3 弹性力学的几个基本概念
弹性力学的基本概念和基本假设
弹性力学
yx
xy
yy
x
xx
正!
yx
1.2 弹性力学的基本概念及基本假设
3.应力正负号规定
弹力与材力 相比,正应力符号,相同 切应力符号,不同
O( z )
x
O( z )
x
x
y
x
y
材力:以拉为正
材力:顺时针向为正
1.2 弹性力学的基本概念及基本假设
1.2 弹性力学的基本概念及基本假设
5.弹性力学中的基本假定
(1)连续性 假定(与材料力学相同) 假定整个物体的体积都被组成这个物体的介质所 填满,不留下任何空隙。 意义:各力学量可用连续函数表示。 (2)完全弹性 假定外力撤销后,物体的变形可以完全恢复,并 且在变形的过程中完全服从胡克定律。 意义:应力与应变成线性关系。
1.外力:体力和面力
外力 --其他物体对研究对象(弹性体)
的作用力。
1.2 弹性力学的基本概念及基本假设
1.外力:体力和面力
1.体力 —— 分布在物体体积内的力
z
fz
F
F f lim V 0 V
—— 体力分布集度 (矢量)
f fxi f y j fzk
fx、fy、fz为体力矢量在坐标轴上的投影 单位: N/m3 kN/m3
k i
x
O j
fx
S f y
y
f x f y f z 沿着坐标轴方向为正,反之为负。
1.2 弹性力学的基本概念及基本假设
2.内力、应力和应变
弹性力学中的内力、应力、应变的概念与材 料力学完全相同,不同之处仅在于应力正负 号的规定方面。 材料力学 通过杆件变形来规定正方向:
弹性力学概念汇总
1、五个基本假定在建立弹性力学基本方程时有什么用途答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化。
小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。
2、试分析简支梁受均布荷载时,平面截面假设是否成立解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。
例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
弹性力学基本概念和考点汇总
弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹性力学基本概念
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
大学弹力力学知识点总结
大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。
在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。
弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。
1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。
应力是单位面积上的外力,通常用符号σ表示。
应力可以分为正应力、剪切应力等。
应变是单位长度上的形变量,通常用符号ε表示。
应变也可以分为正应变、剪切应变等。
杨氏模量是描述材料刚度的参数,通常用符号E表示。
杨氏模量越大,说明材料越难以变形。
泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。
2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。
拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。
根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。
3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。
同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。
4.扭转扭转是指物体在外力作用下的扭转形变。
扭转实验可以得到物体的剪切模量。
5.弯曲弯曲是物体在外力作用下产生的弯曲形变。
在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。
弯曲实验还可以用来研究材料的疲劳性能。
6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。
通常情况下,我们关注的是杆的稳定性和壳的稳定性。
通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。
7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。
应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。
