2017年天津市部分区高考数学一模试卷(文科)含答案
2017年高考天津文科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(天津卷)数学(文科)-、选择题:本大题共 8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1 )【2017 年天津,文 1, 5 分】设集合 A 」1,2,6], B =.i 2,4} , C 」丄2,3,4 ?,贝U (AU B)C| C () (A ) ②(B ) ;1,2,4:>( C ) :1,2,3,<> (D ) :1,2,3,4,6 ? 【答案】B【解析】AUB 二1,2,4,6 ?, (A JB )2 ={1,2,4,6}门{1,2,3,4} ={1,2,4},故选 B .(2) 【2017年天津,文2, 5分】设R ,则’2 -x _0 ”是“x_1乞1”的()(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件 【答案】B【解析】2—x_0解得:x 岂2 ; x -1 <1解得:0乞x 乞2 , x^2=0岂x 岂2,故选B .(3)【2017年天津,文3, 5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的 2支彩笔中含有红色彩笔的概率为() (A )4( B ) 3 (C ) 2 ( D ) 15 5 5 5【答案】C【解析】 从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:C f ,而事件 取出的2支彩笔中含有红色 (6)【2017年天津,文6,5分】已知奇函数f(x)在R 上是增函数,若a--f(log 2〕),b = f (log ?4.1),尸f(20.8), 5则a,b,c 的大小关系为()(A ) a ::b ::c (B ) b ::a ::c (C ) c ::b : a (D ) c ■ a :: b【答案】C彩笔”包含基本事件个数:C 4 ; P =上=2,故选C .10 5(4)【2017年天津,文4, 5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为()(A) 0 ( B ) 1 ( C ) 2 ( D ) 3【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为N =19,第一次循环:NN =N -1 =18,不满足N 乞3 ;第二次循环: N 二一 =6,不满足N 空3 ;第三次循3环:N 二丛=2,满足N _3 ;此时跳出循环体,输出N =3,故选C .3(5)【2017年天津,文 2 25, 5分】已知双曲线 — 2 =1(a 0, b 0)的左焦点为F ,点A 在a bOAF 是边长为2的等边三角形(0为原点),则双曲线的方程为 【答案】 【解析】 以双曲线的渐近线上, ()2 2(A) — _y 1 ( B )412D 因为「QAF 是边长为2的等边三角形(O 为原点)所以OF =2 , 2 2x12 4一「(C ) — ( D ) 22y 4x1 3直线OA 方程为y= .3x ,所以渐近线方程 y= b x 其中一条为y =ac =2b ,解之得:a=1,b= .3,c=2,故选 D .3/输S /1【解析】因为f (X ) 在R 上是奇函数,所以有 f(_x)=_f(x),即a = _f (log 2-) = f (log 2 5);又因为 5是增函数,且 20.8:::21=:log 24 :::log 24.1 :::log 25,所以 c ::: b ::: a ,故选 C .(7)【2017 年天津,文 7, 5 分]设函数 f (x) =2sin(•• Jx R ,其中• • ..;「.,若 f且f(x)的最小正周期大于 2二,则()(A )欣:=?, ( B ) =?,「= (C )欣:J ,:护一匕(D )欣:J ,「=匸3 12 3 12 3 24 3 24【答案]A【解析]函数f(x)=2sin(「X 「:),x ・R , f (5)=2, f (丄)=0 ,振幅为2,所以如图所示: 8 8若函数图象如图表1所示,聖=匕_兰,解得T - ■,不满足最小正周期大于 2二,4 8 8所以函数图象如图表 2所示,【二竺一乞,解得T =3二,.=2,又因为口丁)=2, 4一 8一8 38 7-所以-5,所以,故选A . 3 8212工x 2,x :1(8)【2017年天津,文8, 5分]已知函数f(x)二 2 ,设a ・R ,若关于x 的不等|x +—m L xx式f (x)兰-+a 在R 上恒成立,则a 的取值范围是()2(A ) [ -2,2] (B ) [2.3,2] ( C ) [—2,2 .3] ( D ) [2 .3,—2 .3] 【答案]A【解析]函数f(x)的图象如下图(左),若关于x 的不等式f(x)王;+a 在R 上恒成立,则不妨设g(x) = x +a , “f(x)+a 在R 上恒成立”表示y = f (x)图 2 2 象与y =g(x )图象应如下图(右)所示找到两个临界位置:①f (x)与g(x)相2 1切时,x 1 , f '(x),解得 x 0 =2 , y 。
2017年天津高考文科数学真题及答案
2017年天津高考文科数学真题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U I (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} (2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 (A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -= (6)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << (7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ== (8)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )[2,2]-(B )[23,2]-(C )[2,3]-(D )[3,3]-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考真题——数学(文)(天津卷)+Word版含答案
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C = (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6}(2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的 (A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -= (6)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << (7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则(A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ== (8)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于的不等式()||2x f x a ≥+在R 上恒成立,则的取值范围是(A )[2,2]-(B)[-(C)[-(D)[-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考(天津卷)数学(文)试卷及参考答案.pdf
绝密★启用前2017 年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120 分钟。
第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 5 页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共 8 小题,每小题 5 分,共 40 分。
参考公式:?如果事件A,B互斥,那么P( A B)P(A)P(B).?棱柱的体积公式V Sh.其中S表示棱柱的底面面积,h表示棱柱的高.?球的体积公式V 43πR3.其中R表示球的半径.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A{1,,26},B{2,4},C{1,,,234},则(A B ) C (A){2} (B){1,,24} (C){1,,,246}(D){1,,,,2346} (2)设x R,则“ 2x≥ 0”是“x 1 ≤1”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A) 4 (B) 3 (C) 2 (D)15 5 5 5数学(天津卷・文史)第1页(共5页)(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1 开始(C ) 2 输入N(D ) 3 x2y2否N能被整除?(5)已知双曲线 1 (a 0 ,b 0 )的3a2b2是右焦点为F ,点A 在双曲线的渐近线上,△OAFNNN = N -1是边长为2的等边三角形(O 为原点),则双曲线3的方程为否N ≤3 ?(A )x 2y 214 12 是x2y2(B )输出N1124结束x 2(C ) y213 (第4题图)y2(D )x213(6)已知奇函数f (x)在R 上是增函数.若af (log 215),bf (log 2 4.1),cf (20.8),则a ,b ,c 的大小关系为(A )a bc(B )ba c (C )cb a (D )c a b(7)设函数f (x )2sin(x ),x R ,其中0,π .若f ( 5π) 2 ,f (11π) 0 ,8 8且f (x)的最小正周期大于2π,则(A ) 2 ,π(B ) 2 ,11π3123 12 (C )1,11π(D )1 ,7π324324x 2 ,x 1,x (8)已知函数fx2,x ≥1.设aR ,若关于x 的不等式f (x )≥a在R 上2xx恒成立,则a 的取值范围是(A )[2,2] (B )[ 2 3,2] (C )[2,2 3 ](D )[ 2 3,2 3 ] 数学(天津卷・文史)第2页(共5页)绝密★启用前2017 年普通高等学校招生全国统一考试(天津卷)数学(文史类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考文科数学天津卷及答案解析
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前天津市2017年普通高等学校招生考试数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B =+.棱柱的体积公式V Sh =.其中S 表示棱柱的底面积,h 表示棱柱的高.球的体积公式343V R π=.其中R 表示球的半径.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,2,6A =,{}2,4B =,{}=1,2,4C ,则()C A B = ( ) A .{}2B .{}1,2,34,C .{}1,246,,D .{}1,2,346,, 2.设x R ∈,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A .45B .35C .25D .154.阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为 ( )A .0B .1C .2D .35.已知双曲线2222=1(0,)x y a b a b->>0的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 ( ) A .22=1412x y -B .22=1124x y - C .22=13x y -D .22=13y x -6.已知奇函数()f x 在R上是增函数.若0.8221=(log ),=(log 4.1),=(2)5a fb fc f -,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .c b a << D .c a b <<7.设函数()=2s i n ()R f x x x ωϕ+∈,,其中0ωϕπ>,<.若5π()=28f ,11π()=08f ,且()f x 的最小正周期大于2π,则毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)( )A .2π=,=312ωϕ B .211π=,=312ωϕ-C .111π=,=324ωϕ-D .17π=,=324ωϕ8.已知函数2,1,2, 1.()=x x x x x f x ++≥⎧⎨⎩<设a R ∈,若关于x 的不等式在x()a 2f x ≥+上恒成立,则a 的取值范围是( )A .[]2,2-B.⎡⎤-⎣⎦ C.2,⎡-⎣D.⎡-⎣第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知R α∈,i 为虚数单位,若i2iα-+为实数,则a 的值为 .10.已知R α∈,设函数()=ln f x x x α-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .11.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.设抛物线2=4y x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=,则圆的方程为 .13.若,a b R ∈,0ab >,则4441a b ab++的最小值为 .14.在ABC △中,60A ∠=,3AB =,2AC =.若=2BD BC uu u r uu u r ,AE AC ABλ=-uu u r uuu r uu u r(R λ∈),且=4AD AE ⋅-uuu r uu u r,则λ的值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知s i n =4s i na Ab B,222)ac a b c --. (I )求cos A 的值;(II )求sin(2)B A -的值.16.(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(I )用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域;数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(II )问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?17.(本小题满分13分)如图,在四棱锥P ABCD -中,AD PDC ⊥平面,AD BC ∥,PD PB ⊥,=1AD ,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD PBC ⊥平面;(III )求直线AB 与平面PBC 所成角的正弦值.18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n (N )S n ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,114=11S b . (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列{}2n n a b 的前n 项和*(N )n ∈.19.(本小题满分14分)设,R a b ∈,a 1≤.已知函数32()=63(4)b f x x x a a x ---+,()=()x g x e f x . (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数=()y g x 和=x y e 的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0=x x 处的导数等于0;(ii )若关于x 的不等式()x g x e ≤在区间[]001,1x x -+上恒成立,求b 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题-----------------无---------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)20.(本小题满分14分)已知椭圆()2222=10x y a b a b+>>的左焦点为(,0)F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率;(II )设点Q 在线段AE 上,3=2FQ c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.2017年普通高等学校招生全国统一考试(天津卷)文科数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】由题意知{}1,2,4,6A B =,∴(){}1,2,4A B C =.2.【答案】B【解析】由x 11-≤,得0x 2≤≤,∵022x x ≤≤⇒≤,202x x ≤≠≤≤,故“2x 0-≥”是“x 11-≤”的必要而不充分条件,故选B . 3.【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率42105P ==. 4.【答案】C【解析】由程序框图可知,N 的取值依次为19,18,6,2.故输出N的值为2. 5.【答案】D数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【解析】由OAF △是边长为2的等边三角形可知,2c =,tan 603ba ==又222c ab =+,联立可得1a=,b ,∴双曲线的方程为2213y x -=.6.【答案】C 【解析】由()f x 是奇函数可得,221(log )(log 5)5a f f =-=,∵0.8222l o g 5l o g 4.1l o g 422=>>>,且函数()f x 是增函数,∴c b a <<. 7.【答案】A 【解析】由5π()28f =,11π()08f =,()f x 的最小正周期2πT >,可得11π5π3π8844T -==,∴3πT =,∴2π2==3π3ω.再由5π()28f =及πϕ<得π=12ϕ.8.【答案】A【解析】作出()f x 的图象如图所示,=||2xy a +的图象经过点(0,2)时,可知=2a ±.当2x y a =+的图象与2y x x=+的图象相切时,由22x a x x+=+,得2240x ax -+=,由=0∆,并结合图象可得2a =.要使()||2xf x a ≥+恒成立,当0a ≤时,需满足2a -≤,即20a -≤≤,当a >0时,需满足2a ≤,所以22a -≤≤.第Ⅱ卷二、填空题 9.【答案】2-【解析】因为i (i)(2i)21(2)i=2i (2i)(2i)5a a a a -----+=++-为实数,所以+2=0a ,即=2a -. 10.【答案】1【解析】因为'1()f x a x=-,所以'(1)1f a =-,又'(1)f a =,所以切线l 的方程为(1)(1)y a a x -=--,令=0x ,得=1y . 11.【答案】9π2【解析】设正方体的棱长为a ,则2618a=,得a =,设该正方体外接球的半径为R,则23R ==,得32R =,所以该球的体积为334439ππ()π3322R ==.12.【答案】22(1)(=1x y ++【解析】由题意知该圆的半径为1,设圆心坐标为(1,)C a -(0)a >则(0,)A a ,又(1,0)F ,所以(1,0)AC =-uu u r ,(1,)AF a =-uu u r ,由题意得AC uuu r 与AF uu u r的夹角为120,得1cos1202==-,解得a,所以圆的方程为22(1)(1x y ++=.13.【答案】4【解析】44334141=a b a b ab b a ab++++,由基本不等式得,33411144a b ab b a ab ab ab ++≥=+≥,当且仅当334a b b a=,14ab ab =同时成立时等号成立.14.【答案】311数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【解析】因为2BD DC =uu u r uuu r,所以2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r,因为AE AC AB λ=-uu u r uuu r uu u r,所以22121212(+)()()333333AD AE AB AC AC AB AB AC AB AC λλλ⋅=⋅-=-++-⋅uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uuu r uu u r ,因为60A ∠=,3AB =,2AC =,1212189λ4(λ)323λλ24333323AD AE ⋅=-⨯+⨯+-⨯⨯⨯=-++-=-uuu r uu u r ,解得3λ=11.三、解答题 15.【答案】(Ⅰ)5- (Ⅱ)5-【解析】(Ⅰ)由sin =4sin a A b B ,及=sin sin a bA B,得2a b =.由222)ac a b c --,及余弦定理,得2225cos =25b c a A bc ac +-==-.(Ⅱ)由(Ⅰ),可得sin A ,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(Ⅰ)知,A为钝角,所以cos B .于是4sin 2=2sin cos =5B B B ,23cos 2=12sin =5B B -,故()43sin 2=sin 2cos cos 2sin =(55B A B A B A --⨯--16.【答案】(Ⅰ)见解析(Ⅱ)电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【解析】(Ⅰ)由已知,x ,y 满足的数学关系式为7060600,5530,2,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪≤⎨⎪≥⎪≥⎪⎩即7660620,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪-≤⎨⎪≥⎪≥⎪⎩,, 该二元一次不等式组所表示的平面区域为图1中的阴影部分:(Ⅱ)设总收入人次为z 万,则目标函数为=60+25z x y . 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,,,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.17.【答案】(Ⅰ)数学试卷 第13页(共18页) 数学试卷 第14页(共18页)(Ⅱ) 因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ【解析】(Ⅰ)如图,由已知AD BC ∥,故D A P ∠或其补角即为异面直线AP 与BC 所成的角.因为AD PDC ⊥平面,所以AD PD ⊥.在Rt PDA △中,由已知,得AP ==,故c o s AD DAP AP ∠==.所以,异面直线AP 与BC.(Ⅱ)因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD PBC ⊥平面,故PF 为DF 在平面PBC 上的射影,所以DFP∠为直线DF 和平面PBC 所成的角.