2009年新课标地区高考数学试题汇编 立体几何(理科)部分
高考数学2009年全国高考试题分类汇编—选做题部分
2009年全国高考试题分类汇编年全国高考试题分类汇编——选做题部分广东卷13.(坐标系与参数方程选做题)若直线+=−=.2,21:1kt y t x l (t 为参数)与直线2,:12.x s l y s ==− (s 为参数)垂直,则k = . 【解析】1)2(2−=−×−k,得1−=k . 14.(不等式选讲选做题)不等式112x x +≥+的实数解为 .【解析】112x x +≥+2302)2()1(022122−≤⇔ ≠++≥+⇔ ≠++≥+⇔x x x x x x x 且2−≠x .15.(几何证明选讲选做题)如图4,点,,A B C 是圆O 上的点, 且04,45AB ACB =∠=,则圆O 的面积等于 .【解析】解法一:连结OA 、OB ,则090=∠AOB ,∵4=AB ,OB OA =,∴22=OA ,则ππ8)22(2=×=圆S ;解法二:222445sin 420=⇒==R R ,则ππ8)22(2=×=圆S .江苏卷21.[选做题]在A 、B 、C 、D 四小题中只能选做两题只能选做两题......,每小题10分,共计20分。
请在答题答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲如图,在四边形ABCD 中,△ABC ≌△BAD. 求证:AB ∥CD.[解析] 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。
满分10分。
证明:由△ABC ≌△BAD 得∠ACB=∠BDA ,故A 、B 、C 、D 四点共圆,从而∠CBA=∠CDB 。
再由△ABC ≌△BAD 得∠CAB=∠DBA 。
因此∠DBA=∠CDB ,所以AB ∥CD 。
B. 选修4 - 2:矩阵与变换求矩阵3221A=的逆矩阵. [解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。
满分10分。
解:设矩阵A 的逆矩阵为,x y z w则3210,2101x y z w=即323210,2201x z y w x z y w ++ =++ 故321,320,20,21,x z y w x z y w +=+= +=+= 解得:1,2,2,3x z y w =−===−,从而A 的逆矩阵为11223A −− = −.C. 选修4 - 4:坐标系与参数方程已知曲线C的参数方程为13(x y t t = =+(t 为参数,0t >).求曲线C 的普通方程。
2009年高考试题分类汇编(立体几何)
2009年高考试题分类汇编(立体几何)考法1三视图1.(2009·福建卷·文科)如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12.则该集合体的俯视图可以是2.(2009·辽宁卷·文理科)设某几何体的三视图如下(尺寸的长度单位为m ),33.(2009·天津卷·文理科)如图是一个几何体的三视图,若它的体积是则a .主视图侧视图ABCD正视图侧视图俯视图4.(2009·山东卷·文理科)一空间几何体的三视图如图所示,则该几何体的体积为A.2π+ B.4π+.2π+ D.4π+5.(2009·浙江卷·文理科)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .正(主)视图侧(左)视图俯视图正视图侧视图俯视图考法2位置关系1.(2009·安徽卷·文理科)对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线异面;②由顶点A 作四面体的高,其垂足是BCD ∆三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点; ⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱. 2.(2009·福建卷·文理科)设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是 A .//m β且1//l α B .1//m l 且2//n l C .//m β且//n β D .//m β且2//n l3.(2009·浙江卷·文科)设α,β是两个不同的平面,l 是一条直线,以下命题正确的是A .若l α⊥,αβ⊥,则l β⊂ B .若//l α,//αβ,则l β⊂C .若l α⊥,//αβ,则l β⊥ D .若//l α,αβ⊥,则l β⊥4.(2009·山东卷·文理科)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.(2009·广东卷·文理科)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A .①和②B .②和③C .③和④D .