三角形的内心、外心、中心、重心 -综合
三角形的重心、外心、垂心、内心和旁心(五心定理)
三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG∶GH=1∶2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
初中数学知识点:三角形的内心、外心、中心、重心
初中数学知识点:三角形的内心、外心、中心、重心三角形的四心定义:1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。
三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。
在△ABC中4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心的性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90°+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
三角形的外心、重心、垂心、内心及旁心
三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. . 一、外心一、外心. .三角形外接圆的圆心,简称外心三角形外接圆的圆心,简称外心..与外心关系密切的有圆心角定理和圆周角定理定理. .例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上外接圆上. . 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点的外心,点 N 是△P ′PC 的外心的外心..有 ∠∠BP ′P =21∠BMP =21∠BAC ,∠∠PP ′C =21∠PNC =21∠BAC .∴∠∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC . 从而,从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上外接圆上. . 由于由于P ′P 平分∠BP ′C ,显然还有,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似相似. .分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形的外心,作出六边形 O 1PO 2QO 3S 后再由外后再由外 心性质可知心性质可知∠∠PO 1S =2=2∠∠A , ∠∠QO 2P =2=2∠∠B , ∠∠SO 3Q =2=2∠∠C . ∴∠∴∠PO 1S +∠QO 2P +∠SO 3Q =360=360°°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360=360°°将△将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S +∠SO 1K )=21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心二、重心三角形三条中线的交点,叫做三角形的重心三角形三条中线的交点,叫做三角形的重心三角形三条中线的交点,叫做三角形的重心..掌握重心将每掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题及中线长度公式,便于解题. .例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点是任意一点..证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和中,其中一个面积等于另外两个面积的和. .分析:设G 为△ABC 重心,直线PG 与AB,BC 相交相交..从A ,C ,D ,E ,F 分别分别 作该直线的垂线,垂足为A ′,C ′,′, D ′,E ′,F ′. 易证易证AA ′=2DD ′,CC ′=2FF ′,′,22EE ′=AA ′+CC ′,′,∴∴EE ′=DD ′+FF ′. 有有S △PGE =S △PGD +S △PGF . 两边各扩大两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似的新三角形相似..其逆亦真其逆亦真. .分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′围成的三角形简记为△′..G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列Þ△∽△′△∽△′. .若△若△ABC 为正三角形,易证△∽△′为正三角形,易证△∽△′. . 不妨设不妨设a ≥b ≥c ,有,有CF =2222221c b a -+,BE =2222221ba c -+,AD =2222221a c b -+. 将将a 2+c 2=2b 2,分别代入以上三式,得,分别代入以上三式,得 CF =a23,BE =b 23,AD =c23.∴∴CF :BE :AD =a23:b 23:c23=a :b :c .故有△∽△′故有△∽△′故有△∽△′. . (2) (2)△∽△′△∽△′Þa 2,b 2,c 2成等差数列成等差数列. . 当△中当△中a ≥b ≥c 时,时, △′中△′中CF ≥BE ≥AD . ∵△∽△′,∵△∽△′, ∴DD S S '=(aCF )2.据据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有AA 'FF 'G E E 'D 'C'P C B DDD SS '=43.∴∴22aCF =43Þ3a 2=4CF 2=2a 2+b 2-c 2Þa 2+c 2=2b 2.三、垂心三、垂心三角形三条高的交战,三角形三条高的交战,称为三角形的垂心称为三角形的垂心..由三角形的垂心造成的四个等由三角形的垂心造成的四个等((外接)圆三角形,给我们解题提供了极大的便利圆三角形,给我们解题提供了极大的便利. .例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心的垂心..求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置四点共圆,并确定出该圆的圆心位置.. 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A Ð=2R ÞA 2H 1=2R cos ∠A 3A 2A 4;由△由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4. 