由于AD BC ∥,DF AB ∥,故1BF AD ==,由已知,得2CF BC BF =-=.又AD DC ⊥,故BC D C⊥,在Rt DCF △中,可得DF ==,在Rt DPF △中,可得sin 5PD DFP DF ∠==.所以,直线AB 与平面PBC18.【答案】(Ⅰ)32n a n =-,2n b n =. (Ⅱ)()234216n n T n +=-+.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以,2n b n =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(Ⅱ)设数列{}2n n a b 的前n 项和为n T ,由262n a n =-,有()2342102162622nn T n =⨯+⨯+⨯++-⨯,()()23412421021626826-22n n n T n n +=⨯+⨯+⨯++-⨯+⨯,上述两式相减,得()231124262626262212(12)4(62)212(34)216n n n n n n T n n n +++-=⨯+⨯+⨯++⨯--⨯⨯-=---⨯-=---得()234216n n T n +=-+.所以,数列{}2n n a b 的前n 项和为()234216n n +-+.19.【答案】(Ⅰ)12(2)(ⅰ)34(ⅱ)(1)递增区间为()a -∞,,()4a -+∞,,递减区间为()a 4a -,.(2)(ⅰ)()x f 在0x=x 处的导数等于0.(ⅱ)b 的取值范围是[]7,1-.22x y =11612+ 【解析】(Ⅰ)由32()63(4)f x x x a a x b =---+,可得[]'2()3123(4)3()(4)f x x x a a x a x a =---=---.令'()=0f x ,解得x a =,或4x a =-,由||1a ≤,得4a a -<.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)x '()f x ()f x 所以,()f x 的单调递增区间为()a -∞,,(4,)a -+∞,单调递减区间为(,4)a a -(Ⅱ)(i )因为'()(()())x g x e f x f x =+,由题意知000'0(),()x x g x e g x e ⎧=⎪⎨=⎪⎩所以00000'00()(()())x xx x f x e e e f x f x e ⎧=⎪⎨+=⎪⎩,解得0'0()1()0f x f x =⎧⎪⎨=⎪⎩ 所以,()f x 在0x x =处的导数等于0.(ii )因为()x g x e ≤,00[11]x x x ∈-+,,由0x e >,可得()1f x ≤.又因为0(x )1f =,'0()0f x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于|1|a ≤,故14a a +-<,由(Ⅰ)知()f x 在(1,)a a -内单调递增,在(,1)a a +内单调递减,故当0x a =时,()()1f x f a ≤=在[1,1]a a -+上恒成立,从而()x g x e ≤在00[1,1]x x -+上恒成立.由32()63(4)1f a a a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以'2()612t x x x =-,令'()0t x=,解得2x =(舍去),或0x =.因为(1)7t -=-,(1)3t =-,(0)1t =,因此,()t x 的值域为[7,1]-. 所以,b 的取值范围是[7,1]-.20.【答案】(1)12(2)(ⅰ)34(ⅱ)22x y =11612+【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=,又由222b a c =-,可得2220c ac a +-=,即2210e e +-=,又因为01e <<,解得12e =.所以,椭圆的离心率为12.(Ⅱ)(i )依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)2m cx m -=+,32c y m =+,即点Q的坐标为(22)3(,)22m c cm m -++. 由已知3||2c FQ =,有222(22)33[]+()()222m c c cc m m -+=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22233430143x y c x y cc -+=⎧⎪⎨+=⎪⎩,消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(c,)2cP ,进而可得5||2cFP ==,所以53||||||22c cPQ FP FQ c =-=-=.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN FP ⊥,所以339||||tan 248c cQN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 四边形的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.数学试卷第17页(共18页)数学试卷第18页(共18页)。
2017年高考天津文科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(天津卷)数学(文科)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,文1,5分】设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C =( )(A ){}2 (B ){}1,2,4 (C ){}1,2,3,4 (D ){}1,2,3,4,6 【答案】B【解析】{}1,2,4,6A B =,(){1,2,4,6}{1,2,3,4}{1,2,4}A B C ==,故选B . (2)【2017年天津,文2,5分】设x R ∈,则“20x -≥”是“11x -≤”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥解得:2x ≤;11x -≤解得:02x ≤≤,2x ≤⇐02x ≤≤,故选B .(3)【2017年天津,文3,5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )(A )45 (B )35 (C )25 (D )15【答案】C【解析】“从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:25C ,而事件“取出的2支彩笔中含有红色彩笔”包含基本事件个数:14C ;42105P ==,故选C .(4)【2017年天津,文4,5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为( ) (A )0 (B )1 (C )2 (D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N =,第一次循环:118N N =-=,不满足3N ≤;第二次循环:63NN ==,不满足3N ≤;第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =,故选C .(5)【2017年天津,文5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) (A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -=【答案】D【解析】因为OAF ∆是边长为2的等边三角形(O 为原点)所以2OF =,60AOF ∠=︒,所以直线OA 方程为3y x =,所以渐近线方程by x a=±其中一条为3y x =,所以,23c ba=⎧⎪⎨=⎪⎩,解之得:1,3,2a b c ===,故选D . (6)【2017年天津,文6,5分】已知奇函数()f x 在R 上是增函数,若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =,则,,a b c 的大小关系为( )(A )a b c << (B )b a c << (C )c b a << (D )c a b << 【答案】C【解析】因为()f x 在R 上是奇函数,所以有()()f x f x -=-,即21(log )5a f =-2(log 5)f =;又因为()f x 在R 上是增函数,且0.8122222log 4log 4.1log 5<=<<,所以c b a <<,故选C .(7)【2017年天津,文7,5分】设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则( )(A )2,312πωϕ== (B )211,312πωϕ==- (C )111,324πωϕ==- (D )17,324πωϕ==【答案】A【解析】函数()2sin(),f x x x R ωϕ=+∈,511()2,()088f f ππ==,振幅为2,所以如图所示:若函数图象如图表1所示,3115488T ππ=-,解得T π=,不满足最小正周期大于2π,所以函数图象如图表2所示,115488T ππ=-,解得3T π=,23ω=,又因为5()28f π=,所以25382ππϕ⨯+=,所以12πϕ=,故选A .(8)【2017年天津,文8,5分】已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是( )(A )[2,2]- (B )[23,2]- (C )[2,23]- (D )[23,23]- 【答案】A【解析】函数()f x 的图象如下图(左),若关于x 的不等式()2xf x a ≥+在R 上恒成立,则不妨设()2x g x a =+,“()2xf x a ≥+在R 上恒成立”表示()y f x =图 象与()yg x =图象应如下图(右)所示找到两个临界位置: ①()f x 与()g x 相切时,1x >,221'()12f x x =-=,解得02x =,03y =,代入(2)3g =,解得232a +=,2,4a a ==-(舍);②()g x 过点(0,2),代入(0)2g =,2a =,解得2,2a a =-=(舍),故a 的取值范围在2-与2之间,故选A .二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,文9,5分】已知a R ∈,i 为虚数单位,若i2ia -+为实数,则a 的值为 .【答案】2-【解析】解法一:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,所以20a +=,2a =-. 解法二:i2ia -+为实数⇔i a -与2i +成比例,比例为1-,所以2a =-.(10)【2017年天津,文10,5分】已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .【答案】1【解析】函数()f x 的导函数1'()f x a x=-,所以(1),'(1)1f a f a ==-,切点(1,)a ,斜率为1a -,所以代入切线点斜式:(1)(1)y a a x -=--,l 在y 轴上的截距为:0,1x y ==,所以答案为1.(11)【2017年天津,文11,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .【答案】92π 【解析】球的表面积公式2618S a ==,所以棱长3a =,计算得:233R a ==,32R =,34932V R ππ==. (12)【2017年天津,文12】设抛物线24y x =的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若120FAC ∠=︒,则圆的方程为 .【答案】22(1)(3)1x y ++-=【解析】抛物线24y x =的焦点为(1,0)F ,准线为:1l x =-,所以可设(1,)C b -,OA b =,120FAC ∠=︒,所以60AFH ∠=︒,在直角三角形OAF 中,1OF =,所以3OA =,所以圆的圆心(1,3)-, 半径等于1,所以圆22:(1)(3)1C x y ++-=.(13)【2017年天津,文13,5分】若,a b R ∈,0ab >,则4441a b ab++的最小值为 .【答案】4【解析】4422414144a b a b abab ab ab+++≥≥=(0ab >),当且仅当“444a b =”、“2241a b =”同时成立时,等号成立,解之得:13442,2a b --==.(14)【2017年天津,文14,5分】在ABC ∆中,60A ∠=︒,3AB =,2AC =,若2BD DC =,AE AC AB λ=- ()R λ∈,且4AD AE ⋅=-,则λ的值为 . 【答案】311【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)【2017年天津,文15,13分】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A B =,2225()ac a b c =--.(1)求cos A 的值;(2)求sin(2)B A -的值.解:(1)sin 4sin a A b B =可化为224a b =,解得:2a b =,余弦定理:222cos 2b c a A bc +-=25bc=5=-. (2)根据5cos A =-,解得25sin A =,所以5sin B =,25cos B =,4sin 22sin cos 5B B B ==,23cos22cos 15B B =-=,sin(2)B A -45325sin 2cos cos2sin ()55B A B A =-=⨯--⨯10525--==. (16)【2017年天津,文16,13分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万) 甲 70 5 60 乙 60 5 25分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,x y 表示每周计划播出的甲、乙两套电视 剧的次数.(1)用,x y 列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解:(1)分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数766062,x y x y x y x y N+≤⎧⎪+≥⎪⎨≤⎪⎪∈⎩.(2)设总收视人次为z 万,则目标函数为6025z x y =+.考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z为直线在y 轴上的截距, 当25z 取得最大值时,z 的值最大.又因为,x y 满足约束条件,所以由图2可知,当直线6025z x y =+经 过可行域上的点M 时,截距25z最大,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为()6,3.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)【2017年天津,文17,13分】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD ∥BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =. (1)求异面直线AP 与BC 所成的角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值. 解:(1)因为AD ∥BC ,所以PAD ∠等于异面直线AP 与BC 所成的角,AD ⊥平面PDC ,所以90PDA ∠=︒,5PA =,5cos 5AD PAD AP ∠==. (2)因为AD ⊥平面PDC ,所以AD PD ⊥,又因为AD ∥BC ,所以PD BC ⊥,PD PB ⊥,且PB BC B =,所以PD ⊥平面PBC .(3)取BC 上三分点,3BE BC =,//BE AD ,1AD BE ==,PD ⊥平面PBC ,所以DEP ∠等于直线AB 与平面PBC 所成角90DPE ∠=︒,25AB =,25DE =,4PE =,25sin 525PD DEP DE ∠===.(18)【2017年天津,文18,13分】已知{}n a 为等差数列,前n 项和为n S *()n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和*()n ∈N .解:(1)已知{}n a 为等差数列,{}n b 是首项为2的等比数列,且公比大于0,所以1(1)n a a n d =+-,1112n n n b b q q --==,22212q q +=,解之得:2,3q q ==-(舍),118311(5)1116a da d =-+⎧⎨+=⨯⎩,解之得:11,3a d ==所以31n a n =-,2n n b =.(2)2(62)2n n n a b n =-⨯,不妨设数列{}2n n a b 的前n 项和为n T ,2142632212n n n n n T a b a b a b a b a b --=+++++,123142102162(68)2(62)2n nn T n n -=⨯+⨯+⨯++-⨯+-⨯① 2n T =231142102(614)2(68)2(62)2n n n n n n -+⨯+⨯+-⨯+-⨯+-⨯ ②①-②得:123142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯,整理得:216(34)2n n T n +=+-⨯.(19)【2017年天津,文19,14分】设,a b R ∈,1a ≤,已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =.(1)求()f x 的单调区间;(2)已知函数()y g x =和函数x y e =的图象在公共点00(,)x y 处有相同的切线.(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()x g x e ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.解:(1)32'()()'6()'3(4)'f x x x a a x =---,2'()3123(4)f x x x a a =---,2'()3123(4)3()(4)f x x x a a x a x a =---=-+-,因为1a ≤,所以4a a <-,ABCDP E所以,()f x 的单调增区间(,),(4,)a a -∞-+∞,()f x 的单调减区间[,4]a a -.(2)(i )()()x g x e f x =与x y e =在公共点00(,)x y 处有相同的切线,首先,00()x g x e =;其次,00'()x g x e =,0()1f x =,00()'()1f x f x +=,所以0'()0f x =.(ii )()x g x e ≤等价于()1f x ≤,0'()0f x =,0()1f x =,所以0x a =极大值点,若关于x 的不等式()x g x e ≤在区间00[1,1]x x -+上恒成立,等价于()1f x ≤在区间00[1,1]x x -+上恒成立,等价于max ()1f x ≤,00[1,1]x x x ∈-+,当0x a =,()f x 在[1,]a a -递增,在[,1]a a +递减,()f a 为最大值, ()1f a =,32261a a b -++≤,32261b a a ≤-+,令32()261h x x x =-+,2'()6126(2)h x x x x x =-=-,()h x 在[1,0]-递增,在[0,1]递减,所以7()1h x -≤≤,71b -≤≤.(20)【2017年天津,文20,14分】已知椭圆22221(0)x y a b a b+=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA ∆的面积为22b.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段PQ 与椭圆交于点P ,点M ,N 在轴上,PM QN ∥,且直线PM 与直线QN 间的距离为,四边形PQNM 的面积为3c ; (i )求直线FP 的斜率; (ii )求椭圆的方程.解:(1)12AEF S AF OE ∆=⨯⨯21()22b a c c =+⨯=,因为222b a c =-,所以c a c =-,故2a c =,12c e a ==.(2)(i )45EFO ∠=︒,设1EQ EA λλ=+(01)λ<<,所以(1)FQ FE FA λλ=-+,2FE c =,3FA c =,因为32c FQ =,两边平方,解之得:910λ=,32λ=(舍)代入(1)FQ FE FA λλ=-+,得69(,)510c c FQ =,直线FP 的斜率等于34y x =(ii )直线FP 的方程:30()4y x c -=-;为求点P 的坐标,联立方程解方程组:2224333412y x c x y c=-⎧⎨+=⎩,解之得:13,7c x c x ==-(舍),所以3(,)2c P c ,因为69(,)510c c FQ =,所以9(,)510c cQ , 即PQ c =,而PM ∥QN ,且直线PM 与直线QN 间的距离为c ,所以直线PM 与直线QN 垂直于PF ,由(i )直线FP 的斜率等于34,可得335154428c c PM PF ==⨯=,33394428c cQN FQ =⨯=⨯=, MNPQ FPM FQN S S S ∆∆=- 1()2PM PF QN QF =⨯⨯-⨯232c =,所以2332c c =,解之得2c =,所以4,23a b ==,所以2211612x y +=.。
2017年高考天津文科数学试题与答案(word解析版)