②和④ 6.(2009·湖南卷·文科)平面六面体1111ABCD A B C D -中,既与AB 共面也与1CC 共面的棱的条数为A .3B .4C .5D .67.(2009·重庆卷·理科)已知二面角l αβ--的大小为50,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是25的直线的条数为 A .2 B .3 C .4 D .58.(2009·全国卷Ⅰ·文科)已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,P 到βQ 到α的距离为P 、Q 两点之间距离的最小值为A .1B .2 C..4 9.(2009·江西卷·文科)如图,在四面体ABCD 中,截面PQMN 是正方形,则在下列命题中,错误..的为 A .AC BD ⊥ B .AC ∥截面PQMNC .AC BD = D .异面直线PM 与BD 所成的角为4510.(2009·四川卷·文理科)如图,已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC ,PA =2AB ,则下列结论正确的是A .PB AD ⊥ B .平面PAB ⊥平面PBCC .直线BC ∥平面PAED .直线PD 与平面ABC 所成的角为45考法3角度ABDMNPPABCDEF1.(2009·全国卷Ⅰ·文理科)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为ABD .342.(2009·全国卷Ⅱ·文理科)已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为 A.10 B .15 C.10 D .353.(2009·浙江卷·理科)在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 A .30 B .45 C .60 D .904.(2009·江西卷·理科)如图,正四面体ABCD 的顶点A ,B ,C 分别在两两垂直的三条射线Ox ,Oy ,Oz 上,则在下列命题中,错误..的为 A .O ABC -是正三棱锥 B .直线OB ∥平面ACD C .直线AD 与OB 所成的角是45 D .二面角D OB A --为45考法4体积、距离ABCDA 1B 1C 11.(2009·湖北卷·文科)如图,在三棱柱111ABC A B C -中,90ABC ∠=,160ACC =,1145B CC ∠=,侧棱11CC =的长为1,则该三棱柱的高等于A .12B.2CD2.(2009·北京卷·文理科)若正四棱柱1111ABCD A B C D -的底面边长为1,1AB 与底面ABCD 成60角,则11A C 到底面ABCD 的距离为 AB .1 CD3.(2009·辽宁卷·理科)正六棱锥P ABCDEF -中,G 为PB 的中点,则三棱锥D GAC -与三棱锥P GAC -体积之比为A .1:1B .1:2C .2:1D .3:2 4.(2009心为顶点的凸多面体的体积为A.6 B.3 CD .23考法5球的组合体1.(2009·江西卷·理科)正三棱柱111ABC A B C -内接于半径为2的球,若A ,B 两点的球面距离为π,则正三棱柱的体积为 .2.(2009·江西卷·文科)体积为8的一个正方体,其全面积与球O 的表面积相等,则球O 的体积等于 .3.(2009·辽宁卷·文科)如果把地球看成一个球体,则地球上的北纬60纬线长和赤道长的比值为A .0.8B .0.75C .0.5D .0.25 4.(2009·全国卷Ⅰ·理科)直三棱柱111ABC A B C -的各顶点都在同一球面上,ABCA 1B 1C 1若12AB AC AA ===,120BAC ∠=,则此球的表面积等于 .5.(2009·全国卷Ⅰ·文科)已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M ,若圆M 的面积为3π,则球O 的表面积 . 6.(2009·全国卷Ⅱ·文理科)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45角的平面截球O 的表面得到圆C .若圆C 的面积等于74π,则球O 的表面积等于 .7.(2009·陕西卷·文理科)如图球O 的半径为2,圆1O是一小圆,1OO =A ,B 是圆1O 上两点,若A ,B 两点间的球面距离为23π,则1AO B ∠= .8.(2009·四川卷·文理科)如图,在半径为3的球面上有A ,B ,C 三点,90ABC ∠=,BA BC =,球心O 到平面ABC的距离是2,则B ,C 两点的球面距离是A .3πB .πC .43πD .2π8.(2009·湖南卷·理科)正方体1111ABCD A B C D -的棱上到异面直线AB ,1CC 的距离相等的点的个数为A .2B .3C .4D .5 9.