但∠但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2.易证易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称成中心对称. .同理,同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称点成中心对称..故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上在同一个圆上..后者的圆心设为Q ,Q 与O 也关于M 成中心对称成中心对称..由O ,M 两点,Q 点就不难确定了点就不难确定了. .例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心的中心..一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.分析:只须证明分析:只须证明AA 1=BB 1=CC 1即可即可..设 BC =a , CA =b ,AB =c ,△ABC 外 接圆半径为R ,⊙H 的半径为r .连连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2),①① 又又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2=AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ②② 而而ABHAH Ðsin =2R ÞAH 2=4R 2cos 2A ,∥=∥=H H HMAB BA ABC C C F12111222D EAa sin =2R Þa 2=4R 2sin 2A .∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. . ③③ 由①、②、③有由①、②、③有A 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2) =21(a 2+b 2+c 2)-4R 2+r 2.同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心四、内心三角形内切圆的圆心,简称为内心三角形内切圆的圆心,简称为内心..对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:下面一个极为有用的等量关系: 设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心之外心((内心的等量关系之逆同样有用内心的等量关系之逆同样有用). ).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3,O 4.求证:O 1O 2O 3O 4为矩形为矩形. . (1986 (1986,中国数学奥林匹克集训题,中国数学奥林匹克集训题,中国数学奥林匹克集训题) )证明见《中等数学》证明见《中等数学》199219921992;;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切内切..试证:EF中点P 是△ABC 之内心之内心. .分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上平分线上..易知AQ =a sin r. ∵∵QK ·AQ =MQ ·QN , ∴∴QK =AQQN MQ ×=asin /)2(r r r R ×-=)2(sin r R -×a .由由Rt △EPQ 知PQ =r ×a sin .∴∴PK =PQ +QK =r ×a sin +)2(sin r R -×a =R 2sin ×a . ∴∴PK =BK .a利用内心等量关系之逆定理,即知利用内心等量关系之逆定理,即知P 是△ABC 这内心这内心. .A B C D O O O 234O 1AααMBC KNEROQ Fr P五、旁心五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心旁心常常与内心联系在一起,旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切旁心还与三角形的半周长关系密切. .例9.在直角三角形中,求证:r +r a +r b +r c =2p . 式中式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周表示半周. .分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c )=41[(a +b )2-c 2] =21ab ;(p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ). ①① 观察图形,可得观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p .而r =21(a +b -c )=p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证由①及图形易证. .例1010..M 是△ABC 边AB 上的任意一点上的任意一点..r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径半径..证明:11q r ·22q r =qr .(IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知′,由正弦定理可知OD =OA ′·2'sinA=A ′B ′·'''sin 2'sinB O A B з2'sin AK r r r r O O O 213AOE CBabcA ...'B'C'O O 'ED=A ′B ′·2''sin 2'sin2'sinB A B A +×,O ′E = A ′B ′·2''sin2'cos2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有亦即有11q r ·22q r =2222B tgCNB tgCMA tgA tgÐÐ=22B tgA tg =qr .六、众心共圆六、众心共圆这有两种情况:(1)(1)同一点却是不同三角形的不同的心;同一点却是不同三角形的不同的心;同一点却是不同三角形的不同的心;(2)(2)(2)同一图形出现了同一图形出现了同一三角形的几个心同一三角形的几个心. .例1111..