2013年秋七年级(人教版)集体备课导学案:1.4有理数的乘除法(2)
最新人教版七年级数学上册精品教案1.4有理数的乘除法(第2课时)
最新初中数学精品资料设计
最新初中数学精品资料设计 - 1 - 1.4有理数的乘除法
第2课时
教学目标:
1、经历探索多个有理数乘法过程,发展学生观察、归纳、猜测的能力
2、理解并掌握有理数乘法的运算步骤
3、能运用乘法法则计算,进一步提高学生的运算能力
教学重难点:
重点:多个有理数相乘的顺序,以及积的符号与负因数的个数关系
难点:积的符号由负因数的个数确定
教学过程:
一、创设情境,引入新课
“思考”
观察下列各式,它们的积是正的还是负的?
2×3×4×(-5) 2×3×(-4)×(-5)
2×(-3)×(-4)×(-5) (-2)×(-3)×(-4)×(-5)
几个不是0的数的相乘,积的符号与负因数的个数之间有什么关系?
请四位同学起来回答四个式子的结果。
从中我们可以观察出积的符号是由负因数的个数确定的。
师生归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
二、讲授例题
问题:从例3中,多个不是0的数相乘,先做哪一步,再做哪一步?
可以得出:先确定积的符号,再求各个绝对值的积。
课本 “思考”,从思考中,我们可以得出几个数相乘,如果其中有因数为0,积就等于0。
三、巩固知识
练习
四、总结
本节课主要学习了多个有理数相乘的运算步骤以及顺序,并掌握积的符号由负因数的个数确定。
五、布置作业。
人教版七年级上册1.4有理数的乘除法课程设计 (2)
人教版七年级上册1.4有理数的乘除法课程设计课程目标通过本课程的学习,学生应该能够:1.理解有理数的乘法和除法运算的定义和基本性质;2.掌握有理数的乘法和除法的运算方法;3.能够正确计算有理数的乘法和除法运算题目;4.能够将实际问题转化为数学表达式,并正确计算出结果。
教学重点和难点教学重点1.有理数的乘法运算;2.有理数的除法运算。
教学难点1.对于乘法和除法运算,需要掌握抽象概念和实际问题转化的能力;2.程序设计和编写。
教学内容1.乘法运算1.1 有理数的乘法定义有理数a与b的乘积可以表示为 $a \\times b$,其中a和b都是有理数。
如果a和b的符号相同,则它们的乘积是正数;如果a和b的符号不同,则它们的乘积是负数。
1.交换律:$a \\times b = b \\times a$;2.结合律:$(a \\times b) \\times c = a \\times (b \\times c)$;3.分配律:$a \\times (b + c) = a \\times b + a \\times c$。
1.3 有理数的乘法运算方法1.同号相乘得正,异号相乘得负;2.记录一下相乘前后的符号,乘数与被乘数相乘后去掉符号,再添加上符号即可。
1.4 有理数的乘法应用1.计算 $\\dfrac{2}{3} \\times \\dfrac{5}{6}$;2.计算 $(-\\dfrac{2}{5}) \\times (-\\dfrac{3}{4})$;3.计算 $(-25) \\times (\\dfrac{-4}{5})$。
2.除法运算2.1 有理数的除法定义有理数a与b的商可以表示为 $\\dfrac{a}{b}$,其中a和b都是有理数,且b eq0。
如果a和b的符号相同,则它们的商是正数;如果a和b的符号不同,则它们的商是负数。
2.2 有理数的除法基本性质1.除法的定义不能改变;2.乘法与除法互逆:若b eq0,则 $\\dfrac{a}{b} \\times b = a$;3.不等式的正、负翻转。
人教版七年级数学上册导学案:1.4有理数的乘除法
课题: 1.4.1 有理数的乘法知识技能1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.培养学生能用乘法解决简单的实际问题.重点难点重点:有理数的乘法法则难点:积的符号的确定导学过程预习导航阅读课本第 28 页至 30 页的部分,完成以下问题.收获和疑惑活动一【新课引入】请学生观察下列式子:(1)(+2)×(+3)=+6(2)(-2)×(+3)=-6(3)(+2)×(-3)=-6(4)(-2)×(-3)=+6可以得出什么结论?根据对有理数乘法的思考,总结填空:正数乘正数积为__正_ 数负数乘正数积为__负__数正数乘负数积为__负__数负数乘负数积为__正__数乘积的绝对值等于各乘数绝对值的__积__问题:当一个因数为0时,积是多少?学生回答:积为0师生归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
注意:1、上面的法则是对于只有两个因子相乘而言的。
2、做乘法的步骤是:先确定积的符号,再确定积的绝对值。
t预习导航活动二【探究新知】(1)商店降价销售某种产品,若每件降5元,售出60件,问与降价前比,销售额减少了多少?(2) 商店降价销售某种产品,若每件提价-5元,售出60件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价a元,售出60件,问与提价前比,销售额增加了多少?〖探索2〗(1)登山队攀登一座高峰,每登高1km,气温下降6℃,登高3km后,气温下降多少?(2)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高3km后,气温上升多少?(3)登山队攀登一座高峰,每登高1km,气温上升-6℃,登高-3km后,气温有什么变化?〖探索3〗(1)2×3=__;(2)-2×3=__;(3)2×(-3)=___;(4)(-2)×(-3)=____;(5)3×0=_____;(6)-3×0=_____.〖法则归纳〗两数相乘,同号得______,异号得_______,并把________相乘.任何数同0相乘,都得______.活动三【讨论交流】1.我们归纳的有理数乘法法则是什么?2.乘积是1的两个数互为倒数吗?预习导航活动四【解决问题】例1:教材例1.解:【巩固练习】1.课本第 30 页练习第1题.2.计算:(1)-3×4; (2)(-112)×(-23);(3)-234×211(4)-199929×0.3.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?活动五【小结】说说你学习本节课的收获.【作业设计】1.课本P30 练习1、2、3题2. 求下列各数的倒数(1)-3; (2)-15 ; (3)-212 .(4)已知|2x+3|+(y-23)²ºº²=0,求-xy.3.用正、负数分别表示提价与降价,提价记为正,降价记为负,若每件商品降价5元,售出60件后,与按原价销售同样数量的商品相比,销售额有何变化?课题: 1.4.2有理数的除法教学目标1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行有理数的除法运算;2.了解倒数概念,会求给定有理数的倒数;3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过有理数的除法运算,培养学生的运算能力。
