2014-2015学年上海市八年级(上)期末数学模拟试卷(3)

合集下载

2014-2015学年第一学期期末八年级数学模拟试卷(A)

2014-2015学年第一学期期末八年级数学模拟试卷(A)

2014-2015学年第一学期期末八年级数学模拟试卷(A卷)一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.2±=±4 B﹣382227.(2分)某人将一枚质量均匀的硬币连续抛10次,落地后正面朝上6次,反面朝上4次,下9.(2分)如图,已知AD=CB,AB=CD,AC与BD交于点O,则图中全等三角形共有()10.(2分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE 的大小为()11.(2分)如图,在△ABC中,DE垂直平分BC,若AB=8,AC=6,则△ADC的周长等于()12.(2分)如图,OC平分∠AOB,CD⊥OB于D,点P是射线OA上的一个动点,若CD=8,OD=6,则PC的最小值为()13.(2分)如图,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的角平分线BE交AD于点F,则图中共有等腰三角形()14.(2分)如图,在△ABC中,∠ACB=90°,AC=BC,顶点A、B、C恰好分别落在一组平行线中的三条直线上,若相邻两条平行线间的距离是2个单位长度,则△ABC的面积是()二、填空题(每小题3分,共12分)15.(3分)(2002•汕头)比较大小:_________0.5.16.(3分)若m2+6m=2,则(m+3)2=_________.17.(3分)如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为_________.18.(3分)如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为_________.三、解答题(共60分)19.(14分)计算(1)(3x﹣1)(3x+2)﹣(﹣3x)2;(2)(2a﹣3b)2﹣2a(2a﹣3b);(3)先化简,再求值:(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2,其中x=3,.20.(8分)把下列多项式分解因式.(1)4x3﹣xy2;(2)4(x+y)2﹣16xy.21.(6分)如图是我国古代数学家赵爽的“勾股方圆图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的两直角边分别是a和b,求(a+b)2的值.22.(9分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).图1和图2是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了_________名学生;(2)在图2中,“漫画”所在扇形圆心角为_________度;(3)补全条形统计图.23.(10分)如图,已知△ABC.利用直尺和圆规,根据要求作图,并解决后面的问题.(1)作△ABC的角平分线AD;(2)作∠CBE=∠ADC,BE交CA的延长线于点E;(要求:保留作图痕迹,不需写作法和证明)(3)图中线段AB与线段AE相等吗?证明你的结论.24.(13分)如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN 绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)连结EF.①当点F在AC边上时总有BE_________EF(填“>”或“<”或“=”),请说明理由;②若BE=2,求EF的长.2014-2015学年第一学期期末八年级数学模拟试卷(A卷)参考答案与试题解析一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.解:∵(﹣3)2=9,∴(﹣3)2的平方根是±3,故选B.2.解:A、=4,故本选项错误;B、﹣32=﹣9,根据负数没有平方根,故本选项错误;C、1的立方根是1,故本选项错误;D、﹣是7的一个立方根,故本选项正确.故选D.3.解:∵a•2•23=28,∴a=28÷24=24=16.故选C.4.解:(﹣2xy)2÷xy2=4x2y2÷xy2=4x.故选B.5.解:x2﹣x﹣12=(x+3)(x﹣4),则(x+3)(x﹣4)=x2﹣x﹣12.故选A6.解:①若AB=AC=2cm,则BC=8﹣2﹣2=4(cm),∵2+2=4,不能组成三角形,舍去;②若AB=BC=2cm,则AC=8﹣2﹣2=4(cm),∵2+2=4,不能组成三角形,舍去;③若AB=2cm,则AC=BC==3(cm),故选B.7.解:∵某人抛硬币抛10次,其中正面朝上6次,反面朝上4次,∴出现正面的频数是6,出现反面的频数是4,出现正面的频率为6÷10=60%;出现反面的频率为4÷10=40%.故选B8.解:A、三个角的比为1:2:3,设最小的角为x,则x+2x+3x=180°,x=30°,3x=90°,故是直角三角形;B、三条边满足关系a2=b2﹣c2,故是直角三角形;C、三条边的比为1:2:3,12+22≠32,故不是直角三角形;D、三边之比为3:4:5,所以设三边长分别为3x,4x,5x,则(3x)2+(4x)2=(5x)2,故是直角三角形;故选:C.9.解:△ADC≌△CBA;△ADB≌△CBD;△AOB≌△COD;△AOD≌△COB共四对.在△ADC和△CBA中,,∴△ADC≌△CBA(SSS),∴∠DCA=∠BAC,在△ABD和△CDB中,,∴△ADB≌△CBD(SSS),∴∠ADB=∠CBD,,∴△AOB≌△COD(ASA),∴DO=CO,BO=DO,在△DOA和△BOC中,,∴△AOD≌△COB(SSS).故选:D.10.解:∵△ABC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.11.解:∵DE垂直平分BC,∴DB=DC,∵AB=8,AC=6,∴△ADC的周长为:AD+DC+AC=AD+BD+ACAB+AC=14.故选C.12.解:当CP⊥OA时,PC的值最小,∵OC平分∠AOB,CD⊥OB于D,∴PC=CD=8.故选C.13.解:(1)∵∠ABC=60°,∠ACB=45°,AD是高,∴∠DAC=45°,∴CD=AD,∴△ADC为等腰直角三角形,∵∠ABC=60°,BE是∠ABC平分线,∴∠ABE=∠CBE=30°,在△ABD中,∠BAD=180°﹣∠ABD ﹣∠ADB=180°﹣60°﹣90°=30°,∴∠ABF=∠BAD=30°,∴AF=BF即△ABF是等腰三角形,在△ABC中,∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣60°﹣45°=75°,∵∠AEB=∠CBE+∠ACB=30°+45°=75°,∴∠BAE=∠BEA,∴AB=EB即△ABE是等腰三角形,∴等腰三角形有△ACD,△ABF,△ABE;故选B.14.解:过C作EF⊥该组平行线,交A所在直线于点E,交B所在直线于点F,∵∠ACE+∠BCF=90°,∠ACE+∠CAE=90°,∴∠CAE=∠BCF,,∴△ACE≌△CBF(AAS),∴AE=CF=8,∴AC2=AE2+CE2=100,∴S△ABC=AC2=50,故选C.二、填空题(每小题3分,共12分)15.(3分)(2002•汕头)比较大小:>0.5.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.16.(3分)若m2+6m=2,则(m+3)2=11.解:∵m2+6m=2,∴(m+3)2=m2+6m+9=2+9=11.故答案为:11.17.(3分)如图,所有阴影部分的四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为9.解:∵正方形A、B的面积依次为2、4,∴正方形E的面积为2+4=6,又∵正方形C的面积为3,∴正方形D的面积3+6=9,故答案为9.18.(3分)如图,在△ABC中,AB=AC=12,BC=8,D为AB的中点,点P在线段BC上以每秒2个单位的速度由B点向C点运动,同时,点Q在线段CA上以每秒x个单位的速度由C点向A点运动.当△BPD与以C、Q、P为顶点的三角形全等时,x的值为2或3.解:设经过t秒后,使△BPD与△CQP全等,∵AB=AC=12,点D为AB的中点,∴BD=6,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即6=8﹣2t或2t=8﹣2t,t1=1,t2=2,t=1时,BP=CQ=2,2÷1=2;t=2时,BD=CQ=6,6÷2=3;即点Q的运动速度是2或3,故答案为:2或3.三、解答题(共60分)19.(14分)计算(1)(3x﹣1)(3x+2)﹣(﹣3x)2;(2)(2a﹣3b)2﹣2a(2a﹣3b);(3)先化简,再求值:(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2,其中x=3,.解:(1)原式=9x2+6x﹣3x﹣2﹣9x2=3x﹣2;(2)原式=4a2﹣12ab+9b2﹣4a2+6ab=﹣6ab+9b2;(3)(x﹣2y)(﹣2y﹣x)﹣(x﹣2y)2=4y2﹣x2﹣x2+4xy﹣4y2=﹣2x2+4xy,当x=3,时,原式=﹣2×32+4×3×=﹣10.20.(8分)把下列多项式分解因式.(1)4x3﹣xy2;(2)4(x+y)2﹣16xy.解:(1)原式=x(4x2﹣y2)=x(2x+y)(2x﹣y);(2)原式=4(x2+y2+2xy﹣4xy)=4(x﹣y)2.21.(6分)如图是我国古代数学家赵爽的“勾股方圆图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的两直角边分别是a和b,求(a+b)2的值.解:∵大正方形的面积是12,小正方形的面积是2,∴四个直角三角形面积和为12﹣2=10,即4×ab=10,∴2ab=10,a2+b2=12,∴(a+b)2=a2+b2+2ab=12+10=22.答:(a+b)2的值为22.22.(9分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调查(每人只选一种书籍).图1和图2是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200名学生;(2)在图2中,“漫画”所在扇形圆心角为72度;(3)补全条形统计图.解:(1)调查的总人数是:80÷40%=200(人),故答案是:200;(2)“漫画”所在扇形圆心角为:360°×=72°,故答案是:72;(3)喜好科普常识的人数是:200×30%=60(人)..23.(10分)如图,已知△ABC.利用直尺和圆规,根据要求作图,并解决后面的问题.(1)作△ABC的角平分线AD;(2)作∠CBE=∠ADC,BE交CA的延长线于点E;(要求:保留作图痕迹,不需写作法和证明)(3)图中线段AB与线段AE相等吗?证明你的结论.解:(1)如图:(2)如图:(3)AB=AE,∵AD是角平分线,∴∠BAD=∠ADC,∴AD∥BE,∴∠E=∠CAD,∠EBA=BAD,∴∠E=∠EBA,∴AB=AE.24.(13分)如图,在△ABC中,∠BAC=90°,AB=AC=3,D为BC边的中点,∠MDN=90°,将∠MDN 绕点D顺时针旋转,它的两边分别交AB、AC于点E、F.(1)求证:△ADE≌△CDF;(2)求四边形AEDF的面积;(3)连结EF.①当点F在AC边上时总有BE<EF(填“>”或“<”或“=”),请说明理由;②若BE=2,求EF的长.(1)证明:∵∠BAC=90°,AB=AC,D为BC中点,∴∠B=∠C=∠BAD=∠CAD=45°,∠ADC=90°,∴AD=DC=BD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA);(2)解:∵△ADE≌△CDF,∴四边形AEDF的面积=S△ADC =S△ABC,∵S△ABC =AB•AC=,∴四边形AEDF的面积=;(3)解:①∵△ADE≌△CDF,∴AE=CF,∵AB=AC,∴BE=AF,∵FA⊥EA,∴AF<EF,即BE<EF;②∵AB=AC=3,BE=2,∴AE=1,AF=BE=2,∴EF==.。

2014-2015学年度上学期八年级数学试题(卷)

2014-2015学年度上学期八年级数学试题(卷)