设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF .分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE 的内心的内心..从而有ID =CD =DE ,IF =EF =FA , IB =AB =BC .再由△再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用利用 不不等式有:等式有: BI +DI +FI ≥2·(IP +IQ +IS ).不难证明不难证明IE =2IP ,IA =2IQ ,IC =2IS .∴∴BI +DI +FI ≥IA +IE +IC .∴∴AB +BC +CD +DE +EF +FA =2(BI +DI +FI )≥≥(IA +IE +IC )+(BI +DI +FI )=AD +BE +CF . I 就是一点两心就是一点两心. . 例1212.△.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心的重心..证明OE 丄CD .分析:设AM 为高亦为中线,取AC 中点中点F ,E 必在DF 上且DE :EF =2:1.=2:1.设设CD 交AM 于G ,G 必为△ABC 重心重心. . 连GE ,MF ,MF 交DC 于K .易证:易证: E rdos..I P ABCD EFQ S A BCD E F O KGDG :GK =31DC :(3121-)DC =2:1.∴∴DG :GK =DE :EF ÞGE ∥MF . ∵∵OD 丄AB ,MF ∥AB , ∴∴OD 丄MF ÞOD 丄GE .但OG 丄DE ÞG 又是△ODE 之垂心之垂心. . 易证易证OE 丄CD . 例1313.△.△ABC 中∠C =30=30°,°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有利用内心张角公式,有利用内心张角公式,有 ∠∠AIB =90=90°°+21∠C =105=105°,°,°,∴∠∴∠DIE =360=360°°-105-105°×°×°×3=453=453=45°°. ∵∠∵∠AKB =30=30°°+21∠DAO =30 =30°°+21(∠BAC -∠BAO ) =30 =30°°+21(∠BAC -60-60°°)=21∠BAC =∠BAI =∠BEI .∴∴AK ∥IE .由等腰△由等腰△AOD 可知DO 丄AK , ∴∴DO 丄IE ,即DF 是△DIE 的一条高的一条高. . 同理同理EO 是△DIE 之垂心,OI 丄DE . 由∠由∠DIE =∠IDO ,易知OI =DE . 例1414.锐角△.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心分别是外心、重心、垂心..设外心到三边距离和为d 外,重心到三边距,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.求证:求证:11·d 垂+2+2··d 外=3=3··d 重. 分析:这里用三角法分析:这里用三角法..设△ABC 外接圆外接圆半径为1,三个内角记为A ,B , C . . 易知易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴∴2d 外=2(cos A +cos B +cos C ). ). ①① ∵∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得同样可得BH 2·CH 3. ∴∴3d 重=△ABC 三条高的和三条高的和 =2 =2··(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ) ②② ∴∴BCHBH Ðsin =2=2,,O ABCDEFIK30°B CO IA O G H O G H G O G H 1231122331 =( 2。
初中数学点知识归纳三角形的重心外心和内心
初中数学点知识归纳三角形的重心外心和内心三角形是初中数学中常见的一个图形,它有着许多重要的性质和定理。
在本文中,我们将重点介绍三角形的重心、外心和内心,并归纳总结相关的知识点。
一、重心重心是指三角形三条中线交点的位置,也是三角形内部的一个点。
设三角形的三个顶点分别为A、B、C,对应的中线交点为G,则点G即为三角形的重心。
重心有以下性质:1. 重心与三角形的三个顶点的连线重合,即GA = GB = GC。
2. 重心到三角形三边的距离满足以下关系:GA : GD = GB : GE =GC : GF,其中D、E、F是三角形的三边上的点,与重心G连线垂直。
二、外心外心是指三角形外接圆的圆心位置,也是三角形内部的一个点。
设三角形的三个顶点分别为A、B、C,对应的外接圆圆心为O,则点O即为三角形的外心。
外心有以下性质:1. 外心是三角形三条垂直平分线的交点,即OA ⊥ BC,OB ⊥ AC,OC ⊥ AB。
2. 外心到三角形的三个顶点的距离相等,即OA = OB = OC。
三、内心内心是指三角形内切圆的圆心位置,也是三角形内部的一个点。
设三角形的三个顶点分别为A、B、C,对应的内切圆圆心为I,则点I即为三角形的内心。
内心有以下性质:1. 内心是三角形三条角平分线的交点,即∠BAI = ∠CAI = ∠ABI。
2. 由内心出发,分别到三角形的三条边的距离相等,即ID ⊥ AB,IE ⊥ BC,IF ⊥ AC。
综上所述,三角形的重心、外心和内心都是三角形内部的一个点,分别具有不同的性质和特点。
它们在三角形的构造和性质研究中扮演着重要的角色。
理解和掌握这些点以及与它们相关的性质,对于解决三角形相关的问题和定理证明都是非常有帮助的。
在实际应用中,重心、外心和内心的位置和性质可以用于解决各种与三角形相关的几何问题。
比如,可以利用重心的性质证明中线长等分重心的角,可以利用外心的性质判断三角形的形状(是锐角三角形、直角三角形还是钝角三角形),可以利用内心的性质求解三角形的面积等。
三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]
三角形的重心、外心、垂心、内心和旁心(五心定理)[参照]
三角形的重心:是指三角形内任意一点,它到三条边上三个顶点连线的质心,即三角形的外心和所有顶点的重心。
外心:指三角形的外接圆心,也就是三条边的质心,即三角形的重心。
垂心:指三角形的垂心,也就是三角形所有内角的质心,即三角形的重心。
内心:指三角形内角平分线的交点,也就是三角形各内角的质心,即三角形的重心。
旁心:指三角形的垂直平分线的交点,也就是三角形各边的质心,即三角形的重心。
三角形的内心外心_重心旁心