总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。
3 弹性力学的几个基本概念:应力
选取坐标轴为应力主向
τ
2α
σ
2
(σ 1+σ 2)/2
σ
1
祝大家 工作愉快 万事如意
S = P
x
cos
2
x sin cos
弹性体的受力:外力和内力
物体内部材料的相互作用力称为内力, 标量:温度,角度; 单位面积的内力称为应力。 向量:速度,力; 应力张量的概念
在一点附近,沿三个 坐标方向切出三个面.
注意:平面以其法线
来定义方向的。
应力的方向和正负
正应力极值: 剪应力的极值:
应力张量的概念
三个坐标面上应力知
道后,其它任一方向
上应力可以求出来。
剪应力是对称的。
x xy xz
xy y yz
xz yz z
平面应力的Mohr 圆
l cos( n , x )
m cos( n , y )
轴一致为正;反之亦然
应力的方向和正负
应力张量的概念
三个坐标面上应力知
道后,其它任一方向
上应力可以求出来。
剪应力是对称的。
在一点附近,沿三个 材料力学定义剪应力 以使物体顺时针旋转 坐标方向切出三个面. 为正, 注意:平面以其外法 线来定义方向的。 因而是反对称的
应力张量的概念
三个坐标面上应力知
道后,其它任一方向
P
F1 / A E 1 / L
3) 物理方程
F 2 / A E 2 /( L / cos )
中杆长 L,与侧杆夹角θ,断面积均为 A. 单位长度变形与单位面积受力:杨氏模量 E
静不定杆件的受力分析 P
三向的胡克定律
三向的胡克定律一、三向胡克定律的基础概念三向胡克定律,又称为三维胡克定律,是弹性力学的基本定律之一。
它描述了在三维空间中,物体的应力和应变之间的关系。
与传统的二维胡克定律相比,三向胡克定律考虑了更多的因素,包括剪切应力、旋转应力和三维空间的应变状态。
在三向胡克定律中,物体的应力和应变被表示为三维向量,这些向量不仅包括大小,还包括方向。
这使得三向胡克定律能够更准确地描述在复杂应力状态下的物体行为,如扭曲、弯曲和剪切等。
二、三向胡克定律的数学表达三向胡克定律的数学表达通常由三个方程构成:应力平衡方程、几何方程和物理方程。
这些方程一起描述了物体的应力、应变和变形之间的关系。
1.应力平衡方程:该方程描述了物体内部应力的平衡状态。
在三维空间中,这个方程是一个线性方程组,表示为:σij,j=0 (i=1,2,3)。
其中,σij表示应力张量分量,j表示偏量算子。
2.几何方程:这个方程描述了物体的应变和变形。
它通常表示为:εij=1/2(uij+uji),其中εij表示应变张量分量,uij表示位移梯度分量。
3.物理方程:这个方程将应力和应变联系起来,通常表示为:σij=λδij+2μεij。
其中,λ和μ是拉梅常数,δij是克罗内克符号,表示当i=j时值为1,否则为0。
三、三向胡克定律的应用三向胡克定律在许多工程领域中有广泛的应用,包括结构工程、航空航天工程和材料科学等。
以下是一些具体的应用实例:1.结构工程:在结构工程中,三向胡克定律被用于分析桥梁、建筑和其它大型结构的应力分布和变形。
这种分析可以帮助工程师预测结构的强度、刚度和稳定性,从而优化设计。
2.航空航天工程:在航空航天工程中,由于飞行器经常处于复杂的应力状态,因此三向胡克定律的应用尤为重要。
它被用于分析飞行器的结构强度、疲劳寿命和气动弹性等问题。
3.材料科学:在材料科学中,三向胡克定律用于研究材料的力学性能,如弹性模量、泊松比和剪切模量等。
这种研究有助于理解材料的微观结构和宏观力学行为之间的关系,为新材料的开发提供理论支持。
弹性力学基本概念和考点汇总#(精选.)
基本概念:(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。
(3) 弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。
(4) 平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
同时,体力也平行与板面并且不沿厚度方向变化。
这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。
设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。
因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。
(5) 一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。
(6) 圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7) 轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。
这种问题称为空间轴对称问题。
