2012年的国内生产总值为1,∵2013年国内生产总值(GDP)比2012年增长了12%,∴2013年的国内生产总值为1+12%;∵2014年比2013年增长7%,∴2014年的国内生产总值为(1+12%)(1+7%),∵这两年GDP年平均增长率为x%,∴2014年的国内生产总值也可表示为:(1+x%)2,∴可列方程为:(1+12%)(1+7%)=(1+x%)2.故选:D.9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36B.48C.60D.72【解答】解:∵D、E分别为AB、AC的中点,∴DE∥BC,∴△DOE∽△BOC,∴,∴OB=8,OD=6,∴BC=10,∴△BOC是直角三角形,∴△BOC的面积是24,∴△BEC的面积是36,△BDE的面积是18,∴△ABC的面积是72,故选:D.10.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0B.a≤0或a=2C.0<a<2D.a<0【解答】解:如图,由题意可知:y=a时,对应的x有唯一确定的值,即直线y=a与该函数图象只有一个交点,∴a≤0故选:A.二、填空题(每小题5分,满分20分)11.(5分)因式分解:8m﹣2m3=2m(2﹣m)(2+m).【解答】解:原式=2m(4﹣m2)=2m(2﹣m)(2+m).故答案为:2m(2﹣m)(2+m).12.(5分)计算:+=8.【解答】解:+=4+4=8.故答案为:8.13.(5分)已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【解答】解:解关于x的方程得x=m+6,∵x﹣2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.14.(5分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+或4+2.【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)解方程组.【解答】解:,①×2得4x+2y=4③,②+③得7x=14,解得:x=2,把x=2代入①得2×2+y=2解得:y=﹣2,∴原方程组的解为.16.(8分)化简:.【解答】解:原式=÷=•=.四、(本大题共2小题,每小题8分,满分16分)17.(8分)现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现,问:(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?【解答】解:(1)∵50÷6=8…2,∴第50个数是﹣1;(2)∵1+(﹣1)++(﹣)++(﹣)=0,2017÷6=336…1,∴从第1个数开始的前2017个数相加,结果是1;(3)∵=12,520÷12=43…4,,∴从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有43×6+3=261个数的平方相加.18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1;(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.【解答】解:(1)如图;(2)如图;旋转过程中,点B到B2所经过的路径长为以OB为半径,90°为圆心角的弧长,=×2π×3=π.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,渔政310船在南海海面上沿正东方向以20海里/小时的速度匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场,若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值)【解答】解:过点C作CD⊥AB交AB的延长线于点D,由已知可得,∠BDC=90°,∠CBD=60°,∠ADC=90°,∠CAD=45°,∴BD==CD,AD=CD,∵AB=20×0.5=10,∴10+BD=CD,即10+=CD,解得,CD=15+5,∴BD=AD﹣AB=15+5﹣10=5+5,∵,∴渔政310船再航行小时,离我渔船C的距离最近.20.(10分)已知:CD是圆O的直径,弦AB与CD交于点H,CE⊥AB于点E,OF⊥AB于点F,CB=5,CA=,BE=4.(1)求证:CD•CE=CA•CB(2)求OF的长.【解答】(1)证明:连接AD.∵CD是直径,∠DAC=90°,∵CE⊥AB,∴∠DAC=∠CEB=90°,∵∠D=∠B,∴△ACD∽△ECB,∴,∴CD•CE=CA•CB.(2)连接OA.在Rt△BCE中,CH==3,在Rt△ACH中,AE==8,∵BE=4,AE=8,∴AB=12,∵OF⊥AB,∴AF=FB=6,∵CD•CE=CA•CB,∴CD=,∴OA=CD=,在Rt△AOF中,OF=.六、(本题满分12分)21.(12分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.