2017年普通高等学校招生全国统一考试(天津卷)数学(文科)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,文1,5分】设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C =( )(A ){}2 (B ){}1,2,4 (C ){}1,2,3,4 (D ){}1,2,3,4,6 【答案】B【解析】{}1,2,4,6A B =,(){1,2,4,6}{1,2,3,4}{1,2,4}A B C ==,故选B . (2)【2017年天津,文2,5分】设x R ∈,则“20x -≥”是“11x -≤”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥解得:2x ≤;11x -≤解得:02x ≤≤,2x ≤⇐02x ≤≤,故选B .(3)【2017年天津,文3,5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )(A )45 (B )35 (C )25 (D )15【答案】C【解析】“从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:25C ,而事件“取出的2支彩笔中含有红色彩笔”包含基本事件个数:14C ;42105P ==,故选C .(4)【2017年天津,文4,5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为( )(A )0 (B )1 (C )2 (D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N =,第一次循环:118N N =-=,不满足3N ≤;第二次循环:63NN ==,不满足3N ≤;第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =,故选C .(5)【2017年天津,文5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( )(A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -=【答案】D【解析】因为OAF ∆是边长为2的等边三角形(O 为原点)所以2OF =,60AOF ∠=︒,所以直线OA 方程为3y x =,所以渐近线方程by x a=±其中一条为3y x =,所以,23c ba=⎧⎪⎨=⎪⎩,解之得:1,3,2a b c ===,故选D . (6)【2017年天津,文6,5分】已知奇函数()f x 在R 上是增函数,若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =, 则,,a b c 的大小关系为( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<【答案】C【解析】因为()f x 在R 上是奇函数,所以有()()f x f x -=-,即21(log )5a f =-2(log 5)f =;又因为()f x 在R 上是增函数,且0.8122222log 4log 4.1log 5<=<<,所以c b a <<,故选C .(7)【2017年天津,文7,5分】设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则( )(A )2,312πωϕ== (B )211,312πωϕ==- (C )111,324πωϕ==- (D )17,324πωϕ==【答案】A【解析】函数()2sin(),f x x x R ωϕ=+∈,511()2,()088f f ππ==,振幅为2,所以如图所示: 若函数图象如图表1所示,3115488T ππ=-,解得T π=,不满足最小正周期大于2π,所以函数图象如图表2所示,115488T ππ=-,解得3T π=,23ω=,又因为5()28f π=,所以25382ππϕ⨯+=,所以12πϕ=,故选A .(8)【2017年天津,文8,5分】已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是( )(A )[2,2]- (B )[23,2]- (C )[2,23]- (D )[23,23]- 【答案】A【解析】函数()f x 的图象如下图(左),若关于x 的不等式()2xf x a ≥+在R 上恒成 立,则不妨设()2x g x a =+,“()2xf x a ≥+在R 上恒成立”表示()y f x =图 象与()yg x =图象应如下图(右)所示找到两个临界位置: ①()f x 与()g x 相切时,1x >,221'()12f x x =-=,解得02x =,03y =,代入(2)3g =,解得 232a +=,2,4a a ==-(舍);②()g x 过点(0,2),代入(0)2g =,2a =,解得2,2a a =-=(舍),故a的取值范围在2-与2之间,故选A .二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,文9,5分】已知a R ∈,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】解法一:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,所以20a +=,2a =-. 解法二:i2ia -+为实数⇔i a -与2i +成比例,比例为1-,所以2a =-.(10)【2017年天津,文10,5分】已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .【答案】1【解析】函数()f x 的导函数1'()f x a x=-,所以(1),'(1)1f a f a ==-,切点(1,)a ,斜率为1a -,所以代入切线点斜式:(1)(1)y a a x -=--,l 在y 轴上的截距为:0,1x y ==,所以答案为1.(11)【2017年天津,文11,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】球的表面积公式2618S a ==,所以棱长3a =,计算得:233R a ==,32R =,34932V R ππ==.(12)【2017年天津,文12】设抛物线24y x =的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若120FAC ∠=︒,则圆的方程为 . 【答案】22(1)(3)1x y ++-=【解析】抛物线24y x =的焦点为(1,0)F ,准线为:1l x =-,所以可设(1,)C b -,OA b =,120FAC ∠=︒,所以60AFH ∠=︒,在直角三角形OAF 中,1OF =,所以3OA =,所以圆的圆心(1,3)-,半径等于1,所以圆22:(1)(3)1C x y ++-=.(13)【2017年天津,文13,5分】若,a b R ∈,0ab >,则4441a b ab++的最小值为 .【答案】4【解析】4422414144a b a b abab ab ab+++≥≥=(0ab >),当且仅当“444a b =”、“2241a b =”同时成立时,等号成立,解之得:13442,2a b --==.(14)【2017年天津,文14,5分】在ABC ∆中,60A ∠=︒,3AB =,2AC =,若2BD DC =,AE AC AB λ=-()R λ∈,且4AD AE ⋅=-,则λ的值为 .【答案】311【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)【2017年天津,文15,13分】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.解:(1)sin 4sin a A b B =可化为224a b =,解得:2a b =,余弦定理:222cos 2b c a A bc +-=25ac bc -=55=-. (2)根据5cos 5A =-,解得25sin 5A =,所以5sin 5B =,25cos 5B =,4sin 22sin cos 5B B B ==,23cos22cos 15B B =-=,sin(2)B A -45325sin 2cos cos2sin ()5555B A B A =-=⨯--⨯10525255--==. (16)【2017年天津,文16,13分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万)甲 70 5 60 乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,x y 表示每周计划播出的甲、乙两套电视 剧的次数.(1)用,x y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解:(1)分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数766062,x y x y x y x y N+≤⎧⎪+≥⎪⎨≤⎪⎪∈⎩.(2)设总收视人次为z 万,则目标函数为6025z x y =+.考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为,x y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为()6,3.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)【2017年天津,文17,13分】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD ∥BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成的角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.解:(1)因为AD ∥BC ,所以PAD ∠等于异面直线AP 与BC 所成的角,AD ⊥平面PDC ,所以90PDA ∠=︒,PAcos AD PAD AP ∠==. (2)因为AD ⊥平面PDC ,所以AD PD ⊥,又因为AD ∥BC ,所以PD BC ⊥,PD PB ⊥,且PBBC B =,所以PD ⊥平面PBC .(3)取BC 上三分点,3BE BC =,//BE AD ,1AD BE ==,PD ⊥平面PBC ,所以DEP ∠等于直线AB 与平面PBC 所成角90DPE ∠=︒,AB =DE =4PE =,sin PD DEP DE ∠==. (18)【2017年天津,文18,13分】已知{}n a 为等差数列,前n 项和为n S *()n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}2n n a b 的前n 项和*()n ∈N .解:(1)已知{}n a 为等差数列,{}n b 是首项为2的等比数列,且公比大于0,所以1(1)n a a n d =+-,1112n n n b b q q --==,22212q q +=,解之得:2,3q q ==-(舍),118311(5)1116a da d =-+⎧⎨+=⨯⎩,解之得:11,3a d ==所以31n a n =-,2n n b =.(2)2(62)2n n n a b n =-⨯,不妨设数列{}2n n a b 的前n 项和为n T ,2142632212n n n n n T a b a b a b a b a b --=+++++,123142102162(68)2(62)2n nn T n n -=⨯+⨯+⨯++-⨯+-⨯①2n T =231142102(614)2(68)2(62)2n n n n n n -+⨯+⨯+-⨯+-⨯+-⨯ ②①-②得:123142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯,整理得:216(34)2n n T n +=+-⨯.(19)【2017年天津,文19,14分】设,a b R ∈,1a ≤,已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =.(1)求()f x 的单调区间;(2)已知函数()y g x =和函数xy e =的图象在公共点00(,)x y 处有相同的切线.(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.解:(1)32'()()'6()'3(4)'f x x x a a x =---,2'()3123(4)f x x x a a =---,2'()3123(4)3()(4)f x x x a a x a x a =---=-+-,因为1a ≤,所以4a a <-,所以,()f x 的单调增区间(,),(4,)a a -∞-+∞,()f x 的单调减区间[,4]a a -.(2)(i )()()x g x e f x =与xy e =在公共点00(,)x y 处有相同的切线,首先,00()x g x e =;其次,00'()x g x e =,0()1f x =,00()'()1f x f x +=,所以0'()0f x =.(ii )()xg x e ≤等价于()1f x ≤,0'()0f x =,0()1f x =,所以0x a =极大值点,若关于x 的不等式()x g x e ≤ 在区间00[1,1]x x -+上恒成立,等价于()1f x ≤在区间00[1,1]x x -+上恒成立,等价于max ()1f x ≤,00[1,1]x x x ∈-+,当0x a =,()f x 在[1,]a a -递增,在[,1]a a +递减,()f a 为最大值, ()1f a =,32261a a b -++≤,32261b a a ≤-+,令32()261h x x x =-+,ABCDPE2'()6126(2)h x x x x x =-=-,()h x 在[1,0]-递增,在[0,1]递减,所以7()1h x -≤≤,71b -≤≤.(20)【2017年天津,文20,14分】已知椭圆22221(0)x y a b a b+=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA ∆的面积为22b.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段PQ 与椭圆交于点P ,点M ,N 在轴上,PM QN ∥,且直线PM 与直线QN 间的距离为,四边形PQNM 的面积为3c ; (i )求直线FP 的斜率; (ii )求椭圆的方程.解:(1)12AEFS AF OE ∆=⨯⨯21()22b a c c =+⨯=,因为222b a c =-,所以c a c =-,故2a c =,12c e a ==.(2)(i )45EFO ∠=︒,设1EQ EA λλ=+(01)λ<<,所以(1)FQ FE FA λλ=-+,2FE c =,3FA c =,因为32c FQ =,两边平方,解之得:910λ=,32λ=(舍) 代入(1)FQ FE FA λλ=-+,得69(,)510c c FQ =,直线FP 的斜率等于34y x =(ii )直线FP 的方程:30()4y x c -=-;为求点P 的坐标,联立方程解方程组:2224333412y x c x y c=-⎧⎨+=⎩,解之得:13,7c x c x ==-(舍),所以3(,)2c P c ,因为69(,)510c cFQ =,所以9(,)510c cQ , 即PQ c =,而PM ∥QN ,且直线PM 与直线QN 间的距离为c ,所以直线PM 与直线QN 垂直于PF ,由(i )直线FP 的斜率等于34,可得335154428c c PM PF ==⨯=,33394428c c QN FQ =⨯=⨯=, MNPQ FPM FQN S S S ∆∆=- 1()2PM PF QN QF =⨯⨯-⨯232c =,所以2332c c =,解之得2c =,所以4,23a b ==,所以2211612x y+=.。
2017年高考一模文科数学试卷-答案
17AD G OG FG天津市部分区2017年高考一模文科数学试卷解析一、选择题(每小题5分,共40分)1.【考点】交集及其运算.【分析】分别求出集合A和B,由此利用交集定义能求出集合A∩B.【解答】解:∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≥1或x≤﹣1},∴集合A∩B={1,2,3}.故选:B.2.【考点】几何概型.【分析】本题利用几何概型求概率,首先解得的区间长度以及与区间[﹣1,1]的长度,求比值即得.【解答】解:由3a+1>0,解得:a>﹣,故满足条件的概率p==,故选:C.3.【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图,可得该几何体是一个底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体,分别求其体积,相加可得答案.【解答】解:由已知中的三视图,可得该几何体是一个底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体,棱柱的体积为:1×1×2=2,圆锥的底面半径为1,高为1,体积为:,故组合体的体积V=+2,故选:A4.【考点】双曲线的简单性质.【分析】利用双曲线的简单性质,求出a,b,即可得到双曲线方程.【解答】解:双曲线=1(a>b>0)的实轴长为2,可得a=1,离心率为,可得,可得c=,则b==2.则双曲线的方程为:x2﹣=1.故选:B.5.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及集合的包含关系判断即可.【解答】解:由|x﹣1|<2,解得:﹣1<x<3,故p:﹣1<x<3;f(x)==x+的最小值为2,得x>0,故q:x>0,故p是q的既不充分也不必要条件,故选:D.6.【考点】分段函数的应用;根的存在性及根的个数判断.【分析】根据分段函数解析式的特点,分类讨论求出函数f(x)的值域,再求出f(f(a))和2f(a)成立,即可求出λ的取值范围【解答】解:方法一:∵函数f(x)=(λ∈R),任意的a∈R都有f(f(a))=2f(a)成立,∴f(a))≥1恒成立∴λ﹣1≥1即可,∴λ≥2,方法二:当x<1时,f(x)>f(1)=λ﹣1,当x≥1时,f(x)=2x,f(x)≥21=2,当λ﹣1≥2时,即λ≥3时,f(x)≥2,当λ﹣1<2时,即λ<3时,f(x)≥λ﹣1,∴①当λ≥3时,2f(a)∈[4,+∞),f(f(a))≥22=4∴f(f(a))=2f(a)恒成立②当λ<3时,2f(a)∈[2λ﹣1,+∞),当2≤λ<3时,f(f(a))≥2λ﹣1,∴f(f(a))=2f(a)恒成立,当λ<2时,f(f(a))=﹣(λ﹣1)+λ=1,f(f(a))=2f(a)不恒成立,综上所述λ≥2,故选:C7.【考点】向量在几何中的应用.【分析】利用已知条件,建立直角坐标系,求出相关点的坐标,然后求解向量的数量积.【解答】解:建立如图所示的直角坐标系:在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则A(0,0),B(1,0),C(﹣1,),O(0,),M(0,),=(1,﹣),=(﹣1,)=﹣1﹣=﹣.故选:D.8.【考点】数列与函数的综合.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使n取得最小值,尽可能多让x i(i=1,2,3,…,n)取得最高点,然后作图可得满足条件的最小n值.【解答】解:∵f(x)=cos(2x+)对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使n取得最小值,尽可能多让x i(i=1,2,3,…,n)取得最高点,考虑0≤x1<x2<…<x n≤4π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x n﹣1)﹣f(x n)|=16,按下图取值即可满足条件,即有|1+|+2×7+|1﹣|=16.则n的最小值为10.故选:C.二、填空题(本大题共6小题,每小题5分,共30分)9.【考点】复数的基本概念.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简复数z,则z的实部可求.【解答】解:由z(1+i)=3﹣i,得,则z的实部为:1.故答案为:1.10.【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,i的值,当i=6时,满足条件i≥6,退出循环,输出S的值即可.【解答】解:s=﹣2,i=0<6第一次循环,s=﹣1,i=2,第二次循环,i=2<6,s=1,i=4,第三次循环,i=4<6,s=5,i=6≥6,输出s=5,故答案为:5.11.【考点】导数的运算.【分析】先求导函数f′(x),然后将x=0代入导函数即可求出f′(0)的值.【解答】解:=;∴.故答案为:2.12.【考点】圆的标准方程.【分析】根据题意,设圆的圆心的坐标为(a,0),则圆的方程为(x﹣a)2+y2=5,(a>0),由点到直线的距离公式计算可得圆心到直线x+2y=0的距离,由此可得1+(a)2=5,解可得a的值,将a的值代入圆的方程可得答案.【解答】解:根据题意,设圆的圆心坐标为(a,0),则其标准方程为(x﹣a)2+y2=5,(a>0),则圆心到直线x+2y=0的距离d==a,又由该圆截直线x+2y=0所得弦的长为2,则有1+(a)2=5,解可得a=±2,又由a>0,则a=2,故要求圆的方程为(x﹣2)2+y2=5,故答案为:(x﹣2)2+y2=5.13.【考点】基本不等式.【分析】利用基本不等式、对数的运算法则和单调性即可得出.【解答】解:∵实数x,y>0,x+y2=4,∴4=x+y2≥2,化为xy2≤4,当且仅当x=2,y=时取等号.则log2x+2log2y=log2(xy2)≤log24=2.因此log2x+2log2y的最大值是2.故答案为:2.14.【考点】根的存在性及根的个数判断.【分析】方程f(x)=x+m(m∈R)恰有三个不相等的实数解⇔方程f(x)﹣x=m(m∈R)恰有三个不相等的实数解令g(x)=f(x)﹣x=.画出函数g(x)的图像,由图求解解:方程f(x)=x+m(m∈R)恰有三个不相等的实数解⇔方程f(x)﹣x=m(m∈R)恰有三个不相等的实数解令g(x)=f(x)﹣x=.当x≤0时,函数h(x)=ln(x+1)﹣x,h′(x)=,可知函数h(x)在(0,+∞)递减,函数g(x)的图像如下,由图可知g(﹣)<m<0,∴﹣,故答案为:(﹣,0).三、解答题(本大题共6小题,共80分)15.【考点】两角和与差的余弦函数.【分析】(Ⅰ)利用正弦定理和余弦定理,解方程组求得a的值;(Ⅱ)利用余弦定理求得cosA的值,可得sinA的值,利用二倍角公式求得sin2A.cos2A的值,再利用两角和差的三角公式求得cos(2A﹣B)的值.16.【考点】简单线性规划的应用;函数模型的选择与应用.【分析】(Ⅰ)根据条件建立约束条件,画出约束条件的可行域如图,(Ⅱ)利用数形结合,结合线性规划的应用即可得到结论.17.【考点】直线与平面所成的角;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)取AD的中点G,连接OG,FG,证明OGFE为平行四边形,可得OE∥FG,即可证明:OE ∥平面ADF;(Ⅱ)证明BD⊥平面AFC,即可证明:平面AFC⊥平面ABCD;(Ⅲ)做FH⊥AC于H,∠FAH为AF与平面ABCD所成角,即可求AF与平面ABCD所成角.18.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由+=﹣2(n≥2,n∈N*)整理得(S n+1+S n﹣1)2=(2S n)2,结合题意,得S n+1+S n﹣1=2S n,可判断出数列{S n}为等差数列,继而可得S n=2n﹣1,从而可求数列{a n)的通项公式;(Ⅱ)利用裂项法可得c n==(﹣),从而可求得数列{c n}的前n项和为T n,即可证得:≤T n.19.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)由椭圆的性质可在:a﹣c=b,平方,利用椭圆的离心率公式,即可求得椭圆C的离心率;(Ⅱ)将M代入椭圆方程,求得a和b的值,求得椭圆方程,利用韦达定理及中点坐标公式,代入求得k 的值,利用弦长公式即可求得|AB|的最大值.20.【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【分析】(Ⅰ)当a=﹣2时,求导,利用导数与函数的单调性的关系即可求得函数的单调区间;(Ⅱ)(i)当t=1时,求得g(x),当x=1是g(x)=(x﹣t)f′(x)的中间零点,令h(x)=x2+(a+2)x+a ﹣1,则h(1)=2a+2<0,即可求得a的取值范围;(ii)由题意可知x1,x3,是x2+(a+2)x+a﹣1=0,根据等差数列的性质,分别讨论x1,x2,x3,b的排列,结合韦达定理,即可求得b的值.。
2017年天津卷文科数学高考试卷(原卷 答案)
