专题(四)动能定理与能量守恒_7
3 动能定理 功能原理 机械能守恒定理
注意 功和动能都与 参考系有关;动能定理仅适用于惯性系 .
动能 能量守恒定律
质点系统动能定理
每一个质点都满足动能定理,则有
A1 12 m 1v12 12m1v120
Ai
1 2
mi vi2
1 2
mi vi20
以上各式左右分别相加
对称性与守恒定律
F1
m2
都有这一特点
A
B
C
保守力作的功,是位置的单值函数;
D
那么,我们就可以引入仅是位置的单
B
值函数的能量,叫作保守力的势能,
也叫作位能。
动能 能量守恒定律
对称性与守恒定律
五 势能
势能 与物体间相互作用及相对位置有关的能量 .
重力功
重力势能
A (mgzB mgzA )
引力功
A
(G
械能的改变。
动能 能量守恒定律
九 机械能守恒定律 功能原理
对称性与守恒定律
A外 A非 保 内 E
当 A外 A非 保内 0 时,有 E1 E2
机械能守恒定律: 只有保守内力作功的情况下,质 点系的机械能保持不变 .
注意: 1、机械能守恒是有条件的。从初态到末态的每一个微元 过程中,外力和非保守内力所做的元功的代数和均为零, 则机械能守恒。
9/4
4dy 9.125J
1
动能 能量守恒定律
对称性与守恒定律
例:质量为 m 的物体放在水平桌面上,物体和桌面的摩 擦系数为 ,物体在外力作用下沿半径为R圆由a运动 到b,移动了半个圆周,求在这一过程中摩擦力的功。
这是力的大小不变,物 体沿曲线运动的例子
动能定理和能量守恒
一、动能定理的应用技巧1.一个物体的动能变化ΔE k与合外力对物体所做的总功具有等量代换关系.若ΔE k>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k=0,表示合外力对物体所做的功为0,反之亦然.这种等量代换关系提供了一种计算变力做功的简便方法.2.动能定理中涉及的物理量有F、s、m、v、W、E k等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理.由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3.动能定理解题的基本思路(1)选择研究对象,明确它的运动过程.(2)分析研究的受力情况和各个力的做功情况,然后求出合外力的总功.(3)选择初、末状态及参照系.(4)求出初、末状态的动能E k1、E k2.(5)由动能定理列方程及其它必要的方程,进行求解.【例1】如图1所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止.求物体在轨道AB段所受的阻力对物体做的功.图1练习:电动机通过一条绳子吊起质量为8kg的物体.绳的拉力不能超过120N,电动机的功率不能超过1 200W,要将此物体由静止起,用最快的方式将物体吊高90m(已知物体在被吊高90m以前已开始以最大速度匀速上升),所需时间为多少?(g取10 m/s2)二、多物体多过程动能定理的应用技巧如果一个系统有两个或两个以上的物体,我们称为多物体系统.一个物体同时参与两个或两个以上的运动过程,我们称为多过程问题.对于多物体多过程问题,我们可以有动能定理解决.解题时要注意:多过程能整体考虑最好对全过程列动能定理方程,不能整体考虑,则要分开对每个过程列方程.多个物体能看作一个整体最好对整体列动能定理方程,不能看作整体,则要分开对每个物体列动能定理方程.【例2】总质量为M的列车,沿平直轨道匀速前进.末节车厢质量为m,在行驶中途脱钩,司机发现后关闭发动机时,机车已经驶了L,设运动阻力与质量成正比,机车发动机关闭前牵引力是恒定的,则两部分停止运动时,它们之间的距离是多少?练习1:.物体由高出地面H高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?图2图4练习2:.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)练习3:如图4所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此 过程中人所做的功 为( D )A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/8练习4:如图5所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?三、机械能守恒定律的条件和机械能守恒定律的常用数学表达式1. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.2.常用数学表达式:第一种:E k1+E P1=E K2+E P2从守恒的角度表明物体运动过程中,初状态和末状态机械能相等 第二种:△E k =-△E P 从转化的角度表明动能的增加量等于势能减小量第三种:△E 1=-△E 2 从转移的角度表明物体1的机械能增加量等于物体2的机械能的减少量【例3】如图6所示,一轻质弹簧固定于O 点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中( ) A .重物重力势能减小 B .重物重力势能与动能之和增大 C .重物的机械能不变 D. 重物的机械能减少 四、应用机械能守恒定律解题的基本步骤1.根据题意,选取研究对象(物体或相互作用的物体系).图3P 图5图62.分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件.3.若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值.4.根据机械能守恒定律列方程,并代人数值求解. 【例4】如图7使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ?五、应用机械能守恒定律解题可以只考虑物体运动的初状态和末状态,不必考虑运动过程.1应用机械能守恒定律解题的思路与方法(1)选择研究对象——物体或物体系(2)对研究对象所经历的过程,进行受力分析,做功情况分析,判断机械能是否守恒 (3)选择初、末状态及参考平面,确定研究对象在初、末状态的机械能 (4)根据机械能守恒定律列方程或方程组 (5)求解、检查、作答2.机械能守恒定律与动能定理的比较机械能守恒定律和动能定理是本章的两个重点内容,也是力学中的两个基本规律,在物理学中占有重要的地位,两者既有区别也有相同之处.