12014~2015学年度上学期八年级数学试题 姓名一、选择题(本大题共10小题,每小题3分,共30分) 1. 下面哪个点不在函数y = -2x+3的图象上( )A .(-5,13) B.(0.5,2) C.(3,0) D.(1,1) 2. 如图,在直角坐标系中,直线l 对应的函数表达式是( )A. 1+-=x yB.1+=x yC. 1--=x yD. 1-=x y3.在-2)5(-、2π71、0 、311 中无理数个数为 ( ) A.1个 B.2个 C.3个 D.4个4. 已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A. y 1 >y 2B. y 1 =y 2C. y 1 <y 2D. 不能比较 5. 已知0)5(2=+-++y x y x 那么x 和y 的值分别是( ) A 、25-,25 B 、25,25- C 、25,25 D 、25-, 25-6.下列说法错误的是 ( )A.1)1(2=- B. ()1133-=- C. 2的平方根是2±D.()232)3(-⨯-=-⨯-7.若点)3,(x A 与点),2(y B 关于x 轴对称,则( )A. x = -2, y =-3B.x =2, y =3C. x =2, y =-3D. x =-2, y =3 8. 在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( ) A .1--=x y B .x y -= C .1+-=x y D .1+=x y9.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2 m ,梯子的顶端B 到地面的距离为7 m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,那么BB ′( ) A .小于1 m B .大于1 m C .等于1 m D .小于或等于1 m10. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( ) A.10 B.54 C. 10或54 D.10或172二、填空题(本大题共6小题,每小题3分,共18分) 看谁的命中率高 11. 已知一次函数y=kx+5的图象经过点(-1,2),则k= 12.比较大小:—4;(填“<”或“>”符号) 13. 直线32+-=x y 与坐标轴的交点坐标为 14. 如果一个二元一次方程的一个解是⎩⎨⎧-==11yx ,请你写出一个符合题意的二元一次方程215. 五一节某超市稿促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元、432元,若王宁一次性购买与上两次相同的商品,则应付款 元 16.如果二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是三、解答题(共52分,解答应写出过程)看谁最细心 17. 计算(每小题5 分,共10分) (1)13312-- (2) ⎩⎨⎧=-=+423732y x y x18. (本小题满分6分) 有一块边长为12米的正方形绿地,如图所示,在绿地旁边B 处有健身器材(5=BC 米),由于居住在A 处的居民践踏了绿地,小明想在A 处树立一个标牌“少走▇米,踏之何忍?”请问:小明在标牌▇填上的数字是多少?19. (本小题满分6分) 有一种节能型轿车的油箱最多可装天燃气50升,加满燃气后,油箱中的剩余燃气量y (升)与轿车行驶路程x (千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天燃气可供轿车行驶多少千米? (2)轿车每行驶200千米消耗燃料多少升? (3)求出y 与x 之间的关系式;(0≤x ≤1000)20.(本小题满分6分)作图题:作函数y=-x-2的图象,并写出图象与X ,Y 轴围成的面积。

人教版2014-2015八年级数学上期末试卷【精选3套】

人教版2014-2015八年级数学上期末试卷【精选3套】

人教版2014-2015八年级数学上册期末考试试卷后附答案一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。

)9、若1=x,21=y,则2244yxyx++的值是()A.2 B.4 C.23D.2110、把多项式322x x x-+分解因式结果正确的是()A.2(2)x x x-B.2(2)x x-C.(1)(1)x x x+-D.2(1)x x-11、如图,在△ABC中,∠C=错误!未找到引用源。

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

2014-2015学期八年级数学上第三次月考试卷(4)试卷

2014-2015学期八年级数学上第三次月考试卷(4)试卷

1 / 3ABCD21DECB A2014-2015学年第一学期八年级数学第三次月考模拟测试卷班级姓名 分数第Ⅰ卷(共100分)一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形3.如右图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .64、如右图:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=90°, 则∠B 的度数为( ) A.30° B.20° C.40° D.25° 4. 已知m6x =,3n x =,则2m nx-的值为( )A 、9B 、43C 、12D 、345. 下列各式由左边到右边的变形中,是分解因式的为( )。

A 、a (x + y) =a x + a yB 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 6.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2C 、(2p -3q )(-2p -3q)=-4p 2+9q 2D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 27. 3.若,则的值为 ( )A .B .5C .D .28.若x 2+mx+1是完全平方式,则m=( )。

A 、2B 、-2C 、±2D 、±4 9、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=110.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为( ) A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、22253z y x +- 二、填空题(每题3分,共18分)11、计算())43(82b a ab ⋅-=________12、已知(a+b)2=16,ab=6,则a 2+b 2的值是13、如右图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 cm .14、因式分解:3a 2x 2y 2-27a 2=__________15、16.已知a +1a =3,则a 2+21a的值是__________.16、如右图,已知∠1=∠2,AC=AD ,增加一个条件能使△ABC ≌△AED 三、解答题(共52分) 17、因式分解(每题4分,共8分)(1)3x x - (2)3269a a a -+18、先化简,再求值:(1)12x+(-32x+13y 2)-(2x -23y 2) (其中x=13,y=23) .(2)[(xy+2)(xy -2)-2x 2y 2+4]÷xy(其中x=10,y=-125) .ABECFD BCAED2 / 319、(10分) 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=220、(12分)已知:如图,∠1=∠2,,3=∠4,求证:△ABE ≌△ADE4321BAEDC第Ⅱ卷(共50分)21、(12分)下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解. 22、(12分)观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)直接写出下列各式的计算结果:1111122334(1)n n ++++=⨯⨯⨯+ .(2)猜想并写出:)2(1+n n = .23作图题:(6分)(不写作法,但要保留痕迹)(1)作出下面图形关于直线l 的轴对称图形。

2014-2015八年级数学上第三次月考试卷(3)

2014-2015八年级数学上第三次月考试卷(3)

2014-2015八年级数学上第三次月考复习试卷(3)一.选择题(共12小题,满分36分,每小题3分) 1.(3分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图.他至少还要再钉上几根木条?( ) A .0根 B . 1根 C . 2根 D . 3根 3.(3分)如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是∠α+∠β的度数是( ) A . 180° B . 220° C . 240° D . 300°第三题 第四题 第六题A . x 2﹣5x+6=x (x ﹣5)+6B . x 2﹣5x+6=(x ﹣2)(x ﹣3)C . (x ﹣2)(x ﹣3)=x 2﹣5x+6D . x 2﹣5x+6=(x+2)(x+3)8.下列计算错误的是[ ]A .(x+1)(x+4)=x 2+5x+4;B .(m-2)(m+3)=m 2+m-6;C .(y+4)(y-5)=y 2+9y-20;D .(x-3)(x-6)=x 2-9x+18.9.(3分)(2012•安徽下列计算正确的是[ ]A .(a+b)2=a 2+b 2;B .a m ·a n =a mn ;C .(-a 2)3=(-a 3)2;D .(a-b)3(b-a)2=(a-b)5.10.(3分)(2011•鸡西)下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )A .①②③B . ①③⑤C . ②③④D . ②④⑤11.(3分)(2012•本溪)8.若3x=15,3y=5,则3x -y等于( ).A .5B .3C .15D .1012.(3分)(2011•西藏)如图,已知∠1=∠2,要得到△ABD ≌△ACD ,还需从下列条件中补13.(4分)(2012•潍坊)分解因式:x 3﹣4x 2﹣12x= _________ .14.(4分)(2012•攀枝花)22()()33m n m n -+--=__________. 15.(4分)(2011•昭通)如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 _________ .(只需填一个即可)16.(4分)(2012•白银)如图,在△ABC 中,AC=BC ,△ABC 的外角∠ACE=100°,则∠A= _________ 度. 17.(4分)(2012•佛山)如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 _________ .三.解答题(共7小题,满分64分)18.(6分)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.19.(6分)(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.20.(8分)分解因式(1)-2a3+12a2-18a;(2)9a2(x-y)+4b2(y-x);(3)(x+y)2+2(x+y)+1.21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.22.(10分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.23.(12分)(2012•凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:_________。

2014-2015学年度上学期八年级数学第三次考试(北师大版)

2014-2015学年度上学期八年级数学第三次考试(北师大版)

2014-2015学年度上学期第三次考试八年级数学试卷(北师大)一、选择题(每题2分,共20分)1、以下列各组数据边长作三角形,期中能组成直角三角形的是 ( )A 、3、5、3B 、4、6、8C 、7、24、25D 、6、12、132、下列各组数据的比较中错误的是 ( )A 、25-<-B 、7.13<C 、21521-> D 、14.3>π 3、下列说法正确的是 ( )A 、25的平方根是5B 、-2²的算术平方根是2C 、0.8的立方根是0.2D 、362565是的一个平方根 4、下列方程组中属于二元一次方程组的是 ( )(1)、3521x y x y -=⎧⎨=-⎩ (2)、10xy x y +=⎧⎨=⎩ (3)、614x y y z +=⎧⎨+=+⎩ (4)、623x y x =⎧⎨+=⎩ A 、只有1个 B 、只有2个 C 、只有3个 D 、4个都是5、直线y=kx+b 经过一、二、四象限,则直线y=bx-k 的图像可能是 ( )A B C D6、点p (-1,2)关于x 轴的对称点的坐标是 ( )A 、(1,-2)B (-1,-2)C (1,2)D (2,-1)7、如图,一根垂直与地面的旗杆在离地面5m 处断裂,旗杆顶部落在离旗杆底部12m 处,旗杆折断之前的高度是 ( )A 、5mB 、12mC 、13mD 、18m8、方程kx+3y=5有一组解是 ,则k 的值是 ( )A 、1B 、-1C 、0D 、29、某校运动员分组训练,若每组7人,余3人,若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )A 、73 85y x y x =+⎧⎨=+⎩B 、7385y x y x =+⎧⎨-=⎩C 、7385y x y x =+⎧⎨+=⎩D 、7385y x y x=+⎧⎨+=⎩10、甲乙两辆摩托车同时从相距20km 的A 、B 两地出发,相向而行,图中L1,L2分别表示甲、乙两辆摩托车到A 地的距离s km 与行驶时间t h 的函数关系,则下列说法错误的是 ( )A 、 乙摩托车的速度较快B 、经过0.3h 甲摩托车行驶到A ,B 两地的中点C 、经过2.5h 两辆摩托车相遇D 、当乙摩托车到达A 地时,甲摩托车距离A 地350km 二、填空题(每题2分,共16分)11、16的算术平方根是______,21-的绝对值是_______. 12、函数23-+=x x y 的自变量x 的取值范围是_______. 13、若1155223=+--m n m y x 是二元一次方程,则5m+n=_______.14、已知方程mx+2y=3x-4是关于x ,y 的二元一次方程,那么m 的取值范围是_____15、点M 位于x 轴的上方,且距x 轴3个单位长度,距y 轴2个单位长度,则点M 的坐标为____.16、一次函数y=2x+b 的图像与两坐标轴所围成的三角形的面积为8,则b=______.17、在3x+4y=9中,如果2y=6,那么x=_____18、如图,在平面直角坐标系中,直线3232-=x y 与长方形 ABCO 的边OC ,BC 分别交于点E 、F ,已知OA=3、OC=4,则CEF ∆面积为_______.三、解答题19、计算(每小题3分,共6分)(1)8350324-+(2)(2)25)37)(37(--+解方程组(每小题3分,共12分) (3)33214x y x y =+⎧⎨+=⎩ (4)43145331x y x y -=⎧⎨+=⎩(5)39310x y x y -=⎧⎨-=-⎩(6)1253()2()6x y x y x y x y -+⎧-=⎪⎨⎪-++=⎩20(5分)在如图所示的正方形网格中,每个小正方形的边长为1,(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′(2分)(期中A ′B ′C ′分别是A 、B 、C 的对应点,不写画法);(2)直接写出A ′B ′C ′三点的坐标21(6分)如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C ′处,BC ′交AD 于点E(1)、试判断△BDE 的形状,并说明理由(2)、若AB=4、AD=8,求△BDE 的面积22(5分)甲乙两人同解方程组515.......(1) 4 2........(2)ax y x by +=⎧⎨=-⎩时,甲看错了方程(1)中的a ,解得31x y =-⎧⎨=-⎩, 乙看错了(2)中的b,解得54x y =⎧⎨=⎩。