【解答】解:(1)画树状图得:甲、乙、丙三名学生在同一个餐厅用餐的概率为=;(2)∵共有8种等可能的情况,其中甲、乙、丙三名学生中至少有一人在B餐厅用餐的有7种情况,∴甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率为.七、(本题满分12分)22.(12分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.【解答】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x﹣6)2+h过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,(2)当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得:,此时二次函数解析式为:y=﹣(x﹣6)2+,此时球若不出边界h≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得:,此时球要过网h>,故若球一定能越过球网,又不出边界,h的取值范围是:h≥.解法二:y=a(x﹣6)2+h过点(0,2)点,代入解析式得:2=36a+h,若球越过球网,则当x=9时,y>2.43,即9a+h>2.43解得h>球若不出边界,则当x=18时,y≤0,解得h≥.故若球一定能越过球网,又不出边界,h的取值范围是:h≥.八、(本题满分14分)23.(14分)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC 中点,E为AB边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.【解答】解:(1)∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠P AE=45°,∴△APE∽△CFP,则=.在等腰直角△ABC中,AC =AB=4,又∵P为AC的中点,则AP=CP=2,∴AE ===.如图1,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH =BC=2,同理PG=2.S△APE =PH•AE=×2×=,S2=S△PCF =CF×PG =×x×2=x,∴S1=S△ABC ﹣S△APE﹣S△PCF=×4×4﹣﹣x=8﹣﹣x,∴y ===﹣+﹣1=﹣8(﹣)2+1,∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.即时,y取得最大值.而x=2在x的取值范围内,将x=2代入y ==﹣8(﹣)2+1,得y最大=1.则y关于x的函数解析式为:y =﹣+﹣1,(2≤x≤4),y的最大值为1.②如图2所示:图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD 对称,此时EB=BF,即AE=FC,则=x,解得x1=2,x2=﹣2(舍去),将代入y =﹣+﹣1,得y=2﹣2.第21页(共22页)第22页(共22页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年安徽省芜湖市南陵县中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.﹣2018 B.2018 C.﹣D.2.(4分)下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x43.(4分)2018年3月5日,十三届全国人大一次会议出席代表2970人,其中2970用科学记数法表示为()A.2.97×103B.29.7×102C.0.297×104D.2.97×1044.(4分)在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球D.圆锥5.(4分)方程(x+1)(x﹣2)=x+1的解是()A.2 B.3 C.﹣1,2 D.﹣1,36.(4分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°7.(4分)数学小组的同学为了解学生每周阅读的时间,随机调查了50名同学,绘制了如图所示的统计图,这组数据的中位数和众数分别是()A.中位数是25人,众数是20人B.中位数和众数都是8小时C.中位数是13人,众数是20人D.中位数是6小时,众数是8小时8.(4分)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm9.(4分)如图,正方形ABCD是一块绿化带,阴影部分EOFB,GHMN都是正方形的花圃,其中EOFB的顶点O是正方形中心.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.10.(4分)已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k的取值范围是()A.