(1)相同点:都是从功和能量的角度来研究物体动力学问题. (2)不同点:①解题范围不同,动能定理的范围相对来说要大些.②研究对象及角度不同,动能定理一般来说是研究单个物体在研究过程中合外力做功与动能的变化,而机械能守恒定律只要满足其成立条件,则只需找出系统初、末状态的机械能即可.3.几种常见的功和能量转化的关系(1)合外力对物体所做的功等于物体动能的变化:W 合=E K2-E K1 此即动能定理. (2)只有重力(或弹力)做功时,物体的机械能守恒:E 1=E 2(3)重力做功(或弹力做功)与重力势能的变化(或弹性势能的变化)的关系: W G =-△E P =E P1-E P2(4)重力和弹簧弹力之外的其它外力对物体所做的功W F ,等于物体机械能的变化,即 W F =△E =E 2-E 1W F >0,机械能增加. W F <0,机械能减少.六、机械能守恒定律在多个物体组成系统中的应用对单个物体能用机械能守恒定律解的题一般都能用动能定理解决.而且省去了确定是否守恒和选定零势能面的麻烦,反过来,能用动能定理来解决的题却不一定都能用机械能守恒定律来解决,在这个意义上讲,动能定理比机械能守恒定律应用更广泛更普遍。
动能定理能量守恒的基本原理
动能定理能量守恒的基本原理动力学是物理学中的一个重要分支,研究物体的运动和受力情况。
其中,动能定理和能量守恒定律是描述物体运动过程中能量变化的基本原理。
一、动能定理动能定理是描述物体运动过程中动能变化的原理。
动能是物体运动的能量,定义为:动能 = 1/2 * m * v^2其中,m为物体的质量,v为物体的速度。
根据动能的定义,可以得出动能定理的表达式:物体的动能增量等于物体所受的净外力所做的功。
数学表达式为:ΔK = W其中,ΔK表示动能的增量,W表示净外力所做的功。
动能定理可以用来解释物体在外力作用下的运动状态和能量变化情况。
当物体受到力的作用时,外力对物体做功,使得物体的动能发生变化。
如果物体所受的外力为零,则根据动能定理得知物体的动能保持不变。
二、能量守恒定律能量守恒定律是自然界中一个普适的定律,描述了能量在一个封闭系统中的守恒性质。
能量守恒定律的表达式为:系统的总能量在封闭的过程中不变。
能量可以存在多种形式,包括动能、势能、热能等。
根据能量守恒定律,一个封闭系统中各种形式的能量可以相互转化,但总能量保持不变。
在物体运动过程中,动能和势能之间可以相互转化。
当物体处于高处时,具有势能;当物体运动时,其势能转化为动能,而动能定理也可以说明动能的变化量等于势能转化的大小。
能量守恒定律可以帮助我们理解许多物理现象,例如弹性碰撞、机械能转化等。
三、动能定理与能量守恒的关系动能定理和能量守恒定律在描述和分析物体的运动过程中密切相关。
首先,动能定理可以通过计算外力对物体做功的大小来描述物体动能的变化。
而能量守恒定律则表明,在一个封闭系统中,物体动能的变化可以转化为其他形式的能量,但总能量保持不变。
其次,动能定理和能量守恒定律都是适用于经典力学体系的基本原理,可以帮助我们理解和解释物态变化和能量转化的规律。
最后,动能定理和能量守恒定律的应用广泛,不仅适用于机械运动的问题,还可以推广到其他物理学领域,如热力学、电动力学等。
动能定理与动能守恒
动能定理与动能守恒在物理学中,动能是描述物体运动的能量。
动能定理和动能守恒是两个重要的概念,它们帮助我们理解物体运动的规律以及能量的转化与守恒。
动能定理是指物体的动能与物体所受合力做功的关系。
它描述了当一个力对物体做功时,物体的动能会发生变化。
动能定理公式可以表示为:物体的动能变化等于物体所受力做功的大小。
动能定理的公式可以用如下方程表示:ΔK = W,其中ΔK表示物体动能的变化量,W表示物体所受力做的功。
动能定理的一个重要应用是在运动学中计算物体的速度。
根据动能定理,物体的动能变化等于物体所受力做功,根据功的定义,功等于力乘以移动的距离,所以我们可以得到动能定理的另一种形式:物体的动能变化等于物体所受力乘以物体的位移。
根据动能定理,我们可以利用该公式来计算物体的速度变化,从而得到物体的速度。
另一个重要的概念是动能守恒。
动能守恒是指在没有外力做功或外力做功为零的情况下,物体的总动能保持不变。
换句话说,物体的动能守恒意味着物体内部的能量转化不会导致总动能的变化。
例如,在一个封闭的系统中,如果物体之间没有能量的转移(如热量传递),那么系统中的总动能将保持不变。
动能守恒的一个实例是简单的弹性碰撞。
在弹性碰撞中,物体之间的能量转化不会导致总动能的变化,即碰撞前后的总动能保持不变。
这是因为在弹性碰撞中,物体之间的能量转化是完全可逆的,没有发生能量损失。
这也是为什么弹性碰撞可以用来解释一些日常生活中的现象,例如弹球的反弹以及弹簧的压缩与释放等。
动能守恒也可以应用于一些复杂的物理现象,例如机械能守恒。
机械能是指物体的动能与势能的总和。
在没有外力做功或外力做功为零的情况下,机械能保持恒定。
这意味着物体的总能量保持不变,能量在动能和势能之间转换,但总能量保持不变。
总之,动能定理和动能守恒是描述物体运动和能量转化的重要概念。
动能定理揭示了物体的动能与物体所受力做功的关系,而动能守恒则说明了在某些条件下,物体的总动能保持不变。
能量守恒定律和动能定理
能量守恒定律和动能定理能量守恒定律和动能定理是物理学中两个重要的概念。
它们对于研究物体的运动和相互作用起着至关重要的作用。
本文将分别介绍能量守恒定律和动能定理的概念、公式和应用。
一、能量守恒定律能量守恒定律是物理学中一个基本的守恒定律。
它表达了在一个封闭系统中,能量的总量是恒定不变的。
根据能量守恒定律,能量不能被创造也不能被摧毁,只能从一种形式转化为另一种形式。
能量守恒定律可以用以下公式表示:能量的初态 + 初态外部做功 = 能量的末态 + 末态外部做功其中,初态和末态分别表示系统在某一时刻的能量状态,外部做功表示由外力对系统做的功。
能量守恒定律可以应用于各种物理系统,例如弹簧振子、摆锤和碰撞等。
通过对能量的初态和末态进行分析,我们可以计算得到系统中各种形式的能量,包括动能、势能和内能等。
二、动能定理动能定理描述了物体的动能随时间的变化规律。
它表达了物体的动能变化与物体所受的净外力之间的关系。
根据动能定理,物体的动能的变化等于物体所受的净外力对物体做的功。
动能定理可以用以下公式表示:物体的动能变化 = 净外力对物体做的功其中,动能的变化表示物体动能的最终值减去初始值,净外力表示外力的合力。