七年级数学上册第一章有理数1.4有理数的乘除法1.4.1有理数的乘法(二)导学案新版新人教版
1.4.1 有理数的乘法(二)1.探索多个有理数相乘的符号确定法则;2.会进行有理数的乘法运算;3.通过对问题的探索,培养观察、分析和概括的能力.重点:多个有理数相乘运算符号的确定;难点:正确进行多个有理数的乘法运算.一、温故知新1.有理数乘法法则:2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-4)+(-6)C .0×(-2)D .(-7)-(-10)3.计算:(1)(-114)×(-45); 解:原式=+(54×45)=1; (2)(-213)×(-6); 解:原式=73×6=14; (3)-320×56. 解:原式=-(320×56)=-18. 二、自主学习1.观察:下列各式的积是正的还是负的?2×3×4×(-5);2×3×(-4)×(-5);2×(-3)×(-4)×(-5);(-2)×(-3)×(-4)×(-5). 思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数. 2.新知应用例题3(P31)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?先确定符号,再算绝对值.你能看出下列式子的结果吗?如果能,理由几个数相乘,如果其中有因数为0,那么积等于0.7.8×(-8.1)×0×(-19.6).1.计算:(课本P32练习1,2)1.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.2.几个数相乘,如果其中有一个因数为0,积等于0.一、选择题1.若干个不等于0的有理数相乘,积的符号( C )A .由因数的个数决定B .由正因数的个数决定C .由负因数的个数决定D .由负因数和正因数个数的差决定2.下列运算结果为负值的是( B )A .(-7)×(-6)B .(-6)+(-4)C .0×(-2)(-3)D .(-7)-(-15) 3.下列运算错误的是( B )A .(-2)×(-3)=6B .(-12)×(+6)=3 C .(-5)×(-2)×(-4)=-40D .(-3)×(-2)×(-4)=-24二、计算:(1)(-2)×54×(-910)×(-23); 解:原式=-32; (2)(-6)×5×(-76)×27; 解:原式=10;(3)(-4)×7×(-1)×(-0.25);解:原式=-7;(4)(-524)×815×(-32)×14; 解:原式=124; (5)(-112)×(-113)×(-114)×(-115)×(-116)×(-117). 解:原式=32×43×54×65×76×87=4.。
七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》
七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》一. 教材分析《有理数的乘法(2)》这一节内容,是在学生已经掌握了有理数乘法的基本法则的基础上进行深入学习的。
本节内容主要让学生进一步理解有理数乘法的运算规律,能够熟练地进行有理数的乘法运算,并能够解决一些实际问题。
二. 学情分析七年级的学生已经掌握了有理数乘法的基本法则,对于有理数的乘法运算有一定的了解和认识。
但是在进行复杂的乘法运算时,部分学生可能会出现运算混乱,对运算规律理解不深的情况。
因此,在教学过程中,需要引导学生深入理解乘法运算的规律,提高运算的准确性。
三. 教学目标1.让学生进一步理解有理数乘法的运算规律。
2.培养学生熟练进行有理数乘法运算的能力。
3.培养学生解决实际问题的能力。
四. 教学重难点1.有理数乘法的运算规律。
2.复杂有理数乘法运算的准确性。
五. 教学方法采用问题驱动法,引导学生通过自主学习,合作交流,发现和总结有理数乘法的运算规律。
同时,通过例题讲解,让学生掌握有理数乘法运算的方法,提高运算的准确性。
六. 教学准备3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,让学生思考如何利用有理数乘法来解决这些问题。
通过问题驱动,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示有理数乘法的运算规律,引导学生进行自主学习,合作交流,发现和总结运算规律。
3.操练(10分钟)让学生进行一些有理数乘法的练习,巩固所学知识。
教师可以通过巡堂的方式,及时发现和纠正学生的错误。
4.巩固(10分钟)通过PPT展示一些复杂的有理数乘法运算,让学生独立完成。
教师可以选取一些典型的错误,进行讲解和分析。
5.拓展(10分钟)让学生尝试解决一些实际问题,运用所学的有理数乘法知识。
教师可以给予适当的引导和帮助。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有理数乘法的练习题,让学生进行巩固。
七年级(人教版)集体备课教学设计:1.4.2《有理数的除法(2)》
七年级(人教版)集体备课教学设计:1.4.2《有理数的除法(2)》一. 教材分析《有理数的除法(2)》这一节的内容是在学生已经掌握了有理数的加减乘除的基础上进行学习的,目的是让学生掌握有理数除法的基本运算方法,并能够熟练地进行计算。
教材通过例题和练习题的形式,让学生在实际操作中掌握有理数除法的运算规则。
二. 学情分析七年级的学生已经掌握了有理数的加减乘除的基本运算,但是对于除法运算的理解仍然有所欠缺,特别是在处理负数除法的时候,容易出错。
因此,在教学这一节的时候,需要让学生通过实际的操作,理解除法运算的规则,并能够熟练地进行计算。
三. 教学目标1.让学生掌握有理数除法的基本运算方法。
2.让学生能够熟练地进行有理数除法的计算。
3.让学生理解除法运算的规则,并能够灵活运用。
四. 教学重难点1.教学重点:让学生掌握有理数除法的基本运算方法,并能够熟练地进行计算。
2.教学难点:让学生理解除法运算的规则,特别是在处理负数除法的时候。
五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,让学生在实际操作中掌握有理数除法的运算规则。
六. 教学准备1.教学PPT2.粉笔、黑板七. 教学过程1.导入(5分钟)通过复习有理数的加减乘除的基本运算,引出有理数的除法运算,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现教材中的例题和练习题,让学生直观地看到有理数除法的运算过程。
3.操练(10分钟)教师通过示范和讲解,让学生跟随老师一起完成一些有理数除法的运算,让学生在实际操作中掌握有理数除法的运算规则。