2014-2015学年八年级上学期期中考试数学试题(三)(人教版)

2014-2015学年八年级上学期期中考试数学试题(三)(人教版)

2014-2015学年八年级上学期期中考试数学试题(三)(人教版)(满分:150分;考试时间:120分钟)一.选择题(每题4分,共48分)1、下列图案是轴对称图形的有( ) 个2、 如图,已知:△ABE ≌△ACD,∠1=∠2, AB=AC ,不正确的等式是( )A 、∠B=∠CB 、∠BAE=∠CADC 、BE=DCD 、 AD=DE3、一个多边形的内角和比它的外角和的3倍少1800,这个多边形的边数是 ( ) A. 5条 B. 6条 C. 7条 D. 8条4、等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为( ). A .7cm B .3cm C .7cm 或3cm D .5cm5、若三角形三个内角度数比为1:2:3,则这个三角形一定是( ) A 锐角三角形. B 直角三角形. C 钝角三角形. D 不能确定.6、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( )A .①②③B .①②④C .①③D .①②③④ 7、 如图,是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE 垂直于横梁AC ,A B=8米,∠A=30°,则DE 等于( ) A 、4米 B 、3米 C 、2米 D 、1米8、以7和3为两边长及另一边组成的边长都是整数的三角形一共有( ) A .2个 B .3个 C .4个 D .5个9、 已知一个多边形的内角和等于外角和的2倍,这个多边形的边数是( ) A、5 B、6 C、7 D、810、 如图,在直角ΔABC 中,∠C=90°,AB 的垂直平分线交AB 于D ,交AC 于E ,且∠EBC =2∠EBA ,则∠A 等于 ( )A、20° B、22.5° C、25° D、27.5°第7题第10题 A D B CE11、如图,已知 DE∥BC,AB∥CD,E为AB的中点,∠A=∠B。

八上压轴题(201429)

八上压轴题(201429)

点评:(1)本题中的 2 倍角的问题,可以转化为∠BDC=∠BAC 然后利用“8”字型即可推导 出来;(2)证明角平分线的问题有两种途径,既可以直接证角相等,也可以转证线段相等。本 题可以利用第二种方法证明;(3)线段的和差问题,可以直接思考“截长补短”法。本题可以 根据经验猜想∠BAC 应该是一个特殊角——60°。
考点: 专题: 分析:
全等三角形的判定与性质;坐标与图形性质;三角形的面积;等腰三角形的性质. 几何综合题.
菁优网版 权所有
(1)根据点 B、C 的坐标判断出 y 轴是 BC 的垂直平分线,再根据线段垂直平分线上的点到线段两端点的距离相 可得 AB=AC, PB=PC, 根据等边对等角可得∠ABC=∠ACB, ∠PBC=∠PCB, 然后利用“角边角”证明△BCF 和△C 全等,根据全等三角形对应边相等可得 BE=CF; (2)连接 OF,先求出△AOB 的面积,再根据等高的三角形的面积的比等于底边的比求出△BOF 和△AOF 的面 再根据三角形的面积列式求出点 F 的横坐标与纵坐标的长度,从而得解; (3)设∠BAC=α,根据三角形的面积求出 BE=BA,根据等边对等角可得∠BEA=∠BAE=α,根据等腰三角形三 合一的性质和直角三角形两锐角互余求出∠ACB,再根据三角形的内角和定理求出α<90°,根据三角形的一个外 大于任何一个与它不相邻的内角可得∠AEB>∠ACB, 然后求出α>60°, 然后分α=60°和 90°时求出 m 的值即可得 (1)证明:∵B(﹣3,0),C(3,0), ∴OB=OC, ∴y 轴是 BC 的垂直平分线, 又∵点 A 在 y 轴正半轴上,点 P 在线段 OA 上, ∴AB=AC,PB=PC, ∴∠ABC=∠ACB,∠PBC=∠PCB,
解答:
(1)证明:∵

【必考题】八年级数学上期末第一次模拟试题含答案(2)

【必考题】八年级数学上期末第一次模拟试题含答案(2)

【必考题】八年级数学上期末第一次模拟试题含答案(2)一、选择题1.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是()n n A .2- B .1- C .2D .3 2.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =3.如图,△ABC 的顶点A 、B 、C 都在小正方形的顶点上,在格点F 、G 、H 、I 中选出一个点与点D 、点E 构成的三角形与△ABC 全等,则符合条件的点共有( )A .1个B .2个C .3个D .4个 4.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或05.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .6 6.已知11m n -=1,则代数式222m mn n m mn n --+-的值为( ) A .3 B .1 C .﹣1 D .﹣37.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④ 8.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .119.如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,连接MN ,交BC 于点D ,连接AD ,若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A .7B .14C .17D .2010.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B =40°,∠C =36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24° 11.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是( )A .3B .4C .6D .12 12.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)二、填空题13.已知2m =a ,32n =b ,则23m +10n =________.14.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.15.如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB 的周长是___;16.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为 .17.分解因式:x 2-16y 2=_______.18.计算:()201820190.1258-⨯=________.19.若=2m x ,=3n x ,则2m n x +的值为_____.20.若n 边形内角和为900°,则边数n= .三、解答题21.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.22.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?23.先化简,再求值:222221422x x x x xx x x ⎛⎫-+-+÷ ⎪-+⎝⎭,且x 为满足22x -≤<的整数. 24.如果230x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 25.化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:先把括号内通分,再把分子分解后约分得到原式22m m =+,然后利用2220m m +-=进行整体代入计算. 详解:原式2222244(2)(2)222m m m m m m m m m m m m m +++=⋅=⋅=+=+++, ∵2220m m +-=,∴222m m ,+= ∴原式=2.故选C.点睛:考查分式的混合运算,掌握运算法则是解题的关键.注意整体代入法的应用.2.C解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.3.B解析:B【解析】分析:根据全等三角形的判定解答即可.详解:由图形可知:AB=5,AC=3,BC=2,GD=5,DE=2,GE=3,DI=3,EI=5,所以G,I两点与点D、点E构成的三角形与△ABC全等.故选B.点睛:本题考查了全等三角形的判定,关键是根据SSS证明全等三角形.4.B解析:B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.A解析:A【解析】【分析】根据角平分线的性质定理可得DF=DE;最后根据三角形的面积公式求解即可.【详解】:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DF=DE=2,∴1•124242BCDS BC DF=⨯=⨯⨯=V;故答案为:A.【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.6.D解析:D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.7.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF≌△ADE,即可判断①②;利用SSS即可证明△BDE≅△ADF,故可判断③;利用等量代换证得BE CF AB+=,从而可以判断④.【详解】∵△ABC为等腰直角三角形,且点在D为BC的中点,∴CD=AD=DB,AD⊥BC,∠DCF=∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF+∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.8.C解析:C【解析】【分析】【详解】试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a 、b 、c 都是正方形,所以AC=CD ,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE ,在△ABC 和△CED 中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.考点:全等三角形的判定与性质;勾股定理;正方形的性质.9.C解析:C【解析】【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交与点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.10.C解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC 【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.11.B解析:B【解析】【分析】首先设正多边形的一个外角等于x°,由在正多边形中,一个内角的度数恰好等于它的外角的度数,即可得方程:x+x=180,解此方程即可求得答案.【详解】设正多边形的一个外角等于x°,∵一个内角的度数恰好等于它的外角的度数,∴这个正多边形的一个内角为: x°,∴x+x=180,解得:x=900,∴这个多边形的边数是:360°÷90°=4.故选B.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,方程思想的应用是解题的关键.12.B解析:B【解析】【分析】根据四边形的内角和为360°、平角的定义及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【详解】∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+(180°-∠2)+(180°-∠1)=360°,∴可得2∠A=∠1+∠2.故选:B【点睛】本题主要考查四边形的内角和及翻折的性质特点,解决本题的关键是熟记翻折的性质.二、填空题13.a3b2【解析】试题解析:∵32n=b∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b2解析:a3b2【解析】试题解析:∵32n=b,∴25n=b∴23m+10n=(2m)3×(25n)2=a3b2故答案为a3b214.80°【解析】【分析】根据平行线的性质求出∠4再根据三角形内角和定理计算即可【详解】∵a∥b∴∠4=∠l=60°∴∠3=180°-∠4-∠2=80°故答案为80°【点睛】本题考查了平行线的性质三角形解析:80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.15.6cm【解析】【分析】先利用角角边证明△ACD和△AED全等根据全等三角形对应边相等可得AC=AECD=DE然后求出BD+DE=AE进而可得△DEB的周长【详解】解:∵DE⊥AB∴∠C=∠AED=9解析:6cm【解析】【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.【详解】解:∵DE⊥AB,∴∠C=∠AED=90°,∵AD平分∠CAB,∴∠CAD=∠EAD,在△ACD和△AED中,C AEDCAD EADAD DA∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△AED(AAS),∴AC=AE,CD=DE,∴BD+DE=BD+CD=BC=AC=AE,BD+DE+BE=AE+BE=AB=6,所以,△DEB的周长为6cm.故答案为:6cm.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.16.5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10﹣n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定解解析:5×10-6【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣6,故答案为1.5×10﹣6.考点:科学记数法—表示较小的数.17.(x+4y)(x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y)(x-4y)解析:(x+4y) (x-4y)【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y) (x-4y).18.8【解析】【分析】根据同底数幂的乘法底数不变指数相加可化成指数相同的幂的乘法根据积的乘方可得答案【详解】原式=(−0125)2018×820188=(−0125×8 )20188=8故答案为:8【点睛解析:8【解析】【分析】根据同底数幂的乘法底数不变指数相加,可化成指数相同的幂的乘法,根据积的乘方,可得答案.【详解】原式= (−0.125)2018×82018⨯8= (−0.125×8)2018⨯8=8,故答案为:8.【点睛】本题考查的知识点是幂的乘方与积的乘方及同底数幂的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方及同底数幂的乘方.19.18【解析】【分析】先把xm+2n变形为xm(xn)2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm(xn)2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.20.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.三、解答题21.(1)证明见解析;(2)112.5°.【解析】【分析】()1根据同角的余角相等可得到24=,可∠=∠,再加上BC CE∠=∠,结合条件BAC D证得结论;()2根据90∠=∠=︒,根据等腰三角形的性质得到DACD AC CD,,得到145∠=︒=DEC∠=︒-∠=︒.∠=∠=︒,由平角的定义得到1805112.53567.5【详解】()1证明:Q,∠=∠=︒90BCE ACD∴∠+∠=∠+∠2334,24∴∠=∠,在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴V V ≌,AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.22.(1)35元/盒;(2)20%.【解析】【分析】【详解】试题分析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m ,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x=35,经检验,x=35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒). 根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.23.232x -,52- 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【详解】解:原式2(1)(2)(2)2(1)(2)x x x x x x x x ⎡⎤-+-=+÷⎢⎥-+⎣⎦122x x x x x--⎛⎫=+÷ ⎪⎝⎭ 232x x x -=⋅ 232x -=, 0x ≠Q 且1x ≠,2x ≠-∴在22x -<…范围内符合分式的整数有1x =-, 则原式23522--==-. 【点睛】 本题考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.24.13【解析】【分析】 先根据分式的混合运算得到21x x+,再把230x x +-=变形为2=3x x +,再代入到化简结果中计算即可.【详解】321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭, =21(1)(1)1(1)x x x x x x x -++-⎛⎫÷ ⎪--⎝⎭=1(1)1(1)x x x x -⎛⎫⋅ ⎪-+⎝⎭ =1(1)x x + =21x x+ 当230x x +-=,即23+=x x 时,原式=13. 【点睛】 本题考查了分式的化简求值,在分式的化简过程中要注意运算顺序,化简后的最后结果要化成最简分式或整式.25.13a ,1. 【解析】【分析】 原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,把a 的值代入计算即可求出值.【详解】 解:原式=a a+2a-2()()•a+2a a-3()+1a-2=1a-2a-3()()+1a-2=1+a-3a-2a-3()()=a-2a-2a-3()()=1a-3, ∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1.【点睛】此题考查了分式的化简求值,以及三角形三边关系,熟练掌握运算法则是解本题的关键.。