三 角 形 的“四 心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。
当三角形是正三角形时,四心重合为一点,统称为三角形的中心。
一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。
ABC ∆的重心一般用字母O 表示。
性 质:1.外心到三顶点等距,即OC OB OA ==。
2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。
二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。
ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。
2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。
4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。
三、三角形的垂心定 义:三角形三条高的交点叫垂心。
ABC ∆的垂心一般用字母H 表示。
性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。
2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。
四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。
ABC ∆的重心一般用字母G 表示。
性 质:1.顶点与重心G 的连线必平分对边。
2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。
即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B A G C B A G y y y y x x x x ++=++=. 资料二一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
三角形的重心、外心、垂心、内心和旁心(五心定理).doc
三角形五心定理(三角形的重心,外心,垂心,内心和旁心称Z为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理, 旁心定理的总称。
、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离Z比为2 : 1o2、重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1 +X2+X3)/3, (Y1 +Y2+Y3)/3o二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:仁三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若0是ZXABC的外心,则ZB0C=2ZA ( ZA为锐角或宜角)或Z BOC=360°-2ZA (ZA 为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个顶点连向另外两个顶点向量的点乘od=d2d3, c2=d1d3, c3=d1d2; c=c1+c2+c3o 重心坐标:((c2+c3)/2c, (c1+c3)/2c, (c1+c2)/2c )o5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1>三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且0G : GH=1 : 2。
三角形的重心、外心、垂心、内心和旁心(五心定理)(优选.)
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。
5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
三角形的五心:内心、外心、重心、垂心、旁心
重心、外心、内心、垂心、旁心统称为三角形的"五心",由于三角形的五心处在特殊的位置上,因而它们具有丰富而独特的性质,这些性质是解与五心相关问题的基础.一.重心三角形的三条中线的交点叫三角形的重心.如图,设O为三角形的重心,则有1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/34.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
5.重心到三角形3个顶点距离的平方和最小。
6.重心是三角形内到三边距离之积最大的点。
7.重心在向量中的重要结论:外心二.外心三角形三边的垂直平分线的交点叫三角形的外心.(外接圆的圆心)1.三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。
2.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三.内心三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。
三角形的内心的性质1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)四.旁心1 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。
内心、外心、重心、垂心定义及性质总结
内心、外心、重心、垂心定义及性质在三角形中,有四个非常重要的点,它们是:内心、外心、重心和垂心。
这些点的性质在几何学和三角学中都非常重要。
在本文中,我们将对这些点进行定义和它们的性质。
内心内心是一个三角形内部的点。
它是由三条角平分线所确定的点,也就是说,它到三角形三条边的距离相等。
性质1.内心是三角形的唯一的内接圆心。
2.内心到三角形三边的距离相等。
3.连接内心与三角形三个顶点的线段分别垂直于三边。
4.内心和三角形顶点的连线相交于三角形的垂心。
5.内心是三角形的重心、外心和垂心的欧拉线的交点之一。
外心外心是一个三角形外部的点,它是由三边中垂线的交点所确定的点。
外心是三角形外接圆的圆心。
性质1.外心是三角形的唯一的外接圆心。
2.连接外心与三角形三个顶点的线段分别垂直于相应的边。
3.外心到三角形三个顶点的距离相等。
4.三角形的角上的中垂线恰好交于外心。
5.外心到三角形三边的距离相等。
重心重心是由三条中线的交点所确定的点。
性质1.重心到三角形三个顶点的距离相等。
2.连接重心和三角形三个顶点的线段相等。
3.重心将每条中线分成两个部分,中心到三角形各边上的点的距离之和相等。