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)文科数学本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} (2)设x ∈R ,则“20x −≥”是“|1|1x −≤”的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3(5)已知双曲线22221(0,0)x y a b a b−=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y −=(B )221124x y −=(C )2213x y −=(D )2213y x −=(6)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =−==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b <<(7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ==(B )211π,312ωϕ==−(C )111π,324ωϕ==−(D )17π,324ωϕ== (8)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )[2,2]−(B )[23,2]−(C )[2,23]−(D )[23,23]−第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年天津高考文科数学真题及答案
2017年天津高考文科数学真题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} (2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -= (6)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << (7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ== (8)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )[2,2]-(B )[23,2]-(C )[2,23]-(D )[23,23]-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年高考文科数学天津卷含答案
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前天津市2017年普通高等学校招生考试数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+.棱柱的体积公式V Sh =.其中S 表示棱柱的底面积,h 表示棱柱的高. 球的体积公式343V R π=.其中R 表示球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,2,6A =,{}2,4B =,{}=1,2,4C ,则()C A B =( ) A .{}2B .{}1,2,34,C .{}1,246,,D .{}1,2,346,, 2.设x R ∈,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A .45 B .35 C .25D .154.阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为( )A .0B .1C .2D .35.已知双曲线2222=1(0,)x y a b a b->>0的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .22=1412x y - B .22=1124x y - C .22=13x y - D .22=13y x - 6.已知奇函数()f x 在R 上是增函数.若0.8221=(log ),=(log 4.1),=(2)5a fb fc f -,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<7.设函数()=2sin()R f x x x ωϕ+∈,,其中0ωϕπ>,<.若5π()=28f ,11π()=08f ,且()f x 的最小正周期大于2π,则( )A .2π=,=312ωϕ B .211π=,=312ωϕ- C .111π=,=324ωϕ- D .17π=,=324ωϕ8.已知函数2,1,2, 1.()=x x x x x f x ++≥⎧⎨⎩<设a R ∈,若关于x 的不等式在x()a 2f x ≥+上恒成立,则a的取值范围是( )A .[]2,2-B.⎡⎤-⎣⎦C.2,⎡-⎣D.⎡-⎣毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知R α∈,i 为虚数单位,若i2iα-+为实数,则a 的值为 .10.已知R α∈,设函数()=ln f x x x α-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .11.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.设抛物线2=4y x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=,则圆的方程为 .13.若,a b R ∈,0ab >,则4441a b ab++的最小值为 .14.在ABC △中,60A ∠=,3AB =,2AC =.若=2BD BC uu u r uu u r ,AE AC AB λ=-uu u r uuu r uu u r(R λ∈),且=4AD AE ⋅-uuu r uu u r,则λ的值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知s i n =4s i na Ab B,222)ac a b c --.(I )求cos A 的值;(II )求sin(2)B A -的值.16.(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(I )用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域;(II )问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?17.(本小题满分13分)如图,在四棱锥P ABCD -中,AD PDC ⊥平面,AD BC ∥,PD PB ⊥,=1AD ,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD PBC ⊥平面;(III )求直线AB 与平面PBC 所成角的正弦值.数学试卷 第5页(共14页) 数学试卷 第6页(共14页)18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n (N )S n ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,114=11S b . (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}2n n a b 的前n 项和*(N )n ∈.19.(本小题满分14分)设,R a b ∈,a 1≤.已知函数32()=63(4)b f x x x a a x ---+,()=()xg x e f x .(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数=()y g x 和=xy e 的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0=x x 处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间[]001,1x x -+上恒成立,求b 的取值范围.20.(本小题满分14分)已知椭圆()2222=10x y a b a b+>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率; (II )设点Q 在线段AE 上,3=2FQ c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.2017年普通高等学校招生全国统一考试(天津卷)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B 【解析】由题意知{}1,2,4,6A B =,∴(){}1,2,4A B C =.2.【答案】B 【解析】由x 11-≤,得0x 2≤≤,∵022x x ≤≤⇒≤,202x x ≤≠≤≤,故“2x 0-≥”是“x 11-≤”的必要而不充分条件,故选B .3.【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率42105P ==. -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题-----------------无---------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共14页) 数学试卷 第8页(共14页)4.【答案】C【解析】由程序框图可知,N 的取值依次为19,18,6,2.故输出N 的值为2. 5.【答案】D【解析】由OAF △是边长为2的等边三角形可知,2c =,tan 603ba==又222c a b =+,联立可得1a =,b =2213y x -=.6.【答案】C【解析】由()f x 是奇函数可得,221(log )(log 5)5a f f =-=,∵0.222l o g 5l o g4.1l o g 422=>>>,且函数()f x 是增函数,∴c b a <<. 7.【答案】A【解析】由5π()28f =,11π()08f =,()f x 的最小正周期2πT >,可得11π5π3π8844T -==,∴3πT =,∴2π2==3π3ω.再由5π()28f =及πϕ<得π=12ϕ.8.【答案】A【解析】作出()f x 的图象如图所示,=||2xy a +的图象经过点(0,2)时,可知=2a ±.当2x y a =+的图象与2y x x =+的图象相切时,由22x a x x+=+,得2240x ax -+=,由=0∆,并结合图象可得2a =.要使()||2xf x a ≥+恒成立,当0a ≤时,需满足2a -≤,即20a -≤≤,当a >0时,需满足2a ≤,所以22a -≤≤.第Ⅱ卷二、填空题9.【答案】2-【解析】因为i (i)(2i)21(2)i=2i (2i)(2i)5a a a a -----+=++-为实数,所以+2=0a ,即=2a -. 10.【答案】1【解析】因为'1()f x a x=-,所以'(1)1f a =-,又'(1)f a =,所以切线l 的方程为(1)(1)y a a x -=--,令=0x ,得=1y .11.【答案】9π2【解析】设正方体的棱长为a ,则2618a =,得a ,设该正方体外接球的半径为R,则23R ==,得32R =,所以该球的体积为334439ππ()π3322R ==. 12.【答案】22(1)(=1x y ++-【解析】由题意知该圆的半径为1,设圆心坐标为(1,)C a -(0)a >则(0,)A a ,又(1,0)F ,所以(1,0)AC =-uu u r ,(1,)AF a =-uu u r ,由题意得AC uuu r 与AF uu u r的夹角为120,得1cos1202==-,解得a =,所以圆的方程为22(1)(1x y ++=.13.【答案】4【解析】44334141=a b a b ab b a ab++++,由基本不等式得,33411144a b ab b a ab ab ab ++≥=+≥,当且仅当334a b b a=,14ab ab =同时成立时等号成立.14.【答案】311【解析】因为2BD DC =uu u ruuu r,所以2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r ,因为AE AC AB λ=-uu u ruuu r uu u r,数学试卷 第9页(共14页) 数学试卷 第10页(共14页)所以22121212(+)()()333333AD AE AB AC AC AB AB AC AB AC λλλ⋅=⋅-=-++-⋅uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uuu r uu u r ,因为60A ∠=,3AB =,2AC =,1212189λ4(λ)323λλ24333323AD AE ⋅=-⨯+⨯+-⨯⨯⨯=-++-=-uuu r uu u r ,解得3λ=11.三、解答题15.【答案】(Ⅰ)5-(Ⅱ)5-【解析】(Ⅰ)由sin =4sin a A b B ,及=s i n s i n ab A B,得2a b =.由222)ac a b c --,及余弦定理,得2225cos =25b c a A bc ac +-==-. (Ⅱ)由(Ⅰ),可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(Ⅰ)知,A为钝角,所以cos B .于是4sin 2=2sin cos =5B B B ,23cos 2=12sin =5B B -,故()43sin 2=sin 2cos cos 2sin =(55B A B A B A --⨯--16.【答案】(Ⅰ)见解析(Ⅱ)电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【解析】(Ⅰ)由已知,x ,y 满足的数学关系式为7060600,5530,2,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪≤⎨⎪≥⎪≥⎪⎩即7660620,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪-≤⎨⎪≥⎪≥⎪⎩,, 该二元一次不等式组所表示的平面区域为图1中的阴影部分:(Ⅱ)设总收入人次为z 万,则目标函数为=60+25z x y .考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,,,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.17.【答案】(Ⅰ)5(Ⅱ) 因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ)5【解析】(Ⅰ)如图,由已知AD BC ∥,故D A P ∠或其补角即为异面直线AP 与BC 所成的角.因为AD PDC ⊥平面,所以AD PD ⊥.在Rt PDA △中,由已知,得数学试卷 第11页(共14页) 数学试卷 第12页(共14页)AP ==cos AD DAP AP∠==.所以,异面直线AP 与BC. (Ⅱ)因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD PBC ⊥平面,故PF 为DF 在平面PBC 上的射影,所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD BC ∥,DF AB ∥,故1B F A D ==,由已知,得2CF BC BF =-=.又AD DC ⊥,故BC DC ⊥,在Rt DCF △中,可得DF =,在Rt DPF △中,可得sin PD DFP DF ∠=. 所以,直线AB 与平面PBC18.【答案】(Ⅰ)32n a n =-,2n b n =. (Ⅱ)()234216n n T n +=-+.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q+=,而12b=,所以260q q +-=.又因为0q >,解得2q =,所以,2n b n =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2n n b =.(Ⅱ)设数列{}2n n a b 的前n项和为n T ,由262n a n =-,有()2342102162622nn T n =⨯+⨯+⨯++-⨯,()()23412421021626826-22n n n T n n +=⨯+⨯+⨯++-⨯+⨯,上述两式相减,得()231124262626262212(12)4(62)212(34)216n n n n n n T n n n +++-=⨯+⨯+⨯++⨯--⨯⨯-=---⨯-=---得()234216n n T n +=-+.所以,数列{}2n n a b 的前n 项和为()234216n n +-+.19.【答案】(Ⅰ)12(2)(ⅰ)34(ⅱ)(1)递增区间为()a -∞,,()4a -+∞,,递减区间为()a 4a -,.(2)(ⅰ)()x f 在0x=x 处的导数等于0.(ⅱ)b 的取值范围是[]7,1-.22x y =11612+ 【解析】(Ⅰ)由32()63(4)f x x x a a x b =---+,可得[]'2()3123(4)3()(4)f x x x a a x a x a =---=---.令'()=0f x ,解得x a =,或4x a =-,由||1a ≤,得4a a -<.当x 变化时,'()f x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为()a -∞,,(4,)a -+∞,单调递减区间为(,4)a a -(Ⅱ)(i )因为'()(()())xg x e f x f x =+,由题意知00'0(),()xx g x e g x e⎧=⎪⎨=⎪⎩ 所以00000'00()(()())x xx x f x e e e f x f x e⎧=⎪⎨+=⎪⎩,解得0'0()1()0f x f x =⎧⎪⎨=⎪⎩ 所以,()f x 在0x x =处的导数等于0.数学试卷 第13页(共14页) 数学试卷 第14页(共14页)(ii )因为()xg x e ≤,00[11]x x x ∈-+,,由0x e >,可得()1f x ≤.又因为0(x )1f =,'0()0f x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =.另一方面,由于|1|a ≤,故14a a +-<,由(Ⅰ)知()f x 在(1,)a a -内单调递增,在(,1)a a +内单调递减,故当0x a =时,()()1f x f a ≤=在[1,1]a a -+上恒成立,从而()xg x e ≤在00[1,1]x x -+上恒成立.由32()63(4)1f a a a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以'2()612t x x x =-,令'()0t x =,解得2x =(舍去),或0x =.因为(1)7t -=-,(1)3t =-,(0)1t =,因此,()t x 的值域为[7,1]-. 所以,b 的取值范围是[7,1]-.20.【答案】(1)12(2)(ⅰ)34(ⅱ)22x y =11612+【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=,又由222b a c =-,可得2220c ac a +-=,即2210e e +-=,又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (Ⅱ)(i )依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=,与直线FP 的方程联立,可解得(22)2m c x m -=+,32c y m =+,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知3||2c FQ =,有222(22)33[]+()()222m c c c c m m -+=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22233430143x y c x y cc -+=⎧⎪⎨+=⎪⎩,消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =.因此可得点3(c,)2c P ,进而可得5||2cFP ,所以53||||||22c cPQ FP FQ c =-=-=.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 四边形的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.。
2017年高考文科数学试题(天津卷)
2017年普通高等学校招生统一考试(天津卷)文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
第Ⅰ卷参考公式:·如果事件A ,B 互斥,那么P (AB )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6} 2.设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45 B .35 C .25 D .154.阅读如图的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为A .0B .1C .2D .35.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= 6.已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b << 7.设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||πϕ<.若5π()28f =,11π()08f =,且()f x 的最小正周期大于2π,则A .2π,312ωϕ== B .211π,312ωϕ==-C .111π,324ωϕ==-D .17π,324ωϕ==8.已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式()||2x f x a +≥在R 上恒成立,则a 的取值范围是A .[2,2]- B.[2]- C.[2,- D.[-第Ⅱ卷二. 填空题:本大题共6小题,每小题5分,共30分. 9.已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 10.已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .11.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .13.若a ,b ∈R ,0ab >,则4441a b ab++的最小值为 .14.在△ABC 中,60A ∠=︒,AB =3,AC =2.若2BD DC =,AE AC AB λ=-(λ∈R ),且4AD AE ⋅=-,则λ的值为 .三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,222)ac a b c =--.(Ⅰ)求cos A 的值; (Ⅱ)求sin(2)B A -的值. 16.(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(Ⅰ)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (Ⅱ)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多? 17.(本小题满分13分)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N . 19.(本小题满分14分)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.20.(本小题满分14分)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i)求直线FP的斜率;(ii)求椭圆的方程.。