(2009·湖北卷·理科)如图,卫星和地面之间的电视信号沿直线传播,电视信号能够传送到达的地面区域,称为这个卫星的覆盖区域.为了转播2008年北京奥运会,我国发射了“中星九号”广播电视直播卫星,它离地球表面的距离约为36000km .已知地球半径约为6400km ,则“中星九号”覆盖区域内的任意两点的球面距离的最大值约为 km .(结果中保留反余弦的符号).考法6解答题1.(2009·陕西卷·文理科)如图,在直三棱柱111ABC A B C -中,1AB =,AC =1AA =60ABC ∠=. (Ⅰ)证明:1AB A C ⊥;(Ⅱ)求二面角1A A C B --的大小.2.(2009·天津卷·理科)如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB AD ⊥,M 为EC 的中点,AF AB BC ===FE =12AD .(Ⅰ)求异面直线BF 与DE 所成的角的大小; (Ⅱ)证明平面AMD ⊥平面CDE ; (Ⅲ)求二面角A CD E --的余弦值.3.(2009·天津卷·文科)如图,在四棱锥ABCD P -中,PD ⊥平面ABCD ,CD AD ⊥,且DB 平分ADC ∠,E 为PC 的中点,1==CD AD ,22=DB . (Ⅰ)证明//PA 平面BDE ; (Ⅱ)证明AC ⊥平面PBD ;(Ⅲ)求直线BC 与平面PBD 所成的角的正切值.CB AC 1B 1A 1ABC DMEFABCDE P4.(2009·浙江卷·理科)如图,平面PAC ⊥平面ABC ,ABC ∆是以AC 为斜边的等腰直角三角形,E ,F ,O 分别为PA ,PB ,AC 的中点,16AC =,10PA PC ==.(Ⅰ)设G 是OC 的中点,证明://FG 平面BOE ;(Ⅱ)证明:在ABO ∆内存在一点M ,使FM ⊥平面BOE ,并求点M 到OA ,OB 的距离.5.(2009·重庆卷·文科)如图,在四棱锥S ABCD -中,AD BC 且AD CD ⊥;平面CSD ⊥平面ABCD ,CS DS ⊥,22CS AD ==;E 为BS的中点,CE =,AS =(Ⅰ)点A 到平面BCS 的距离; (Ⅱ)二面角E CD A --的大小.6.(2009·重庆卷·文科)如图,在五面体ABCDEF 中,AB ∥DC ,2BAD π∠=,2CD AD ==,四边形ABFE 为平行四边形,FA ⊥平面ABCD ,3FC =,ED =(Ⅰ)直线AB 到平面EFCD 的距离; (Ⅱ)二面角F AD E --的平面角的正切值.ABPGFO EABCDEFABCED7.(2009·浙江卷·文科)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,P ,Q 分别为AE ,AB 的中点. (Ⅰ)证明://PQ 平面ACD ;(Ⅱ)求AD 与平面ABE 所成角的正弦值.8.(2009·山东卷·理科)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,AB //CD ,4AB =,2BC CD ==,12AA =,E 、1E 、F 分别是棱AD 、1AA 、AB 的中点.(Ⅰ)证明:直线1EE //平面1FCC ; (Ⅱ)求二面角1B FC C --的余弦值.9.(2009·山东卷·文科)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,AB //CD ,4AB =,2BC CD ==,12AA =,E 、1E 分别是棱AD 、1AA 的中点.(Ⅰ)证明:设F 是棱AB 的中点,直线1EE //平面1FCC ; (Ⅱ)证明:平面1D AC ⊥平面11BB C C .EABCFE 1 A 1B 1C 1D 1 D EA BCF E 1A 1B 1C 1D 1DABCDPPQ10.(2009·四川卷·文理科)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,ABE ∆是等腰直角三角形,AB AE =,FA FE =,45AEF ∠=. (Ⅰ)求证:EF ⊥平面BCE ;(Ⅱ)设线段CD 的中点为P ,在直线AE 上是否存在一点M ,使得PM ∥平面 BCE ?若存在,请指出点M 的位置,并证明你的结论;若不存在,请说明理由; (Ⅲ)求二面角F BD A --的大小.11.(2009·全国卷Ⅱ·文理科)如图,直三棱柱111ABC A B C -中,AB AC ⊥,D ,E 分别为1AA ,1B C 的中点,DE ⊥平面1BCC . (Ⅰ)证明:AB AC =;(Ⅱ)设二面角A BD C --为60,求1B C 与平面BCD 所成的角的大小.12.(2009·辽宁卷·文理科)如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.(Ⅰ)若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦; (Ⅱ)用反证法证明:直线ME 与BN 是两条异面直线.ABCDE A 1B 1C 1ABCDEF13.