4.重心是三角形垂心和外心的中点。
5.连接重心与三个角平分线的交点构成的三角形是原三角形的等价三角形。
垂心垂心是由三边的垂线所交的点。
性质1.垂心到三角形三个顶点的线段中,最短的是对应于最大角的那一段。
2.垂心到三角形三个顶点的线段之和是定值,即为三角形的半周长。
3.三角形的顶点与对面边上的垂足之间的线段互相垂直。
4.三角形的三个垂直平分线相交于垂心。
5.垂心是三角形内心、外心和重心的欧拉线的交点之一。
内心、外心、重心和垂心是三角形中非常重要的点。
它们有许多有趣的性质,这些性质在解决各种几何问题时非常有用。
三角形的重心、垂心、内心、外心
三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。
三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。
一、三角形重心定理三角形的三条边的中线交于一点。
该点叫做三角形的重心。
三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。
外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。
2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。
(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。
4、垂心分每条高线的两部分乘积相等。
定理证明已知:ΔABC中,AD、BE是两条高,AD、BE交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB证明:连接DE ∵∠ADB=∠AEB=90度∴A、B、D、E四点共圆∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB 因此,垂心定理成立!四、三角形内心定理三角形内切圆的圆心,叫做三角形的内心。
(完整版)三角形外心内心重心垂心与向量性质
三 角 形 的“四 心"所谓三角形的“四心”是指三角形的重心、垂心、外心及内心.当三角形是正三角形时,四心重合为一点,统称为三角形的中心.一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。
ABC ∆的重心一般用字母O 表示。
性 质:1.外心到三顶点等距,即OC OB OA ==.2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,。
3。
向量性质:若点O 为ABC ∆所在的平面内一点,满足AC OA OC CB OC OB BA OB OA ⋅+=⋅+=⋅+)()()(,则点O 为ABC ∆的外心。
二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。
ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1。
内心到三角形三边等距,且顶点与内心的连线平分顶角。
2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3。
向量性质:设()+∞∈,0λ,则向量||||(AC AC AB AB AP =λ,则动点P 的轨迹过ABC ∆的内心。
三、三角形的垂心定 义:三角形三条高的交点叫重心。
ABC ∆的重心一般用字母H 表示。
性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。
2。
向量性质:结论1:若点O 为ABC ∆所在的平面内一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 为ABC ∆的垂心.结论2:若点O 为△ABC 所在的平面内一点,满足222222AB OC CA OB BC OA +=+=+, 则点O 为ABC ∆的垂心. 四、三角形的“重心":定 义:三角形三条中线的交点叫重心。
ABC ∆的重心一般用字母G 表示。
性 质:1.顶点与重心G 的连线必平分对边。
2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍.即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B AG C B A G y y y y x x x x ++=++=。
数学的中心、重心、垂心、内心、外心重合
三角形的重心:含义:是三角形三条中线的交点。
性质:1.重心到顶点的距离与重心到对边中点的距离之比为2:12.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)在空间直角坐标系中,横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/35.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点三角形的外心:含义:是三角形三条垂直平分线的交点(或三角形外接圆的圆心) 。
性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。
3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心:含义:是三角形三条角平分线的交点(或内切圆的圆心)。
性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心:含义:是三角形三边上的高的交点(通常用H表示)。
性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心3. 垂心O关于三边的对称点,均在△ABC的外接圆上4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
三角形的五心(外心内心垂心重心旁心)
2 说明:本题还可证明 O 到△ABC 的三边距离相等.
9
垂心: 三角形三条高线所在的直线的交点.△ABC 的垂心一般用字 母 H 表示,它具有如下的性质: (1)顶点与垂心连线必垂直对边,即 AH⊥BC,BH⊥AC,CH⊥AB。 (2)若 H 在△ABC 内,且 AH、BH、CH 分别与对边相交于 D、E、F, 则 A、F、H、E;B、D、H、F;C、E、H、D;B、C、E、F;C、A、F、 D;A、B、D、E 共六组四点共圆. (3)△ABH 的垂心为 C,△BHC 的垂心为 A,△ACH 的垂心为 B. (4)三角形的垂心到任一顶点的距离等于外心到对边距离的 2 倍.