4.巩固(10分钟)学生独立完成教材中的练习题,教师巡回指导,帮助学生巩固有理数除法的运算方法。
5.拓展(10分钟)教师通过出示一些有理数除法的实际问题,让学生进行讨论和解答,提高学生解决问题的能力。
6.小结(5分钟)教师引导学生对这一节课的学习内容进行小结,帮助学生梳理知识,形成体系。
人教版七年级数学上册第一章《有理数》导学案:1.4有理数的乘除法
《§1.4.1 有理数的乘法( 1)》教教案教课目的: 1.认识有理数乘法的意义,掌握有理数的乘法法例2.掌握倒数的观点,并会利用互为倒数的两数关系进行乘法简易运算3.培育学生察看、归纳、归纳及运算能力教课要点:掌握有理数的乘法法例教课难点:灵巧运用法例进行有理数乘法运算教课流程一、新知研究(仔细阅读课本第28~30 页填写)1.有理数乘法法例:两数相乘,同号得,异号得并把绝对值;任何数同 0 相乘,都得.2.倒数的定义及求法(1)定义:乘积为的两个数互为倒数,0倒数,±1 的倒数是.,漫笔(2)求法:数a(a0) 的倒数为.3.有理数乘法运算的步骤:先确立积的,再求出积的.4.模拟例题做一做:(1) 2( 5)(2) (3)( 4)(3) ( 1.5)8(4) 3( 6)(5) (3)(7)(6) 4 0.25 473二、稳固新知:课本第 30 页练习 1、2、3三、反应测试1.7 (8)2.(5) (6)31.2 9 4.(7)( 4)8355. 1536. 0.4 ( 12)7.10( 3 )10358.( 1) (1 )9. 21( 12)10.( 11)(2)323723四、小结:我学会了;我的疑惑是五、作业:课本第 38 页习题 1、2、3(写在作业本上)课后思虑:请先阅读以下一段内容,而后解答问题。
由于:1211 ,11 1 ,11 1 ,,11 1 ,1 2 232 3 3434910910因此: 11213191(11) (1 1) (1 1)(11 ) 23410223349101111111 12334910 21911010计算:( 1)121112009123342008(2)111113 3 5 5 74951六、学后反省:《§1.4.1 有理数的乘法( 2)》教教案教课目的: 1.掌握含多个有理数相乘的乘法法例2.掌握有理数乘法的运算律,并利用运算律简化运算教课要点:掌握含多个有理数相乘的乘法法例教课难点:灵巧运用法例进行有理数乘法运算教课流程漫笔一、知识回首1.计算(1) 3 15 (2)( 27()3) 0.75()2)(8)3(4( 2.5) 164252.填空:( 1)11 的倒数是2; 1 的相反数的倒数是3;( 2)0.15的倒数是; 1 2 的绝对值的倒数是.9二、新知研究(请仔细阅读课本第31 页到第 33 页,并填写下边内容)1.几个不是 0 的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数;假如一个因数是0,积等于2.有理数的乘法运算律(1)乘法互换律:两个数相乘,互换,。
初中数学七年级上册有理数乘法的运算律及运用导学案
第一章有理数1.4 有理数的乘除法1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用学习目标:1.掌握乘法的分配律,并能灵活的运用.2.掌握有理数乘法的运算律,并利用运算律简化乘法运算.重点:有理数的乘法运算律及其应用.难点:分配律的运用.一、知识链接1.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘.一个数同0相乘,仍得________.2.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.3.小学学过的乘法运算律:(1)___________________________________.(2)___________________________________.(3)___________________________________.二、新知预习1.填空(1)(-2)×4=_______ , 4×(-2)=________.(2)[(-2)×(-3)]×(-4)=_____×(-4)=______ , (-2)×[(-3)×(-4)]=(-2)×_____=_______.(3) (-6)×[4+(-9)]=(-6)×______=_______, (-6)×4+(-6)×(-9)=____+____=_______;2.观察上述三组式子,你有什么发现?【自主归纳】在有理数的范围内,乘法的交换律和结合律,以及乘法对加法的分配律仍然适用.(1)乘法交换律:两个有理数相乘,交换因数的位置,积不变.用字母表示为:ab ba=.(2)乘法结合律:对于三个有理数相乘,可以先把前面两个数相乘,再把结果与第三个数相乘;或者先把后两个数相乘,再把第一个数与所得结果相乘,积不变.用字母表示为:()()=.ab c a bc(3)乘法对加法的分配律:一个有理数与两个有理数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.三、自学自测计算(1)85254(-)(-)(-);(2)151⨯⨯(-2)(-);(3)91⨯⨯-⨯;()301015四、我的疑惑________________________________________________________________________________ ______________________________________________________________________一、要点探究探究点1:有理数乘法的运算律第一组:(1) 2×3=6 3×2=62×3 = 3×2(2) (3×4)×0.25=3 3×(4×0.25)=3(3×4)×0.25= 3×(4×0.25)(3) 2×(3+4)=14 2×3+2×4=142×(3+4)=2×3+2×4思考:上面每小组运算分别体现了什么运算律?第二组:(1) 5×(-6) = -30 (-6 )×5=-305× (-6) = (-6) ×5(2) [3×(-4)]×(- 5)=(-12)×(-5) =603×[(-4)×(-5)]=3×20=60(3) 5×[3+(-7 )]=5×(-4)=-20 5×3+5×(-7 )=15-35=-20 5×[3+(-7 )] = 5×3+5×(-7 )结论:(1)第一组式子中数的范围是________;(2)第二组式子中数的范围是________;(3)比较第一组和第二组中的算式,可以发现____________________________. 归纳总结1.乘法交换律:ab =ba2.乘法结合律:(ab)c = a(bc)3.