﹣≤k<0或0<k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)如果代数式有意义,那么字母x的取值范围是.12.(5分)分解因式:x3﹣2x2y+xy2=.13.(5分)如图,已知CD为⊙O的直径,弦AB⊥CD交CD于点E,连接BD,OB,AC,若AB=8,DE=2,则⊙O的半径为.14.(5分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,则折叠后所得到的四边形AEDF的周长为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(2018﹣π)0+﹣2cos45°+()﹣116.(8分)解方程:+=四、(本大题共2小题,每小题8分,满分16分)17.(8分)钓鱼岛是我国固有领土,现在我边海渔民要在钓鱼岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海警干扰,请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向,A位于B的北偏西30°方向,求A、C之间的距离.18.(8分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的填空.(1)表中第6行的最后一个数是,第n行的最后一个数是;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则2018所在的位置是.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.20.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.六、(本题满分12分)21.(12分)在“学科能力”展示活动中,某县教育局决定在甲、乙两校举行“学科能力”比赛活动,规定甲、乙两学校选派相同人数的选手参加,比赛结束后,发现参赛选手的成绩是70分、80分、90分、l00分这四种成绩中的一种,已知甲、乙两校的选手获得100分的人数相等.现根据甲、乙两校选手的成绩,绘制成两幅不完整统计图如下:(1)请补全条形统计图;(2)比赛结束后,教育局决定对甲、乙两校获得100分的选手进行集中培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或画树状图的方法,求所选两位选手来自同一学校的概率.七、(本题满分12分)22.(12分)如图,A,B两点在x轴的正半轴上运动,四边形ABCD是矩形,C,D两点在抛物线y=﹣x2+8x上.(1)若OA=1,求矩形ABCD的周长;(2)设OA=m(0<m<4),求出四边形ABCD的周长L关于m的函数表达式;(3)在(2)的条件下求L的最大值.八、(本题满分14分)23.(14分)如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A nMN=﹣2M=MN仍然成立.(不要求证明)°时,结论A n﹣22018年安徽省芜湖市南陵县中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2018的倒数是()A.﹣2018 B.2018 C.﹣D.【解答】解:﹣2018的倒数是﹣.故选:C.2.(4分)下列计算正确的是()A.4x2+2x2=6x4B.(x﹣y)2=x2﹣y2C.(x3)2=x5D.x2•x2=x4【解答】解:A、4x2+2x2=6x2≠6x4,计算错误,本选项错误;B、(x﹣y)2=x2+y2﹣2xy≠x2﹣y2,计算错误,本选项错误;C、(x3)2=x6≠x5,计算错误,本选项错误;D、x2•x2=x4,计算正确,本选项正确.故选:D.3.(4分)2018年3月5日,十三届全国人大一次会议出席代表2970人,其中2970用科学记数法表示为()A.2.97×103B.29.7×102C.0.297×104D.2.97×104【解答】解:2970=2.97×103,故选:A.4.(4分)在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球D.圆锥【解答】解:A、正方体,左视图与主视图是边长相等的两个正方形,故本选项不符合题意;B、长方体,左视图与主视图是两个不完全相同的两个长方形,故本选项符合题意;C、球,左视图与主视图是两个半径相等的圆,故本选项不符合题意;D、圆锥,左视图与主视图是两个全等的等腰三角形,故本选项不符合题意.故选:B.5.(4分)方程(x+1)(x﹣2)=x+1的解是()A.2 B.3 C.﹣1,2 D.﹣1,3【解答】解:(x+1)(x﹣2)﹣(x+1)=0,∴(x+1)(x﹣2﹣1)=0,即(x+1)(x﹣3)=0,∴x+1=0,或x﹣3=0,∴x1=﹣1,x2=3.故选:D.6.(4分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.7.