(2)重心定理:三角形重心与顶点的距离等于它与 对边中点的距离的
SAGB
1 3
SABC
.
2
思考练习 1:已知 G 是△ABC 的重心,过 A、G 的圆 与 BG 切于 G,CG 的延长线交圆于 D, 求证: AG2 GC GD .
3
外心:三角形外接圆的圆心(三边垂直平分线的交点).
3 23
∴ DG:GK=DE:EF GE∥ MF. ∵OD 丄 AB,MF∥AB,∴OD 丄 MF OD 丄 GE. 但 OG 丄 DEG 又是△ODE 之垂心.易证 OE 丄 CD.
13
6
内心: 三角形三条角平分线的交点叫做三角形的内心,即内切圆
圆心.△ABC 的内心一般用字母 I 表示,它具有如下性质:
(1)内心到三角形三边等距,且顶点与内心的连线平分顶角.
(2)∠A 的平分线和△ABC 的外接圆相交于点 D,则 D 与顶点 B、C、
内心 I 等距(即 D 为△BCI 的外心).
三角形的内心外心_重心旁心
三 角 形 的“四 心”所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。
当三角形是正三角形时,四心重合为一点,统称为三角形的中心。
一、三角形的外心定 义:三角形三条中垂线的交点叫外心,即外接圆圆心。
ABC ∆的重心一般用字母O 表示。
性 质:1.外心到三顶点等距,即OC OB OA ==。
2.外心与三角形边的中点的连线垂直于三角形的这一边,即AB OF AC OE BC OD ⊥⊥⊥,,. 3.AOB C AOC B BOC A ∠=∠∠=∠∠=∠21,21,21。
二、三角形的内心定 义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。
ABC ∆的内心一般用字母I 表示,它具有如下性质:性 质:1.内心到三角形三边等距,且顶点与内心的连线平分顶角。
2.三角形的面积=⨯21三角形的周长⨯内切圆的半径. 3.CE CD BD BF AF AE ===,,;=++CD BF AE 三角形的周长的一半。
4.,2190A BIC ∠+=∠ B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。
三、三角形的垂心定 义:三角形三条高的交点叫垂心。
ABC ∆的垂心一般用字母H 表示。
性 质:1.顶点与垂心连线必垂直对边,即AB CH AC BH BC AH ⊥⊥⊥,,。
2.△ABH 的垂心为C ,△BHC 的垂心为A ,△ACH 的垂心为B 。
四、三角形的“重心”:定 义:三角形三条中线的交点叫重心。
ABC ∆的重心一般用字母G 表示。
性 质:1.顶点与重心G 的连线必平分对边。
2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。
即GF GC GE GB GD GA 2,2,2===3.重心的坐标是三顶点坐标的平均值. 即3,3C B A G C B A G y y y y x x x x ++=++=.资料二一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
三角形的重心外心和内心
三角形的重心外心和内心在几何学中,三角形是最基本且最常见的几何形状之一。
三角形的重心、外心和内心是三角形内部特殊点的代称。
它们具有重要的几何性质和应用价值。
本文将会详细介绍三角形的重心、外心和内心的概念、性质以及相关应用。
重心是三角形内部的一个特殊点,通常用字母G表示。
重心是三条中线的交点,其中中线是连接三角形各顶点与对应中点的线段。
重心在中线上的位置为距离两个端点的距离与中点距离的比例为2:1。
由于三角形的三条中线都经过重心,因此重心是三角形的一个几何中心。
在重心处,三角形被等分为六个面积相等的三角形。
此外,重心的几何位置使得重心到三个顶点的距离之和最小,即满足最小总距离条件。
外心是三角形内部的一个特殊点,通常用字母O表示。
外心位于三角形的外部,且与三个顶点都相切。
外接圆是以三角形的三个顶点为切点的圆,外心就是外接圆的圆心。
外心到三个顶点的距离都相等,而且外心到三边的距离也相等。
三角形的三条中垂线都经过外心,因此外心也是三角形的一个几何中心。
外心是三角形内接圆和外接圆的交点之一。
内心是三角形内部的一个特殊点,通常用字母I表示。
内心位于三角形的内部,且与三条边都相切。
内接圆是以三角形的三边为切线的圆,内心就是内接圆的圆心。
内心到三条边的距离都相等,而且内心到三个顶点的距离之和最小。
三角形的三条角平分线都经过内心,因此内心也是三角形的一个几何中心。
三角形的重心、外心和内心在实际生活中有着广泛的应用。