一、 平衡微分方程:(1) 平面问题的平衡微分方程;00yxx x xy yy f x yf x yτστσ∂∂++=∂∂∂∂++=∂∂(记)(2) 平面问题的平衡微分方程(极坐标);10210f f ρρϕρϕρϕρϕρϕϕ∂σ∂τσσ∂ρρ∂ϕρ∂σ∂ττρ∂ϕ∂ρρ-+++=+++=1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。
弹性力学基础知识
整理课件
29
静力(面力)边界条件
➢ 静力边界条件:结构在边界上所受的面力与应力分量之间 的关系 。
➢ 由于物体表面受到表面力,如压力和接触力等的作用, 设
单位面积上的面力分量为Fsx、Fsy和Fsz ,物体外表面法线n 的方向余弦为l,m,n。参考应力矢量与应力分量的关系,
可得
整理课件
19
微分体的应力分量和应变分量
整理课件
20
位移
弹性体变形实际上是弹性体内质点的位置变化,质点位置 的改变称为位移(displacement)。位移可分解为x、y、z 三个坐标轴上的投影,称为位移分量。沿坐标轴正方向的 位移分量为正,反之为负。
位移的矩阵表示为
弹性体发生变形时,各质点的位移不一定相同,因此位移 也是x、y、z的函数。
σy
应力
应力分量
符号规定: 图示单元体面的法线为y,称为y面,应力分量垂直于单元 体面的应力称为正应力。 正应力记为 ,沿y轴的正向为正,其下标表示所沿坐标轴 的方向。
平行于单元体面的应力称为切应力,用τyx 、τyz表示,其
第一下标y表示所在的平面,第二下标x、y分别表示沿坐
标轴的方向。如图示的τyx、τyz
整理课件
14
应力
其中一部分对另一部分的作用,表现为内力,它们是分布在 截面上分布力的合力。
取截面的一部分,它的面积为ΔA,
ΔQ
作用于其上的内力为ΔQ,
ΔA
平均集度为ΔQ/ΔA,其极限
S lim Q A
为物体在该截面上ΔA点的应力。
整理课件
15
应力
通常将应力沿垂直于截面和平行于截面两个方向分解为
整理课件
弹性力学概念汇总
1、五个基本假定在建立弹性力学基本方程时有什么用途?答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的.因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化.小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理.2、试分析简支梁受均布荷载时,平面截面假设是否成立?解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答.例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2—15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2—15),将会发生什么问题?解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
弹性力学知识点总结
弹性力学知识点总结弹性力学是力学的一个重要分支,研究固体物体的变形和回复过程。
在本文中,将对弹性力学的几个重要概念和原理进行总结和介绍。
1. 弹性模量弹性模量是衡量固体物体抵抗形变的能力的物理量。
根据胡克定律,弹性模量E可以通过应力σ和应变ε的比值得到:E = σ/ε。
其中,应力表示受力物体单位面积上的力的大小,应变表示物体在应力作用下产生的形变程度。
2. 胡克定律胡克定律是弹性力学的基本原理,描述了理想弹性体在弹性应变范围内的力学行为。
根据胡克定律,应变与应力成正比。
即ε = σ/E,其中E为杨氏模量。
3. 杨氏模量杨氏模量是衡量固体材料抗拉性能的物理量,表示固体在单位面积上受到的拉力与单位长度的伸长量之比。
杨氏模量的定义为:E =F/AΔL/L0,其中F为受力物体的拉力,A为受力物体的横截面积,ΔL为拉伸后的长度增量,L0为原始长度。
4. 泊松比泊松比是衡量固体材料体积收缩性的物理量。
泊松比定义为物体在一轴方向上受力引起的形变量与垂直方向上的形变量之比。
公式表示为:μ = -εlateral/εaxial。
5. 应力-应变关系弹性力学中的应力-应变关系描述了材料在受力作用下的力学行为。
对于弹性材料,应力与应变成线性关系,即应力和应变成比例。
6. 弹性极限弹性极限是指固体材料可以弹性变形的最大程度。
超过弹性极限后,材料将会发生塑性变形。
7. 弹性势能弹性势能是指物体在形变后能够恢复到初始状态的能力。
弹性势能可以通过应变能来表示,其大小等于物体在受力作用下形变所储存的能量。
8. 弹性波传播弹性波是在固体中传播的一种机械波。
根据介质的不同,弹性波可以分为纵波和横波。
9. 斯内尔定律斯内尔定律描述了弹性力学体系中应力与应变之间的关系。
根据斯内尔定律,弹性变形是由应力和应变之间的线性关系所描述的。
10. 压力容器设计弹性力学在压力容器设计中起着重要作用。
根据弹性力学的原理,可以计算压力容器在不同压力下的变形情况,从而设计出满足安全要求的容器结构。
弹性力学讲义
弹性力学01绪论1.1弹性力学的内容1.2弹性力学的几个基本概念 1.3弹性力学中的基本假定。