2014-2015八年级数学上册期末综合练习题及答案3(中考题)

2014-2015八年级数学上册期末综合练习题及答案3(中考题)

2014-2015八年级数学上册期末综合练习3考号____________姓名____________总分_________________一.选择题(共12小题,每题4分,共48分)1.(2014•吉州区二模)我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于2.5微米的细颗粒物(即PM2.5),也称为可入肺颗粒物,已知2.5微米=0.0000025米,此数据用科学记数法表示为()米.A.2.5×106B.0.25×10﹣5C.25×10﹣7D.2.5×10﹣62.代数式中,分式的个数是()A.1 B.2C.3D.43.下列方程中分式方程有()个.(1)x2﹣x+;(2)﹣3=a+4;(3);(4)=1.A.1 B.2C.3D.以上都不对4.三角形的下列四种线段中一定能将三角形分成面积相等的两部分的是()A.角平分线B.中位线C.高D.中线5.用五根木棒钉成如下四个图形,具有稳定性的有()A.1个B.2个C.3个D.4个6.(2011•宜宾)分式方程的解是()A.3 B.4C.5D.无解7.(2013•贵港)关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠08.下列各式由左边到右边的变形中,是分解因式的是()A.m(x+y)=mx+my B.x2﹣4x+4=x(x﹣4)+4C.15x2﹣3x=3x(5x﹣1)D.x2﹣9+3x=(x+3)(x﹣3)+3x9.(2004•聊城)方程的解是()A.﹣2,B.3,C.﹣2,D.1,10.(2006•日照)已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C的个数为()A.3个B.4个C.5个D.6个11.(2010•荆门)给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点,这一点就是三角形的重心(3)平行四边形的重心是它的两条对角线的交点(4)三角形的重心是它的中线的一个三等分点那么以上判断中正确的有()A.一个B.两个C.三个D.四个12.(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题,每题4分,共24分)13.在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有_________个;单项式有_________个,次数为2的单项式是_________;系数为1的单项式是_________.14.要使关于x的方程有唯一的解,那么m≠_________.15.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=_________.16.(2014•盐都区二模)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.2.5微米等于0.0000025米,把0.000 002 5用科学记数法表示为_________.17.若关于x的分式方程无解,则m=_________.18.(2014•句容市一模)如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是_________.三.解答题(共8小题,19-20每题7分,21-24每题10分,25-26每题12分。

2014-2015初二上学期数学期末模拟试题(新人教有答案)

2014-2015初二上学期数学期末模拟试题(新人教有答案)

2014-2015初二上学期数学期末模拟试题(新人教有答案)学校:___________姓名:___________班级:___________考号:___________一选择题(12小题,每题4分)1.下列长度的三条线段能组成三角形的是()A.1,2 ,4 B.4, 5,9 C.6,8, 10 D.5, 15, 8 2.下列分式是最简分式的是()A.B.C.D.3.如图,在下列条件中,不能证明△ABD≌△ACD的条件是().A.∠B=∠C,BD=DC B.∠ADB=∠ADC,BD="DC"C.∠B=∠C,∠BAD=∠CAD D.BD=DC,AB="AC"4.下列轴对称图形中,可以用没有刻度的直尺画出对称轴的有()A.1个 B.2个 C.3个D,4个5.多项式的最小值为()A.4 B.5 C.16 D.256.a÷b×÷c×÷d×等于()A.a B.C.D.ab c d7.一个多边形内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形8.如图,在△ABC中,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠AC.∠A>∠2>∠1 D.∠2>∠A>∠19.若分式的值为0,则x的值为()A.2或-2 B.2 C.-2 D.410.已知△ABC,求作一点P,使P到三角形三边的距离相等,则点P是( )A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点D.三个内角的角平分线的交点11.若多项式33x2﹣17x﹣26可因式分解成(ax+b)(cx+d),其中a、b、c、d均为整数,则|a+b+c+d|之值为何?()A.3 B.10 C.25 D.2912.如图,直线是一条河,A、B两地相距10,A、B两地到的距离分别为8、14,欲在上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()二、填空题(共6题,每题4分)13.已知,,则= .14.化简:= 。

八年级(上)期末数学试卷【带解析】 (3)

八年级(上)期末数学试卷【带解析】 (3)