在建筑和工程领域,三角形的重心可以用于确定建筑物的结构平衡。
在航空航天领域,外心可以用于确定飞机或者火箭的重心和稳定性。
在地理测量和导航领域,内心可以用于计算地图上各个地点的方向和距离。
总结起来,三角形的重心、外心和内心是三角形内部特殊点的代称,它们具有重要的几何性质和应用价值。
重心是三条中线的交点,外心是外接圆的圆心,内心是内接圆的圆心。
它们在解决实际问题中起着重要的作用。
通过研究和理解三角形的重心、外心和内心,可以帮助我们更好地认识和应用几何学知识。
三角形内心外心重心垂心
三角形内心外心重心垂心重心、外心、内心、垂心、中心统称为三角形的"五心",由于三角形的五心处在特殊的位置上,因而它们具有丰富而独特的性质,这些性质是解与五心相关问题的基础。
内心是三角形角平分线的交点。
一、三角形的内心和内心的性质1、“内心”是三角形的角平分线交点,也是三角形的内切圆的圆心。
2、内心性质(1)三角形的任一个顶点和它的内心的连线必定平分这个角。
(2)内心到三角形三条边的距离相等,而且都等于这个三角形的内切圆的半径长。
(3)设一个三角形ABC的内心为“O”,内切圆半径为r,三条边长分别为a、b、c,则三角形ABC的面积S=(1/2)x(a+b+c)xr。
即三角形的面积等于三角形周长与其内切圆半径乘积的一半。
三角形的内切圆和“内心”二、三角形的外心和外心的性质1、“外心”是三角形的垂直平分线的交点,也是三角形外接圆的圆心。
【注】垂直平分线也叫“中垂线”。
2、外心性质(1)三角形的任意一条边的中点和外心的连线必定在这条边的垂直平线上,所以也必定垂直平分这条边。
(2)外心到三角形三个顶点的距离相等,而且都等于这个三角形的外接圆的半径长。
三、三角形的重心和重心的性质1、“重心”是三角形中线的交点。
2、重心性质(高频考点)(1)三角形顶点与重心的连线必定在三角形的一条中线上。
(2)延长三角形的一个顶点与重心的连线,使得交于这个顶点的对边上一点,则这个交点为边上的中点。
(2)三角形的重心把三角形的任意一条中线分成两条线段,其中重心到三角形顶点的线段长是另一条线段长的2倍。
【注】三角形的三条中线长不一定相等,但在任何一条中线上,重心到顶点的线段和重心到顶点对边中点连线的线段长的比值都是2:1.四、三角形的垂心和垂心的性质1、垂心是三角形高线的交点。
2、垂心性质(1)三角形的顶点与垂心的连线必定在三角形的一条高线上。
(2)三角形任何一个顶点和垂心的连线必定垂直于这个顶点的对边。
五、三角形的中心和中心的性质1、三角形的“四心”(内心、外心、重心、垂心)重合后的点称为这个三角形的中心。
三角形中的内心外心垂心与重心
三角形中的内心外心垂心与重心三角形是几何学中最基本的图形之一,它有很多有趣和重要的性质。
其中,内心、外心、垂心和重心是与三角形密切相关的四个特殊点。
本文将探讨这四个点的定义、性质及其在三角形中的应用。
一、内心内心是指三角形内部与三边各自相切的圆的圆心,记为I。
对于任意三角形ABC,I的定义如下:1. 点I到三角形的每条边的距离相等,即IA=IB=IC。
2. 点I恰好在三边的内部。
3. 内切圆的半径为r,称为三角形的内切圆半径。
内心有很多重要的性质:1. 内心到三边的距离分别是三边长度的函数,可以通过海伦公式计算。
2. 内心是三角形的垂心和重心的共轭点,也是三角形的唯一一个同时与三边相切的圆心。
3. 对于等边三角形,内心、重心和外心重合于同一个点。
4. 内心是三角形三条角平分线的交点。
二、外心外心是指三角形外接圆的圆心,记为O。
对于任意三角形ABC,O 的定义如下:1. 三角形的三条边的中垂线相交于一点,该点就是外心。
2. 外接圆半径为R,称为三角形的外接圆半径。
外心也有一些重要的性质:1. 外心到三个顶点的距离相等,即OA=OB=OC=R。
2. 外心是垂心和内心的共轭点,也是三角形的唯一一个同时与三边相切的圆心。
3. 对于钝角三角形,外心在三角形外部;对于直角三角形,外心在三角形斜边上;对于锐角三角形,外心在三角形内部。
4. 外心是三角形三个垂直平分线的交点。
三、垂心垂心是指三角形三条高或垂直平分线的交点,记为H。
对任意三角形ABC,H的定义如下:1. 三角形的三条高或垂直平分线相交于一点,该点就是垂心。
垂心有以下重要性质:1. 垂心到三边距离之积为定值,等于三角形面积的两倍。
2. 垂心是内心和外心的共轭点,也是三角形的唯一一个同时与三边相切的圆心。
3. 对于锐角三角形,垂心在三角形内部;对于直角三角形,垂心在斜边上;对于钝角三角形,垂心在三角形外部。
4. 垂心是三角形三个中线的交点。