1.1、弹性力学的内容弹性力学:研究弹性体由于受外力、边界约束或温度等原因而发生的应力、变形和位移。
研究弹性体的力学:有材料力学、结构力学、弹性力学。
它们的研究对象分别如下: ①材料力学:研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。
②结构力学:在材料力学基础上研究杆系结构(如桁架、钢架等)③弹性力学:研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。
在研究方法上,弹性力学和材料力学也有区别:弹力研究方法:在区域V 内严格考虑静力学、几何学和物理学三方面条件,建立三套方程;在边界s 上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。
材力也考虑这几方面的条件,但不是十分严格的:常常引用近似的计算假设(如平面截面假设)来简化问题,并在许多方面进行了近似的处理。
因此材料力学建立的是近似理论,得出的是近似的解答。
从其精度来看,材料力学解法只能适用于杆件。
例如:材料力学:研究直梁在横向载荷作用下的平面弯曲,引用了平面假设,结果:横截面上的正应力按直线分布。
()zM x yI σ⋅=弹性力学:梁的深度并不远小于梁的跨度,而是同等大小的,那么,横截面的正应力并不按直线分布,而是按曲线变化的。
22()345z M x y y y q I h h σ⎛⎫⋅=+- ⎪⎝⎭这时,材料力学中给出的最大正应力将具有很大的误差。
弹性力学在力学学科和工程学科中,具有重要的地位:弹性力学是其他固体力学分支学科的基础。
弹性力学是工程结构分析的重要手段。
尤其对于安全性和经济性要求很高的近代大型工程结构,须用弹力方法进行分析。
工科学生学习弹力的目的:1)理解和掌握弹力的基本理论; 2)能阅读和应用弹力文献;3)能用弹力近似解法(变分法、差分法和有限单元法)解决工程实际问题: 4)为进一步学习其他固体力学分支学科打下基础。
弹性力学的基本概念
弹性力学的基本概念弹性力学是工程力学中的一个重要分支,研究的是物体在受到外力作用后,产生的形变和应力,并且在外力作用撤去后能够恢复到原来的形态的一种力学学科。
弹性力学的研究对象包括杆件、梁、板、壳、轮胎等结构体和波动现象等。
弹性力学的基本概念包括:1. 应力应力是物体内部抵抗外部力作用的一种表现形式,指的是单位面积上的力,在弹性力学中通常用符号σ表示。
应力是与受力区域的形状和受力方向有关的,包括拉应力、压应力、剪应力等。
2. 应变应变是指物体在受到外力作用时,产生的形变程度,通常用符号ε表示。
应变可以分为线性应变和非线性应变,其中线性应变通常用胡克定律表示。
3. 模量模量是衡量物体材料性质的指标,包括弹性模量、剪切模量等。
弹性模量是物体在外力作用下,产生形变时单位应力的比例因子,通常用符号E表示。
不同材料的弹性模量不同,例如钢材的弹性模量比橡胶大,说明钢材的刚性更高。
4. 弹性极限弹性极限是指物体在受到应力作用时,达到最大的应力值,此时物体开始发生塑性变形。
弹性极限是物体强度的一个重要参数,在设计和使用中需要特别考虑。
5. 断裂强度断裂强度是指物体在受到意外应力作用时,在未达到弹性极限之前就发生破裂的应力值。
断裂强度是物体材料强度的一个重要指标,通常在设计和选材时需要考虑。
6. 安全系数安全系数是指为保证物体在工作时不发生失效,所采用的强度设计值与实际强度之间的比值。
安全系数是一个重要的设计参量,在设计和制造物体时需要保证一定的安全系数。
总之,弹性力学是工程力学中非常重要的分支,它的基本概念包括应力、应变、模量、弹性极限、断裂强度和安全系数等。
这些基本概念对于工程设计和材料选择具有重要的指导意义。
弹性力学的基本概念与应用
弹性力学的基本概念与应用弹性力学是力学的一个分支,研究固体材料在外力作用下的形变和应力分布规律,以及材料的弹性恢复性能。
本文将介绍弹性力学的基本概念和应用,并探讨其在现实生活中的重要性。
一、弹性力学的基本概念弹性力学研究的主要内容包括应力、应变、胡克定律以及材料的弹性恢复性能。
应力是指固体材料单位面积内的内力,是对材料对外力作用的反应。
应力可以分为正应力和剪应力。
正应力指作用垂直于材料截面的力引起的应力,剪应力指作用于材料截面平行于截面的力引起的应力。
应变是指物体在受力作用下发生的形变,是描述材料变形程度的物理量。
应变也可以分为正应变和剪应变。
正应变指物体在受到力的拉伸或压缩时引起的长度变化与原始长度之比,剪应变指物体在受到力的剪切时引起的形变与原始长度之比。
胡克定律是弹性力学的基本定律之一,描述了弹性材料的应力与应变之间的关系。
胡克定律认为,在弹性变形范围内,应力与应变成正比。
这个比例常数就是弹性模量,用E来表示。
胡克定律的数学表达式为:应力 = 弹性模量 ×应变。
弹性恢复性能是指材料在受力后能够恢复原状的性质。
这是弹性力学研究的核心问题之一。
材料的弹性恢复性能可以通过弹性模量和杨氏模量来刻画。