乘法分配律:a(b +c)=ab +ac ,a(b +c +d )=ab +ac +ad例1 用两种方法计算 (41+61-21)×12练一练:计算:① (-8)×(-12)×(-0.125)×(-31 )×(-0.1) ② 60×(1-21-31-41) ③ (-43 )×(8-131 -4 ) ④ (-11)×(-52)+(-11)×2 53 +(-11)×(-51 )例2 下面的计算有错吗?错在哪里?(-24)×( 31 - 43 + 61 - 85 )解:原式=-24×31-24×43+24×61-24×85 =-8-18+4-15=-41+4=-37易错提醒:1.不要漏掉符号;2.不要漏乘.1.计算(1) 60×(1-21-31- 41) ; (2)5(8)(7.2)( 2.5)12-⨯-⨯-⨯.2.计算(1)(-426)×251-426×749; (2)95×(-38)-95×88-95×(-26).1.计算(-2)×(3-2),用分配律计算过程正确的是( )A.(-2)×3+(-2)×(-12) B.(-2)×3-(-2)×(-12)C.2×3-(-2)×(-12) D.(-2)×3+2×(-12)2.计算:3.计算:。
七年级(人教版)集体备课说课稿:1.4.2《有理数的除法(2)》
七年级(人教版)集体备课说课稿:1.4.2《有理数的除法(2)》一. 教材分析《有理数的除法(2)》这一节内容,是在学生已经掌握了有理数的加减乘除运算的基础上进行学习的。
在本节内容中,我们将进一步学习有理数的除法运算,使学生能够熟练掌握有理数的四则运算,为后续学习更高级的数学知识打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的加减乘除运算,但对于除法运算的理解还不够深入,特别是在处理一些特殊情况下,可能会出现困惑。
因此,在教学过程中,我们需要引导学生深入理解除法运算的规律,并通过大量的练习,使学生能够熟练运用。
三. 说教学目标1.知识与技能目标:使学生掌握有理数的除法运算,能够熟练运用有理数的四则运算解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 说教学重难点1.教学重点:有理数的除法运算规则。
2.教学难点:处理一些特殊情况下有理数的除法运算。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。
2.教学手段:利用多媒体课件、黑板、粉笔等教学工具。
六. 说教学过程1.导入新课:通过复习有理数的加减乘除运算,引出有理数的除法运算。
2.自主学习:让学生自主探究有理数的除法运算规则,引导学生发现规律。
3.合作交流:学生分组讨论,分享各自的发现,解决存在的问题。
4.教师讲解:针对学生的讨论,教师进行讲解,解答学生的疑问。
5.练习巩固:布置相关的练习题,让学生进行巩固练习。
6.课堂小结:对本节课的内容进行总结,强调重点知识点。
七. 说板书设计板书设计如下:1.有理数的除法运算规则2.特殊情况下有理数的除法运算八. 说教学评价通过对学生的课堂表现、作业完成情况、练习成绩等方面的评价,来评价学生的学习效果。
九. 说教学反思在教学过程中,要时刻关注学生的学习情况,针对不同学生的学习状况,进行有针对性的教学。
七级数学上册1.4有理数的乘除法1.4.2有理数的除法(2)教案(新版)新人教版
课题: 1.4.2 有理数的除法 (2)教课目的:1. 掌握有理数加、减、乘、除运算的法例,运算次序,可以娴熟运算.2.能运用法例解决实质问题 .要点:如何按有理数的运算次序,正确而合理地进行计算.难点:如何按有理数的运算次序,正确而合理地进行计算.教课流程:一、知识回首问题 1:有理数除法法例:答案:除以一个不等于0 的数,等于乘这个数的倒数.即: a÷ b= a·1( b≠0)b或:两数相除,同号得正,异号得负,并把绝对值相除. 0除以任何一个不等于 0 的数,都得 0.问题 2:化简以下分数 .(1)72320_____; (2)_____; (3)_____. 86516答案:- 9;;0二、研究1例 1计算: (1)( 125 5) ( 5) 7追问:如何计算简易呢?答案:运用分派律简化运算.5解:( 125) ( 5)7(125 5)1 7 51251 51 5 75251 72517练习 1:下边是小明和小红达成的同一道除法计算题:74691671小明: ( - 4211) ÷7=-11×7=-11=-611;77117111小红: ( - 4211) ÷7= ( -42-11) ×7=- 42×7-11×7=- 6-11=- 611.(1) 你以为的方法简易;6(2)依据简易方法计算 ( -48 ) ÷( - 6). 13答案:小红66116111解: (2)( -48 ) ÷( - 6)=(48+) ×=48×+×=8+= 81313661361313三、研究 2例 1计算: (2) 2.5 5 ( 1 )84解: 2.5 5 ( 1 )845812541追问:乘除混淆运算,应如何进行计算呢?答案:先将除法转变为乘法;而后确立积的符号;最后求出结果.练习 2:1. 以下计算不正确的选项是( )1A.12×( -3) ÷( - 4) = 9B.( -6) ÷2×( -2) =6C.( -5) ÷( -1) ×5= 125D.( -2) ÷( -10) ×( - 31)=-2533答案: B2. 填空:(1)( -48) ×3÷( -6) ÷( - 8) = ______.(2)( -6) ×( -5) ×0÷( - 30) = ______.答案:- 3; 03. 计算:(1)5( 4)(1) ;(2)2 (2)(4)( 44) 4775解:(1)5(4) (1)4 54480(2)2( 2 )(4)( 4 4 )7752745 272456四、研究 3例 2计算: (1)-8+4÷( - 2) ;(2)( -7) ×( - 5) -90÷( - 15)追问:有理数的加减乘除混淆运算该如何进行呢?答案:先乘除,后加减.解:(1) -8+4÷( - 2)=- 8+( -2)=- 10(2)( -7) ×( - 5) -90÷( - 15)=35-( -6)=35+ 6=41练习 3:1. 计算 3-2×( - 1) 等于 ( )A.5B.1C.- 1D.6答案: A112. 计算6×( -6) ÷( -6) ×6- 6 等于 ()A. -5B.-36C.30D.- 6答案: C3. 计算: (1)60 ÷( - 15) -6×( - 5) ; 2 - 152+(- 3) 0.12534解:(1)60 ÷( - 15) -6×( - 5) =- 4-( -30) =- 4+ 30 = 262152(3) 0.1253410 (3)8 410 ( 6)16五、应用提升1. 某班举行数学知识比赛,共分5 个小组,此中 4 个小组的成绩以下表所示:小组 第一组第二组 第三组 第四组人数15 13 14 12 小组均匀分与全班均匀分的差值4-3- 21(1) 这四个小组的总均匀分比全班均匀分高仍是低?为何?(2) 依据 (1) 你能判断第五组的均匀分比全班均匀分高,仍是低?