通过动能定理,我们可以计算得到通过对物体施加外力所导致的动能的变化。
这将帮助我们理解物体的加速度、速度和位置之间的关系,以及外力对物体的作用效果。
能量守恒定律和动能定理是物理学中两个相关的概念,它们在解决各种物理问题时起着关键的作用。
总结:通过对能量守恒定律和动能定理的介绍,我们了解到它们在物理学中的重要性。
能量守恒定律描述了封闭系统中能量的总量不变,而动能定理描述了物体的动能变化与物体所受的净外力之间的关系。
了解和应用这两个概念,可以帮助我们更好地理解和解释物体的运动和相互作用。
它们在解决各种物理问题时都有广泛的应用,无论是研究弹簧振子的周期,还是分析碰撞事件中的能量转化,都离不开能量守恒定律和动能定理的支持。
动能定理与弹性势能的计算
动能定理与弹性势能的计算动能定理是力学中的基本原理之一,它描述了物体的动能与物体所受力的关系。
在本文中,我们将探讨动能定理的原理和应用,并介绍弹性势能的计算方法。
一、动能定理的原理动能定理可以简单地表述为:物体的动能的增量等于物体所受力的功的增量。
数学表达式如下:ΔK = W其中,ΔK表示物体动能的增量,W表示物体所受力的功的增量。
二、动能定理的应用动能定理在力学中有着广泛的应用,我们将从以下两个方面进行探讨。
1. 运动力学中的应用在运动过程中,物体所受力的功的增量等于物体动能的增量。
根据动能定理,我们可以通过计算物体所受力的功,来确定物体动能的变化情况。
这一原理在解决运动相关的问题时非常有用。
比如,我们可以通过动能定理来计算物体的速度、加速度和位移等运动参数。
2. 力学中的能量守恒定理动能定理是能量守恒定律的基础之一。
能量守恒定律指出,一个封闭系统内的总能量保持不变。
根据能量守恒定律,我们可以将动能定理与其他形式的能量转换进行结合,来研究系统的能量变化。
例如,当物体从一种形式的能量转化为动能时,动能定理可以用来计算能量转化的大小。
三、弹性势能的计算弹性势能是弹性体在形变过程中具有的能量,是与弹性体形变程度相关的物理量。
根据胡克定律,弹性势能可以通过以下公式计算:Ep = (1/2)kx^2其中,Ep表示弹性势能,k表示弹性系数,x表示形变的位移。
弹性势能的计算是通过量化与物体形变相关的能量。
具体计算时,需要确定弹性系数k和形变的位移x。
根据胡克定律,弹性系数k可以根据物体的材料性质和形状进行确定。
而形变的位移x则取决于物体受力的大小和方向。
四、结论动能定理是描述物体动能与物体所受力的关系的基本原理。
它在力学中有着广泛的应用,可以用来计算运动相关的参数和研究能量转化过程。
弹性势能是弹性体形变过程中所具有的能量,可以通过胡克定律来计算。
掌握动能定理和弹性势能的计算方法,对于解决相关的物理问题具有重要的意义。
动能定理和能量守恒要点
一、动能定理的应用技巧1. 一个物体的动能变化ΔE k 与合外力对物体所做的总功具有等量代换关系. 若ΔE k >0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔE k <0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值;若ΔE k =0,表示合外力对物体所做的功为0, 反之亦然. 这种等量代换关系提供了一种计算变力做功的简便方法.2. 动能定理中涉及的物理量有F 、s 、m 、v 、W 、E k 等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理. 由于只需从力在整个位移内的功和这段位移始、末两状态的动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便.3. 动能定理解题的基本思路(1选择研究对象,明确它的运动过程.(2分析研究的受力情况和各个力的做功情况,然后求出合外力的总功.(3选择初、末状态及参照系.(4求出初、末状态的动能E k1、E k2.(5由动能定理列方程及其它必要的方程,进行求解.【例1】如图1所示,AB 为1/4圆弧轨道,半径为R =0.8m,BC 是水平轨道,长S =3m,BC 处的摩擦系数为μ=1/15,今有质量m =1kg的物体,自A 点从静止起下滑到C 点刚好停止. 求物体在轨道AB 段所受的阻力对物体做的功.图1练习:电动机通过一条绳子吊起质量为8kg 的物体. 绳的拉力不能超过120N ,电动机的功率不能超过1 200W,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s2)二、多物体多过程动能定理的应用技巧如果一个系统有两个或两个以上的物体, 我们称为多物体系统. 一个物体同时参与两个或两个以上的运动过程, 我们称为多过程问题. 对于多物体多过程问题, 我们可以有动能定理解决. 解题时要注意:多过程能整体考虑最好对全过程列动能定理方程, 不能整体考虑, 则要分开对每个过程列方程. 多个物体能看作一个整体最好对整体列动能定理方程, 不能看作整体, 则要分开对每个物体列动能定理方程.【例2】总质量为M 的列车,沿平直轨道匀速前进. 末节车厢质量为m ,在行驶中途脱钩,司机发现后关闭发动机时,机车已经驶了L ,设运动阻力与质量成正比,机车发动机关闭前牵引力是恒定的,则两部分停止运动时,它们之间的距离是多少?练习1:. 物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示. 求物体在沙坑中受到的平均阻力是其重力的多少倍?图2练习2:. 如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s,则在下滑过程中,物体克服阻力所做的功为多少?(g取10m/s2图3练习3:如图4所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为( DA .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/8图4 练习4:如图5所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?P 图5三、机械能守恒定律的条件和机械能守恒定律的常用数学表达式1. 守恒条件:只有重力或弹力做功,只发生动能和势能的转化. 分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能,如果只是动能和势能的转化,而没有其它形式的能发生转化,则机械能守恒,如果没有力做功,不发生能的转化,机械能当然也不会发生变化.2. 