弹性模量是描述固体材料整体抗拉或抗压性能的物理量,而杨氏模量是描述固体材料在压缩或拉伸时改变形状的能力的物理量。
二、弹性力学的应用弹性力学在工程领域中有着广泛的应用,以下将从结构设计、材料选择和力学分析三个方面介绍其应用。
1. 结构设计:弹性力学的概念和原理在结构设计中发挥着重要作用。
通过研究材料的弹性模量和弹性恢复性能,设计结构可以更好地满足相应的荷载需求,并实现材料和结构的优化。
2. 材料选择:弹性力学的理论可以指导工程师选择合适的材料。
通过分析材料的弹性模量和杨氏模量等参数,可以确定材料的力学性能和应力分布规律,从而选择最适合的材料,提高结构的性能和寿命。
3. 力学分析:弹性力学的原理在力学分析中发挥着重要作用。
弹性力学基本概念和考点汇总情况
弹性力学基本概念和考点汇总情况弹性力学是研究物体在外力作用下的形变和应力的学科。
它是力学中的一个重要分支,广泛应用于工程、材料科学、地震学等领域。
下面将对弹性力学的基本概念和考点进行汇总。
一、基本概念:1.应力和应变:应力是单位面积上的力,应变是物体由于受力而产生的形变。
2.弹性体和塑性体:弹性体在受力后可以恢复原状,而塑性体则会产生永久形变。
3.弹性恢复:物体在受到外力作用后产生形变,当外力消失后,物体能够恢复原来的形状和大小。
4.长度变化和体积变化:物体在受到外力作用后会发生长度变化和体积变化。
5.压力和剪切力:压力作用于物体表面,剪切力发生在物体内部的平面上。
二、弹性力学的考点:1.应力和应变关系:-分析应变和应力的关系,如线性弹性和非线性弹性的应力-应变关系。
-弹性模量的计算和应用,包括杨氏模量、剪切模量和泊松比等。
-计算应变能和应变能密度,了解能量守恒原理与应变能的关系。
2.弹性体的本构关系:-了解弹性体的本构方程,如胡克定律和弹性体的线弹性本构方程。
-掌握材料的弹性性质,如拉伸、压缩和剪切等。
-了解各种材料的弹性极限、屈服点、强度等。
3.弹性体的稳定性:-分析物体在外力作用下的稳定和不稳定状态。
-掌握杆的屈曲和板的稳定等相关知识。
4.弹性波和振动:-了解弹性波在介质中的传播规律,如纵波和横波的传播方式。
-分析弹性体的固有频率和振动模态。
-掌握弹性体的共振现象和振动衰减。
5.弹性体的应力分析:-分析物体在外力作用下的应力分布和变形情况。
-掌握应力分析的基本方法,如平衡方程和应变关系等。
-了解应力集中和应力分布的影响因素。
总之,弹性力学是力学中的一个重要分支,涵盖了应力和应变、弹性体的本构关系、弹性体的稳定性、弹性波和振动、应力分析等多个方面的知识。
掌握这些基本概念和考点,对于理解和应用弹性力学的原理和方法具有重要意义。
有限元分析第3章弹性力学基础知识1
联立得到几何方程,表明应变分量与位移分量之间的关系:
¶u ¶v ¶w , y , z ¶x ¶y ¶z ¶u ¶v ¶v ¶w ¶w ¶u + , yz + , zx + ¶y ¶x ¶z ¶y ¶x ¶z
弹性力学的基本假定
4、各向同性(Isotropy)
物体的弹性性质在所有各个方向都相同 好处:物体材料常数不随坐标方向改变而改变
像木材,竹子以及纤维增强材料等,属于各向异 性材料。
弹性力学的基本假定
5、小变形假定(Small deformation):
物体的位移和形变是微小的. 即物体的位移 远小于物体原来的尺寸, 而且应变和转角都远小 于1
u+
¶u dy ¶y
C'
D" b D '
D C
A ' B ' AB x AB ¶u (u + dx) u ¶x dx ¶u ¶x
dy
u
v
A
A'
B'
a
v+
¶v dx ¶x
B dx
¶u u + dx ¶x
B"
x
0
¼ Í
1-5
弹性力学的基本方程之几何方程
(2)y方向的相对伸长量
y
¶u dy ¶y
切应力符号 的含义
受力面的法线方向
xy
力的方向
弹性力学的运动与变形
1、位移、形变、正应变、剪应变的概念
位移(displacement): 是指位置的移动. 它在 x, y and z 轴上的 投影用 u, v 和w。
弹性力学中的平面问题
设任意点P的位移为:
u ( x, v( x,
y) y)
点A的位移为:uv((xx,,
dx
xy
xy
x
dx
x
x x
dx
yx y
o
x
平衡方程
?
平面问题的静力平衡方程:
x
x
yx
y
fx
0
xy
x
y
y
fy
0
注:未知数三个:x 、y 、xy=yx
?
§3.5 平面问题的几何方程
目标:建立形变分量与位移分量之间的关系
物体内任意一点P,沿x和y轴方向取微小长度PA=dx、PB=dy,变形后点P、A、 B移动到P’、A’、B’,
x
dx
x
x
x
dx
o
x
力平衡
?
1、力矩平衡:Mc=0
( xy
xy
x
dx) dy
dx 2
L xy
dy
dx 2
L
y
x
(
yx
yx
y
dy) dx
dy 2
L
yx
dx
dy 2
L
0
xy
Q
o
xy
1 2
xy
x
dx
yx
1 2
yx
y
dy
y
y
y
dy
yx
yx
y
dy
c dy
dx
xy
xy
Q
F
V p
体力的量纲是[力][长度]-3
o
y
x
?