解: (1) 高.∵ 4×15+ ( -3) ×13+ ( -2) ×14+1×12= 5又∵5>0∴这四个小组的总均匀分比全班均匀分高.(2) 由(1) 可知,前四个小组的总均匀分比全班均匀分高,因此第五组的均匀分要比全班均匀分低.2. 某企业昨年 1~ 3 月均匀每个月损失 1.5 万元, 4~ 6 月均匀每个月盈余 2 万元, 7~10 月均匀每个月盈余 1.7 万元, 11~ 12 月均匀每个月损失 2.3 万元,这个企业昨年总的盈亏状况如何?解:设盈余额为正数,损失额为负数.则企业昨年整年盈亏额( 单位:万元 ) 为:( -1.5) ×3+2×3+1.7 ×4+ ( -2.3) ×2=- 4.5 + 6+ 6.8 -4.6= 3.7答:这个企业昨年整年盈余 3.7追问:你会用科学计算器计算“万元.( -1.5)×3+2×3+1.7 ×4+( -2.3)×2”这个式子吗?科学计算器指出:是符号键式子 ( -1.5)×3+2×3+1.7 ×4+( -2.3)×2 的按键次序:六、体查收获今日我们学习了哪些知识?1.有理数乘除混淆运算应如何计算?2.如何进行有理数的加减乘除混淆运算?七、达标测评11. 计算 1÷( -9) ×( - 9) 的结果是 ()A.1B.-1C.81D.- 81答案: C2.以下计算正确的选项是 ( )4 31A. -1÷ 3× 4=- 1B.-8×[ - ( - 4)]= 2C.2-2×5= 01 51D.- 8- 8÷ 3=- 2答案: D3.两个不一样的有理数 a, b 在数轴上的对应点到原点的距离相等,则以下结论错误的选项是( )aA. ab = 0B. a + b = 0C. b =- 1D.| a | = | b |答案: A4. 如图, A , B 两点在数轴上表示的数分别为a ,b ,以下式子建立的是 ( )aB. a - b > 0C.a ( b - 1) < 0D.( b - 1)( a + 1) < 0A. b > 0答案: C5. 计算下边各题 .(1)6 ( 12) ( 3); (2)3 ( 4)( 28)7;(3)(48) 8 ( 25)( 6); (4)42 ( 2) (3) ( 0.25).34答案: 2;- 16;- 156;- 256. 填在下边各正方形中的四个数之间都有同样的规律,依据这类规律,m 的值是_______.答案: 158八、部署作业教材 38 页习题 1.4 第 7(4)(5)(6)、8(1)(2)题.。
人教版七年级上册数学教学案:1.4 有理数的乘除法
1.4.1 有理数的乘法(1)第一课时三维目标一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法.二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力.三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系.教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算.2.难点:两负数相乘,•积的符号为正与两负数相加和的符号为负号容易混淆. 3.关键:积的符号的确定.教具准备投影仪.四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.l(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中“2cm”记作“+2cm”,“3分后”记作“+3分”.(1)3分后..6cm处.(如课本图1.4-2)..蜗牛应在L上点O右边这可以表示为(+2)×(+3)=+6 ①(2)3分后..6cm处.(如课本图1.4-3)..蜗牛应在L上点O左边这可以表示为(-2)×(+3)=-6 ②(3)3分前..6cm处.(如课本图1.4-4)..蜗牛应在L上点O左边[讲问题(3)时可采用提问式:已知现在蜗牛在点O处,•而蜗牛是一直向右爬行的,那么3分前蜗牛应在什么位置?]这可以表示为(+2)×(-3)=-6 ③(4)蜗牛是向左爬行的,现在在O点,所以3分前..6cm处(•..蜗牛应在L上点O右边如课本图1.4-5).这可以表示为(-2)×(-3)=+6 ④观察①~④,根据你对有理数乘法的思考,完成课本第39页填空.归纳:两个有理数相乘,积仍然由符号和绝对值两部分组成,①、④式都是同号两数相乘,积为正,②、③式是异号两数相乘,积为负,①~④式中的积的绝对值都是这两个因数绝对值的积.也就是两数相乘,同号得正,异号得负,并把绝对值相乘.此外,我们知道2×0=0,那么(-2)×0=?显然(-2)×0=0.这就是说:任何数同0相乘,都得0.综上所述,得有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.进行有理数的乘法运算,关键是积的符号的确定,计算时分为两步进行:•第一步是确定积的符号,在确定积的符号时要准确运用法则;第二步是求绝对值的积.如:(-5)×(-3),……(同号两数相乘)(-5)×(-3)=+(),……得正5×3=15,……把绝对值相乘所以(-5)×(-3)=15又如:(-7)×4……________(-7)×4=-(),……_________7×4=28,……__________所以(-7)×4=-28例1:计算:(1)(-3)×9;(2)(-12)×(-2);(3)0×(-5317)×(+25.3);(4)123×(-115).例1可以由学生自己完成,计算时,按判定类型、确定积的符号,•求积的绝对值.(3)题直接得0.(4)题化带分数为假分数,以便约分.小学里,两数乘积为1,这两个数叫互为倒数.在有理数中仍然有:乘积是1的两数互为倒数.例如:-12与-2是互为倒数,-35与-53是互为倒数.注意倒数与相反数的区别:两数互为倒数,积为1,它们一定同号;•两数互为相反数,和为零,它们是异号(0除外),另外0没有倒数,而0的相反数为0.数a(a≠0)的倒数是什么?1除以一个数(0除外)得这个数的倒数,所以a(a≠0)的倒数为1a.例2:用正负数表示气温的变化量,上升为正,下降为负,•登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?解:本题是关于有理数的乘法问题,根据题意,(-6)×3=-18由于规定下降为负,所以气温下降18℃.六、巩固练习课本第30页练习.1.第2题:降5元记为-5元,那么-5×60=-300(元)与按原价销售的60件商品相比,销售额减少了300元.2.第3题:1和-1的倒数分别是它们的本身;13,-13的倒数分别为3,-3;5,-5•的倒数分别为15,-15;23,-23的倒数分别是32,-32;此外,1与-1,13与-13,5与-5,2 3与-23是互为相反数.七、课堂小结1.强调运用法则进行有理数乘法的步骤.2.比较有理数乘法的符号法则与有理数加法的符号法则的区别,•以达到进一步巩固有理数乘法法则的目的.八、作业布置1.课本第38页习题1.4第1、2、3题.九、板书设计:1.4.1 有理数的乘法(1)第一课时1、两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.2、随堂练习。