2017年高考文科数学天津卷及答案
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前天津市2017年普通高等学校招生考试数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+.棱柱的体积公式V Sh =.其中S 表示棱柱的底面积,h 表示棱柱的高. 球的体积公式343V R π=.其中R 表示球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,2,6A =,{}2,4B =,{}=1,2,4C ,则()C A B =( ) A .{}2B .{}1,2,34,C .{}1,246,,D .{}1,2,346,, 2.设x R ∈,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A .45 B .35 C .25D .154.阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为( )A .0B .1C .2D .35.已知双曲线2222=1(0,)x y a b a b->>0的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .22=1412x y - B .22=1124x y - C .22=13x y - D .22=13y x - 6.已知奇函数()f x 在R 上是增函数.若0.8221=(log ),=(log 4.1),=(2)5a fb fc f -,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<7.设函数()=2sin()R f x x x ωϕ+∈,,其中0ωϕπ>,<.若5π()=28f ,11π()=08f ,且()f x 的最小正周期大于2π,则( )A .2π=,=312ωϕ B .211π=,=312ωϕ- C .111π=,=324ωϕ- D .17π=,=324ωϕ8.已知函数2,1,2, 1.()=x x x x x f x ++≥⎧⎨⎩<设a R ∈,若关于x 的不等式在x()a 2f x ≥+上恒成立,则a的取值范围是( )A .[]2,2-B.⎡⎤-⎣⎦C.2,⎡-⎣D.⎡-⎣毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知R α∈,i 为虚数单位,若i2iα-+为实数,则a 的值为 .10.已知R α∈,设函数()=ln f x x x α-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .11.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.设抛物线2=4y x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=,则圆的方程为 .13.若,a b R ∈,0ab >,则4441a b ab++的最小值为 .14.在ABC △中,60A ∠=,3AB =,2AC =.若=2BD BC uu u r uu u r ,AE AC AB λ=-uu u r uuu r uu u r(R λ∈),且=4AD AE ⋅-uuu r uu u r,则λ的值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知s i n =4s i na Ab B,222)ac a b c --.(I )求cos A 的值;(II )求sin(2)B A -的值.16.(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(I )用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域;(II )问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?17.(本小题满分13分)如图,在四棱锥P ABCD -中,AD PDC ⊥平面,AD BC ∥,PD PB ⊥,=1AD ,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD PBC ⊥平面;(III )求直线AB 与平面PBC 所成角的正弦值.数学试卷 第5页(共14页) 数学试卷 第6页(共14页)18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n (N )S n ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,114=11S b . (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}2n n a b 的前n 项和*(N )n ∈.19.(本小题满分14分)设,R a b ∈,a 1≤.已知函数32()=63(4)b f x x x a a x ---+,()=()xg x e f x .(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数=()y g x 和=xy e 的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0=x x 处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间[]001,1x x -+上恒成立,求b 的取值范围.20.(本小题满分14分)已知椭圆()2222=10x y a b a b+>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率; (II )设点Q 在线段AE 上,3=2FQ c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题-----------------无---------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2017年全国高考文科数学试题及答案-天津卷
2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:・如果事件A ,B 互斥,那么・如果事件A ,B 相互独立,那么P(A ∪B)=P (A)+P(B ).P(AB )=P(A ) P(B).・棱柱的体积公式V=Sh .・圆锥的体积公式13VSh .其中S 表示棱柱的底面面积,其中S 表示棱锥的底面面积,h 表示棱锥的高.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,6},{2,4},{1,2,3,4}A B C,则()AB C(A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6}【答案】B(2)设(A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件【答案】B 【解析】20x ,则2x ,11x ,则111,02x x ,据此可知:“20x ”是“11x ”的必要二不充分条件.本题选择B 选项.(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A )45(B )35(C )25(D )15【答案】C(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N ,第一次循环:118N N ,不满足3N ;第二次循环:63N N,不满足3N ;第三次循环:23N N,满足3N;此时跳出循环体,输出3N .本题选择C 选项. (5)已知双曲线22221(0,0)x y a b ab的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412xy(B )221124xy(C )2213xy(D )2213yx【答案】D(6)已知奇函数()f x 在R上是增函数.若0.8221(log ),(log 4.1),(2)5af bf cf ,则,,a b c 的大小关系为(A )a bc (B )b ac (C )cba (D )cab【答案】C 【解析】由题意:221log log 55a ff ,且:0.822log 5log 4.12,122,据此:0.822log 5log 4.12,结合函数的单调性有:0.822log 5log 4.12f f f ,即,a b c c b a .本题选择C 选项. (7)设函数()2sin(),f x x x R,其中0,||π.若5π11π()2,()0,88f f 且()f x 的最小正周期大于2π,则(A )2π,312(B )211π,312(C )111π,324(D )17π,324【答案】A(8)已知函数||2,1,()2, 1.x x f x xx x设a R ,若关于的不等式()||2x f x a 在R上恒成立,则的取值范围是(A )[2,2](B )[23,2](C )[2,23](D )[23,23]zx xk【答案】A 【解析】满足题意时f x 的图象恒不在函数2x ya 下方,当23a 时,函数图象如图所示,排除C,D 选项;当23a 时,函数图象如图所示,排除B 选项,本题选择A 选项.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2017年数学真题及解析_2017年天津市高考数学试卷(文科)
2017年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}2.(5分)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A.0 B.1 C.2 D.35.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.B.C.D.6.(5分)已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣2,2]B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为.10.(5分)已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.11.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.12.(5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为.13.(5分)若a,b∈R,ab>0,则的最小值为.14.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2)(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.16.(13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?17.(13分)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).19.(14分)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g (x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.20.(14分)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为.(I)求椭圆的离心率;(II)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N 在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.2017年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}【分析】由并集定义先求出A∪B,再由交集定义能求出(A∪B)∩C.【解答】解:∵集合A={1,2,6},B={2,4},C={1,2,3,4},∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.故选:B.【点评】本题考查并集和交集的求法,是基础题,解题时要认真审题,注意交集和交集定义的合理运用.2.(5分)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由2﹣x≥0得x≤2,由|x﹣1|≤1得﹣1≤x﹣1≤1,得0≤x≤2.则“2﹣x≥0”是“|x﹣1|≤1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及不等式的性质是解决本题的关键.3.(5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.B.C.D.【分析】先求出基本事件总数n==10,再求出取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,由此能求出取出的2支彩笔中含有红色彩笔的概率.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,基本事件总数n==10,取出的2支彩笔中含有红色彩笔包含的基本事件个数m==4,∴取出的2支彩笔中含有红色彩笔的概率为p==.故选:C.【点评】本小题主要考查概率、古典概型、排列组合等基础知识,考查运算求解能力和推理论证能力,是基础题.4.(5分)阅读如图的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为()A.0 B.1 C.2 D.3【分析】根据程序框图,进行模拟计算即可.【解答】解:第一次N=19,不能被3整除,N=19﹣1=18≤3不成立,第二次N=18,18能被3整除,N==6,N=6≤3不成立,第三次N=6,能被3整除,N═=2≤3成立,输出N=2,故选:C.【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.5.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.B.C.D.【分析】利用三角形是正三角形,推出a,b关系,通过c=2,求解a,b,然后等到双曲线的方程.【解答】解:双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),可得c=2,,即,,解得a=1,b=,双曲线的焦点坐标在x轴,所得双曲线方程为:.故选:D.【点评】本题考查双曲线的简单性质的应用,考查计算能力.6.(5分)已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b【分析】根据奇函数f(x)在R上是增函数,化简a、b、c,即可得出a,b,c 的大小.【解答】解:奇函数f(x)在R上是增函数,∴a=﹣f()=f(log25),b=f(log24.1),c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.【点评】本题考查了函数的奇偶性与单调性的应用问题,是基础题.7.(5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【分析】由题意求得,再由周期公式求得ω,最后由若f()=2求得φ值.【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.【点评】本题考查由三角函数的部分图象求解析式,考查y=Asin(ωx+φ)型函数的性质,是中档题.8.(5分)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣2,2]B.C.D.【分析】根据题意,作出函数f(x)的图象,令g(x)=|+a|,分析g(x)的图象特点,将不等式f(x)≥|+a|在R上恒成立转化为函数f(x)的图象在g (x)上的上方或相交的问题,分析可得f(0)≥g(0),即2≥|a|,解可得a 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=的图象如图:令g(x)=|+a|,其图象与x轴相交与点(﹣2a,0),在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,若不等式f(x)≥|+a|在R上恒成立,则函数f(x)的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.【点评】本题考查分段函数的应用,关键是作出函数f(x)的图象,将函数的恒成立问题转化为图象的上下位置关系.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)已知a∈R,i为虚数单位,若为实数,则a的值为﹣2.【分析】运用复数的除法法则,结合共轭复数,化简,再由复数为实数的条件:虚部为0,解方程即可得到所求值.【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.【点评】本题考查复数的乘除运算,注意运用共轭复数,同时考查复数为实数的条件:虚部为0,考查运算能力,属于基础题.10.(5分)已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为1.【分析】求出函数的导数,然后求解切线斜率,求出切点坐标,然后求解切线方程,推出l在y轴上的截距.【解答】解:函数f(x)=ax﹣lnx,可得f′(x)=a﹣,切线的斜率为:k=f′(1)=a﹣1,切点坐标(1,a),切线方程l为:y﹣a=(a﹣1)(x﹣1),l在y轴上的截距为:a+(a﹣1)(﹣1)=1.故答案为:1.【点评】本题考查曲线的切线方程的求法,考查转化思想以及计算能力.11.(5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a=,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=π•()3=;故答案为:.【点评】本题主要考查空间正方体和球的关系,利用正方体的体对角线等于直径,结合球的体积公式是解决本题的关键.12.(5分)设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120°,则圆的方程为(x+1)2+=1.【分析】根据题意可得F(﹣1,0),∠FAO=30°,OA==1,由此求得OA的值,可得圆心C的坐标以及圆的半径,从而求得圆C方程.【解答】解:设抛物线y2=4x的焦点为F(1,0),准线l:x=﹣1,∵点C在l上,以C为圆心的圆与y轴的正半轴相切与点A,∵∠FAC=120°,∴∠FAO=30°,∴OA===1,∴OA=,∴A(0,),如图所示:∴C(﹣1,),圆的半径为CA=1,故要求的圆的标准方程为,故答案为:(x+1)2+=1.【点评】本题主要考查求圆的标准方程的方法,抛物线的简单几何性质,属于中档题.13.(5分)若a,b∈R,ab>0,则的最小值为4.【分析】【方法一】两次利用基本不等式,即可求出最小值,需要注意不等式等号成立的条件是什么.【方法二】将拆成+,利用柯西不等式求出最小值.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.【点评】本题考查了基本不等式的应用问题,是中档题.14.(5分)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.【点评】本题考查了平面向量的线性运算与数量积运算问题,是中档题.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2)(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值.【分析】(Ⅰ)由正弦定理得asinB=bsinA,结合asinA=4bsinB,得a=2b.再由,得,代入余弦定理的推论可求cosA的值;(Ⅱ)由(Ⅰ)可得,代入asinA=4bsinB,得sinB,进一步求得cosB.利用倍角公式求sin2B,cos2B,展开两角差的正弦可得sin(2B﹣A)的值.【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.【点评】本题考查三角形的解法,考查正弦定理和余弦定理在解三角形中的应用,是中档题.16.(13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?【分析】(Ⅰ)直接由题意结合图表列关于x,y所满足得不等式组,化简后即可画出二元一次不等式所表示的平面区域;(Ⅱ)写出总收视人次z=60x+25y.化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】(Ⅰ)解:由已知,x,y满足的数学关系式为,即.该二元一次不等式组所表示的平面区域如图:(Ⅱ)解:设总收视人次为z万,则目标函数为z=60x+25y.考虑z=60x+25y,将它变形为,这是斜率为,随z变化的一族平行直线.为直线在y轴上的截距,当取得最大值时,z的值最大.又∵x,y满足约束条件,∴由图可知,当直线z=60x+25y经过可行域上的点M时,截距最大,即z最大.解方程组,得点M的坐标为(6,3).∴电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【点评】本题考查解得线性规划的应用,考查数学建模思想方法及数形结合的解题思想方法,是中档题.17.(13分)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【分析】(Ⅰ)由已知AD∥BC,从而∠DAP或其补角即为异面直线AP与BC所成的角,由此能求出异面直线AP与BC所成角的余弦值.(Ⅱ)由AD⊥平面PDC,得AD⊥PD,由BC∥AD,得PD⊥BC,再由PD⊥PB,得到PD⊥平面PBC.(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角,由PD⊥平面PBC,得到∠DFP为直线DF和平面PBC所成的角,由此能求出直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.【点评】本小题主要考查两条异面直线所成的角、直线与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力、运算求解能力和推理论证能力,是中档题.18.(13分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【分析】(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.通过b2+b3=12,求出q,得到.然后求出公差d,推出a n=3n﹣2.(Ⅱ)设数列{a2n b n}的前n项和为T n,利用错位相减法,转化求解数列{a2n b n}的前n项和即可.【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.【点评】本题考查等差数列以及等比数列通项公式的求法,数列求和,考查转化思想以及计算能力.19.(14分)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g (x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.【分析】(Ⅰ)求出函数f(x)的导函数,得到导函数的零点,由导函数的零点对定义域分段,列表后可得f(x)的单调区间;(Ⅱ)(i)求出g(x)的导函数,由题意知,求解可得.