常用数学表达式:第一种:E k1+E P1=E K2+E P2从守恒的角度表明物体运动过程中,初状态和末状态机械能相等第二种:△E k =-△E P 从转化的角度表明动能的增加量等于势能减小量第三种:△E 1=-△E 2 从转移的角度表明物体1的机械能增加量等于物体2的机械能的减少量【例3】如图6所示,一轻质弹簧固定于O 点,另一端系一重物,将重物从与悬挂点等高的地方无初速度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中()A .重物重力势能减小B .重物重力势能与动能之和增大C .重物的机械能不变D. 重物的机械能减少图6四、应用机械能守恒定律解题的基本步骤1. 根据题意,选取研究对象(物体或相互作用的物体系).2. 分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件.3. 若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末状态的机械能值.4. 根据机械能守恒定律列方程,并代人数值求解.【例4】如图7使一小球沿半径为R 的圆形轨道从最低点B 上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点A ?图7五、应用机械能守恒定律解题可以只考虑物体运动的初状态和末状态,不必考虑运动过程.1应用机械能守恒定律解题的思路与方法(1选择研究对象——物体或物体系(2(3(4根据机械能守恒定律列方程或方程组(5求解、检查、作答2. 机械能守恒定律与动能定理的比较机械能守恒定律和动能定理是本章的两个重点内容,也是力学中的两个基本规律,在物理学中占有重要的地位,两者既有区别也有相同之处.(1.(2不同点:①解题范围不同,动能定理的范围相对来说要大些. ②研究对象及角度不同,动能定理一般来说是研究单个物体在研究过程中合外力做功与动能的变化,而机械能守恒定律只要满足其成立条件,则只需找出系统初、末状态的机械能即可.3. 几种常见的功和能量转化的关系(1 此即动能定理.(2只有重力(或弹力)做功时,物体的机械能守恒(3重力做功(或弹力做功)与重力势能的变化(或弹性势能的变化)的关系: (4重力和弹簧弹力之外的其它外力对物体所做的功W F ,等于物体机械能的变化,即W F >0,.W F <0,机械能减少.六、机械能守恒定律在多个物体组成系统中的应用对单个物体能用机械能守恒定律解的题一般都能用动能定理解决.而且省去了确定是否守恒和选定零势能面的麻烦,反过来,能用动能定理来解决的题却不一定都能用机械能守恒定律来解决,在这个意义上讲,动能定理比机械能守恒定律应用更广泛更普遍。
能量守恒动能定理
动能定理内容:力在一个过程中对物体所做的功等于在这个过程中动能的变化.合外力(物体所受的外力的总和,根据方向以及受力大小通过正交法能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化。
即初动能减末动能。
质点动能定理表达式:w1+w2+w3+w4…=△W=Ek2-Ek1 (k2)(k1)表示为下标其中,Ek2表示物体的末动能,Ek1表示物体的初动能。
△W是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
动能定理的表达式是标量式,当合外力对物体做正功时,Ek2>Ek1物体的动能增加;反之则,Ek1>Ek2,物体的动能减少。
动能定理中的位移,初末动能都应相对于同一参照系。
1动能定理研究的对象是单一的物体,或者是可以堪称单一物体的物体系。
2动能定理的计算式是等式,一般以地面为参考系。
3动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;力可以式分段作用,也可以式同时作用,只要可以求出各个力的正负代数和即可,这就是动能定理的优越性。
能量守恒定律内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。
能量守恒定律如今被人们普遍认同,但是并没有严格证明。
(1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等等。
(2)不同形式的能量之间可以相互转化:“摩擦生热是通过克服摩擦做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能等等”。
这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。
(3)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。
高考物理动能定理和能量守恒专题汇总情况
弄死我咯,搞了一个多钟专题四动能定理与能量守恒(注意大点的字)本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。
动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。
《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。
考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。
它的特点:一般过程复杂、难度大、能力要求高。
还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。
所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。
在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。
二、重点剖析1、理解功的六个基本问题(1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。
而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。
(2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。