2、面力: 是分布在物体表面上的力。如流体力、接触力
弹性力学基本概念总结
弹性力学基本概念总结弹性力学是研究物体在受力作用下产生的变形与应力分布规律的科学。
在弹性力学中,存在一些基本的概念,这些概念对于理解物体的弹性变形和力学响应非常重要。
本文将对弹性力学中的一些基本概念进行总结。
一、应力和应变1. 应力应力是单位面积上的力,用符号σ表示。
在弹性力学中,常用的应力有拉伸应力、压缩应力和剪切应力。
拉伸应力表示物体在拉伸力作用下的应力,压缩应力表示物体在压缩力作用下的应力,剪切应力表示物体在层叠力作用下的应力。
2. 应变应变是物体在受力作用下发生的变形程度,用符号ε表示。
与应力类似,应变也有拉伸应变、压缩应变和剪切应变。
拉伸应变表示物体在拉伸力作用下的应变,压缩应变表示物体在压缩力作用下的应变,剪切应变表示物体在层叠力作用下的应变。
二、胡克定律胡克定律是弹性力学的基础定律之一,它描述了弹性固体的线弹性响应。
根据胡克定律,应力与应变之间的关系可以用以下公式表示:σ = Eε其中,σ为应力,E为杨氏模量,ε为应变。
胡克定律表明,线弹性材料的应力与应变成正比。
三、杨氏模量和剪切模量1. 杨氏模量杨氏模量是衡量材料抵抗拉伸应力的能力的物理量。
它表示了单位应力下的应变程度。
杨氏模量用符号E表示,单位是帕斯卡(Pa)。
杨氏模量越大,材料越具有抵抗拉伸应力的能力。
2. 剪切模量剪切模量是衡量材料抵抗剪切应力的能力的物理量。
它表示了单位剪切应力下的剪切应变程度。
剪切模量用符号G表示,单位也是帕斯卡(Pa)。
剪切模量越大,材料越具有抵抗剪切应力的能力。
四、弹性极限和屈服点1. 弹性极限弹性极限是材料在弹性变形过程中能够承受的最大应力。
当应力超过弹性极限时,材料将发生剧烈的塑性变形或破裂。
2. 屈服点屈服点是材料在受力过程中的一个关键点。
在屈服点之前,材料仅发生弹性变形,应力与应变成正比。
而在屈服点之后,材料开始发生塑性变形,应变增加的同时应力逐渐减小。
五、弹性体和弹性力学模型1. 弹性体弹性体是指在受力作用下产生弹性变形,但在去除外力后可以恢复原状的物体。
弹性力学的几个基本概念:应变
弹性力学的基本概念
汇报人:
目录
CONTENTS
01 添加目录标题
03 应变
05 弹性常数
02 弹性力学简介 04 应力 06 弹性力学的应用
添加章节标题
弹性力学简介
弹性力学的研究对象和意义
研究对象:弹性力学主要研究弹性体在外力 作用下的变形、应力、应变等物理量
意义:弹性力学是工程力学的一个重要分 支广泛应用于建筑、机械、航空航天等领 域对于提高工程结构的安全性、可靠性和 稳定性具有重要意义
弹性常数
弹性常数的定义和物理意义
弹性常数:描述材料弹性特性的物理量
弹性模量:描述材料抵抗形变的能力
泊松比:描述材料在受力时体ห้องสมุดไป่ตู้变化的 程度
剪切模量:描述材料抵抗剪切变形的能 力
体积模量:描述材料抵抗体积变化的能 力
弹性常数的物理意义:通过弹性常数可以了解材 料的弹性特性为工程设计和材料选择提供依据。
弹性力学在材料科学中的应用
材料力学性能测试:通过弹性力学原理测试材料的强度、刚度、韧性等力学性能。 材料设计:根据弹性力学原理设计材料的形状、尺寸和结构以满足特定的力学性能要求。
材料优化:通过弹性力学原理优化材料的制造工艺和材料成分以提高材料的力学性能。
材料失效分析:通过弹性力学原理分析材料失效的原因为改进材料提供依据。
应力与应变的关系
应力:物体受到外力作用 时单位面积上所承受的力
应变:物体在外力作用下 产生的形变
胡克定律:应力与应变成 正比即应力=应变*弹性模 量
弹性模量:衡量材料弹性 大小的物理量与材料的性 质有关
泊松比:描述材料在受力 时横向应变与纵向应变之 比与材料的性质有关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
δ 2 = δ cosθ
P
F1 / A = Eδ 1 / L
3) 物理方程
F2 / A = Eδ 2 /( L / cosθ )
EA (1 + 2 cos 3 θ )δ = P L
F2 = F1 cos 2 θ
作业:力与变形的关系图 静不定杆件的受力分析 F1 + 2 F2 cos θ = P F1 δ 1 = δ δ 2 = δ cosθ F2
弹性体的受力: 弹性体的受力:外力和内力