八年级(上)期末数学试卷一、选择题1.下列计算正确的是()A.(a3)2=a6 B.a•a2=a2C.a3+a2=a6D.(3a)3=9a32.点M(1,3)关于y轴对称点的坐标为()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,﹣1)3.若三角形的三条边长分别为4,5,x,则x的取值范围是()A.4<x<5 B.0<x<9 C.1<x<9 D.﹣1<x<94.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣25.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.136.下列二次根式中,不能与合并的是()A.B.C. D.7.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=()A.20°B.65°C.86°D.95°8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短9.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,求AB的长()A.4 B.6 C.8 D.1010.点A,B在数轴上,它们所对应的数分别是3,,且点A,B到原点的距离相等,求x的值()A.1 B.﹣1 C.4 D.﹣4二、填空题11.当x=时,分式无意义.12.分解因式:﹣x2+2x﹣1=.13.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)14.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,则PD=.15.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.16.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,∠B=30°,∠C=80°,BE=3,AF=2,填空:(1)AB=;(2)∠BAD=;(3)∠DAF=;(4)S△AEC=.三、解答题17.(2015秋•江门校级期末)(﹣)×.18.(2014•怀化一模)化简:﹣.19.(2011•桐乡市二模)已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.四、解答题20.(2013•太原)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.21.(2006•贵阳)甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?22.(2007•乐山)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE 交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.23.(2015秋•泰兴市期末)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.24.(2015秋•江门校级期末)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF;(1)求证:Rt△ABE≌Rt△CBF;(2)求证:AB=CE+BF;(3)若∠CAE=30°,求∠ACF度数.25.(2015秋•江门校级期末)如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);(2)比较(1)两种结果,你能得到怎样的等量关系?请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.2017-2018学年广东省江门市蓬江二中八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列计算正确的是()A.(a3)2=a6 B.a•a2=a2C.a3+a2=a6D.(3a)3=9a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】A、根据幂的乘方的定义解答;B、根据同底数幂的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.2.点M(1,3)关于y轴对称点的坐标为()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)解答即可.【解答】解:点M(1,3)关于y轴对称点的坐标为:(﹣1,3),故选:B.【点评】本题考查的是关于x轴、y轴的对称点的坐标,平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.3.若三角形的三条边长分别为4,5,x,则x的取值范围是()A.4<x<5 B.0<x<9 C.1<x<9 D.﹣1<x<9【考点】三角形三边关系.【分析】根据三角形三边关系:①任意两边之和大于第三边;②任意两边之差小于第三边,即可得出第三边的取值范围.【解答】解:∵三角形的两边长分别为4和5,∴第三边长x的取值范围是:5﹣4<x<5+4,即:1<x<9,故选:C.【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系定理是解决问题的关键.4.式子在实数范围内有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+2≥0,解得x≥﹣2.故选B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.13【考点】多边形内角与外角.【分析】利用任何多边形的外角和是360°即可求出答案.【解答】解:多边形的外角的个数是360÷30=12,所以多边形的边数是12.故选C.【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.6.下列二次根式中,不能与合并的是()A.B.C. D.【考点】同类二次根式.【专题】常规题型.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.【点评】本题考查了同类二次根式,被开方数相同的最简二次根式是同类二次根式.7.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=()A.20°B.65°C.86°D.95°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D的度数,根据三角形的内角和定理求出∠OAD即可.【解答】解:∵△OAD≌△OBC,∠O=65°,∠C=20°,∴∠D=∠C=20°,∴∠OAD=180°﹣∠O﹣∠D=180°﹣20°﹣65°=95°,故选D.【点评】本题考查了全等三角形的性质,三角形的内角和定理的应用,解此题的关键是求出∠D的度数和得出∠OAD=180°﹣∠O﹣∠D,注意:全等三角形的对应角相等.8.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.9.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,求AB的长()A.4 B.6 C.8 D.10【考点】含30度角的直角三角形.【分析】根据直角三角形的性质求出∠BCD=30°,根据直角三角形的性质求出BC的长,同理解答即可.【解答】解:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选:C.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.10.点A,B在数轴上,它们所对应的数分别是3,,且点A,B到原点的距离相等,求x的值()A.1 B.﹣1 C.4 D.﹣4【考点】解分式方程;数轴.【分析】根据题意列出关于x的分式方程,再求解即可.【解答】解:∵点A,B到原点的距离相等,∴3=,4x﹣1=9﹣6x,解得x=1,检验:把x=1代入3﹣2x=3﹣2=1≠0,∴x=1是原方程的解.【点评】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.二、填空题11.当x=5时,分式无意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件为x﹣5=0,即可求得x的值.【解答】解:根据题意得:x﹣5=0,所以x=5.故答案为5.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母等于0,求得x的值即可.12.分解因式:﹣x2+2x﹣1=﹣(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】直接提取公因式﹣1,进而利用完全平方公式分解因式即可【解答】解:﹣x2+2x﹣1=﹣(x2﹣2x+1)=﹣(x﹣1)2.故答案为:﹣(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.13.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第③块去配,其依据是根据定理ASA(可以用字母简写)【考点】全等三角形的应用.【分析】显然第③中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.故答案为:③;ASA.【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题数学化石正确解答本题的关键.14.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=10,则PD= 5.【考点】含30度角的直角三角形;角平分线的性质;等腰三角形的判定与性质.【分析】根据角平分线的定义和平行线的性质得到∠COP=∠CPO=∠BOP,即可得出PC=OC,根据角平分线的性质得出PD=PE,求出PE,即可求出PD.【解答】解:∵OP平分∠AOB,∴∠AOP=∠BOP,∵PC∥OB,∴∠CPO=∠BOP,∴∠CPO=∠AOP,∴PC=OC,∵PC=10,∴OC=PC=10,过P作PE⊥OA于点E,∵PD⊥OB,OP平分∠AOB,∴PD=PE,∵PC∥OB,∠AOB=30°∴∠ECP=∠AOB=30°在Rt△ECP中,PE=PC=5,∴PD=PE=5,故答案为:5.【点评】题主要考查了含30°角的直角三角形的性质,角平分线的性质,平行线的性质的应用,注意:角平分线上的点到角的两边距离相等.15.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为9cm.【考点】翻折变换(折叠问题).【分析】先根据图形翻折不变性的性质得出△DEB≌△DCB,故DE=CD,EB=BC,故可得出结论.【解答】解:∵△DEB由△DCB翻折而成,∴△DEB≌△DCB,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,AC=7cm,∴△AED的周长=AD+DE+AE=(AD+CD)+(AB﹣BE)=AC+AB﹣BC=7+8﹣6=9cm.故答案为:9cm【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.16.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,∠B=30°,∠C=80°,BE=3,AF=2,填空:(1)AB=2AF;(2)∠BAD=35°;(3)∠DAF=25°;(4)S△AEC=S△ABE.【考点】三角形的角平分线、中线和高;三角形的面积.【分析】熟悉三角形的角平分线、中线、高的概念:三角形的一个角的平分线和对边相交,顶点和交点间的线段叫三角形的角平分线;连接顶点和对边中点的线段叫三角形的中线;三角形的高即从顶点向对边引垂线,顶点和垂足间的线段.根据概念,运用几何式子表示.【解答】解:(1)∵∠B=30°,AF是高,∴AB=2AF;(2)∵∠B=30°,∠C=80°,∴∠BAC=70°,∴∠BAD=35°;(3)∵∠BAF=60°,∴∠DAF=25°;(4)S△AEC=S△ABE,故答案为:2AF;35°;25°;S△ABE【点评】本题考查了三角形的角平分线、中线和高.此题是一道基础题,能够根据三角形的中线、角平分线和高的概念得到线段、角之间的关系.三、解答题17.(2015秋•江门校级期末)(﹣)×.【考点】二次根式的混合运算.【专题】计算题.【分析】先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【解答】解:原式=(4﹣5)×=﹣×=﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(2014•怀化一模)化简:﹣.【考点】分式的加减法.【专题】计算题.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣===.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.19.(2011•桐乡市二模)已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.【考点】全等三角形的判定;平行线的性质.【专题】证明题.【分析】(1)首先由AE=AB可以得到∠B=∠AEB,然后由AD∥BC可以得到∠AEB=∠DAE,由此即可证明题目的结论;(2)利用(1)的结论,而且AD=BC,AE=AB,由此即可证明△ABC≌△EAD.【解答】证明:(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四、解答题20.(2013•太原)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.【考点】作图—复杂作图;全等三角形的判定与性质;等腰三角形的性质.【专题】几何图形问题;探究型.【分析】(1)根据题意画出图形即可;(2)首先根据等腰三角形的性质与三角形内角与外角的性质证明∠C=∠FAC,进而可得AF∥BC;然后再证明△AEF≌△CEB,即可得到AF=BC.【解答】解:(1)如图所示;(2)AF∥BC,且AF=BC,理由如下:∵AB=AC,∴∠ABC=∠C,∴∠DAC=∠ABC+∠C=2∠C,由作图可得∠DAC=2∠FAC,∴AF∥BC,∵E为AC中点,∴AE=EC,在△AEF和△CEB中,∴△AEF≌△CEB(ASA).∴AF=BC.【点评】此题主要考查了作图,以及平行线的判定,全等三角形的判定,关键是证明∠C=∠FAC.21.(2006•贵阳)甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?【考点】分式方程的应用.【专题】应用题.【分析】求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.【解答】解:设甲每天加工x个玩具,那么乙每天加工(35﹣x)个玩具.由题意得:.(5分)解得:x=15.(7分)经检验:x=15是原方程的根.(8分)∴35﹣x=20(9分)答:甲每天加工15个玩具,乙每天加工20个玩具.(10分)【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(2007•乐山)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE 交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】作图题.【分析】根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【点评】本题利用了等边三角形的性质和三角形的一个外角等于与它不相邻的两个内角的和求解.23.(2015秋•泰兴市期末)已知:实数a,b在数轴上的位置如图所示,化简:﹣|a﹣b|.【考点】实数与数轴;二次根式的性质与化简.【分析】根据数轴上点的位置关系,可得a、b的大小,根据二次根式的性质,差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a)=a+1+2﹣2b﹣b+a=2a﹣3b+3.【点评】本题考查了实数与数轴,利用数轴上点的位置关系﹣1<a<0<b<1,又利用了二次根式的性质,差的绝对值是大数减小数.24.(2015秋•江门校级期末)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF;(1)求证:Rt△ABE≌Rt△CBF;(2)求证:AB=CE+BF;(3)若∠CAE=30°,求∠ACF度数.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,可以得到Rt△ABE和Rt△CBF全等的条件,从而可以证明Rt△ABE≌Rt△CBF;(2)根据Rt△ABE≌Rt△CBF,可以得到AB=BC,BE=BF,然后即可转化为AB、CE、BF的关系,从而可以证明所要证明的结论;(3)根据Rt△ABE≌Rt△CBF,AB=CB,∠CAE=30°,可以得到∠ACF的度数.【解答】(1)证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)证明:∵Rt△ABE≌Rt△CBF,∴AB=BC,BE=BF,∵BC=BE+CE,∴AB=CE+BF.(3)∵AB=CB,∠ABC=90°,∠CAE=30°,∠CAB=∠CAE+∠EAB,∴∠BCA=∠BAC=45°,∴∠EAB=15°,∵Rt△ABE≌Rt△CBF,∴∠EAB=∠FCB,∴∠FCB=15°,∴∠ACF=∠FCB+∠BCA=15°+45°=60°,即∠ACF=60°.【点评】本题考查全等三角形的判定与性质,解题的关键是明确题意,找出所要证明结论需要的条件.25.(2015秋•江门校级期末)如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);(2)比较(1)两种结果,你能得到怎样的等量关系?请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.【考点】完全平方公式的几何背景.【分析】(1)观察图形可确定:方法一,大正方形的面积为(m+n)2,四个小长方形的面积为4mn,中间阴影部分的面积为S=(m+n)2﹣4mn;方法二,图2中阴影部分为正方形,其边长为m﹣n,所以其面积为(m﹣n)2.(2)观察图形可确定,大正方形的面积减去四个小长方形的面积等于中间阴影部分的面积,即(m+n)2﹣4mn=(m﹣n)2.由(2)得,将m﹣n=5,mn=14,代入(2)式可求m+n=9.【解答】解:(1)方法一:∵大正方形的面积为(m+n)2,四个小长方形的面积和为4mn,∴中间阴影部分的面积为(m+n)2﹣4mn.方法二:∵中间小正方形的边长为m﹣n,∴其面积为(m﹣n)2.(2)(m+n)2﹣4mn=(m﹣n)2.∵m﹣n=5,mn=14,∴(m+n)2﹣4×14=52,得m+n=9或m+n=﹣9(舍),故m+n的值为9.【点评】本题考查了完全平方式的实际应用,完全平方式与正方形的面积公式和长方形的面积公式联系在一起,学会观察图形是关键.。