(2009·广东卷·文科)某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P EFGH -,下半部分是长方体ABCD EFGH -.图5、图6分别是该标识墩的正(主)视图和俯视图. (Ⅰ)请画出该安全标识墩的侧(左)视图; (Ⅱ)求该安全标识墩的体积; (Ⅲ)证明:直线BD ⊥平面PEG .14.(2009·湖北卷·文科)如图,四棱锥S ABCD -的底面是正方形,PD ⊥平面ABCD ,SD =AD a =.点E 是SD 上的点,且DE a λ=(01λ<≤). (Ⅰ)求证:对任意的(0,1]λ∈,都有AC BE ⊥ (Ⅱ)设二面角C AE D --的大小为60,求λ的值.A B CDEFGHP侧视 正视AB CDSAB C DEFMN15.(2009·湖南卷·文科)如图4,在正三棱柱111ABC A B C -中,4AB =,1AA =,点D 是BC 的中点,点E 在AC 上,且1DE A E ⊥. (Ⅰ)证明平面1A DE ⊥平面11ACC A ; (Ⅱ)求直线AD 和平面1A DE 所成角的正弦值.16.(2009·全国卷Ⅰ·文理科)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =,2DC SD ==,点M 在侧棱SC 上,60ABM ∠=. (Ⅰ)证明:M 为侧棱SC 的中点; (Ⅱ)求二面角S AM B --的大小.17.(2009·江西卷·理科)在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以AC 的中点O 为球心,AC 为直径的球面交PD 于点M ,交PC 于点N .(Ⅰ)求证:平面ABM ⊥平面PCD ;(Ⅱ)求直线CD 与平面ACM 所成的角的大小; (Ⅲ)求点N 到平面ACM 的距离.ABCD EA 1B 1C 1ABCDMO PNABCDSM18.(2009·江西卷·文科)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA AD =4=,2AB =.以BD 的中点O 为球心,BD 为直径的球面交PD 于点M . (Ⅰ)求证:平面ABM ⊥平面PCD ; (Ⅱ)求直线PC 与平面ABM 所成的角; (Ⅲ)求点O 到平面ABM 的距离.19.(2009·湖南卷·理科)如图4,在正三棱柱111ABC A B C -中,AB =,点D 是11A B 的中点,点E 在11A C 上,且DE AE ⊥. (Ⅰ)证明平面ADE ⊥平面11ACC A ; (Ⅱ)求直线AD 和平面ABC 所成角的正弦值.20.(2009·湖北卷·理科)如图,四棱锥S ABCD -的底面是正方形,PD ⊥平面ABCD ,2SD a =,AD =.点E 是SD 上的点,且DE a λ=(02λ<≤). (Ⅰ)求证:对任意的(0,2]λ∈,都有AC BE ⊥(Ⅱ)设二面角C AE D --的大小为θ,直线BE 与平面ABCD 所成的角为ϕ,ABCDE A 1B 1C 1 ABCDMOP若tan tan 1θϕ⋅=,求λ的值.21.(2009·广东卷·理科)已知正方体1111ABCD A B C D -的棱长为2,点E 是正方形11BCC B 的中心,点F ,G 分别是棱11C D ,1AA 的中点.设点1E ,1G 分别是点E ,G 在平面11DCC D 内的正投影.(Ⅰ)求以E 为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积;(Ⅱ)证明:直线⊥1FG 平面1FEE ; (Ⅲ)求异面直线11E G EA 与所成角的正弦值.22.(2009·福建卷·文科)如图,平行四边形ABCD 中,60DAB ∠=,2AB =,4AD =,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD . (Ⅰ)求证:AB DE ⊥.(Ⅱ)求三棱锥E ABD -的侧面积.23.(2009·福建卷·理科)如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且1MD NB ==,E 为BC 的中点. (Ⅰ)求异面直线NE 与AM 所成角的余弦值;(Ⅱ)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的ABCDEABCDS长;若不存在,请说明理由.24.(2009·北京卷·文科)如图,四棱锥P ABCD -的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(Ⅰ)求证:平面AEC ⊥平面PDB ;(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.25.