得到f(x)在x=x0处的导数等于0;(ii)由(I)知x0=a.且f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.构造函数t(x)=2x3﹣6x2+1,x∈[﹣1,1],利用导数求其值域可得b的范围.【解答】(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x ﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i)证明:∵g'(x)=e x(f(x)+f'(x)),由题意知,∴,解得.∴f(x)在x=x0处的导数等于0;(ii)解:∵g(x)≤e x,x∈[x0﹣1,x0+1],由e x>0,可得f(x)≤1.又∵f(x0)=1,f'(x0)=0,故x0为f(x)的极大值点,由(I)知x0=a.另一方面,由于|a|≤1,故a+1<4﹣a,由(Ⅰ)知f(x)在(a﹣1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时,f(x)≤f(a)=1在[a﹣1,a+1]上恒成立,从而g(x)≤e x在[x0﹣1,x0+1]上恒成立.由f(a)=a3﹣6a2﹣3a(a﹣4)a+b=1,得b=2a3﹣6a2+1,﹣1≤a≤1.令t(x)=2x3﹣6x2+1,x∈[﹣1,1],∴t'(x)=6x2﹣12x,令t'(x)=0,解得x=2(舍去),或x=0.∵t(﹣1)=﹣7,t(1)=﹣3,t(0)=1,故t(x)的值域为[﹣7,1].∴b的取值范围是[﹣7,1].【点评】本题考查利用导数研究函数的单调性,考查了利用研究过曲线上某点处的切线方程,训练了恒成立问题的求解方法,体现了数学转化思想方法,是压轴题.20.(14分)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为.(I)求椭圆的离心率;(II)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N 在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.【分析】(Ⅰ)设椭圆的离心率为e.通过.转化求解椭圆的离心率.(Ⅱ)(ⅰ)依题意,设直线FP的方程为x=my﹣c(m>0),则直线FP的斜率为.通过a=2c,可得直线AE的方程为,求解点Q的坐标为.利用|FQ|=,求出m,然后求解直线FP的斜率.(ii)求出椭圆方程的表达式,求出直线FP的方程为3x﹣4y+3c=0,与椭圆方程联立通过,结合直线PM和QN都垂直于直线FP.结合四边形PQNM的面积为3c,求解c,然后求椭圆的方程.【解答】解:(Ⅰ)设椭圆的离心率为e.由已知,可得.又由b2=a2﹣c2,可得2c2+ac﹣a2=0,即2e2+e﹣1=0.又因为0<e<1,解得.所以,椭圆的离心率为;(Ⅱ)(ⅰ)依题意,设直线FP的方程为x=my﹣c(m>0),则直线FP的斜率为.由(Ⅰ)知a=2c,可得直线AE的方程为,即x+2y﹣2c=0,与直线FP 的方程联立,可解得,即点Q的坐标为.由已知|FQ|=,有,整理得3m2﹣4m=0,所以,即直线FP的斜率为.(ii)解:由a=2c,可得,故椭圆方程可以表示为.由(i)得直线FP的方程为3x﹣4y+3c=0,与椭圆方程联立消去y,整理得7x2+6cx﹣13c2=0,解得(舍去),或x=c.因此可得点,进而可得,所以.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QN⊥FP,所以,所以¡÷FQN的面积为,同理¡÷FPM的面积等于,由四边形PQNM的面积为3c,得,整理得c2=2c,又由c>0,得c=2.所以,椭圆的方程为.【点评】本题考查椭圆的方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.。
2017年天津市红桥区高考数学一模试卷(文科)含答案解析
2017年天津市红桥区高考数学一模试卷(文科)一、选择题1.集合A={x|x>0},B={﹣2,﹣1,1,2},则(?R A)∩B=()A.(0,+∞)B.{﹣2,﹣1,1,2}C.{﹣2,﹣1} D.{1,2}2.“φ=”是“曲线y=sin(x+φ)关于y轴对称”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.如图所示的程序框图,输出S的值是()A.30 B.10 C.15 D.214.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是()A.B.2 C.1 D.5.已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3 C.D.46.已知等比数列{a n}的首项为1,若4a1,2a2,a3成等差数列,则数列{}的前5项和为()A.B.2 C.D.7.已知函数y=f(x)的定义域为{x|x∈R,且x≠0},满足f(x)+f(﹣x)=0,当x>0时,f(x)=1nx﹣x+1,则函数y=f(x)的大致图象是()A.B.C.D.8.已知函数f(x)=,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为()A.(2π,2017π)B.(2π,2018π)C.(,)D.(π,2017π)二、填空题9.设i为虚数单位,则复数=.10.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数01234≥5概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是.11.函数f(x)=sin2x﹣2sin2x的最大值为.12.已知圆C的圆心为C(1,1),且经过直线x+y=4上的点P,则周长最小的圆C的方程是.13.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则?的值为.14.已知下列命题:①命题:?x∈(0,2),3x>x3的否定是:?x∈(0,2),3x≤x3;②若f(x)=2x﹣2﹣x,则?x∈R,f(﹣x)=﹣f(x);③若f(x)=x+,则?x0∈(0,+∞),f(x0)=1;④等差数列{a n}的前n项和为S n,若a4=3,则S7=21;⑤在△ABC中,若A>B,则sinA>sinB.其中真命题是.(只填写序号)三、解答题(本大题共6小题,共80分)15.在△ABC中,A,B,C所对的边分别为a,b,c,且a=3,b=2,B=2A.(1)求cosA的值;(2)求c的值.16.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?资金单位产品所需资金(百元)空调机洗衣机月资金供应量(百元)成本3020300劳动力(工资)510110单位利润6817.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面PDC,E为棱PD的中点.(1)求证:PB∥平面EAC;(2)求证:平面PAD⊥平面ABCD.18.已知等比数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n为{b n}的前n项和,求T2n.19.已知函数f(x)=﹣x3+ax2+b(a,b∈R).(1)设函数g(x)=f(x)﹣b,若a=1,求函数g(x)在(1,g(1))处的切线方程;(2)若函数f(x)在(0,2)上是增函数,求a的取值范围.20.已知椭圆E:(a>b>0)的离心率,且点在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)直线l与椭圆E交于A、B两点,且线段AB的垂直平分线经过点.求△AOB(O为坐标原点)面积的最大值.2017年天津市红桥区高考数学一模试卷(文科)参考答案与试题解析一、选择题1.集合A={x|x>0},B={﹣2,﹣1,1,2},则(?R A)∩B=()A.(0,+∞)B.{﹣2,﹣1,1,2}C.{﹣2,﹣1} D.{1,2}【考点】交、并、补集的混合运算.【分析】根据补集和交集的定义,写出运算结果即可.【解答】解:集合A={x|x>0},B={﹣2,﹣1,1,2},则?R A={x|x≤0},所以(?R A)∩B={﹣2,﹣1}.故选:C.2.“φ=”是“曲线y=sin(x+φ)关于y轴对称”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合三角函数的性质进行判断即可.【解答】解:若y=sin(x+φ)关于y轴对称,则φ=+kπ,k∈Z,故“φ=”是“曲线y=sin(x+φ)关于y轴对称”的充分不必要条件,故选:A.3.如图所示的程序框图,输出S的值是()A.30 B.10 C.15 D.21【考点】程序框图.【分析】由已知中的程序框图,可得该程序的功能是利用循环计算并输出满足条件的S值,模拟程序的运行过程,可得答案.【解答】解:当S=1时,满足进入循环的条件,执行循环体后S=3,t=3当S=3时,满足进入循环的条件,执行循环体后S=6,t=4当S=6时,满足进入循环的条件,执行循环体后S=10,t=5当S=15时,不满足进入循环的条件,故输出的S值为15故选C.4.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是()A.B.2 C.1 D.【考点】由三视图求面积、体积.【分析】如图所示,该几何体为三棱锥,其中底面ABC为等边三角形,侧棱PC ⊥底面ABC.取AB的中点D,连接CD,PD,可得CD⊥AB,PD⊥AB.【解答】解:如图所示,该几何体为三棱锥,其中底面ABC为等边三角形,侧棱PC⊥底面ABC.取AB的中点D,连接CD,PD,则CD⊥AB,PD⊥AB,CD=,PD===.∴S△PAB==.故选:A.5.已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3 C.D.4【考点】圆锥曲线的共同特征.【分析】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得K的坐标,设A(x0,y0),过A 点向准线作垂线AB,则B(﹣3,y0),根据|AK|=|AF|及AF=AB=x0﹣(﹣3)=x0+3,进而可求得A点坐标.【解答】解:∵双曲线,其右焦点坐标为(3,0).∴抛物线C:y2=12x,准线为x=﹣3,∴K(﹣3,0)设A(x0,y0),过A点向准线作垂线AB,则B(﹣3,y0)∵|AK|=|AF|,又AF=AB=x0﹣(﹣3)=x0+3,∴由BK2=AK2﹣AB2得BK2=AB2,从而y02=(x0+3)2,即12x0=(x0+3)2,解得x0=3.故选B.6.已知等比数列{a n}的首项为1,若4a1,2a2,a3成等差数列,则数列{}的前5项和为()A.B.2 C.D.【考点】等比数列的前n项和.【分析】等比数列{a n}的首项为1,由4a1,2a2,a3成等差数列,可得2×2a2=a3+4a1,即为4a1q=a1(q2+4),解得q.再利用等比数列的求和公式即可得出.【解答】解:等比数列{a n}的首项为1,∵4a1,2a2,a3成等差数列,。
(word完整版)2017年高考天津文科数学试题及答案(word解析版),推荐文档
2017 年一般高等学校招生全国一致考试(天津卷)数学(文科)一、选择题:本大题共8 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.( 1)【 2017 年天津,文 1, 5 分】设会合 A1,2,6 , B2,4 ,C 1,2,3,4 ,则 (AUB) I C ()(A ) 2 (B ) 1,2,4( C ) 1,2,3,4( D ) 1,2,3,4,6【答案】 B【分析】 AU B1,2,4,6, (AUB)I C {1,2,4,6} I {1,2,3,4} {1,2,4} ,应选 B .( 2)【 2017 年天津,文 2, 5 分】设 x R ,则 “2x 0 ”是 “x 1 1 ”的()( A )充足不用要条件( B )必需不充足条件( C )充足必需条件( D )既不充足也不用要条件【答案】 B【分析】 2 x 0 解得: x2 ; x 1 1解得: 0x 2 , x 2 0 x 2 ,应选 B .( 3)【 2017 年天津,文 3, 5 分】有 5 支彩笔(除颜色外无差异) ,颜色分别为红、黄、蓝、绿、紫,从这5 支彩笔中任取 2 支不一样颜色的彩笔,则拿出的 2 支彩笔中含有红色彩笔的概率为( )(A )4(B )3(C )2(D )1【答案】 C 55 5 5【分析】 “从这 5 支彩笔中任取 2 支不一样颜色的彩笔 ”基本领件总个数:C 52 ,而事件 “拿出的 2 支彩笔中含有红色彩笔 ”包括基本领件个数: C 41; P4 2,应选 C .( 4)【 2017 年天津,文 4, 5 10 5N 的值分】阅读右侧的程序框图,运转相应的程序,若输入的为 19,则输出的 N 的值为( )(A )0(B ) 1 (C ) 2 (D )3【答案】 C【分析】阅读流程图可得,程序履行过程以下:第一初始化数值为N 19 ,第一次循环:NN1 18 ,不知足 N 3 ;第二次循环: NN3 ;第三次循36 ,不知足 N环: NN 2,知足 N 3 ;此时跳出循环体,输出N 3 ,应选 C .3x 2y 2( 5)【 2017 年天津,文 5, 5 分】已知双曲线1(a 0,b 0) 的左焦点为 F ,点 A 在a 2b 2双曲线的渐近线上,OAF 是边长为 2 的等边三角形( O 为原点),则双曲线的方程为 ( )( A ) x2y 2 1( B ) x 2y 2 1( C ) x2y 21(D ) x 2y21 【答案】 D 41212 433【分析】由于 OAF 是边长为 2 的等边三角形( O 为原点)因此 OF2 , AOF 60 ,所以直线 OA 方程为 y3x ,因此渐近线方程 ybx 此中一条为 y3x ,因此,ac 2,解之得: a 1,b3, c 2 ,应选 D .b a3( 6)【 2017 年天津,文 6,5 分】已知奇函数 f (x) 在 R 上是增函数, 若af (log 1 )4.1)2 5 ,2,cf (2 ) ,则 a,b,c 的大小关系为(b f (log)1【分析】由于 f (x) 在 R 上是奇函数,因此有f ( x)f (x) ,即 af (log 2 1) f (log 2 5) ;又由于 f ( x) 在 R 上2215是增函数,且log 2 4log 2log 2 5 ,因此 c b a ,应选 C .( 7)【 2017 年天津, 文 7,5 分】设函数 f ( x)2sin( x ), x R ,此中0,,若 f ( 5 ) 2, f (11) 0 ,且 f ( x) 的最小正周期大于 288,则()( A ) 2, 12( B )2, 11 (C )1 , 11 ( D )1, 7【答案】 A3312324324【分析】函数 f (x)2sin( x5) 2, f ( 11) 0 ,振幅为 2,因此以下图:), x R , f (88若函数图象如图表 1 所示,3T11 5 ,解得 T ,不知足最小正周期大于 2 ,488因此函数图象如图表 2所示,T11 5 ,解得 T 3 , 2,又由于f (5) 2 ,4 8 838因此2 5,因此,应选 A . 38212x2, x 1( 8)【 2017 年天津,文 8,5 分】已知函数 f (x)x2, x ,设 a R ,若对于 x 的不等1x式 f ( x)x a 在 R 上恒建立,则 a 的取值范围是()2(A )[ 2,2](B ) [ 2 3,2](C ) [ 2,2 3](D ) [2 3, 2 3]【答案】 A【分析】函数 f (x) 的图象以下列图(左) ,若对于 x 的不等式 f (x)xa 在 R 上恒成2立,则不如设 g ( x ) x a , “xa 在 R上恒建立 ”表示 y f ( x) 图2f (x) 2象与 y g (x) 图象应以下列图 (右)所示找到两个临界地点: ① f ( x) 与 g( x) 相切时, x1 , f '(x) 1 21,解得 x 0 2 , y 0 3 ,代入 g(2) 3 ,解得x222 a3 , a2,a4 (舍);② g( x) 过点 (0,2) ,代入 g(0) 2 , a2 ,解得 a2,a 2 (舍),故 a2的取值范围在2 与 2 之间,应选 A .二、填空题:本大题共6 小题,每题 5 分,共 30 分.( 9)【 2017 年天津,文 9, 5 分】已知 a R , i 为虚数单位,若 a i为实数,则 a 的值为.【答案】 22 i【分析】解法一: a i (a i)(2i) 2a 1 ( a2)i为实数,因此 a 20 , a2 .2 i (2 i)(2 i) 5解法二:a i为实数a i 与 2 i 成比率,比率为 1 ,因此 a 2 .2 i10, 5 分】已知 a R ,设函数 f (x) ax ln x 的图象在点 (1, f (1)) 处的切线为 l ,则 l 在( 10)【 2017 年天津,文 y 轴上的截距为.【答案】 1【分析】函数 f (x) 的导函数 f '( x)a1,因此 f (1) a, f '(1) a 1 ,切点 (1,a) ,斜率为 a 1 ,因此代入切线点x( 11)【 2017 年天津,文 11,5 分】已知一个正方体的全部极点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】9234 R 39【分析】球的表面积公式S 6a 218,因此棱长 a 3 ,计算得: 2R3a 3, R, V .( 12)【 2017 年天津,文 12】设抛物线 y 22 3 24x 的焦点为 F ,准线为 l ,已知点 C 在 l 上,以 C 为圆心的圆与 y 轴的正半轴相切于点A ,若 FAC 120 ,则圆的方程为.2( y21【答案】 (x 1)3)【分析】抛物线 y2 4 x 的焦点为 F (1,0) ,准线为 l : x 1,因此可设 C( 1,b) ,OA b , FAC120 ,因此在直角三角形 OAF 中, OF 1 ,因此 OA3 ,因此圆的圆心 ( 1, 3) ,AFH 60 ,半径等于 1,因此圆 C : ( x1)2 ( y 3) 2 1 .441的最小值为( 13)【 2017 年天津,文 13, 5 分】若 a,bR , ab 0 ,则a4b.ab【答案】 44 4 2 2【分析】 a4b 14a b 1 4abababab13解之得: a 2 4 , b 2 4 .( 14)【 2017 年天津,文 14,5 分】在uuuv uuuv( R),且 AD AE 4 ,则【答案】 3114 ( ab0),当且仅当 “a 4 4b 4 ”、 “4a 2b 21 ”同时建即刻,等号建立,ABC 中, A 60 ,AB 3,ACuuuv uuuv uuuvuuuv uuuv 2,若 BD 2DC , AEAC AB的值为 .uuur uuur3 2 cos60 0uuur 1 uuur2 uuur【分析】 AB AC3, ADABAC ,则 1 uuur 2 uuur 33uuur uuur uuur uuur 3 2 1 2 3 43.AD AE ( AB AC)( AC AB ) 3 493 11 3 3 3 3三、解答题:本大题共 6 题,共 80 分.解答应写出文字说明,证明过程或演算步骤.( 15)【 2017 年天津,文 15, 13 分】在 ABC 中,内角 A, B,C 所对的边分别为 a,b, c .已知 asin A4sin B ,ac5( a 2b 2c 2 ) .( 1)求 cosA 的值; ( 2)求 sin(2 B A) 的值.222ac 5 .解:( 1) a sin A 4bsin B 可化为 a2 4b 2 ,解得: a 2b ,余弦定理: cos A b ca22bc5bc 5( 2)依据 cos A5sin A2 552 52sin B cosB45 ,解得,因此 sin B, cos B5 , sin 2B,555cos2B 2cos 2 B 1 3 , sin(2B A) sin 2B cos A cos2 B sin A4 (5 ) 3 2 5 10 5 2 5 .55 5 55 25 5( 16)【 2017 年天津,文 16, 13 分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次以下表所示:连续剧播放时长(分钟)广告播放时长 (分钟)收视人次(万)甲 70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于 600 分钟,广告的总播放时间许多于 30 分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的 2 倍,分别用 x, y 表示每周计划播出的甲、 乙两套电视 剧的次数.( 1)用 x, y 列出知足题目条件的数学关系式,并画出相应的平面地区;( 2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?7 x 6 y 60x y 6.解:( 1)分别用 x, y 表示每周计划播出的甲、乙两套电视剧的次数 2 yxx, y N( 2)设总收视人次为 z 万,则目标函数为 z 60x 25y .考虑 z 60x25y ,将它变形为 y12 xz,这是斜率为12,随 z 变化的一族平行直线.z 为直线在 y 轴上的截距,525525当 z获得最大值时, z 的值最大. 又由于 x, y 知足拘束条件, 因此由图 2 可知,当直线 z 60x25 y 经25过可行域上的点 M 时,截距 z7 x 6 y 60最大,即 z 最大.解方程组 2 y ,得点 M 的坐标为25 x 0 因此,电视台每周播出甲连续剧 6 次、乙连续剧 3 次时才能使总收视人次最多. ( 17)【2017 年天津,文 17,13 分】如图,在四棱锥 P ABCD 中, AD 平面 PDC ,AD ∥BC , PD PB , AD 1, BC 3 ,CD 4 , PD 2 .( 1)求异面直线 AP 与 BC 所成的角的余弦值;( 2)求证: PD 平面 PBC ;( 3)求直线 AB 与平面 PBC 所成角的正弦值.解:( 1)由于 AD ∥ BC ,因此 PAD 等于异面直线 AP 与 BC 所成的角, Q AD平面 PDC ,因此 PDA 90 , PA 5 , cos PAD AD 5 .PAP 5( 2)由于 AD 平面 PDC ,因此 AD PD ,又由于 AD ∥ BC ,因此 PDBC ,PD PB ,且 PBI BC B ,因此 PD 平面 PBC .( 3)取 BC 上三分点, 3BE BC , AD//BE , AD BE 1 , PD 平面 PBC ,因此 DEP等于直线 AB 与平面 PBC 所成角 DPE 90 ,AB 2 5,DE 2 5, PE 4,PD 2 5 .Dsin DEPDE 2 556,3 .CE BA( 18)【 2017 年天津,文 18, 13 分】已知 a n 为等差数列,前 n 项和为 S n (n N *) , b n 是首项为 2 的等比数列,且公比大于 0, b 2 b 3 12 , b 3 a 4 2a 1 , S 11 11b 4 .( 1)求 a n 和 b n 的通项公式;( 2)求数列 a 2nbn的前 n 项和 (nN *) .解:( 1)已知 a n为等差数列, b n 是首项为 2 的等比数列,且公比大于0,因此 a n a 1 (n 1)d ,b n b 1 qn12qn 1,2q 2q 212 ,解之得: q 2, q3(舍),8a 1 3d11 16 ,解之得: a 1 1,d 311(a 1 5d )因此 a n 3n 1, b n 2n.