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。

2014-2015学年八年级上期末数学试卷及答案

2014-2015学年八年级上期末数学试卷及答案

一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1. 如果二次根式2x -有意义,那么x 的取值范围是A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥ 2. 剪纸是中华传统文化中的一块瑰宝,下列剪纸图案中不是..轴对称图形的是3. 9的平方根是A .3B .±3C .3±D .81 4. 下列事件中,属于不确定事件的是 A .晴天的早晨,太阳从东方升起 B .一般情况下,水烧到50°C 沸腾C .用长度分别是2cm ,3cm ,6cm 的细木条首尾相连组成一个三角形D .科学实验中,前100次实验都失败,第101次实验会成功 5. 如果将分式2xx y+中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 A .不改变 B .扩大为原来的20倍 C .扩大为原来的10倍 D .缩小为原来的1106. 如果将一副三角板按如图方式叠放,那么∠1等于A .120°B .105°C .60°D .45°7. 计算32a b(-)的结果是 A. 332a b - B. 336a b - C. 338a b- D. 338a b8. 如图,在△ABC 中,∠ACB =90°, CD ⊥AB 于点D ,如果∠DCB =30°,160°45°CCB =2,那么AB 的长为A. 23B. 25C. 3D. 4 9.下列计算正确的是 A.325+= B. 1233-= C.326⨯= D.842= 10. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是 A.102B. 104C.105D. 5二、填空题(本题共18分,每小题3分) 11. 如果分式14x x --的值为0,那么x 的值是_________. 12. 计算:2(3)-=_________. 13. 在-1,0,2,π,13这五个数中任取一个数,取到无理数的可能性是_________. 14. 如图,ABC △中,90C ∠=,BD 平分ABC ∠交AC 于点D ,如果CD =6cm ,那么点D 到AB 的距离为_________cm. 15. 如图,△ABC 是边长为2的等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE =CD ,联结DE ,则DE 的长是 .16. 下面是一个按某种规律排列的数表:第1行 1第2行 2 3 2 第3行567 22 3ABCD AC BEABCD第4行1011231314154……那么第5行中的第2个数是,第n(1n>,且n是整数)行的第2个数是 .(用含n的代数式表示)三、解答题(本题共20分,每题5分)17. 计算:381232-+-.18. 计算:2121.224a a aa a--+÷--19. 解方程:11322x x x-+=--.20. 已知:如图,点B,E,C,F在同一条直线上,AB∥DE,AB=DE,BE=CF.求证:AC=DF.A D四、解答题(本题共11分,第21题5分,第22题6分) 21. 已知30x y -=,求22(+)+2x yx y x xy y -+的值.22. 列方程解应用题:学校要建立两个计算机教室,为此要购买相同数量的A 型计算机和B 型计算机.已知一台A 型计算机的售价比一台B 型计算机的售价便宜400元,如果购买A 型计算机需要22.4万元,购买B 型计算机需要24万元.那么一台A 型计算机的售价和一台B 型计算机的售价分别是多少元?五、解答题(本题共21分,每小题7分)23. 已知:如图,△AOB 的顶点O 在直线l 上,且AO =AB .(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ;(2)在(1)的条件下, AC 与BD 的位置关系是 ;(3)在(1)、(2)的条件下,联结AD ,如果∠ABD =2∠ADB ,求∠AOC 的度数.24. 我们知道,假分数可以化为整数与真分数的和的形式.例如:32=112+. 在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像11x x +-,22x x -,…这样的分式是假分式;像42x - ,221x x +,…这样的分式是真分式.类似的,假分式也可以化为整式与真分式的和的形式. 例如:112122111111x x x x x x x x +-==+=+-----(-)+;22442(2)4422222x x x )x x x x x x -++-+===++----(. (1)将分式12x x -+化为整式与真分式的和的形式; (2)如果分式2211x x --的值为整数,求x 的整数值.25. 请阅读下列材料:问题:如图1,△ABC 中,∠ACB =90°,AC =BC ,MN 是过点A 的直线,DB ⊥MN 于点D ,联结CD .求证:BD + AD =2CD .BAOl小明的思考过程如下:要证BD+ AD =2CD,需要将BD,AD转化到同一条直线上,可以在MN上截取AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.小聪的思考过程如下:要证BD+ AD =2CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知DE =2CD,于是结论得证.请你参考小明或小聪的思考过程解决下面的问题:(1) 将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;(2) 在直线MN绕点A旋转的过程中,当∠BCD=30°,BD =2时,CD=__________.MDNBCA图2BCNMDA图3AC BNDM E图1初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBDABCDBA二、填空题(本题共18分,每小题3分)题号 11 12 1314 1516答案13256332()212n -+三、解答题(本题共20分,每小题5分) 17.解:原式=22323-+- …… 3分 =433-. …… 5分 18.解:原式=21(1)22(2)a a a a --÷-- …… 2分=212(2)2(1)a a a a --⨯-- ……3分=21a -. ……5分19.解:11322x x x -+=-- ……1分13(2)1x x +-=- ……2分1361x x +-=- ……3分24x =2x =. ……4分经检验,2x = 是原方程的增根,所以,原方程无解. ……5分 20.证明:∵AB ∥DE ,∴∠B =∠DEC . ……1分∵BE = CF ,∴BE +EC = CF +EC ,即BC = EF . ……2分在△ABC 和△DEF 中,,AB DE B DEC BC EF ===⎧⎪⎨⎪⎩∠∠ ……3分 ∴△ABC ≌△DEF (SAS ). ……4分 ∴AC = DF .(全等三角形对应边相等)…5分 四、解答题(本题共11分,第21题5分,第22题6分)21.解:原式=()()2x yx y x y -⋅++ ……1分=x yx y-+. ……2分 ∵30x y -=,∴=3x y . ……3分∴原式=33y yy y-+. ……4分=12. ……5分22.解:设一台A 型计算机的售价是x 元,则一台B 型计算机的售价是(x +400)元.根据题意列方程,得 ……1分224000240000400x x =+ ……3分 解这个方程,得5600x = ……4分经检验,5600x =是所列方程的解,并且符合实际问题的意义. ……5分当5600x =时,+4006000x =.答:一台A 型计算机的售价是5600元,一台B 型计算机的售价是6000元. ……6分五、解答题(本题共21分,每小题7分) 23.(1)如图1.……1分 (2)平行. ……2分 (3)解:如图2,由(1)可知,△AOB 与△COD 关于直线l 对称, ∴△AOB ≌△COD .……3分∴AO =CO ,AB = CD ,OB = OD ,∠ABO =∠CDO . 图1 图2 ∴∠OBD =∠ODB . ……4分∴∠ABO+∠OBD =∠CDO+∠ODB ,即∠ABD =∠CDB . ∵∠ABD =2∠ADB ,∴∠CDB =2∠ADB .∴∠CDA =∠ADB .……5分由(2)可知,AC ∥BD ,∴∠CAD =∠ADB .∴∠CAD =∠CDA ,∴CA = CD .……6分 ∵AO = AB ,∴AO = OC = AC ,即△AOC 为等边三角形. ∴∠AOC = 60°. ……7分 24.解:(1)12x x -+()232x x +-=+ ……1分2232x x x +=+-+ ……2分312x+=-. ……3分(2)2211x x --22211x x -+=- ()()21111x x x +-+=-()1211x x =++-. ……5分 ∵分式的值为整数,且x 为整数, ∴11x -=±,∴x =2或0.……7分25.解:(1)如图2,BD -AD =2CD . ……1分ABCDOllO DCB A如图3,AD -BD =2CD . ……2分证明图2:( 法一)在直线MN 上截取AE =BD ,联结CE .设AC 与BD 相交于点F ,∵BD ⊥MN ,∴∠ADB =90°,∴∠CAE+∠AFD =90°.∵∠ACB =90°,∴∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠ACE =∠BCD .∴∠ACE -∠ACD =∠BCD -∠ACD ,即∠2=∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠2=90°. ∵∠ACB =90°,∴∠2+∠ACD =∠ACB+∠ACD , 即∠ACE =∠BCD .设AC 与BD 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠CAE+∠AFD =90°,∠1+∠BFC =90°. ∵∠AFD =∠BFC ,∴∠CAE =∠1.∵AC =BC ,∴△ACE ≌△BCD (ASA ). ……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分 ∵DE = AE -AD = BD -AD ,∴BD -AD =2CD . ……5分 证明图3:( 法一)在直线MN 上截取AE =BD ,联结CE . 设AD 与BC 相交于点F ,∵∠ACB =90°,∴∠2+∠AFC =90°. ∵BD ⊥MN ,∴∠ADB =90°,∠3+∠BFD =90°. ∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (SAS ). ……3分 ∴CE =CD ,∠1=∠4.∴∠1+∠BCE =∠4+∠BCE ,即∠ECD =∠ACB =90°.在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分F12图2A C BND ME FE M DNBC A 图221E BCN M DA 图3123F 411 ∵DE = AD -AE = AD -BD ,∴AD -BD =2CD . ……5分 ( 法二)过点C 作CE ⊥CD 交MN 于点E ,则∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠ECB = ∠DCE -∠ECB ,即∠1=∠4. 设AD 与BC 相交于点F ,∵DB ⊥MN ,∴∠ADB =90°. ∴∠2+∠AFC =90°,∠3+∠BFD =90°.∵∠AFC =∠BFD ,∴∠2=∠3.∵AC =BC ,∴△ACE ≌△BCD (ASA ).……3分 ∴CE =CD ,AE =BD .在Rt △CDE 中,∵222CD CE DE +=,∴222CD DE = ,即DE =2CD .……4分∵DE = AD -AE = AD -BD ,∴AD -BD =2CD .……5分 (2)31± .……7分4F 321 图3A D M N C B E。

2014-2015学年八年级第一学期期中质量调研检测数学试(含答案)

2014-2015学年八年级第一学期期中质量调研检测数学试(含答案)
3.下列各数中,无理数是(▲)
A.3.14B. C. D.
4.如图,AF=DC,BC∥EF,只需补充一个条件
,就可得△ABC≌△DEF.下列条件中
不符合要求的是(▲)
A.BC=EFB.AB=DE
C.∠B=∠ED.AB∥DE
5.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性
则DE=.
16.如图,OA⊥OB,垂足为O,P、Q分别是射线OA、OB
上的两个动点,点C是线段PQ的中点,且PQ=4.则动点C
运动形成的路径长是.
三、解答题(本大题共8小题,共68分)
17.(6分)写出3个无理数与3个负实数,分别填入下列的集合中,且使两集合重叠部分中的数有且只有一个.
18.(7分)如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转
7.3.8.<.9.-4.10.- .11.5.
12.35°.13.60.14. .15. .16.π.
三、解答题(本大题共9题,68分)
17.答案不唯一,填对一个处得2分,共6分
18.证明:∵S梯形ABEF= (EF+AB)·BE= (a+b)·(a+b)= (a+b)2……2分
∵Rt△CDA≌Rt△CGF,∴∠ACD=∠CFG
∵∠CFG+∠GCF=90°,∴∠ACD+∠GCF=90°
即∠ACF=90°………………………………3分
∵S梯形ABEF=S△ABC+S△CEF+S△ACF
∴S梯形ABEF= ab+ ab+ c2………………………………5分
∴ (a+b)2= ab+ ab+ c2…………………………6分
∴a2+2ab+b2=2ab+c2
= ×5×2+ ×5×1……………7分

【志鸿同步测控】2014-2015学年八年级(上)期末检测数学试题(含解析)

【志鸿同步测控】2014-2015学年八年级(上)期末检测数学试题(含解析)