物体内部材料的相互作用力称为内力, 物体内部材料的相互作用力称为内力, 单位面积的内力称为应力。 单位面积的内力称为应力。
应力在作用截面的法线方向和 切线方向上的两个分量,分别 切线方向上的两个分量, 称为正应力σ和剪应力 。 称为正应力 和剪应力τ。 和剪应力 一点处的正应力和剪应力, 一点处的正应力和剪应力,其 大小和方向随选用的截面而变 化。以单向拉伸为例说明。 以单向拉伸为例说明。
剪应力是对称的。 剪应力是对称的。
以平面问题说明
应力张量的概念 中心点 C 力矩平衡
x
两个坐标面上应力知 道后, 道后,其它任一方向 上应力可以求出来。 上应力可以求出来。
剪应力是对称的。 剪应力是对称的。
σ x , σ y ,τ xy
以平面问题说明
应力张量的概念
l = cos( n , x ) 两个坐标面上应力知 道后,cos( n , y ) 道后= 其它任一方向 m , 上应力可以求出来。 上应力可以求出来。
弹性体的受力: 弹性体的受力:外力和内力
外界作用于物体力称为外力。 外界作用于物体力称为外力。力的单位 单位、 单位、词 牛顿是导出单位, 牛顿是导出单位,1 N = 1 kg m/s2 头和常量 用正体; 用正体; 用人名表示的单位都用大写字母, 用人名表示的单位都用大写字母, 简单变量 为斜体 由英文单词而来的用小写字母
弹性体的受力: 弹性体的受力:外力和内力
物体内部材料的相互作用力称为内力, 物体内部材料的相互作用力称为内力, 单位面积的内力称为应力。 单位面积的内力称为应力。
设想将物体切开, 设想将物体切开,分开两部分 的相互作用可以用力来表示。 的相互作用可以用力来表示。 力随位置而变化。 力随位置而变化。 取微小面积, 取微小面积,将作用力除以面 积,在面积趋于零即趋于一点 时的极限,就是该点处应力。 时的极限,就是该点处应力。
弹性力学的内容和方法
• 弹性力学问题,通常是已知物体的形状、 大小和弹性常数,物体边界受力或约束情 况,而物体内部的受力、物体的变形或位 移则是需要求解的未知量。 • 考虑静力学建立平衡微分方程; 根据微分 线段上形变与位移之间的几何系,建立几 何方程;根据应力与形变之间的物理关系, 建立物理方程。 • 在物体的边界上,还要建立边界条件。
悬 臂 梁 • 如何描述弹性体的受力
新课
弹性力学研究理想弹性体的变形与力之间的关系
• 与杆件不同,一般弹性体结构复杂, 与杆件不同,一般弹性体结构复杂, 各处受力不同, 各处受力不同,各个方向受力不同 • 如何描述弹性体的变形,同样随位置、 如何描述弹性体的变形,同样随位置、 方向变而变化 • 位移可直接观测,但位移与变形不同 位移可直接观测,
弹性体的受力: 弹性体的受力:外力和内力
σx = P/A 物体内部材料的相互作用力称为内力, 物体内部材料的相互作用力称为内力, 单位面积的内力称为应力。 单位面积的内力称为应力。
S = P
σ θ = σ x cos 2 θ
τ θ = σ x sin θ cosθ
弹性体的受力: 弹性体的受力:外力和内力
物体内部材料的相互作用力称为内力, 物体内部材料的相互作用力称为内力, 标量:温度,角度; 标量:温度,角度; 单位面积的内力称为应力。 单位面积的内力称为应力。 向量:速度, 向量:速度,力; 应力张量的概念
在一点附近, 在一点附近,沿三个 坐标方向切出三个面. 坐标方向切出三个面 注意: 注意:平面以其法线 来定义方向的。 来定义方向的。
应力的方向和正负 应力的方向和正
材料力学中也以拉应力 为正, 为正,但剪切力以使物 体顺时针旋转为正
正应力与面外法向一致 为正, 为正,即以拉应力为正 在面外法向与坐标轴 一致时, 一致时,剪应力与坐标 轴一致为正;反之亦然 轴一致为正;
应力的方向和正负 应力的方向和正
应力张量的概念
三个坐标面上应力知 道后, 道后,其它任一方向 上应力可以求出来。 上应力可以求出来。
τ xy τ xz σ y τ yz τ yz σ z
平面应力的Mohr 圆
l = cos( n, x)
m = cos( n, y )
选取坐标轴为应力主向
τ
2α
σ2
(σ1+σ2)/2
σ1
祝大家 学习愉快 万事如意
应力张量的概念:主应力和应力主向 主应力和应力主向 某一方向剪应力为零
应力张量的概念:主应力和应力主向 主应力和应力主向
Mohr 圆的应用
应力张量的概念:正应力、剪应力的极值 正应力、 正应力