(4分)数学小组的同学为了解学生每周阅读的时间,随机调查了50名同学,绘制了如图所示的统计图,这组数据的中位数和众数分别是()A.中位数是25人,众数是20人B.中位数和众数都是8小时C.中位数是13人,众数是20人D.中位数是6小时,众数是8小时【解答】解:因数据总数为50,故中位数为第25和26个数据的平均数,而条形统计图是按从小到大的顺序排列的,前3组的和为24,前4组的和为44,故第25和26个数据落在第4组,故中位数是8(小时);条形统计图中出现频数最大的条形对应第四组,故众数是8(小时);故选:B.8.(4分)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.9.(4分)如图,正方形ABCD是一块绿化带,阴影部分EOFB,GHMN都是正方形的花圃,其中EOFB的顶点O是正方形中心.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【解答】解:设正方形ABCD的边长为a,∵四边形ABCD为正方形,∴∠ACB=∠ACD=45°,AC=a,∵四边形BEOF为正方形,∴CF=OF=BF,=(a)2=a2,∴S正方形BEOF设正方形MNGH的边长为x,∵△ANG和△CMH都是等腰直角三角形,∴CM=AN=MN=x,∴3x=a,解得x=x,=(a)2=a2,∴S正方形MNGH∴小鸟不落在花圃上的概率=(a2+a2)÷a2=.故选:C.10.(4分)已知点A(﹣2,1),B(1,4),若反比例函数y=与线段AB有公共点时,k的取值范围是()A.﹣≤k<0或0<k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4【解答】解:①当k>0时,如下图:将x=1代入反比例函数的解析式得y=k,∵y随x的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如下图所示:设直线AB的解析式为y=kx+b.将点A和点B的坐标代入得:,解得:k=1,b=3.所以直线AB所在直线为y=x+3.将y=x+3与y=联立,得:x+3=,整理得:x2+3x﹣k=0.∴32+4k≥0,解得:k≥﹣.综上所述,当﹣≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)如果代数式有意义,那么字母x的取值范围是x≥﹣2且x≠5.【解答】解:∵代数式有意义,∴,解得x≥﹣2且x≠5.故答案为:x≥﹣2且x≠5.12.(5分)分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.13.(5分)如图,已知CD为⊙O的直径,弦AB⊥CD交CD于点E,连接BD,OB,AC,若AB=8,DE=2,则⊙O的半径为5.【解答】解:∵∠AEC=∠DEB,∠ACE=∠DBE,∴△AEC∽△DEB,设⊙O的半径为r,则CE=2r﹣2.∵CD⊥AB,AB=8,∴AE=BE=AB=4.∵△AEC∽△DEB,∴,即,解得:r=5.故答案为:514.(5分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,则折叠后所得到的四边形AEDF的周长为+3或+4.【解答】解:∵Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,∴AB==2,AC=AB=.∵∠B=30°,DE⊥BC,∴∠BED=60°.由翻折的性质可知:∠BED=∠FED=60°,∴∠AEF=60°.∵△AEF为直角三角形,∴∠AFE=90°或∠EAF=90°.①∠AFE=90°时,点F在边BC上.∴∠EAF=30°,∴AE=2EF.由翻折的性质可知:BE=EF,∴AB=3BE,∴EB=AB=,AE=2EB=,∴ED=EB=,BD=ED=1=DF,∴AF=EF=EB=2,∴四边形AEDF的周长=AE+ED+DF+FA=++1+2=+3;②∠EAF=90°时,点F在BC的延长线上.∴∠EFA=30°.∴∠EFD=∠EFA.又∵ED⊥BF,EA⊥AF,∴AE=DE.设DE=x,BE=AB﹣AE=AB﹣DE=2﹣x.∵DE∥AC,∴=,即=,解得,x═,则AE=DE═,BD===2=DF,AF=AE=2,∴四边形AEDF的周长=AE+ED+DF+FA=++2+2=+4.综上所述,折叠后所得到的四边形AEDF的周长为+3或+4.故答案为+3或+4.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(2018﹣π)0+﹣2cos45°+()﹣1【解答】解:原式=1+2﹣2×+2=1+2﹣+2=3+.16.(8分)解方程:+=【解答】解:去分母得:x+2x﹣4=x+2,解得:x=3,经检验x=3是分式方程的解.四、(本大题共2小题,每小题8分,满分16分)17.(8分)钓鱼岛是我国固有领土,现在我边海渔民要在钓鱼岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海警干扰,请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向,A位于B的北偏西30°方向,求A、C之间的距离.