( 2) a 2 n b n (6n 2) 2n,不如设数列a 2nbn的前 n 项和为 T n , T n a 2b 1a 4b 2 a 6b 3 La 2 n 2b n 1 a 2n b n ,T n4 21 10 2216 23L(6n 8) 2n 1(6n2) 2n①2T n 4 22 10 23 L (6n 14) 2n 1 (6n 8) 2n(6n 2) 2n 1②① -②得: T n 421 6 226 23 L6 2n (6 n2) 2n 1,整理得: T n16 (3n 4)2n 2 .( 19)【 2017 年天津, 文 19,14 分】设 a,b R , a1 ,已知函数 f ( x) x 3 6x 23a( a 4)x b , g(x)e xf ( x) .( 1)求 f (x) 的单一区间;( 2)已知函数 yg( x) 和函数 y e x 的图象在公共点 (x 0 , y 0 ) 处有同样的切线.( i )求证: f ( x) 在 x x 0 处的导数等于 0;( ii )若对于 x 的不等式 ( xg x e 在区间 [ x 01,x 01]上恒建立,求 b的取值范围.)解:( 1) f '(x)(x 3 )' 6(x 2 )' 3a(a 4) x ', f '(x) 3x212x 3a(a 4) ,f '(x) 3x 2 12x 3a(a 4) 3(x a)( xa 4) ,由于 a 1 ,因此 a 4 a , 因此, f ( x) 的单一增区间 ( ,a),(4 a,) , f (x) 的单一减区间 [a,4a] .( 2)( i ) ()x( ) 与 xx 0x 0e f y e 在公共点 0 0 处有同样的切线,第一,g (x 0 ) e;其次, g '(x 0 )e ,g x x( x , y )f ( x 0 ) 1 , f ( x 0 ) f '( x 0 ) 1,因此 f '(x 0 ) 0 .( i i ) g(x) 在区间x [x 02a 3 e x 等价于 f ( x) 1 , f '( x 0 ) 0 , f ( x 0 ) 1 ,因此 x 0a 极大值点, 若对于 x 的不等式 g( x) e x [ x 0 1,x 0 1] 上恒建立,等价于 f ( x)1 在区间 [x 01,x 0 1] 上恒建立,等价于 f max ( x) 1 ,1,x 0 1] ,当 x 0a , f (x) 在 [a 1,a] 递加,在 [a,a 1] 递减, f (a) 为最大值,f (a) 1, 6a 2b 1 , b 2a 3 6a 2 1 ,令 h( x) 2x 3 6x 2 1, h'(x) 6x 212x 6x(x2) , h( x) 在[ 1,0] 递加,在 [0,1] 递减,因此7 h( x) 1 , 7 b 1.2 2( 20)【 2017 年天津,文 20, 14 分】已知椭圆x y 1(a b0) 的左焦点为 F ( c,0) ,右极点为 A ,点 E 的222ab坐标为 (0,c) , EFA 的面积为b. 2( 1)求椭圆的离心率;(2)设点 Q 在线段 AE 上, | FQ |3,延伸线段 PQ 与椭圆交于点 P ,点 M ,N 在轴上, PM ∥QN ,c2且直线 PM 与直线 QN 间的距离为,四边形 PQNM 的面积为 3c ;( i )求直线 FP 的斜率;( ii )求椭圆的方程.解:( 1) S AEF1 AF OE1 (a c) c b2 ,由于 b 2a 2c 2 ,因此 c a c ,故 a2c , ec 1 .22 uuuv 2a 2 ( 2)( i ) EFOuuuvuuuv (1uuuv uuuv2c ,45 ,设 EQ1EA (01) ,因此 FQ) FE FA ,FEuuuvFA3c,两边平方,解之得:933c ,由于 FQ, (舍)2uuuv102uuuv(1uuuv uuuv(6c , 9c) ,直线 FP 的斜率等于y3代入 FQ) FE FA ,得 FQ5 10x4(ii )直线 4 y2 3x uuuv即 PQ FP 的方程: y 03( x c) ;为求点 P 的坐标,联立方程解方程组:43x 3cc, x 13c3c uuuv 6c9c c 9c 2 2 ,解之得: x(舍),因此 P(c, 2 ) ,由于 FQ ( , ),因此Q( , ) , 4 y 12c 7 5 10 5 10c ,而 PM ∥ QN ,且直线 PM 与直线 QN 间的距离为 c ,因此直线 PM与直线 QN 垂直于 PF ,由( i )直线 FP 的斜率等于3,可得 PM 3PF3 5c 15c , QN 3 FQ3 3c 9c ,44 4 2 8 44 28S MNPQS FPMS FQN1(PM PF QNQF )3c 2 ,因此 3c 2 3c ,解之得 c 2 ,222 因此 a4,b2 3 ,因此x 2y 2 1 .16 12。
2017年天津市红桥区高考数学一模试卷(文科) 有答案
2017年天津市红桥区高考数学一模试卷(文科)一、选择题1.集合A={x|x>0},B={﹣2,﹣1,1,2},则(∁R A)∩B=()A.(0,+∞)B.{﹣2,﹣1,1,2}C.{﹣2,﹣1} D.{1,2}2.“φ=”是“曲线y=sin(x+φ)关于y轴对称”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.如图所示的程序框图,输出S的值是()A.30 B.10 C.15 D.214.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是()A.B.2 C.1 D.5.已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3 C.D.46.已知等比数列{a n}的首项为1,若4a1,2a2,a3成等差数列,则数列{}的前5项和为()A.B.2 C.D.7.已知函数y=f(x)的定义域为{x|x∈R,且x≠0},满足f(x)+f(﹣x)=0,当x>0时,f (x)=1nx﹣x+1,则函数y=f(x)的大致图象是()A.B.C.D.8.已知函数f(x)=,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为()A.(2π,2017π)B.(2π,2018π)C.(,)D.(π,2017π)二、填空题9.设i为虚数单位,则复数=.10.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:人排队的概率是.11.函数f(x)=sin2x﹣2sin2x的最大值为.12.已知圆C的圆心为C(1,1),且经过直线x+y=4上的点P,则周长最小的圆C的方程是.13.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为.14.已知下列命题:①命题:∀x∈(0,2),3x>x3的否定是:∃x∈(0,2),3x≤x3;②若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);③若f(x)=x+,则∃x0∈(0,+∞),f(x0)=1;④等差数列{a n}的前n项和为S n,若a4=3,则S7=21;⑤在△ABC中,若A>B,则sinA>sinB.其中真命题是.(只填写序号)三、解答题(本大题共6小题,共80分)15.在△ABC中,A,B,C所对的边分别为a,b,c,且a=3,b=2,B=2A.(1)求cosA的值;(2)求c的值.16.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?(1)求证:PB∥平面EAC;(2)求证:平面PAD⊥平面ABCD.18.已知等比数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n为{b n}的前n项和,求T2n.19.已知函数f(x)=﹣x3+ax2+b(a,b∈R).(1)设函数g(x)=f(x)﹣b,若a=1,求函数g(x)在(1,g(1))处的切线方程;(2)若函数f(x)在(0,2)上是增函数,求a的取值范围.20.已知椭圆E:(a>b>0)的离心率,且点在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)直线l与椭圆E交于A、B两点,且线段AB的垂直平分线经过点.求△AOB(O 为坐标原点)面积的最大值.2017年天津市红桥区高考数学一模试卷(文科)参考答案与试题解析一、选择题1.集合A={x|x>0},B={﹣2,﹣1,1,2},则(∁R A)∩B=()A.(0,+∞)B.{﹣2,﹣1,1,2}C.{﹣2,﹣1} D.{1,2}【考点】交、并、补集的混合运算.【分析】根据补集和交集的定义,写出运算结果即可.【解答】解:集合A={x|x>0},B={﹣2,﹣1,1,2},则∁R A={x|x≤0},所以(∁R A)∩B={﹣2,﹣1}.故选:C.2.“φ=”是“曲线y=sin(x+φ)关于y轴对称”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合三角函数的性质进行判断即可.【解答】解:若y=sin(x+φ)关于y轴对称,则φ=+kπ,k∈Z,故“φ=”是“曲线y=sin(x+φ)关于y轴对称”的充分不必要条件,故选:A.3.如图所示的程序框图,输出S的值是()A.30 B.10 C.15 D.21【考点】程序框图.【分析】由已知中的程序框图,可得该程序的功能是利用循环计算并输出满足条件的S值,模拟程序的运行过程,可得答案.【解答】解:当S=1时,满足进入循环的条件,执行循环体后S=3,t=3当S=3时,满足进入循环的条件,执行循环体后S=6,t=4当S=6时,满足进入循环的条件,执行循环体后S=10,t=5当S=15时,不满足进入循环的条件,故输出的S值为15故选C.4.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是()A.B.2 C.1 D.【考点】由三视图求面积、体积.【分析】如图所示,该几何体为三棱锥,其中底面ABC为等边三角形,侧棱PC⊥底面ABC.取AB的中点D,连接CD,PD,可得CD⊥AB,PD⊥AB.【解答】解:如图所示,该几何体为三棱锥,其中底面ABC为等边三角形,侧棱PC⊥底面ABC.取AB的中点D,连接CD,PD,则CD⊥AB,PD⊥AB,CD=,PD===.==.∴S△PAB故选:A.5.已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A.B.3 C.D.4【考点】圆锥曲线的共同特征.【分析】根据双曲线得出其右焦点坐标,可知抛物线的焦点坐标,从而得到抛物线的方程和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(﹣3,y0),根据|AK|=|AF|及AF=AB=x0﹣(﹣3)=x0+3,进而可求得A点坐标.【解答】解:∵双曲线,其右焦点坐标为(3,0).∴抛物线C:y2=12x,准线为x=﹣3,∴K(﹣3,0)设A(x0,y0),过A点向准线作垂线AB,则B(﹣3,y0)∵|AK|=|AF|,又AF=AB=x0﹣(﹣3)=x0+3,∴由BK2=AK2﹣AB2得BK2=AB2,从而y02=(x0+3)2,即12x0=(x0+3)2,解得x0=3.6.已知等比数列{a n}的首项为1,若4a1,2a2,a3成等差数列,则数列{}的前5项和为()A.B.2 C.D.【考点】等比数列的前n项和.【分析】等比数列{a n}的首项为1,由4a1,2a2,a3成等差数列,可得2×2a2=a3+4a1,即为4a1q=a1(q2+4),解得q.再利用等比数列的求和公式即可得出.【解答】解:等比数列{a n}的首项为1,∵4a1,2a2,a3成等差数列,∴2×2a2=a3+4a1,∴4a1q=a1(q2+4),解得q=2.∴a n=2n﹣1,=.则数列{}的前5项和==.故选:C.7.已知函数y=f(x)的定义域为{x|x∈R,且x≠0},满足f(x)+f(﹣x)=0,当x>0时,f (x)=1nx﹣x+1,则函数y=f(x)的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据条件判断函数的奇偶性,利用特殊值的符号进行排除即可.【解答】解:由f(x)+f(﹣x)=0得f(﹣x)=﹣f(x),即函数是奇函数,图象关于原点对称,排除C,D,当x>0时,f(x)=1nx﹣x+1,则f(1)=ln1﹣1+1=0,f(e)=lne﹣e+1=1﹣e+1=﹣e<0,排除B,8.已知函数f(x)=,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为()A.(2π,2017π)B.(2π,2018π)C.(,)D.(π,2017π)【考点】根的存在性及根的个数判断.【分析】作出y=f(x)的函数图象,根据函数的对称性可得a+b=π,求出c的范围即可得出答案.【解答】解:当x∈[0,π]时,f(x)=cos(x﹣)=sinx,∴f(x)在[0,π]上关于x=对称,且f max(x)=1,又当x∈(π,+∞)时,f(x)=log2017是增函数,作出y=f(x)的函数图象如图所示:令log2017=1得x=2017π,∵f(a)=f(b)=f(c),∴a+b=π,c∈(π,2017π),∴a+b+c=π+c∈(2π,2018π).故选:B.二、填空题9.设i为虚数单位,则复数=﹣4﹣3i.【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数得答案.【解答】解:=,故答案为:﹣4﹣3i.10.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:人排队的概率是.【考点】互斥事件的概率加法公式.【分析】由互斥事件的概率公式可得.【解答】解:由表格可得至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74故答案为:0.7411.函数f(x)=sin2x﹣2sin2x的最大值为2﹣.【考点】三角函数中的恒等变换应用.【分析】利用三角恒等变形公式,函数f(x)=2sin(2x+)﹣.【解答】解:函数f(x)=sin2x﹣2sin2x=sin2x﹣2×=sin2x+=2sin(2x+)﹣.故答案为:2﹣.12.已知圆C的圆心为C(1,1),且经过直线x+y=4上的点P,则周长最小的圆C的方程是(x﹣1)2+(y﹣1)2=2.【考点】直线与圆的位置关系.【分析】当半径r等于圆心C到直线x+y=4的距离时,圆C的周长最小,由此能求出周长最小的圆C的方程.【解答】解:∵圆C的圆心为C(1,1),且经过直线x+y=4上的点P,∴当半径r等于圆心C到直线x+y=4的距离时,圆C的周长最小,此时r=d==,∴周长最小的圆C的方程是(x﹣1)2+(y﹣1)2=2故答案为:(x﹣1)2+(y﹣1)2=2.13.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为.【考点】平面向量数量积的运算.【分析】可作出图形,并连接AE,得到AE⊥BC,根据条件可得出,从而,这样带入进行数量积的运算即可求出该数量积的值.【解答】解:如图,连接AE,则AE⊥BC;根据条件,DE=,且DE=2EF;∴;∴=;∴====.故答案为:.14.已知下列命题:①命题:∀x∈(0,2),3x>x3的否定是:∃x∈(0,2),3x≤x3;②若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x);③若f(x)=x+,则∃x0∈(0,+∞),f(x0)=1;④等差数列{a n}的前n项和为S n,若a4=3,则S7=21;⑤在△ABC中,若A>B,则sinA>sinB.其中真命题是①②④⑤.(只填写序号)【考点】命题的真假判断与应用.【分析】①,根据含有量词的命题的否定形式判定;②,若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x),;③,对于函数f(x)=x+,当且仅当x=1时,f(x)=1;④,,;⑤,若A>B,则a>b,⇒2RsinA>2RsinB⇒sinA>sinB,.【解答】解:对于①,命题:∀x∈(0,2),3x>x3的否定是:∃x∈(0,2),3x≤x3,正确;对于②,若f(x)=2x﹣2﹣x,则∀x∈R,f(﹣x)=﹣f(x),正确;对于③,对于函数f(x)=x+,当且仅当x=0时,f(x)=1,故错;对于④,等差数列{a n}的前n项和为S n,若a4=3,,故正确;对于⑤,在△ABC中,若A>B,则a>b⇒2RsinA>2RsinB⇒sinA>sinB,故正确.故答案为:①②④⑤三、解答题(本大题共6小题,共80分)15.在△ABC中,A,B,C所对的边分别为a,b,c,且a=3,b=2,B=2A.(1)求cosA的值;(2)求c的值.【考点】余弦定理.【分析】(1)依题意,利用正弦定理=及二倍角的正弦即可求得cosA的值;(2)易求sinA=,sinB=,从而利用两角和的正弦可求得sin(A+B)=,在△ABC 中,此即sinC的值,利用正弦定理可求得c的值.【解答】解:(1)∵△ABC中,a=3,b=2,B=2A,∴由正弦定理得:=,即=,∴cosA=;(2)由(1)知cosA=,A∈(0,π),∴sinA=,又B=2A,∴cosB=cos2A=2cos2A﹣1=,B∈(0,π),∴sinB=,在△ABC中,sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,∴c===5.16.某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?【分析】利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.本题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.【解答】解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y≤300,5x+10y≤110,x≥0,y≥0,x、y均为整数.由图知直线y=﹣x+P过M(4,9)时,纵截距最大.这时P也取最大值P max=6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.17.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面PDC,E为棱PD的中点.(1)求证:PB∥平面EAC;(2)求证:平面PAD⊥平面ABCD.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)连接BD,交AC于F,运用三角形的中位线定理和线面平行的判定定理,即可得证;(2)运用面面垂直的判定定理,只要证得CD⊥平面PAD,由线面垂直和矩形的定义即可得证.【解答】证明:(1)连接BD,交AC于F,由E为棱PD的中点,F为BD的中点,则EF∥PB,又EF⊂平面EAC,PB⊄平面EAC,则PB∥平面EAC;(2)由PA⊥平面PCD,则PA⊥CD,底面ABCD为矩形,则CD⊥AD,又PA∩AD=A,则有CD⊥平面PAD,由CD⊂平面ABCD,则有平面PAD⊥平面ABCD.18.已知等比数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,T n为{b n}的前n项和,求T2n.【考点】数列的求和;数列递推式.【分析】(I)等比数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.可得a3=a4﹣2a2,a2q=a2(q2﹣2),解得q.进而得出a1,可得a n.(II)n为奇数时,b n===.n为偶数时,b n=.分组求和,利用“裂项求和”方法可得奇数项之和;利用“错位相减法”与等比数列的求和公式可得偶数项之和.【解答】解:(I)∵等比数列{a n}的前n项和为S n,公比q>0,S2=2a2﹣2,S3=a4﹣2.∴a3=a4﹣2a2,可得a2q=a2(q2﹣2),∴q2﹣q﹣2=0,解得q=2.∴a1+a2=2a2﹣2,即a1=a2﹣2=2a1﹣2,解得a1=2.∴a n=2n.(II)n为奇数时,b n===.n为偶数时,b n=.∴T2n=++…+++…+=++…+=++…+.设A=+…+,则A=+…++,∴A=+…+﹣=﹣,∴A=﹣.∴T2n=+﹣.19.已知函数f(x)=﹣x3+ax2+b(a,b∈R).(1)设函数g(x)=f(x)﹣b,若a=1,求函数g(x)在(1,g(1))处的切线方程;(2)若函数f(x)在(0,2)上是增函数,求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求得g(x)的解析式和导数,可得切线的斜率和切点,由点斜式方程,可得切线的方程;(2)先求出f(x)的导函数,然后求出导函数的根,讨论a的取值范围分别求出函数的单调增区间,使(0,2)是增区间的子集即可,解不等式即可得到所求a的范围.【解答】解:(1)函数g(x)=f(x)﹣b=﹣x3+x2,导数为g′(x)=﹣3x2+2x,函数g(x)在(1,g(1))处的切线斜率为﹣3+2=﹣1,切点为(1,0),可得切线的方程为y=﹣(x﹣1),即x+y﹣1=0;(2)由题意,得f'(x)=﹣3x2+2ax,令f′(x)=0,解得x=0或x=a,当a<0时,由f′(x)>0,解得<x<0,所以f(x)在(,0)上是增函数,与题意不符,舍去;当a=0时,由f'(x)=﹣3x2≤0,与题意不符,舍去;当a>0时,由f′(x)>0,解得0<x<,所以f(x)在(0,)上是增函数,又f(x)在(0,2)上是增函数,所以≥2,解得a≥3,综上,a的取值范围为[3,+∞).20.已知椭圆E:(a>b>0)的离心率,且点在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)直线l与椭圆E交于A、B两点,且线段AB的垂直平分线经过点.求△AOB(O 为坐标原点)面积的最大值.【考点】椭圆的简单性质.【分析】(Ⅰ)运用离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(Ⅱ)设A(x1,y1),B(x2,y2),讨论直线AB的斜率为0和不为0,联立直线方程和椭圆方程,运用韦达定理和弦长公式,结合基本不等式和二次函数的最值的求法,可得面积的最大值.【解答】解:(Ⅰ)由已知,e==,a2﹣b2=c2,∵点在椭圆上,∴,解得a=2,b=1.∴椭圆方程为;(Ⅱ)设A(x1,y1),B(x2,y2),∵AB的垂直平分线过点,∴AB的斜率k存在.当直线AB的斜率k=0时,x1=﹣x2,y1=y2,=•2|x|•|y|=|x|•∴S△AOB=≤•=1,当且仅当x12=4﹣x12,取得等号,)max=1;∴时,(S△AOB当直线AB的斜率k≠0时,设l:y=kx+m(m≠0).消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,由△>0可得4k2+1>m2①,x1+x2=﹣,x1x2=,可得,,∴AB的中点为,由直线的垂直关系有,化简得1+4k2=﹣6m②由①②得﹣6m>m2,解得﹣6<m<0,又O(0,0)到直线y=kx+m的距离为,,=,∵﹣6<m<0,∴m=﹣3时,.由m=﹣3,∴1+4k2=18,解得;)max=1;即时,(S△AOB)max=1.综上:(S△AOB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年天津市部分区高考数学一模试卷(文科)含答案2017年天津市部分区高考数学一模试卷(文科)一、选择题(每小题5分,共40分)1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩B为()A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3}2.从区间[﹣1,1]内随机取出一个数a,使3a+1>0的概率为()A.B.C.D.3.底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体的三视图,如图所示,则该组合体的体积为()A. +2 B. +C.πD.π+24.