②用动能定理W=ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
动能定理及能量守恒定律
动能定理及能量守恒定律动能定理及能量守恒定律⼆. 具体过程本章知识点:(⼀)功和功率1. 功2. 功率(⼆)动能和动能定理1. 动能定理(1)内容:_________的功等于物体_________的变化。
(2)表达式:=__________________。
2. 动能定理的另⼀种表述外⼒对物体做功的代数和等于_________的增量考纲要求:功能关系、机械能守恒定律及其应⽤ II(三)机械能守恒定律1. 条件(1)只有重⼒或系统内弹⼒做功。
(2)虽受其他⼒但其他⼒不做功或做功的代数和为_________。
2. 表达式(四)功能关系内容:(1)势能定理:重⼒做的功等于重⼒势能增量的负值弹⼒做的功等于弹性势能增量的负值(2)动能定理:合⼒做的功等于动能的增量(3)机械能定理:除了重⼒和弹⼒之外的其他⼒做的功等于机械能的增量(4)系统滑动摩擦⼒做的功等于系统内能的增量(5)安培⼒做的功等于电路中产⽣的电能表达式:(1)WG=-ΔEP (2)W弹=-ΔE弹(3)W合=ΔEK (4)WF(除G)=ΔE机(5)W滑=ΔE内(6)W安=ΔE电重点知识:(⼀)常⽤的⼏种功的计算⽅法1. 恒⼒的功:。
2. 变⼒的功(1)⽤动能定理或功能关系求解(功是能量转化的量度)。
(2)作出变⼒F随位移l变化的图象,图线与横轴所围的⾯积,即为变⼒的功。
(3)当变⼒的功率⼀定时,可⽤求功,如机车牵引⼒的功。
(4)将变⼒的功转化为恒⼒的功①当⼒的⼤⼩不变,⽽⽅向始终与运动⽅向相同或相反时,如滑动摩擦⼒、空⽓阻⼒做的功,这类⼒的功等于⼒和路程的乘积。
②当⼒的⽅向不变,⼤⼩随位移做线性变化时,可先求出⼒对位移的平均值,再由计算功,如弹簧弹⼒做的功。
3. 合⼒的功:(1)当合⼒是恒⼒时;(2)当合⼒是变⼒时;(3)。
特别提醒:(1)在运⽤公式求功时,F必须是恒⼒,l是⼒的作⽤点对地的位移,有时与物体的位移不相等。
(2)功是标量,有正、负,正功表⽰该⼒是物体前进的动⼒,能使物体动能增加,负功表⽰该⼒是物体前进的阻⼒,能使物体动能减⼩。
动能定理和能量守恒定律专题
动能定理和能量守恒定律专题1、水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。
现对木箱施加一拉力F ,使木箱做匀速直线运动。
设F 的方向与水平面夹角为θ,如图,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则A. F 先减小后增大B. F 一直增大C. F 的功率减小D. F 的功率不变2、提高物体(例汽车)运动速率的有效途径是增大发动机的功率和减小阻力因数(设阻力与物体运动的速率的平方成正比,即F f =kv 2,k 是阻力因数)。
当发动机的额定功率为P 0时,物体运动的最大速率为v m ,如果要使物体运动的速率增大到2v m ,则下列办法可行的是( )A 、阻力因数不变,使发动机额定功率增大到2P 0B 、发动机额定功率不变,使阻力因数减小到k/4C 、阻力因数不变,使发动机额定功率增大到8P 0B 、发动机额定功率不变,使阻力因数减小到k/83、小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面。
在上升至离地高度h 处,小球的动能是势能的2倍,在下落至离高度h 处,小球的势能是动能的2倍,则h 等于( )A H/9B 2H/9C 3H/9D 4H/94、如图所示,两根倾斜平行放置的光滑导电轨道,轨道间接有电阻R ,处于垂直轨道平面的匀强磁场中,一根放置在轨道上的金属杆ab ,在沿平行轨道平面向上的拉力F 作用下,沿轨道匀速上滑,则在上滑过程中 ( )A .作用在ab 杆上所有力做功的代数和为零B .拉力F 和安培力做功的代数和等于ab 杆机械能增加量C .拉力F 和重力做功的代数和等于回路内能的增加量D .拉力F 所做功等于ab 杆机械能增加量 5、质量为m 的小车在水平恒力F 推动下,从山坡底部A处由静止起运动至高为h 的坡顶B,获得速度为v ,AB 的水平距离为s 。
下列说法正确的是 ( )A .小车克服重力所做的功是mghB .合力对小车做的功是12mv 2 C .推力对小车做的功是Fs -mghD .阻力对小车做的功是12mv 2+mgh -Fs 6、如图所示,BC 是半径为R 的1/4圆弧形的光滑且绝缘的轨道,位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为E 。
能量守恒定律与动能定理
能量守恒定律与动能定理能量守恒定律和动能定理是物理学中两个重要的概念,它们描述了能量在物体之间的转化和守恒规律。
本文将分别介绍能量守恒定律和动能定理的概念、公式及应用。
一、能量守恒定律能量守恒定律是指在一个封闭系统中,能量总量保持不变。
换言之,能量既不能被创造,也不能被消灭,只能从一种形式转化为另一种形式。
能量的形式包括动能、势能、热能等。
在物理学中,能量守恒定律可以通过以下公式表示:ΣE = E₁ + E₂ + E₃ + ... = 常数其中,ΣE表示系统中所有能量的总和,E₁、E₂、E₃等表示各个能量的形式。
能量守恒定律适用于各种物理现象,如机械、热力学、电磁学等。
例如,在一个绝热容器中,燃烧木材释放的化学能转化为热能,使容器内的气体温度升高。
虽然能量形式改变,但能量总量保持不变。
能量守恒定律在日常生活中也有许多应用。
例如,人体摄入的食物中的化学能转化为机械能,使人体得以进行各种活动。
再如,水坝蓄水时,水的势能增加,可以通过水轮机转化为机械能,用于发电。
二、动能定理动能定理是描述物体运动过程中能量转化的定律。
它指出,物体的净外力对物体产生的功等于物体动能的变化。
根据动能定理,可以得到以下公式:W_net = ΔK其中,W_net表示作用在物体上的净外力所做的功,ΔK表示物体动能的变化量。
动能是描述物体运动能力的物理量,它与物体的质量和速度有关。
动能的计算公式为:K = 1/2mv²其中,K表示动能,m表示物体的质量,v表示物体的速度。
动能定理可以应用于各种实际情况的分析。
例如,当一个物体受到恒定力的作用,在运动过程中,如果净外力对物体做正功,物体的动能将增加;如果净外力对物体做负功,物体的动能将减小。
动能定理也适用于碰撞过程的能量变化分析。