七年级(人教版)集体备课教学设计:1.4.1《有理数的乘法(2)》
七年级(人教版)集体备课教学设计:1.4.1《有理数的乘法(2)》一. 教材分析《有理数的乘法(2)》这一节内容,是在学生已经掌握了有理数的概念、加法、减法、除法的基础上进行学习的。
本节内容主要让学生掌握有理数的乘法法则,并能够熟练地进行计算。
教材通过例题和练习,帮助学生理解和掌握有理数乘法的基本规律,培养学生的运算能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和基本运算有一定的了解。
但是,学生在运算过程中,可能会对有理数乘法的规则理解不深,导致计算错误。
因此,在教学过程中,需要教师通过生动的例子和实际的操作,让学生深刻理解有理数乘法的规律。
三. 教学目标1.理解有理数乘法的基本规则,掌握有理数乘法的运算方法。
2.能够熟练地进行有理数的乘法计算。
3.培养学生的运算能力,提高学生的数学思维能力。
四. 教学重难点1.教学重点:有理数乘法的基本规则,有理数乘法的运算方法。
2.教学难点:有理数乘法规则的理解和运用。
五. 教学方法采用讲授法、示范法、练习法、讨论法等教学方法。
通过教师的讲解和示范,让学生理解有理数乘法的规则;通过练习和讨论,让学生巩固所学知识,提高运算能力。
六. 教学准备1.准备相关的教学PPT,展示例题和练习题。
2.准备黑板,用于板书和展示解题过程。
3.准备练习题,用于课堂练习和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式,复习旧知识,引导学生进入新课程。
提问内容可以包括:什么是有理数?有理数可以进行哪些运算?学生回答后,教师总结并引入有理数的乘法。
2.呈现(10分钟)教师通过PPT展示有理数乘法的定义和基本规则,让学生初步了解有理数乘法的基本概念。
然后,通过例题,讲解有理数乘法的运算方法,让学生掌握有理数乘法的计算步骤。
3.操练(10分钟)教师让学生在课堂上进行有理数乘法的计算练习。
教师可以设置一些具有代表性的题目,让学生独立完成。
期间,教师可以巡视课堂,解答学生的疑问,指导学生的计算方法。
人教版-数学-七年级上册-1.4有理数的乘除法教案
1.4有理数的乘除法1.4.1有理数的乘法(2课时)第1课时有理数的乘法教学目标1.掌握有理数的乘法法则,能利用乘法法则正确进行有理数乘法运算.2.经历探索有理数乘法法则的过程,发展观察、归纳、猜测、验证等能力.3.通过合作学习调动学生学习的积极性,增强学习数学的自信。
教学重难点重点:运用有理数的乘法法则正确进行计算.难点:有理数乘法法则的探索过程及对法则的理解.教学过程一、创设情境,导入新课师:由于长期干旱,水库放水抗旱,每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?生:26米师:能写出算式吗?生:……师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、小组探索,归纳法则1.(1)教师出示以下问题,学生以组为单位探索.a.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,________.b.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=________,3×(-3)=________.c.观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:________________.d.要使c中的规律在引入负数后仍成立,那么应有:(-1)×3=________,(-2)×3=________,(-3)×3=________.(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.(3)利用(2)中的结论计算下面的算式,你又发现了什么规律?(-3)×3=________,(-3)×2=________,(-3)×1=________,(-3)×0=________.规律:________________(4)按照(3)中的规律,填充下格,并总结归纳.(-3)×(-1)=________,(-3)×(-2)=________,(-3)×(-3)=________.结论:负数乘负数________________2.师生共同归纳总结有理数的乘法法则,并用文字叙述.3.运用法则计算,巩固法则.教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.练习:教材30页练习第1题.教师出示例2,引导学生完成.练习:教材30页练习2,3题.三、讨论小结,使学生知识系统化四、布置作业习题1.4第2,3题.教学反思本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.第2课时相关运算律教学目标1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.4.发展学生的观察、归纳、猜测、验证等能力.教学重难点重点1.了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.2.运用有理数的乘法解决问题.难点运用有理数的乘法解决问题.教学过程一、创设情境,导入新课教师出示投影,计算以下各题,并观察其结果的符号情况.2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)0×(-2)×(-3)×(-4)×(-5)几个不等于0的数相乘,你发现结果的符号与哪些因素有关?几个数相乘,如果其中一个因数是0,结果又是多少?学生讨论交流归纳结果,师生共同得出教材31页的归纳,同时完成31页的思考问题.二、推进新课,巩固提高1.教师出示例3.师生共同完成,教师注意讲解归纳方法.“先确定积的符号,然后再把它们的绝对值相乘.”2.练习:教材32页练习.学生分组练习,板演,互相纠错与全班纠错相结合,注意提示学生方法的运用.三、再次创设情境,导入运算律1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法.这样做有没有依据.小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab =ba.这里的a ,b 表示有理数,讲解“a ×b →a·b →ab ”的过程.