【解答】解:过A作AD⊥BC,设CD=x(海里),则有BD=20(1+)﹣x(海里),在Rt△ACD中,∠ACD=45°,∴AD=CD=x(海里),在Rt△ABD中,tan30°=,即=,整理得:20(1+)﹣x=x,解得:x==10(1+)(﹣1)=10(﹣1+﹣),∴AC=x=10(﹣1+﹣)=(10﹣10+10﹣10)海里,则A、C之间的距离为(10﹣10+10﹣10)海里.18.(8分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的填空.(1)表中第6行的最后一个数是21,第n行的最后一个数是;(2)若用(a,b)表示一个数在数表中的位置,如9的位置是(4,3),则2018所在的位置是(64,2).【解答】解:(1)第一行,最后一个数是1=;第二行,最后一个数是3=;第三行,最后一个数是6=;…第六行,最后一个数是==21;通过观察可知:第n行,最后一个数=,故答案为:21、;(2)当n=63时,最后一个数=2016;当n=64时,最后一个数=2080;2016<2018<2080.∴2018位于第64行,且第64行第一个数字为2017.∴2018为第64行第2个数字.∴2018的位置是(64,2).故答案为:(64,2)五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是O(0,0),旋转角是90度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.【解答】解:(1)旋转中心坐标是O(0,0),旋转角是90度;(2)画出的图形如图所示;(3)有旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.=S正方形AA1A2B+4S△ABC,∵S正方形CC1C2C3∴(a+b)2=c2+4×ab,即a2+2ab+b2=c2+2ab,∴a2+b2=c2.20.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.六、(本题满分12分)21.(12分)在“学科能力”展示活动中,某县教育局决定在甲、乙两校举行“学科能力”比赛活动,规定甲、乙两学校选派相同人数的选手参加,比赛结束后,发现参赛选手的成绩是70分、80分、90分、l00分这四种成绩中的一种,已知甲、乙两校的选手获得100分的人数相等.现根据甲、乙两校选手的成绩,绘制成两幅不完整统计图如下:(1)请补全条形统计图;(2)比赛结束后,教育局决定对甲、乙两校获得100分的选手进行集中培训,培训后,从中随机选取两位选手参加市里的决赛,请用列表法或画树状图的方法,求所选两位选手来自同一学校的概率.【解答】解:(1)乙校得100分人数所占的百分比为×100%=,所以甲校参加人数为(2+3+5)÷(1﹣)=12(人),所以甲校得100分的人数为12﹣2﹣3﹣5=2(人),条形统计图为:(2)画树状图为:(甲乙各有2名学生得100分)共有12种等可能的结果数,其中所选两位选手来自同一学校的结果数为4,所以所选两位选手来自同一学校的概率==.七、(本题满分12分)22.(12分)如图,A,B两点在x轴的正半轴上运动,四边形ABCD是矩形,C,D两点在抛物线y=﹣x2+8x上.(1)若OA=1,求矩形ABCD的周长;(2)设OA=m(0<m<4),求出四边形ABCD的周长L关于m的函数表达式;(3)在(2)的条件下求L的最大值.【解答】解:(1)当x=1时,y=﹣1+8=7,即AD=7,D点坐标为(1,7).当y=7时,﹣x2+8x=7,解得y1=1,y2=7,即AB=7﹣1=6,矩形ABCD的周长=2(AD+AB)=2(7+6)=26;(2)把x=m代入抛物线y=﹣x2+8x中,得AD=﹣m2+8m把y=﹣m2+8m代入抛物线y=﹣m2+8m中,得﹣m2+8m=﹣x2+8x解得x1=m,x2=8﹣m∴C的横坐标是8﹣m,故AB=8﹣m﹣m=8﹣2m∴矩形的周长是L=2(﹣m2+8m)+2(8﹣2m)即L=﹣2m2+12m+16.化简,得L=﹣m2+6m+8,(3)L=﹣m2+6m+8化为顶点式,得L=﹣(m﹣3)2+17 (0<m<4),=17,当m=3时,L最大在(2)的条件下求L的最大值是17.八、(本题满分14分)23.(14分)如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请MN=你猜想:当∠A n﹣2为[] °时,结论A nM=MN仍然成立.(不要求证明)﹣2【解答】(1)证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,BE=AB﹣AE=BC﹣MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.MN等于n边形的内角时,结论A n﹣2M=MN仍然(3)由(1)(2)可知当∠A n﹣2成立;MN=时,结论A n﹣2M=MN仍然成立;即∠A n﹣2故答案为[].。

相关文档
最新文档