已知双曲线=1(a>0,b>0)的实轴长为2,离心率为,则双曲线的方程为()A.=1 B.x2﹣=1 C.=1 D.x2=15.已知p:|x﹣1|<2,q:f(x)=的最小值为2,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件6.设函数f(x)=(λ∈R),若对任意的a∈R都有f(f(a))=2f(a)成立,则λ的取值范围是()A.(0,2]B.[0,2]C.[2,+∞)D.(﹣∞,2)7.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣8.已知函数f(x)=cos(2x+),若存在x1,x2,…x n满足0≤x1<x2<…<x n≤4π,且|f(x1)﹣f(x2)|+|f(2)﹣f(x3)|+…+|f(x n﹣1)﹣f(x n)|=16(n≥2,n∈N*),则n的最小值为()A.8 B.9 C.10 D.11二、填空题(本大题共6小题,每小题5分,共30分)9.已知i为虚数单位,复数z满足z(1+i)=3﹣i,则z的实部为.10.阅读如图所示的程序框图,运行相应的程序,则输出S的值为.11.已知函数f(x)=,f′(x)为f(x)的导函数,则f′(0)的值为.12.已知圆心在x轴上,半径为的圆位于y轴右侧,且截直线x+2y=0所得弦的长为2,则圆的方程为.13.已知x>0,y>0,x+y2=4,则log2x+2log2y的最大值为.14.已知函数f(x)=,若关于x的方程f(x)=x+m(m∈R)恰有三个不相等的实数解,则m的取值范围是.三、解答题(本大题共6小题,共80分)15.在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=60°,b=7,sinA﹣sinC=.(Ⅰ)求a;(Ⅱ)求cos(2A﹣B)的值.16.某人欲投资A,B两支股票时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,根据预测,A,B两支股票可能的最大盈利率分别为40%和80%,可能的最大亏损率分别为10%和30%.若投资金额不超过15万元.根据投资意向,A股的投资额不大于B股投资额的3倍,且确保可能的资金亏损不超过2.7万元,设该人分别用x万元,y万元投资A,B两支股票.(Ⅰ)用x,y列出满足投资条件的数学关系式,并画出相应的平面区域;(Ⅱ)问该人对A,B两支股票各投资多少万元,才能使可能的盈利最大?并求出此最大利润.17.如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF 为梯形,EF∥DC,FD=FB.(Ⅰ)若DC=2EF,求证:OE∥平面ADF;(Ⅱ)求证:平面AFC⊥平面ABCD;(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF与平面ABCD所成角.18.已知正项数列{a n}中,a1=1,a2=2,前n项和S n,且满足+=﹣2(n≥2,n∈N*).(Ⅰ)求数列{a n)的通项公式;(Ⅱ)记c n=,数列{c n}的前n项和为T n,求证:≤T n.19.已知椭圆C:=1(a>b>0),且椭圆上的点到一个焦点的最短距离为b.(Ⅰ)求椭圆C的离心率;(Ⅱ)若点M(,)在椭圆C上,直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求|AB|的最大值.20.已知函数f(x)=x3(2+a)x2+(a﹣1)x,(a∈R).(Ⅰ)当a=﹣2时,讨论函数f(x)的单调性;(Ⅱ)定义若函数H(x)有三个零点,分别记为α,β,γ,且α<β<γ,则称β为H(x)的中间零点,设x=t是函数g(x)=(x﹣t)f′(x)的中间零点.(i)当t=1时,求a的取值范围;(ii)当t=a时,设x1,x2,x3是函数g(x)=(x﹣a)f′(x)的3个零点,是否存在实数b,使x1,x2,x3,b的某种排列成等差数列,若存在求出b的值,若不存在,请说明理由.2017年天津市部分区高考数学一模试卷(文科)参考答案与试题解析一、选择题(每小题5分,共40分)1.已知集合A={x|0<x≤3,x∈N},B={x|y=},则集合A∩B为()A.{1,2}B.{1,2,3}C.{0,1,2}D.{0,1,2,3}【考点】交集及其运算.【分析】分别求出集合A和B,由此利用交集定义能求出集合A∩B.【解答】解:∵集合A={x|0<x≤3,x∈N}={1,2,3},B={x|y=}={x|x≥1或x≤﹣1},∴集合A∩B={1,2,3}.故选:B.2.从区间[﹣1,1]内随机取出一个数a,使3a+1>0的概率为()A.B.C.D.【考点】几何概型.【分析】本题利用几何概型求概率,首先解得的区间长度以及与区间[﹣1,1]的长度,求比值即得.【解答】解:由3a+1>0,解得:a>﹣,故满足条件的概率p==,故选:C.3.底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体的三视图,如图所示,则该组合体的体积为()A. +2 B. +C.πD.π+2【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图,可得该几何体是一个底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体,分别求其体积,相加可得答案.【解答】解:由已知中的三视图,可得该几何体是一个底面为正方形且侧棱与底面垂直的四棱柱与圆锥的组合体,棱柱的体积为:1×1×2=2,圆锥的底面半径为1,高为1,体积为:,故组合体的体积V=+2,故选:A4.已知双曲线=1(a>0,b>0)的实轴长为2,离心率为,则双曲线的方程为()A.=1 B.x2﹣=1 C.=1 D.x2=1【考点】双曲线的简单性质.【分析】利用双曲线的简单性质,求出a,b,即可得到双曲线方程.【解答】解:双曲线=1(a>b>0)的实轴长为2,可得a=1,离心率为,可得,可得c=,则b==2.则双曲线的方程为:x2﹣=1.故选:B.5.已知p:|x﹣1|<2,q:f(x)=的最小值为2,则p是q的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及集合的包含关系判断即可.【解答】解:由|x﹣1|<2,解得:﹣1<x<3,故p:﹣1<x<3;f(x)==x+的最小值为2,得x>0,故q:x>0,故p是q的既不充分也不必要条件,故选:D.6.设函数f(x)=(λ∈R),若对任意的a∈R都有f(f(a))=2f(a)成立,则λ的取值范围是()A.(0,2]B.[0,2]C.[2,+∞)D.(﹣∞,2)【考点】分段函数的应用;根的存在性及根的个数判断.【分析】根据分段函数解析式的特点,分类讨论求出函数f(x)的值域,再求出f(f(a))和2f(a)成立,即可求出λ的取值范围【解答】解:方法一:∵函数f(x)=(λ∈R),任意的a∈R都有f(f(a))=2f(a)成立,∴f(a))≥1恒成立∴λ﹣1≥1即可,∴λ≥2,方法二:当x<1时,f(x)>f(1)=λ﹣1,当x≥1时,f(x)=2x,f(x)≥21=2,当λ﹣1≥2时,即λ≥3时,f(x)≥2,当λ﹣1<2时,即λ<3时,f(x)≥λ﹣1,∴①当λ≥3时,2f(a)∈[4,+∞),f(f(a))≥22=4∴f(f(a))=2f(a)恒成立②当λ<3时,2f(a)∈[2λ﹣1,+∞),当2≤λ<3时,f(f(a))≥2λ﹣1,∴f(f(a))=2f(a)恒成立,当λ<2时,f(f(a))=﹣(λ﹣1)+λ=1,f(f(a))=2f(a)不恒成立,综上所述λ≥2,故选:C7.在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则的值是()A.﹣B.﹣C.﹣D.﹣【考点】向量在几何中的应用.【分析】利用已知条件,建立直角坐标系,求出相关点的坐标,然后求解向量的数量积.【解答】解:建立如图所示的直角坐标系:在△ABC中,AC=2AB=2,∠BAC=120°,O是BC的中点,M是AO上一点,且=3,则A(0,0),B(1,0),C(﹣1,),O(0,),M(0,),=(1,﹣),=(﹣1,)=﹣1﹣=﹣.故选:D.8.已知函数f(x)=cos(2x+),若存在x1,x2,…x n满足0≤x1<x2<…<x n≤4π,且|f(x1))﹣f(x n)|=16(n≥2,n∈N*),则n的最小值为﹣f(x2)|+|f(2)﹣f(x3)|+…+|f(x n﹣1()A.8 B.9 C.10 D.11【考点】数列与函数的综合.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使n取得最小值,尽可能多让x i(i=1,2,3,…,n)取得最高点,然后作图可得满足条件的最小n值.【解答】解:∵f(x)=cos(2x+)对任意x i,x j(i,j=1,2,3,…,n),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使n取得最小值,尽可能多让x i(i=1,2,3,…,n)取得最高点,考虑0≤x1<x2<…<x n≤4π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x n)﹣f(x n)|=16,﹣1按下图取值即可满足条件,即有|1+|+2×7+|1﹣|=16.则n的最小值为10.故选:C.二、填空题(本大题共6小题,每小题5分,共30分)9.已知i为虚数单位,复数z满足z(1+i)=3﹣i,则z的实部为1.【考点】复数的基本概念.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简复数z,则z的实部可求.【解答】解:由z(1+i)=3﹣i,得,则z的实部为:1.故答案为:1.10.阅读如图所示的程序框图,运行相应的程序,则输出S的值为5.【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,i的值,当i=6时,满足条件i≥6,退出循环,输出S的值即可.【解答】解:s=﹣2,i=0<6第一次循环,s=﹣1,i=2,第二次循环,i=2<6,s=1,i=4,第三次循环,i=4<6,s=5,i=6≥6,输出s=5,故答案为:5.11.已知函数f(x)=,f′(x)为f(x)的导函数,则f′(0)的值为2.【考点】导数的运算. 【分析】先求导函数 f′(x),然后将 x=0 代入导函数即可求出 f′(0)的值.【解答】解:=;∴.故答案为:2.12.已知圆心在 x 轴上,半径为 的圆位于 y 轴右侧,且截直线 x+2y=0 所得弦的长为 2,则圆 的方程为 (x﹣2 )2+y2=5 . 【考点】圆的标准方程. 【分析】根据题意,设圆的圆心的坐标为(a,0),则圆的方程为(x﹣a)2+y2=5,(a>0), 由点到直线的距离公式计算可得圆心到直线 x+2y=0 的距离,由此可得 1+( a)2=5,解可得 a的值,将 a 的值代入圆的方程可得答案. 【解答】解:根据题意,设圆的圆心坐标为(a,0),则其标准方程为(x﹣a)2+y2=5,(a>0),则圆心到直线 x+2y=0 的距离 d== a,又由该圆截直线 x+2y=0 所得弦的长为 2, 则有 1+( a)2=5, 解可得 a=±2 , 又由 a>0,则 a=2 , 故要求圆的方程为(x﹣2 )2+y2=5, 故答案为:(x﹣2 )2+y2=5.13.已知 x>0,y>0,x+y2=4,则 log2x+2log2y 的最大值为 2 . 【考点】基本不等式. 【分析】利用基本不等式、对数的运算法则和单调性即可得出. 【解答】解:∵实数 x,y>0,x+y2=4, ∴4=x+y2≥2 ,化为 xy2≤4,当且仅当 x=2,y= 时取等号. 则 log2x+2log2y=log2(xy2)≤log24=2.因此 log2x+2log2y 的最大值是 2. 故答案为:2.14.已知函数 f(x)=,若关于 x 的方程 f(x)=x+m(m∈R)恰有三个不相等的实数解,则 m 的取值范围是 (﹣ ) . 【考点】根的存在性及根的个数判断. 【分析】方程 f(x)=x+m(m∈R)恰有三个不相等的实数解⇔方程 f(x)﹣x=m(m∈R)恰有三个不相等的实数解令 g(x)=f(x)﹣x=.画出函数 g(x)的图象,由图求解 【解答】解:方程 f(x)=x+m(m∈R)恰有三个不相等的实数解⇔方程 f(x)﹣x=m(m∈R) 恰有三个不相等的实数解令 g(x)=f(x)﹣x=.当 x≤0 时,函数 h(x)=ln(x+1)﹣x,h′(x)= 递减, 函数 g(x)的图象如下, 由图可知 g(﹣ )<m<0,∴﹣,故答案为:(﹣ ,0).,可知函数 h(x)在(0,+∞)三、解答题(本大题共 6 小题,共 80 分)15.在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,已知 B=60°,b=7,sinA﹣sinC= . (Ⅰ)求 a; (Ⅱ)求 cos(2A﹣B)的值. 【考点】两角和与差的余弦函数. 【分析】(Ⅰ)利用正弦定理和余弦定理,解方程组求得 a 的值; (Ⅱ)利用余弦定理求得 cosA 的值,可得 sinA 的值,利用二倍角公式求得 sin2A、cos2A 的值, 再利用两角和差的三角公式求得 cos(2A﹣B)的值. 【解答】解:(Ⅰ)△ABC 中,∵B=60°,b=7,sinA﹣sinC= ,由正弦定理可得 = = ,即 ==,∴a﹣c=(sinA﹣sinC)=• =3 ①.再由余弦定理可得 b2=49=a2+c2﹣2ac•cos60°, 即 a2+c2﹣ac=49=(a﹣c)2+ac=9+ac,∴ac=40 ②. 由①②求得 a=8,c=5.(Ⅱ)由于 cosA== ,∴sinA= ,sin2A=2sinAcosA= ,cos2A=2cos2A﹣1=﹣ ,∴cos(2A﹣B)=cos2AcosB+sin2AsinB=﹣ • + • =﹣ .16.某人欲投资 A,B 两支股票时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损, 根据预测,A,B 两支股票可能的最大盈利率分别为 40%和 80%,可能的最大亏损率分别为 10% 和 30%.若投资金额不超过 15 万元.根据投资意向,A 股的投资额不大于 B 股投资额的 3 倍, 且确保可能的资金亏损不超过 2.7 万元,设该人分别用 x 万元,y 万元投资 A,B 两支股票. (Ⅰ)用 x,y 列出满足投资条件的数学关系式,并画出相应的平面区域; (Ⅱ)问该人对 A,B 两支股票各投资多少万元,才能使可能的盈利最大?并求出此最大利润. 【考点】简单线性规划的应用;函数模型的选择与应用. 【分析】(Ⅰ)根据条件建立约束条件,画出约束条件的可行域如图, (Ⅱ)利用数形结合,结合线性规划的应用即可得到结论.【解答】解:(Ⅰ)由题意可知,约束条件为,画出约束条件的可行域如图:(Ⅱ)设利润为 z,则 z=0.4x+0.8y,即 y=﹣ x+ z平移直线 y=﹣ x+ z,由图象可知当直线 y=﹣ x+ z 经过点 A 时,直线的截距最大,此时 z 最大,由,解得 x=9,y=6,此时 Z=0.4×9+0.8×6=8.4, 故对 A 股票投资 9 万元,B 股票投资 6 万元,才能使可能的盈利最大.盈利的最大值为 8.4 万元17.如图,在几何体中,四边形 ABCD 为菱形,对角线 AC 与 BD 的交点为 O,四边形 DCEF 为梯形,EF∥DC,FD=FB. (Ⅰ)若 DC=2EF,求证:OE∥平面 ADF; (Ⅱ)求证:平面 AFC⊥平面 ABCD; (Ⅲ)若 AB=FB=2,AF=3,∠BCD=60°,求 AF 与平面 ABCD 所成角.【考点】直线与平面所成的角;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)取 AD 的中点 G,连接 OG,FG,证明 OGFE 为平行四边形,可得 OE∥FG,即 可证明:OE∥平面 ADF; (Ⅱ)证明 BD⊥平面 AFC,即可证明:平面 AFC⊥平面 ABCD; (Ⅲ)做 FH⊥AC 于 H,∠FAH 为 AF 与平面 ABCD 所成角,即可求 AF 与平面 ABCD 所成角. 【解答】(Ⅰ)证明:取 AD 的中点 G,连接 OG,FG. ∵对角线 AC 与 BD 的交点为 O,∴OG∥DC,OG= ,∵EF∥DC,DC=2EF, ∴OG∥EF,OG=EF, ∴OGFE 为平行四边形, ∴OE∥FG, ∵FG⊂ 平面 ADF,OE⊄平面 ADF, ∴OE∥平面 ADF; (Ⅱ)证明:∵四边形 ABCD 为菱形, ∴OC⊥BD, ∵FD=FB,O 是 BD 的中点, ∴OF⊥BD, ∵OF∩OC=O, ∴BD⊥平面 AFC, ∵⊂ P⊂ 平面 ABCD, ∴平面 AFC⊥平面 ABCD; (Ⅲ)解:作 FH⊥AC 于 H. ∵平面 AFC⊥平面 ABCD,∴FH⊥平面 ABCD, ∴∠FAH 为 AF 与平面 ABCD 所成角, 由题意,△BCD 为正三角形,OA= ,BD=AB=2, ∵FD=FB=2, ∴△FBD 为正三角形,∴OF= .△AOF 中,由余弦定理可得 cos∠AOF==﹣ ,∴∠AOF=120°, ∴∠FAH=∠FAO=30°,∴AF 与平面 ABCD 所成角为 30°.18.已知正项数列{an}中,a1=1,a2=2,前 n 项和 Sn,且满足 + =n∈N*).(Ⅰ)求数列{an)的通项公式;(Ⅱ)记 cn=,数列{cn}的前 n 项和为 Tn,求证: ≤Tn .【考点】数列递推式;数列的求和.﹣2(n≥2,【分析】(Ⅰ)由 + =﹣2(n≥2,n∈N*)整理得(Sn+1+Sn﹣1)2=(2Sn)2,结合题意,得 Sn+1+Sn﹣1=2Sn,可判断出数列{Sn}为等差数列,继而可得 Sn=2n﹣1,从而可求数列 {an)的通项公式;(Ⅱ)利用裂项法可得 cn== ( ﹣ ),从而可求得数列{cn}的前 n 项和为 Tn,即可证得: ≤Tn . 【解答】解:(本小题满分 13 分)(Ⅰ)由 + =﹣2(n≥2,n∈N*)得.+2Sn+1Sn﹣1+=4 ,即(Sn+1+Sn﹣1)2=(2Sn)2,由数列{an}的各项为正数,得 Sn+1+Sn﹣1=2Sn,…3 分 所以数列{Sn}为等差数列,…4 分 由 a1=1,a2=2,得 S1=a1=1,S2=a1+a2=3,则数列{Sn}的公差为 d=S2﹣S1=2, 所以 Sn=1+(n﹣1)×2=2n﹣1…6 分 当 n≥2 时,an=Sn﹣Sn﹣1=(2n﹣1)﹣(2n﹣3)=2,而 a1=1 不适合上式,所以数列{an}的通项公式为 an=…7 分(Ⅱ)由(Ⅰ)得 cn=== ( ﹣ )…8 分则 Tn=c1+c2+c3+…+cn= [(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ 分 另一方面,Tn= (1﹣ )是关于 n 的增函数,则 Tn≥T1= , 因此, ≤Tn …13 分)]= (1﹣)…1119.已知椭圆 C:=1(a>b>0),且椭圆上的点到一个焦点的最短距离为 b.(Ⅰ)求椭圆 C 的离心率; (Ⅱ)若点 M( , )在椭圆 C 上,直线 l 与椭圆 C 相交于 A,B 两点,与直线 OM 相交于 点 N,且 N 是线段 AB 的中点,求|AB|的最大值. 【考点】直线与圆锥曲线的综合问题;椭圆的标准方程. 【分析】(Ⅰ)由椭圆的性质可在:a﹣c= b,平方,利用椭圆的离心率公式,即可求得椭圆 C 的离心率; (Ⅱ)将 M 代入椭圆方程,求得 a 和 b 的值,求得椭圆方程,利用韦达定理及中点坐标公式, 代入求得 k 的值,利用弦长公式即可求得|AB|的最大值. 【解答】解:(Ⅰ)由 a﹣c= b,则(a﹣c)2= b2,由 b2=a2﹣c2,整理得:2a2﹣3ac+a2=0,由 e= , ∴2e2﹣3e+1=0, 解得:e=1 或 e= , 由 0<e<1, ∴椭圆得离心率 e= , (Ⅱ)由(Ⅰ)可知 a=2c,则 b2=3c2,将 M( , )代入椭圆方程,则,解得:c=1,∴椭圆的方程为:,直线 OM 的方程为 y= x,当直线 l 的不存在时,AB 的中点不在直线 y= x,故直线 l 的斜率存在,设直线 l 的方程为 y=kx+m,则,整理得:(3+4m2)x2+8kmx+4m2﹣12=0, 则△=64k2m2﹣4(3+4m2)(4m2﹣12)=48(3+4k2﹣m2)>0,设 A(x1,y1),B(x2,y2),则 x1+x2=﹣,x1x2=,则 y1+y2=k(x1+x2)+2m=,则 AB 的中点 N(﹣,),由 N 在直线 y= x,则﹣=2×,解得:k=﹣ ,则△=48(12﹣m2)>0,解得:﹣2 <m<2 ,则丨 AB 丨=•=•,=•,当 m=0,则丨 AB 丨最大,且丨 AB 丨 max= , |AB|的最大值 .20.已知函数 f(x)= x3 (2+a)x2+(a﹣1)x,(a∈R).(Ⅰ)当 a=﹣2 时,讨论函数 f(x)的单调性; (Ⅱ)定义若函数 H(x)有三个零点,分别记为 α,β,γ,且 α<β<γ,则称 β 为 H(x)的中 间零点,设 x=t 是函数 g(x)=(x﹣t)f′(x)的中间零点. (i)当 t=1 时,求 a 的取值范围; (ii)当 t=a 时,设 x1,x2,x3 是函数 g(x)=(x﹣a)f′(x)的 3 个零点,是否存在实数 b,使 x1,x2,x3,b 的某种排列成等差数列,若存在求出 b 的值,若不存在,请说明理由. 【考点】利用导数研究函数的单调性;根的存在性及根的个数判断. 【分析】(Ⅰ)当 a=﹣2 时,求导,利用导数与函数的单调性的关系即可求得函数的单调区间; (Ⅱ)(i)当 t=1 时,求得 g(x),当 x=1 是 g(x)=(x﹣t)f′(x)的中间零点,令 h(x) =x2+(a+2)x+a﹣1,则 h(1)=2a+2<0,即可求得 a 的取值范围;(ii)由题意可知 x1,x3,是 x2+(a+2)x+a﹣1=0,根据等差数列的性质,分别讨论 x1,x2,x3, b 的排列,结合韦达定理,即可求得 b 的值.【解答】解:(Ⅰ)当 a=﹣2 时,则 f(x)= x3﹣3x,f′(x)=x2﹣3,令 f′(x)=0,解得:x=± , 当 x∈(﹣∞,﹣ )时,f′(x)>0,f(x)单调递增; 当 x∈(﹣ , )时,f′(x)<0,f(x)单调递减; x∈( ,+∞)时,f′(x)>0,f(x)单调递增, 综上可知:当 x∈(﹣∞,﹣ ),( ,+∞)时,f(x)单调递增, 当 x∈(﹣ , )时,f(x)单调递减; (Ⅱ)(i)g(x)=(x﹣t)f′(x)=(x﹣t)[x2+(a+2)x+a﹣1], 由当 x=1 是 g(x)=(x﹣t)f′(x)的中间零点, 令 h(x)=x2+(a+2)x+a﹣1,则需要 h(1)=2a+2<0, 即 a<﹣1, ∴a 的取值范围(﹣1,+∞); (ii)假设存在 b 满足条件,不妨 x2=a,x1<x3, 则 x1<x2=a<x3,则 x1,x3,是 x2+(a+2)x+a﹣1=0, 则 x1+x3=﹣(a+2),x1x3=a﹣1,则 x1=,x3=,①当 x1,a,x3,b 成等差数列,则 x1+x3=2a=﹣a﹣2,解得:a=﹣ ,则 x3﹣x1=b﹣a=,则 b=a+=﹣ +=,②当 b,x1,a,x3 成等差数列,同理求得 x3﹣x1=a﹣b=,则 b=a﹣=﹣ ﹣=﹣,③当 x1,b,a,x3 成等差数列,同理求得 x3+x1=a+b=﹣(a+2),则 a=﹣ b﹣1,x1=2b﹣a=2b+ +1= +1,x3=2a﹣b=﹣b﹣2﹣b=﹣2b﹣2, ∴x1x3=( +1)(﹣2b﹣2)=﹣5b2﹣7b﹣2=a﹣1=﹣ ﹣2,整理得:5b2+ b=0,解得:b=0 或 b=﹣ ,经检验 b=0,b=﹣ ,满足题意, ④当 x1,a,b,x3 成等差数列,x1+x3=a+b=﹣(a+2),则 2a=﹣b﹣2, x1=2a﹣b=﹣2b﹣2,x3=2b﹣a=2b+ +1= +1, 则 x1x3=(﹣2b﹣2)( +1)=﹣5b2﹣7b﹣2=a﹣1=﹣ ﹣2, 解得:b=0,或 b=﹣ ,经检验 b=0,b=﹣ ,满足题意,综上所述:b 的取值为,﹣,0 或﹣ .2017 年 4 月 14 日。