(4)分组计算,比较×(-5)与3×的结果,讨论,归纳出乘法结合律. (5)全班交流,规范结合律的两种表达形式:文字语言、公式形式. (6)分组计算、比较,5×)与5×3+5×(-7)的结果,讨论归纳出分配律. (7)全班交流、规范分配律的两种表达形式:文字语言、公式形式. 四、感受运算律在乘法运算中的运用 教师出示例4,用两种方法计算. (14+16-12)×12 师生共同完成.练习:教材33页练习.教师可布置学生板演,小组交流等形式,来发现学生的问题,及时反馈.五、作业习题1.4第7(1)~(3),14题. 教学反思新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.1.4.2 有理数的除法(2课时) 第1课时 有理数的除法教学目标1.了解有理数除法的定义.理解除法是乘法的逆运算; 2.经历有理数除法法则的探索过程,会进行有理数的除法运算. 3.会化简分数. 教重难点 重点正确运用法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商. 教学设计 一、复习导入1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、推进新课(一)有理数除法法则的推导师提出问题:1.怎样计算8÷(-4)呢? 2.小学学过的除法的意义是什么?学生进行讨论、思考、交流,然后师生共同得出法则. 除以一个不等于0的数,等于乘这个数的倒数. 可以表示为: a ÷b =a·1b(b ≠0)师指出,将除法转化为乘法以后类似的除法法则我们有:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:(1)法则所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);(2)法则揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例5. 计算:(1)(-36)÷9; (2)(-1225)÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值.教师出示教材例6.化简下列分数:(1)-123;(2)-45-12.教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.教师出示教材例7. 计算:(1)(-12557)÷(-5);(2)-2.5÷58×(-14).教师分析,学生口述完成. 三、课堂练习 教材第36页上方练习 四、课堂小结小结:谈谈本节课的收获. 五、布置作业教材习题1.4第4~6题. 教学反思学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用。
人教版初中数学七年级第一章 有理数1.4 有理数的乘除法学案(2)
数学:1.4.1《有理数的乘法(2)》学案(人教版七年级上)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
2、新知应用1、例题3,(P31页)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8×(-8.1)×O× (-19.6)师生小结:【课堂练习】计算:(课本P32练习)(1)、—5×8×(—7)×(—0.25);(2)、5812 ()() 121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-;【要点归纳】:1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
2.几个数相乘,如果其中有一个因数为0,积等于0;【拓展训练】:一、选择1.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4)C. 0×(-2)(-3)D.(-7)-(-15)3.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24二、计算:1、111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;2、111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD的度数为( )A.45°B.120°C.135°D.150°2.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( )A.B.C.D.3.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个4.有一“数值转换机”如图所示,则输出的结果为()A.x-错误!未找到引用源。
2013年秋七年级(人教版)集体备课教案:1.4.2有理数的除法(2)
1.4.2有理数的除法(二)
教学目标:
1、理解有理数的加、减、乘、除混合运算顺序;正确熟练地进行有理数的混合运算
2、培养学生解题的良好习惯
3、在观察、实践的过程中,获得有理数四则混合运算的初步经验。
重点:运算顺序的确定
重点:灵活运用运算律进行有理数混合运算
教学过程:
一、复习巩固,回顾知识
1、计算:(1)-10×(-3)×0.1×6
(2)8+(-0.5)×(-8)×3 4
(3)(-3)×5
6×(-
9
5)×(-0.25)
2、计算:(1)(-9)÷3 ;
(2)(-64)÷(-8);
(3)1÷(-7);(4)0÷(-5)
二、讲授新课
讲解例7,先让学生观察得出例7中的运算包含了乘除。
师生共同归纳:遇到乘除混运算时,可先确定符号,再将它统一为乘法;另外,既有小数,又有分数时,通常把小数化为分数,以便约分。
教师:接着,我们来看例8,请同学们观察一下例8这个算式,它包含了几种运算。
学生:包含了加、减、乘、除四种运算。
练习1、2题
讲解
例8
教师:有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照“先乘
除,后加减”的顺序进行。
练习
三、巩固知识
例9
四、总结
有理数混合运算的顺序:(1)先算乘除,再算加减;(2)同一级运算按从左到右的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
五、布置作业。
2013年秋七年级(人教版)集体备课导学案:1.5有理数的乘方2
1 .5 有理数的乘方第17学时班级 小组 姓名 小组评价_________教师评价_______ 使用说明及方法指导:先回顾有理数的加、减、乘、除及乘方的运算法则,自学教材有理数混合运算部分,独立完成自主学习部分,然后小组内交流讨论,预习时间20分学习目标:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度重难点:有理数的四则混合运算一、自主学习:(一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何?(二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。