初中数学(RJ)八年级上期末综合测试2(总分120分,时间120分钟)一、选择题(每小题3分,共30分)1.一次函数y=3mx+m2-4的图象过原点,则m的值是( )A.0B.2C.-2D.±2思路解析:图象过原点,即(0,0)满足函数关系式,即0=m2-4,从而可求出m的值.若一次函数的图象过原点,则b=0,即m2-4=0,所以m=±2.当m=±2时,k=±6≠0,所以m=±2,应选D.答案:D2.计算(2a+b)(2a-b)的结果是( )A.4a2-b2B.b2-4a2C.2a2-b2D.b2-2a2思路解析:两个多项式符合平方差公式,(2a+b)(2a-b)=(2a)2-b2=4a2-b2.答案:A3.算式22+22+22+22可化为( )A.24B.82C.28D.216思路解析:22+22+22+22可以看作是四个相同的加数相加,即22+22+22+22=22×4=22×22=22+2=24.答案:A4.下列计算中,正确的是( )A.2a2-a2=aB.a6÷a2=a3C.(-a2)3=a5D.-2a·a2=-2a3思路解析:选项A是整式的加减,两个单项式是同类项,则2a2-a2=a2;选项B是同底数幂的除法,则a6÷a2=a6-2=a4;选项C是幂的乘方,则(-a2)3=-a2×3=-a6;选项D是整式的乘方,相同字母之间相乘可以应用同底数幂的性质,则-2a·a2=-2a1+2=-2a3.答案:D5.下列因式分解正确的是( )A.9-6x+x2=(x-3)2B.m4+1-2m2=(2m2-1)2C.m4+16=(m2+4)(m2-4)D.9m2-1=(9m+1)(9m-1)思路解析:只有多项式符合公式特征时,才能用公式分解因式.选项A符合完全平方差公式的特征,分解结果是正确的;选项B左边符合完全平方差公式的特征,但右边结果应为(m2-1)2,并且还能继续分解为(m+1)2(m-1)2;选项C不是平方差的形式,不能用平方差公式分解;选项D左边是平方差的形式,第一个数为3m,即分解结果应为9m2-1=(3m+1)(3m-1).答案:A6.下列判断正确的是( )A.有两边和其中一边上的对角对应相等的两个三角形全等B.有两边对应相等,且有一个角为30°的两个等腰三角形全等C.有两角和一边对应相等的两个三角形全等D.有一角和一边对应相等的两个直角三角形全等思路解析:根据SSS、ASA、AAS、SAS、HL判断两个三角形全等.选项A中给定的条件SSA,不能判断三角形全等;选项B中,没有确定30°角是否为对应角,例如腰长相同的两个等腰三角形,若一个的顶角为30°,另一个的底角为30°,显然它们不全等;选项C的条件满足AAS或ASA,能判断三角形全等;选项D中,没有指明相等的边是否为对应边,其判断是错误的.答案:C7.下列各坐标表示的点中,在函数y=x3+1的图象上的是( )A.(-1,-2)B.(-1,4)C.(1,2)D.(1,4)思路解析:点在图象上,其横、纵坐标符合函数解析式.把横坐标值逐一代入解析式中,看其函数值与纵坐标是否相符,若相符,则点在图象上.答案:C8.等腰三角形的一边长为5 cm,另一边长为7 cm,则其周长为( )A.12 cmB.17 cmC.19 cmD.17 cm或19 cm思路解析:已知两边中讨论哪一个是腰长,本题中边长有5,5,7和5,7,7两种情况,再看这两种情况下的边长是否满足“三角形不等关系”性质.答案:D9.如图1,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )图1A.30°B.36°C.45°D.70°思路解析:由“等边对等角”,把角度转化到同一三角形中.设∠A=α,则∠ABD=∠A=α,则∠BDC=2α,所以∠C=2α.所以∠ABC=2α.所以α+2α+2α=180°.所以∠α=36°.答案:B10.两个细胞1小时后分裂成4个,其中有1个死亡;2小时后分裂成6个,死亡1个;3小时后分裂成10个,死亡1个;依次类推,6小时后,共有________个细胞.( )A.64B.65C.66D.80思路解析:根据细胞分裂规律计算:答案:B二、填空题(每小题3分,共24分)11.函数y中,自变量x的取值范围是__________.思路解析:被开方数应大于或等于0,这里必须有x-3≥0.答案:x≥312.计算(-2xy2)2·x2y÷(-x3y4)=___________.思路解析:整式混和运算中,先乘方,后乘除.根据幂的运算性质得(-2xy2)2=4x2y4,所以原式=-4x2+2-3y4+1-4=-4xy.答案:-4xy13.当m=___________时,函数y=mx3m+4是正比例函数,此函数y随x的增大而___________.思路解析:形如y=kx(k≠0)的函数是正比例函数,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.所以x的指数3m+4=1,解得m=-1.答案:-1 减小14.点A(1,m)在函数y=2x的图象上,则点A关于y轴的对称点坐标为___________.思路解析:函数图象上点的横、纵坐标满足函数关系式,所以m=2×1=2,即A(1,2);关于y轴对称的两个点横坐标相反,纵坐标相同.答案:(-1,2)15.央视的“开心辞典”节目中,周女士用求助现场观众的方式解答某一道题,图2所示为分别选A、B、C、D的观众比例,那么选___________项答对的可能性最大.图2思路解析:根据扇形图的圆心角可以知道选A的观众人数较多,因此推测选A项答对的可能性最大.答案:A16.若单项式3x5ya与-2xby3是同类项,则a-b=___________.思路解析:根据同类项的定义,两个单项式所含字母相同,并且相同字母的指数也相同,则b=5,a=3,所以a-b=3-5=-2.答案:-217.将圆形纸片对折后可以重合,可以知道圆是轴对称图形,对称轴是___________.思路解析:沿圆的任意一条直径折叠后,圆的两边都能够重合.答案:经过圆心的任意一条直线18.分解因式25a2-9=___________.思路解析:多项式符合平方差公式的特点,25a2-9=(5a)2-32=(5a+3)(5a-3).答案:(5a+3)(5a-3)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(7分)利用图象解方程组2, 410. x yx y-=⎧⎨-+=⎩思路分析:将方程组中每个方程都变形成一次函数y=kx+b(k≠0)的形式,则函数图象的交点即为原方程组的解.解:将原方程组变形,得2,4 1. y xy x=-⎧⎨=+⎩在平面直角坐标系中画出这两条直线,如图所示,交点为(-1,-3),所以原方程组的解是1,3. xy=-⎧⎨=-⎩20.(8分)如图3,已知A、F、C、D四点在一直线上,AF=CD,AB∥DE,且AB=DE.求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.图3思路分析:证三角形全等,关键是寻找它们对应相等的条件,所以一般在已知条件的基础上,通过公共边(角)、对顶角、平行线所形成的角等创造三角形全等的条件.证明:(1)∵AB∥DE,∴∠A=∠D. ∵AF=CD,∴AC=DF.又∵AB=DE,∴△ABC≌△DEF.(2)∵∠ABC=∠DEF, ∴△ABF≌△DEC. ∴∠ABF=∠DEC.∴∠CBF=∠FEC.21.(8分)已知a+b=3,ab=-1,求3a2+5ab+3b2的值.思路分析:题目没有告诉a、b的值,在已知条件中也不方便求出a、b的值,观察求值式的特点,a、b平方的系数相同,可以用ab去凑一个关于a、b的完全平方式的倍数.解:原式=3(a2+2ab+b2)-ab=3(a+b)2-ab=3×32-(-1)=28.22.(8分)求满足下列条件的一次函数解析式:(1)x=3时,y=5;x=-4时,y=-9.(2)函数的图象经过点P(-3,4),且与直线y=-2x+3平行.思路分析:已知一次函数图象经过两个点时,可以用待定系数法求出解析式;平行的两直线的比例系数k相同.解:(1)设解析式为y=kx+b,则35,49.k bk b+=⎧⎨-+=-⎩解得k=2,b=-1,即y=2x-1.(2)设解析式为y=-2x+b,则-2·(-3)+b=4.∴b=-2,即y=-2x-2.23.(8分)如图4,Rt△ABC中,∠C=90°.(1)请以AC所在的直线为对称轴,画出与△ABC成轴对称的图形;(2)所得图形与原图形组成的图形是等腰三角形吗?请说明理由.图4思路分析:成轴对称的两个图形的对应点的连线被对称轴垂直平分.解:(1)如图:(2)是等腰三角形.理由是:∵△ABC≌△AB′C,∴∠ACB=∠ACB′=90°,AB=AB′.∴B、C、B′在同一直线上. ∴△ABB′为等腰三角形.24.(9分)出租车的收费标准是:2.5千米内(包括2.5千米)收费4元;超过2.5千米后,每增加1千米加收1元(不足1千米的按1千米收费).设某乘客乘车x千米,付费y元.(1)写出y关于x的函数关系式,并在图中画出函数的大致图象.(2)根据图象回答:①乘客乘车的路程是6千米,应付费多少元?②某乘客乘车花了6元,他乘坐的最长距离不超过多少千米?图5思路分析:出租车的收费标准按路程段收费,同一段的自变量对应的函数的值相同,其图象是一些与x轴平行的线段,其左端点应去掉.解:(1)4,0 2.5, 4( 2.5), 2.5.xx x<≤⎧⎨+->⎩(2)①8元;②不能超过4.5千米.25.(9分)我们知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数式也可以用这种形式表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图6所示的面积表示.图6 图7(1)请写出图7所表示的代数恒等式:________;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法写一含有a、b的代数恒等式,并画出与之对应的几何图形.思路分析:长方形的长与宽分别是两个式子时,这两个式子的乘积就是长方形的面积.解:(1)(2a+b)(a+2b)=2a2+5ab+2b2(2)如左下图.(3)(2a+2b)(a+2b)=2a2+6ab+4b2,如右上图.26.(9分)某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图8所示.图8(1)当0≤x≤200,且x为整数时,y关于x的函数解析式为________;当200≤x≤300,且x为整数时,y关于x的函数解析式为________.(2)要使游乐场一天的赢利超过1 000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,-1 000)的实际意义.(4)根据图象,请你再提供2条信息.思路分析:图象中,y与x的关系分两种情况,用待定系数法可以分别求出解析式.图中y为负数时,表示亏损.盈利1 000元时,可以用对应的解析式求出门票数.解:(1)y=10x-1 000 y=15x-2 500(2)由图象得,要使一天的盈利超过1 000元,则y关于x的解析式应为y=15x-2 500.由15x-2 500>1 000,则x>7003,则游乐场该天至少应售出234张门票.(3)实际意义:如果该游乐场当天没有售出门票,由于需要支付员工工资、场内设备的维护费用等,游乐场当天将亏损1 000元.(4)如:当售出的门票少于100张时,游乐场当天将亏损;当售出门票100张时,其收入正好维持当天开支,游乐场不亏不赢;当售出门票超过100张时,游乐场当天将盈利;图象中存在一个间断点,说明当售出的门票多于200张时,由于需要增加游乐场的管理人员等,盈利额y与门票x之间的函数关系发生了变化,等等.。

2014-2015八年级数学上学期期末综合测试题(新人教版含答案)

2014-2015八年级数学上学期期末综合测试题(新人教版含答案)