在碰撞中,物体之间发生相互作用,根据动能定理可以计算出物体的动能变化,进而了解碰撞前后的能量转换。
综上所述,能量守恒定律和动能定理是物理学中重要的概念和原理。
专题复习:动能定理、机械能守恒、能量守恒
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有, 说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P15410、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R的光滑圆柱,与圆柱轴心一样高的A球的质量为2m正好着地的B球质量是m,释放A球后,B球上升,则A球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A、B,且m=2m=2m由图示位置从静止开始释放A物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B所做的功。
专题复习:动能定理、机械能守恒、能量守恒
机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。
尤其是机械能能守恒和动能定理。
因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。
1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。
2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。
3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。
4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。
5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。
在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。
如果某一边没有,说明在那个状态的重力势能为零。
不管用什么公式,等号两边决不能既有重力做功,又有重力势能。
解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。
因为动能定理的研究对象在高中阶段通常是单个的物体。
相关的习题有:《讲义》P154 10、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R 的光滑圆柱,与圆柱轴心一样高的A 球的质量为2m ,正好着地的B 球质量是m ,释放A 球后,B 球上升,则A 球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R 的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A 、B ,且m A =2m B =2m ,由图示位置从静止开始释放A 物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B 所做的功。
能量守恒与动能定理
能量守恒与动能定理能量是物理学中的重要概念,它描述了物体的运动状态和作用。
守恒定律是能量的基本原理之一,而动能定理则是描述物体动能变化的定律。
能量守恒是指在一个封闭的系统中,能量的总量保持不变。
换句话说,能量可以从一种形式转化为另一种形式,但总能量不会增加或减少。
这一原理是基于物质和能量的等价性的,根据爱因斯坦的质能方程E=mc²,能量和质量是可以相互转化的。
在日常生活中,能量守恒定律无处不在。
例如,当我们举起一个物体并将其放下时,我们施加了能量,而当物体接触地面时,能量转化为动能和热能。
尽管能量的形式发生了改变,但总能量保持不变。
这个过程符合了能量守恒定律。
动能定理是描述物体运动状态变化的定律。
它表明物体的动能变化等于对物体的净功。
动能是物体具有的由于其运动而产生的能量,它与物体的质量和速度有关。
根据动能定理,当一个物体受到外力作用时,会对物体施加功。
功可以简单理解为力对物体做的工作。
当一个物体受到作用力时,力会改变物体的运动状态,并使其具有一定的速度。
这个过程中,物体的动能发生了变化。
动能定理告诉我们,动能的变化等于力对物体所做的功。
如果力的方向与物体运动方向相同,功为正,动能增加;如果力的方向与物体运动方向相反,功为负,动能减少。
动能定理的实际应用非常广泛。
例如,在机械能守恒中,我们可以利用动能定理来分析一个物体在沿斜面上滚动的过程。
在这个过程中,重力对物体做功,使其具有动能,而摩擦力对物体做负功,减少了物体的动能。
通过计算这些功,我们可以确定物体的最终速度和滚动距离。
此外,动能定理还可以用来解释运动中的其他现象,如碰撞和爆炸。
在碰撞过程中,物体之间会相互作用,转移动能。
动能定理可以帮助我们计算碰撞后物体的速度和能量损失。
在爆炸中,动能定理可以用来分析爆炸产生的压力波和物体的飞散情况。
总之,能量守恒与动能定理是物理学中重要的概念和定律。
它们描述了能量的转化和物体运动状态的变化。
能量守恒告诉我们能量是不会凭空消失或增加的,而动能定理则将力、功和动能联系在一起,帮助我们分析运动的过程和物体的行为。
动能定理动量定理和能量守恒定律
动能定理动量定理和能量守恒定律示例文章篇一:《神奇的物理定律世界》嘿!同学们,你们知道吗?在物理的世界里,有三个超级厉害的“大法宝”,那就是动能定理、动量定理和能量守恒定律!这三个家伙可神奇啦!先来说说动能定理吧!就好像我跑起来的时候,跑得越快,力气越大,能做的事儿就越多。
动能定理就是在说,合外力对物体做的功,等于物体动能的变化量。
这是不是有点像我们努力学习,付出的努力越多,收获的知识就越多?哎呀,我都有点佩服自己能想到这么形象的类比啦!再说动量定理,它就像是一场激烈的足球比赛。
球员踢球的力和作用时间,决定了球飞出去的速度和方向。
这和我们做事情不是很像吗?投入的力量和时间不一样,结果也大不相同。
能量守恒定律那就更神奇啦!就像我和小伙伴们玩游戏,能量在我们之间传来传去,但是总的能量却不会变多也不会变少。
比如说,我骑自行车从坡上冲下来,重力势能就变成了动能,这难道不奇妙吗?有一次上物理课,老师给我们讲了一个例子。
他说:“假如有一个小球从高处掉落,在这个过程中,动能和势能就在不断地变化,但是它们加起来的总和始终不变。