方法规律:(1)有理数运算分三级运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第 级运算。
运算顺序是:先算高级运算,再算 运算;同级运算,再按从左至右的顺序运算。
(2)在运算过程中注意运算律的运用二、合作探究1、计算:(1)3114(2)11(2)425⎡⎤-----⎢⎥⎣⎦×÷÷(2)2233311(12)674⎡⎤--+-⎢⎥⎣⎦÷×(-)(3)3232333519143()2(1)()()251949252⨯--⨯⨯-+⨯-(-)2、观察下面行数:① -3,9,-27,81,-243,729,…② 0,12,-24,84,-240,732,…③ -1,3,-9,27,-81,243,…(1)第①行数有什么规律?(2)第②行数与第①行数有什么关系?(3)第③行数与第①行数有什么关系?(3)取每行数的第10个数,计算这三个数的和三、学习致用:1、计算: 223311233(3)3()2⎡⎤-----⎣⎦×÷÷2、x 、y 为有理数,且212(3)0x y -++=,求2232x xy y -+的值;3、20092010(0.25)4×4、一根1米长的绳子,第一次剪去12,第二次剪去剩下的12,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?四、能力提升 已知22(1)0-+-=ab b 试求1111(1)(1)(2)(2)(3)(3)+++++++++ab a b a b a b 的值。
人教版-数学-七年级上册-- 1.4 有理数的除法(2)导学案
课型 学习新知课 主备人 赵宏梅 审定人 肖明 执 教 者 班级 学习小组 学生姓名【课程目标】能进行有理数的四则混合运算。
【学习目标】掌握有理数的加减乘除混合运算顺序,并能准确进行运算。
【学法指导】自主学习+小组讨论【学习过程】 一、自主学习自学教材P 36-37页的内容之后解答下列题目。
填空:(1)1922-÷⨯= = ; (2))212(9⨯÷-= = ; (3))15(520-÷-= = ; (4))15()520(-÷-= = ;计算:(1)3(9)7(9)⨯-+⨯-; (2)123()(2)3035--+÷-加减乘除四则运算的顺序是先 ,后 ;如果有括号,先 里的。
组长检查等级: 组长签名:二、交流展示1、计算:(1) 84(2)-+÷-;(2) 7(5)90(15)-⨯--÷-(3) 95(6)12(6)-+⨯--÷-(4))25.0()43()32(42-÷-+-⨯2、某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元。
这个公司去年总的盈亏情况如何?三、当堂检测1 、 计算:(1) )3()12(6-÷--(2)7)28()4(3÷-+-⨯(3))6()25(8)48(-⨯--÷-(4)92)412()412(54⨯-÷-⨯-2、一架直升机从高度为450米的位置开始,先以20米/秒的速度上升60秒,后以12米/秒的速度下降120秒,这时直升机所在高度是多少?四、学后反思1、这节课我学到了什么?2、我还有哪些疑惑?学习等级小组评价教师评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-4有理数的乘除法(2)
第14学时
学习目标:
1. 熟练掌握有理数的乘法法则
2. 会运用乘法运算率简化乘法运算.
3. 了解互为倒数的意义,并回求一个非零有理数的倒数
学习难点:运用乘法运算律简化计算
教学过程:
一、探索
1、同加法运算律在有理数范围内仍然适用的验证活动一样,从复习有理数的乘法运算开始,由问题“在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?”引发学生思考。
观察下列各有理数乘法,从中可得到怎样的结论
(1)(-6)×(-7)= (-7)×(-6)=
(2)[(-3)×(-5)]×2 = (-3)×[(-5)×2]=
(3)(-4)×(-3+5)= (-4)×(-3)+(-4)×5=
结论?
(4)请学生再举几组数试一试,看上面所得的结论是否成立?例如对扑克牌上数字的正负规定(黑正,红负),用抽两张扑克牌的方法验证有理数乘法运算律。
2.有理数乘法运算律
交换律 a ×b=b ×a 结合律 ( a ×b)×c=a ×(b ×c)
分配律 a ×(b +c)=a ×b +a ×c
二、问题讲解
问题1.计算:
(1)8×(-
32)×(-0.125) (2))()()(9141531793170-⨯-⨯-⨯
(3)(1276521-+)×(-36) (4))()()()()()(7251272577255-⨯---⨯-+-⨯-
练一练: 2
问题2.计算
(1)99
17
16×20 (2)(—992524)×5 练一练:(1)(-28)×99 (2)(—5
181)×9 问题3.计算
(1)8×81 (2)(—4)×(—41) (3)(—87)×(—7
8) 互为倒数的意义______________________________________
倒数等于本身的数是 ;绝对值等于本身的数是 ;相反数等于本身的数是 .
练一练:1
【知识巩固】
1.运用运算律填空.
(1)-2×()-3=()-3×(_____).
(2)[()-3×2]×(-4)=()-3×[(______)×(______)].
(3)()-5×[()-2+()-3]=()-5×(_____)+(_____)×()-3
2.选择题
(1)若a ×b<0 ,必有 ( )
A a<0 ,b>0
B a>0 ,b<0
C a,b 同号
D a,b 异号
(2)利用分配律计算98(100)9999
-⨯时,正确的方案可以是 ( ) A 98(100)9999-+⨯ B 98(100)9999
--⨯ C 98(100)9999-⨯ D 1(101)9999
--⨯ 3.运用运算律计算:
(1)(-25)×(-85)×(-4) (2) ⎝ ⎛⎭
⎪⎫14-12-18×16
(3)60×37-60×17+60×57 (4)(—100)×(103-21+5
1-0.1)
(5)(-7.33)×(42.07)+(-2.07)×(-7.33) (6)18×⎝ ⎛⎭
⎪⎫-23+13×23-4×23
4. 已知:互为相反数,c 、d 互为倒数,x 的绝对值是1,
求:3x —[(a +b )+cd ]x 的值
5. 定义一种运算符号△的意义:a△b=ab—1,
求:2△(—3)、2△[(—3)—5]的值
6. 有6张不同数字的卡片:—3,+2,0, —8, 5, +1,如果从中任取3张,
(1)使数字的积最小,应如何抽?最小积是多少?
(2)使数字的积最大,应如何抽?最大积是多少?。