l = cos( n, x)
m = cos( n, y )
选取坐标轴为应力主向
τ n = lm(σ 1 − σ 2 )
Lunar Festival
徐徐离海角 袅袅入云衢 此夜一轮满 清光何处无 释如满
十 五 的 月 亮 十 六 圆
露从今夜白 月是故乡明
复习: 复习:弹性力学的内容和方法
• 理想弹性体:完全弹性、连续、均匀和 理想弹性体:完全弹性、连续、 各向同性这4个基本假定的物体。 各向同性这4个基本假定的物体。 • 弹性力学通常假设物体受力之后的位移和 变形都远小于物体自身尺度,变形之后的 变形都远小于物体自身尺度, 位置和尺度可义用变形之前的数值表示。 位置和尺度可义用变形之前的数值表示。 • 有关方程做线性简化,并满足叠加原理。
剪应力是对称的。 剪应力是对称的。
在一点附近, 在一点附近,沿三个 材料力学定义剪应力 坐标方向切出三个面. 以使物体顺时针旋转 坐标方向切出三个面 为正, 为正, 注意: 注意:平面以其外法 线来定义方向的。 线来定义方向的。 因而是反对称的 因而是反对称的
应力张量的概念
三个坐标面上应力知 道后, 道后,其它任一方向 上应力可以求出来。 上应力可以求出来。
应力张量的概念:正应力、剪应力的极值 正应力、 正应力
选取坐标轴为应力主向
正应力极值: 正应力极值: 剪应力的极值: 剪应力的极值:
应力张量的概念
三个坐标面上应力知 道后, 道后,其它任一方向 上应力可以求出来。 上应力可以求出来。
剪应力是对称的。 剪应力是对称的。
σx τ xy τ xz
重力和惯性力;体积力的单位 N/m3 高速旋转的物体可能因离心力作用而发生 不过,体积力一般可不考虑 破坏。
常用单位: 常用单位: 表面力是作用在物体表面的力, 表面力是作用在物体表面的力, 106 N/m 2 = 1 MPa 如流体压力和接触力
表面力单位: 表面力单位:1 N/m 2 = 1 Pa
应力的方向和正负 应力的方向和正
弹性体的受力: 弹性体的受力:外力和内力
物体内部材料的相互作用力称为内力, 物体内部材料的相互作用力称为内力, 单位面积的内力称为应力。 单位面积的内力称为应力。
正应力与面外法向一致 为正, 为正,即以拉应力为正 在面外法向与坐标轴 一致时, 一致时,剪应力与坐标 轴一致为正;反之亦然 轴一致为正;
F1 / A = S F2 / A = Eδ 2 /( L / cos θ )
δ
P
材料具有塑性特征 破坏还与变形有关 屈服强度 S
EA SA + 2 δ cos 3 θ = P L
结构破坏:侧杆件承载应 力达到屈服强度,或中间 杆达到断裂变形。
弹性力学的几个基本概念
新课
弹性力学研究理想弹性体的变形与力之间的关系
有一个例外, 有一个例外,litre ( 升)一般用大写字母 L
是牛顿, 国际单位 是牛顿,符号 N
词头一般用小写, 词头一般用小写,如 k , h, d, c, m; 少数大写, 少数大写,M, G
弹性体的受力: 弹性体的受力:外力和内力
外界作用于物体力称为外力。力的单位 N 外力可以分为体积力和表面力。 体积力有时也称为质量力,
• 如何描述弹性体的受力 • 与杆件不同,一般弹性体结构复杂, 与杆件不同,一般弹性体结构复杂, 各处受力不同, 各处受力不同,各个方向受力不同 • 如何描述弹性体的变形,同样随位置、 如何描述弹性体的变形,同样随位置、 方向变而变化 • 位移可直接观测,但位移与变形不同 位移可直接观测,
弹性力学的几个基本概念
静不定杆件的受力分析
• 已知物体形状、大 小和弹性常数,物 体边界处受力或约 束情况
P
中杆长 L,与侧杆夹角θ,断面积均为 A. 虎克定律的弹性常数:刚度
静不定杆件的受力分析
P
F/A = E u/L
中杆长 L,与侧杆夹角θ,断面积均为 A. 虎克定律的弹性常数:刚度 K = EA/L 单位长度变形与单位面积受力:杨氏模量
静不定杆件的受力分析
中杆受力 F1 侧杆受力 F2 绞结点位移δ
P
中杆长 L,与侧杆夹角θ,断面积均为 A. 虎克定律的弹性常数:刚度 单位长度变形与单位面积受力:杨氏模量 E
静不定杆件的受力分析
1) 静力平衡
F1 F2
F1 + 2 F2 cos θ = P
2) 几何方程
δ
δ1 = δ
δ 2 = δ cosθ
P
F1 / A = Eδ 1 / L
3) 物理方程
F2 / A = Eδ 2 /( L / cosθ )