”老师刚说完,同桌小明就瞪大了眼睛说:“哇,这也太神奇了吧!”我也跟着点头:“就是就是,这物理定律也太有意思啦!”还有一次,我们小组一起做实验,研究动能定理。
小红负责记录数据,小刚在旁边帮忙调整仪器,我则紧张地观察着实验现象。
当我们看到实验结果和理论相符的时候,大家都兴奋得跳了起来。
小刚大喊:“看呀,这就是物理的魅力!”动能定理、动量定理和能量守恒定律,它们就像是三把神奇的钥匙,能打开物理世界中无数的秘密之门。
它们让我们知道,这个世界的运行是有规律可循的,一切都不是杂乱无章的。
我觉得呀,学习这些定理,不仅能让我们更了解这个世界,还能让我们变得更聪明,更有探索精神!难道不是吗?所以,让我们一起在物理的海洋里尽情遨游,去发现更多的神奇和奥秘吧!示例文章篇二:《神奇的物理世界:动能定理、动量定理和能量守恒定律》嘿!同学们,你们知道吗?在物理的奇妙世界里,有三个超级厉害的“大法宝”,那就是动能定理、动量定理和能量守恒定律!先来说说动能定理吧。
高中物理学习中的能量守恒与动能定理的原理解析
高中物理学习中的能量守恒与动能定理的原理解析在高中物理学习中,能量守恒与动能定理是两个重要的概念。
本文将对这两个原理进行解析,帮助读者更好地理解它们的含义和应用。
能量守恒是一个基本的物理定律,它表明在一个封闭系统内,能量总量保持不变。
也就是说,能量既不能被创造也不能被销毁,只能转化为其他形式。
这意味着系统内各种形式的能量之和保持恒定,这些形式包括动能、势能、内能等。
为了更好地理解能量守恒原理,我们可以举一个简单的例子:一个小球从斜坡上滚下来。
在开始滚下斜坡时,小球具有一定的势能,随着滚动的进行,势能逐渐转化为动能。
在滚到底部时,势能完全转化为动能,同时小球的速度达到最大值。
这个过程中,虽然能量的形式发生了转换,但能量的总量保持不变。
这个例子很好地展示了能量守恒原理。
动能定理是能量守恒原理的一个重要应用。
它将能量的变化与物体的运动状态联系起来。
根据动能定理,物体的动能变化等于物体所受作用力沿着物体位移的做功。
具体而言,动能变化等于作用力与位移的乘积,这个乘积通常被称为功。
动能定理可以简化力学问题的分析,特别是在研究物体的运动过程中。
通过计算物体所受的合外力沿着位移所做的功,我们可以确定物体的动能变化。
这对于分析运动中的能量转化和效率等问题非常有用。
举个例子来说明动能定理的应用。
假设一个小球以一定的速度碰撞到一个静止的小球,碰撞后第一个小球停止运动,而第二个小球开始运动。
根据动能定理,第一个小球的动能减少了,因为它停止了运动,而第二个小球的动能增加了,因为它开始运动。
这个例子再次验证了能量的转换和守恒原理。
综上所述,能量守恒和动能定理是高中物理学习中的重要概念。
能量守恒原理指出在一个封闭系统内能量总量保持不变,而动能定理将能量变化与物体的运动状态联系起来。
通过理解和应用这两个原理,我们可以更好地理解和分析物体的能量转换和运动过程。
这对于学习和掌握物理学知识具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题(四)动能定理与能量守恒一、大纲解读本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。
动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。
《大纲》对本部分考点要求为Ⅱ类有五个, 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。
考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。
它的特点:一般过程复杂、难度大、能力要求高。
还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。
所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。
在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。
二、重点剖析1、理解功的六个基本问题(1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。
而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。
(2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。
②用动能定理W=ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
(3)关于求功率问题:①tWP =所求出的功率是时间t 内的平均功率。
②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。
一般用于求某一时刻的瞬时功率。
(4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
(5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。
②滑动摩擦力做功与路径有关。
当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在两个接触面上因相对滑动而产生的热量相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触的两个物体的相对路程。
(6)做功意义的理解问题:做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化。
2.理解动能和动能定理(1) 动能221mV E k =是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。
(2)动能定理的表述:合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为K E mv mv W ∆=-=21222121合 动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
①不管是否恒力做功,也不管是否做直线运动,该定理都成立; ②对变力做功,应用动能定理要更方便、更迅捷。