四、重心重心是指三角形三条中线的交点,记为G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的内心、外心、中心、重心
∙三角形的四心定义:
1、内心:三角形三条内角平分线的交点,即内切圆的圆心。
内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。
2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。
外心定理:三角形的三边的垂直平分线交于一点。
该点叫做三角形的外心。
3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形
的时候,四心合一心,称做正三角形的中心。
4、重心:重心是三角形三边中线的交点。
∙三角形的外心的性质:
1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;
2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;
3.锐角三角形的外心在三角形内;
钝角三角形的外心在三角形外;
直角三角形的外心与斜边的中点重合。
在△ABC中
4.OA=OB=OC=R
5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6.S△ABC=abc/4R
三角形的内心的性质:
1.三角形的三条角平分线交于一点,该点即为三角形的内心
2.三角形的内心到三边的距离相等,都等于内切圆半径r
3.r=2S/(a+b+c)
4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.
5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2
6.S△=[(a+b+c)r]/2 (r是内切圆半径)
三角形的垂心的性质:
1.锐角三角形的垂心在三角形内;
直角三角形的垂心在直角顶点上;
钝角三角形的垂心在三角形外。
2.三角形的垂心是它垂足三角形的内心;或
者说,三角形的内心是它旁心三角形的垂心。
例如在△ABC中
3. 垂心O关于三边的对称点,均在△ABC的外接圆圆上。
4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且
AO?OD=BO?OE=CO?OF
5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。
7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP?tanB+ AC/AQ?tanC=tanA+tanB+tanC
8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
12.西姆松(Simson)定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上
13.设锐角△ABC内有一点P,那么P是垂心的充分必要条件是
PB?PC?BC+PB?PA?AB+PA?PC?AC=AB?BC?CA。
14.设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3。
15.三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。
三角形的重心的性质:
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。
2.重心和三角形3个顶点组成的3个三角形面积相等。
3.重心到三角形3个顶点距离的平方和最小。
4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为
((X1+X2+X3)/3,(Y1+Y2+Y3)/3);
空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:
(Z1+Z2+Z3)/3
5.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。
6.重心是三角形内到三边距离之积最大的点。
三角形旁心的性质:
1、三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点即为三角形的旁心。
2、每个三角形都有三个旁心。
3、旁心到三边的距离相等。
三角形任意两角的外角平分线和第三个角的内角平分线的交点。
一个三角形有三个旁心,而且一定在三角形外。