2014-2015八年级数学上学期期末综合测试题(新人教版含答案)姓名_____________总分__________________一.选择题(共12小题)1.(2014•吴中区一模)计算:a2•(﹣a)4=()A.a5B.a6C.a8D.a92.如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6D.±63.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5 B.±5 C.D.±4.下列各式可以分解因式的是()A.x2﹣(﹣y2)B.4x2+2xy+y2C.﹣x2+4y2D.x2﹣2xy﹣y25.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1 B.3C.5D.不能确定6.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2 B.1C.﹣2 D.﹣17.(2014•南通通州区一模)若正多边形的一个内角等于144°,则这个正多边形的边数是()A.9 B.10 C.11 D.128.(2012•玉林)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对9.(2011•江苏模拟)如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线段NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是()10.(2010•广安)等腰三角形的两边长为4、9,则它的周长是()A.17 B.17或22 C.20 D.2211.(2010•荆门)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2 B.3C.4D.512.(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题)13.(2014•漳州模拟)已知a+b=2,则a2﹣b2+4b的值为_________.14.(2006•杭州)计算:(a3)2+a5的结果是_________.15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为_________.16.(2014•思明区质检)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.17.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件_________,使△ABC≌△DBE.(只需添加一个即可)18.(2014•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是_________.三.解答题(共8小题)19.运用乘法公式计算:(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).20.分解因式:(1);(2)a3﹣3a2﹣10a.21.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.22.(2008•西城区一模)已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.23.已知AB∥CD,BC平分∠ACD.求证:AC=AB.24.已知:a=2002x+2003,b=2002x+2004,c=2002x+2005,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.25.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)26.(2014•海淀区一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(1)如图1,当∠BAC=100°,α=60°时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.参考答案一.选择题(共12小题)1.解:原式=a2•a4=a2+4=a6,故选:B.2.解:∵x2+2mx+9是一个完全平方式,∴m=±3,故选:B.3. 解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选D.4.解:A、原式=x2+y2,不符合平方差公式的特点;B、第一个数是2x,第二个数是y,积的项应是4xy,不符合完全平方公式的特点;C、正确;D、两个平方项应同号.故选C.5. 解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选B.6.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选A.7.解:设这个正多边形是正n边形,根据题意得:(n﹣2)×180°÷n=144°,解得:n=10.故选:B.8. 解:图中全等三角形有:△ABO≌△ADO、△ABO≌△CDO,△ABO≌△CBO;△AOD≌△COD,△AOD≌△COB;△DOC≌△BOC;△ABD≌△CBD,△ABC≌△ADC,共8对.故选C.9.解:根据角平分线的性质,(3)的依据是到角的两边的距离相等的点在角平分线上,故选B.10.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9∵4+4<9,故4,4,9不能构成三角形,应舍去4+9>9,故4,9,9能构成三角形∴它的周长是4+9+9=22故选D.11.解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.12.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16 故S=(6+4)×16﹣3×4﹣6×3=50.故选A.二.填空题(共6小题)13.(2014•漳州模拟)已知a+b=2,则a2﹣b2+4b的值为4.解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.14.(2006•杭州)计算:(a3)2+a5的结果是a6+a5.解:(a3)2+a5=a3×2+a5=a6+a5.15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为﹣6.解:2x3+x2﹣12x+k=(2x+1)(x2﹣6),∴k=﹣6,16.(2014•思明区质检)一个多边形的每个外角都等于72°,则这个多边形的边数为5.解:多边形的边数是:360÷72=5.17.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC,使△ABC≌△DBE.(只需添加一个即可)解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用“角边角”,需添加∠BDE=∠BAC,②用“边角边”,需添加BE=BC,③用“角角边”,需添加∠ACB=∠DEB.故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)18.(2014•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是400.解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.三.解答题(共8小题)19.运用乘法公式计算:(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).解:(1)原式=(2000﹣3)×(2000+3)=20002﹣32=4000000﹣9=3999991;(2)原式=(2b)2﹣(3a)2 =4b2﹣9a2;(3)原式=(﹣3a)2﹣(2b)2 =9a2﹣4b2.20.分解因式:(1);(2)a3﹣3a2﹣10a.解:(1)x2y﹣8y,=y(x2﹣16),=y(x+4)(x﹣4);(2)a3﹣3a2﹣10a,=a(a2﹣3a﹣10),=a(a+2)(a﹣5).21.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.解:(1)∵O(0,0),A(5,0),B(2,4),∴S△OAB =×5×4=10;(2)若△OAP的面积是△OAB面积的2倍,O,A两点的位置不变,则△OAP的高应是△OAB高的2倍,即△OAP的面积=△OAB面积×2=×5×(4×2),∴P点的纵坐标为8或﹣8,横坐标为任意实数;(3)若△OBM的面积是△OAB面积的2倍,且B(2,4),O(0,0)不变,则△OBM的底长是△OAB底长的2倍,即△OBM的面积=△OAB的面积×2=×(5×2)×4,∴M点的坐标是(10,0)或(﹣10,0).22.(2008•西城区一模)已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等)23.已知AB∥CD,BC平分∠ACD.求证:AC=AB.证明:∵AB∥CD,∴∠ABC=∠DCB,∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠ABC=∠ACB,∴AC=AB.24.已知:a=2002x+2003,b=2002x+2004,c=2002x+2005,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.提示:(先求出b﹣a,c﹣a,c﹣b的值,再把所给式子整理为含(a﹣b)2,(b﹣c)2,(a﹣c)2的形式代入即可求出)解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca =(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)]=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=×(1+1+4),=3.25.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.26.(2014•海淀区一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(1)如图1,当∠BAC=100°,α=60°时,∠CBD 的大小为300;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.解:(1)30°(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)由(1)知道,若∠BAC=100°,α=60°时,则∠CBD=30°;①由(1)可知,设∠α=60°时可得∠BAD=m﹣60°,∠ABC=∠ACB=90°﹣,∠ABD=90°﹣∠BAD=120°﹣,∠CBD=∠ABD﹣∠ABC=30°.②由(2)可知,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=90°﹣﹣(﹣30°)=120°﹣m,③以C为圆心CD为半径画圆弧交BF延长线于D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=,∠DCD2=180°﹣2∠CDD2=180°﹣m∠α=60°+∠DCD2=240°﹣m.综上所述,α为60°或120°﹣m或240°﹣m时∠CBD=30°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年上海市八年级(上)期末数学模拟试卷(3)
一、选择题(共9小题,每小题3分,满分27分)
1.(3分)(2014秋•肥东县期末)已知a是整数,点A(2a+1,2+a)在第二象限,则a的值是()
A.﹣1 B.0 C.1 D.2
2.(3分)(2013秋•长丰县期末)如果点A(2m﹣n,5+m)和点B(2n﹣1,﹣m+n)关于y轴对称,则m、n的值为()
A.m=﹣8,n=﹣5 B.m=3,n=﹣5 C.m=﹣1,n=3 D.m=﹣3,n=1
3.(3分)(2005•呼和浩特)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的函数图象如图所示,则该厂对这种产品来说()
A.1月至3月每月生产总量逐月增加,4,5两月每月生产总量逐月减少
B.1月至3月每月生产总量逐月增加,4,5两月每月生产总量与3月份持平
C.1月至3月每月生产总量逐月增加,4,5两月均停止生产
D.1月至3月每月生产总量不变,4,5两月均停止生产
4.(3分)(2014秋•肥东县期末)如图所示,表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()
A.B.C.
D.
5.(3分)(2011春•滕州市期末)三角形的三边分别为3,1﹣2a,8,则a的取值范围是()A.﹣6<a<﹣3 B.﹣5<a<﹣2 C.2<a<5 D.a<﹣5或a>﹣2
6.(3分)(2016春•长清区期末)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()
A.1个B.2个C.3个D.4个
7.(3分)(2013秋•长丰县期末)如图,AD=AE,BD=CE,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是()
A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40°D.∠C=30°
8.(3分)(2014秋•肥东县期末)下列语句是命题是()
A.我真希望我们国家今年不要再发生自然灾害了
B.多么希望国际金融危机能早日结束啊
C.钓鱼岛自古就是我国领土不容许别国霸占
D.你知道如何预防“H1N1”流感吗
9.(3分)(2003•黑龙江)将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()
A.60°B.75°C.90°D.95°
二、填空题(共8小题,每小题3分,满分24分)
10.(3分)(2014秋•肥东县期末)命题“等角的补角相等”的逆命题为______,这是个______命题.
11.(3分)(2011秋•瑶海区期末)函数y=+中,自变量x的取值范围是______.
y是x的一次函数,右表列出了部分对应值,则m=______.
RT△ABC中,∠A=90°,BD平分∠ABC交AC于D,S△BDC=4,BC=8,则AD=______.
14.(3分)(2014秋•肥东县期末)在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S,PR=PS,AQ=PQ,则下面三个结论:①AS=AR;②PQ ∥AR;③△BRP≌△CSP.其中正确的是______.
15.(3分)(2014•泗县校级模拟)若解方程x+2=3x﹣2得x=2,则当x______时,直线y=x+2上的点在直线y=3x﹣2上相应点的上方.
16.(3分)(2013秋•长丰县期末)如图,△ABC边BC长是10,BC边上的高是6cm,D 点在BC上运动,设BD长为x,请写出△ACD的面积y与x之间的函数关系式:______,自变量x的取值范围是______.
17.(3分)(2014秋•肥东县期末)如图,l1反映了甲离开A的时间与离A地的距离的关系,l2反映了乙离开A地的时间与离A地的距离之间的关系,根据图象填空:
(1)当时间为2小时时,甲离A地______千米,乙离A地______千米.
(2)当时间______ 时,甲、乙两人离A地距离相等.
(3)当时间______ 时,甲在乙的前面,当时间______时,乙超过了甲.
三、解答题(共5小题,满分0分)
18.(2014秋•肥东县期末)已知点P(x,y)的坐标满足方程,求点P
分别关于x轴,y轴以及原点的对称点坐标.
19.(2014秋•肥东县期末)已知一次函数y=kx+b的自变量的取值范围是﹣3≤x≤6,相应的函数值的取值范围是﹣5≤y≤﹣2,求这个一次函数的解析式.
20.(2014秋•肥东县期末)已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.
求证:OC是∠AOB的平分线.
21.(2011秋•平谷区期末)如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH 上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.
(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF.
22.(2014秋•肥东县期末)有一个附有进水管、出水管的水池,每单位时间内进出水管的进、出水量都是一定的,设从某时刻开始,4h内只进水不出水,在随后的时间内不进水只出水,得到的时间x(h)与水量y(m3)之间的关系图(如图).回答下列问题:
(1)进水管4h共进水多少?每小时进水多少?
(2)当0≤x≤4时,y与x有何关系?
(3)当x=9时,水池中的水量是多少?
(4)若4h后,只放水不进水,那么多少小时可将水池中的水放完?
2014-2015学年上海市八年级(上)期末数学模拟试卷(3)
参考答案
一、选择题(共9小题,每小题3分,满分27分)
1.A;2.C;3.D;4.A;5.B;6.D;7.C;8.C;9.C;
二、填空题(共8小题,每小题3分,满分24分)
10.如果两个角的补角相等,那么这两个角相等;真;11.x≥1且x≠2;12.1;13.1;14.①②;15.<2;16.y=-3x+30;0≤x≤10;17.15;10;t=4;t<4;t>4;
三、解答题(共5小题,满分0分)
18.;19.;20.;21.;22.;。

相关文档
最新文档