③动能为标量,但21222121mv mv E K -=∆仍有正负,分别表动能的增减。
3.理解势能和机械能守恒定律(1)机械能守恒定律的两种表述①在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
②如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
(2) 对机械能守恒定律的理解①机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v ,也是相对于地面的速度。
②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
③“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功。
(3)系统机械能守恒的表达式有以下三种: ①系统初态的机械能等于系统末态的机械能 即:末初E E =或222121v m h mg mv mgh '+'=+或k p k p E E E E '+'=+②系统重力势能的减少量等于系统动能的增加量,即:K P E E ∆=∆-或0=∆+∆k P E E③若系统内只有A 、B 两物体,则A 物体减少的机械能等于B 物体增加的机械能,即:B A E E ∆=∆-或0=∆+∆B A E E 4.理解功能关系和能量守恒定律(1)做功的过程是能量转化的过程,功是能的转化的量度。
功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。
两者的单位是相同的(J ),但不能说功就是能,也不能说“功变成了能”。
(2)要研究功和能的关系,突出“功是能量转化的量度”这一基本概念。
①物体动能的增量由外力做的总功来量度,即:K E W ∆=外; ②物体重力势能的增量由重力做的功来量度,即:P G E W ∆-=;③物体机械能的增量由重力以外的其他力做的功来量度,即:E W ∆=/,当0/=W 时,说明只有重力做功,所以系统的机械能守恒;④一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触物的相对路程。
三、考点透视考点1:平均功率和瞬时功率例1、物体m 从倾角为α的固定的光滑斜面由静止开始下滑,斜面高为h ,当物体滑至斜面底端时,重力做功的功率为( ) A.gh mg 2 B.gh a mg 2sin 21⋅ C.a gh mg sin 2 D.a gh mg sin 2 解析:由于光滑斜面,物体m 下滑过程中机械能守恒,滑至底端是的瞬时速度gh v 2=,根据瞬时功率θcos Fv P =。
图1由图1可知,v F ,的夹角a -=090θ则滑到底端时重力的功率是gh a mg P 2sin ⋅=,故C 选项正确。
答案:C点拨:计算功率时,必须弄清是平均功率还是瞬时功率,若是瞬时功率一定要注意力和速度之间的夹角。
瞬时功率θcos Fv P =(θ为F ,v 的夹角)当F ,v 有夹角时,应注意从图中标明,防止错误。
考点2:机车起动的问题例2质量kg m 3100.4⨯=的汽车,发动机的额定功率为KW p 40=,汽车从静止以2/5.0s m a =的加速度行驶,所受阻力N F f 3100.2⨯=,则汽车匀加速行驶的最长时间为多少?汽车可能达到的最大速度为多少?解析:汽车从静止开始,以恒定加速度a 做匀加速直线运动.汽车匀加速行驶时,设汽车发动的牵引力为F ,汽车匀加速运动过程的末速度为v ,汽车匀加速运动的时间为t 根据牛顿第二定律:ma F F f =- ①由于发动机的功率:Fv p = ② 根据运动学公式:at v = ③ 由①②③式得:s ma F a pt f 20)(=+=当汽车加速度为零时,汽车有最大速度m v ,则:s m F pv fm /20==点拨:汽车的速度达到最大时,一定是机车的加速度为零,弄清了这一点,利用平衡条件就很容易求出机车的最大速度。
汽车匀加速度运动能维持多长时间,一定是机车功率达到额定功率的时间,弄清了这一点,利用牛顿第二定律和运动学公式就很容易求出机车匀加速度运动能维持的时间。
考点3:动能定理的应用 例3如图2所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为0s ,以初速度0v 沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?图2解析:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。
在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。
设其经过和总路程为L , 对全过程,由动能定理得:200210cos sin mv aL mg a mgS -=-μ 得:amg mv a mgS L cos 21sin 200μ+=点拨:物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。
考点4:会用相对滑S F Q =解物理问题例4如图4-2所示,小车的质量为M ,后端放一质量为m 的铁块,铁块与小车之间的动摩擦系数为μ,它们一起以速度v 沿光滑地面向右运动,小车与右侧的墙壁发生碰撞且无能量损失,设小车足够长,则小车被弹回向左运动多远与铁块停止相对滑动?铁块在小车上相对于小车滑动多远的距离?图4-2解析:小车反弹后与物体组成一个系统满足动量守恒,规定小车反弹后的方向作向左为正方向,设共同速度为x v ,则: x v m M mv Mv )(+=- 解得: v mM m M v x +-=以车为对象,摩擦力始终做负功,设小车对地的位移为车S , 则: -车222121Mv Mv mgS x -=μ 即:222)(2m M g v M S +μ=车;系统损耗机械能为: 相fS Q E ==∆22)(21)(21x v m M v m M mgS +-+=相μgm M Mv S )(22+μ=相; 点拨:两个物体相互摩擦而产生的热量Q (或说系统内能的增加量)等于物体之间滑动摩擦力f 与这两个物体间相对滑动的路程的乘积,即相对滑S F Q =.利用这结论可以简便地解答高考试题中的“摩擦生热”问题。
四、热点分析 热点1:动能定理例1、半径cm R 20=的竖直放置的圆轨道与水平直轨道相连接。