(2009·北京卷·理科)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,PA AB =,60ABC ∠=,BCA ∠90=,点D ,E 分别在棱PB ,PC 上,且//DE BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; (Ⅲ)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.ABCPEDAB CPE DABCDMNE26.(2009·安徽卷·理科)如图,四棱椎F ABCD -的底面ABCD 是菱形,其对角线2AC =,BD =AE 、CF 都与平面ABCD 垂直,1AE =,2CF =. (Ⅰ)求二面角B AF D --的大小;(Ⅱ)求四棱锥E ABCD -与四棱锥F ABCD -公共部分的体积.27.(2009·安徽卷·文科)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,E 和F 式l 上的两个不同点,且EA ED =,FB FC =,E '和F '是平面ABCD 内的两点,E E '和F F '都与平面ABCD 垂直, (Ⅰ)证明:直线E F ''垂直且平分线段AD ;(Ⅱ)若60EAD EAB ∠=∠=,2EF =,求多面体ABCDEF 的体积.A BCDE FlE 'F '。
20092009年高考数学(江苏卷)
解(1)设l: y=k(x-4), 1 2 1 k 7 解出 k 0或- 24 , l : y 0或7 x 24 y 28 0 (2)设P(a,b),l1: y b k ( x a), 1 | 5 (4 a) b | |1 k (3 a) b | k 1 1 k 2 1 2 ky B2 NhomakorabeaT
M
A1
O
B1
x
F
14.设 {an }是公比为q的等比数列,|q|>1,
{b n } 有连 令 bn an 1(n 1, 2,...) ,若数列
续四项在集合{-53,-23,19,37,81}中,
则6q=
-9
.
2.解答题中容易题(三角,立几)考查教材最基
础的内容和最基本的数学方法和技能;难题
A1 , A2 , B1 , B2为椭圆 13.如图,在平面直角坐标系 xoy 中,
x2 y 2 2 1(a b 0) 的四个顶点,F为其右焦点,直线 2 a b A1 B2与直线 B1 F 相交于点T,线段OT与椭圆的交点M恰
2 7 5 为线段OT的中点,则该椭圆的离心率为_________.
15.设向量 a (4cos ,sin ), b (sin , 4sin ), c (cos , 4cos )
(1) 若 a 与b 2c 垂直,求 tan( ) 的值;
(2) 求 | b c | 的最大值;
(3)若 tan tan 16, 求证 a // b .
解析几何.江苏高考解几多考中档题,这是有别
于其他省的又一特色,在江苏<考试说明>中,双曲线,
2009年北京市高考数学试卷(理科)答案与解析
2009年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•北京)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限.【解答】解:∵z=i(1+2i)=i+2i=﹣2+i,∴复数z所对应的点为(﹣2,1),故选B【点评】本题主要考查复数在坐标系数内复数与点的对应关系.属于基础知识的考查.2.(5分)(2009•北京)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向【考点】平面向量共线(平行)的坐标表示.【专题】计算题.【分析】根据所给的选项特点,检验k=1是否满足条件,再检验k=﹣1是否满足条件,从而选出应选的选项.【解答】解:∵=(1,0),=(0,1),若k=1,则=+=(1,1),=﹣=(1,﹣1),显然,与不平行,排除A、B.若k=﹣1,则=﹣+=(﹣1,1),=﹣=(1,﹣1),即∥且与反向,排除C,故选D.【点评】本题考查平行向量的坐标表示,当两个向量平行时,一个向量的坐标等于另一个向量坐标的若干倍.3.(5分)(2009•北京)为了得到函数的图象,只需把函数y=lgx的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【考点】对数函数的图像与性质.【分析】先根据对数函数的运算法则对函数进行化简,即可选出答案.【解答】解:∵,∴只需把函数y=lgx的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度故选C.【点评】本题主要考查函数图象的平移变换.属于基础知识、基本运算的考查.4.(5分)(2009•北京)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD 成60°角,则A1C1到底面ABCD的距离为()A. B.1 C. D.【考点】直线与平面平行的性质.【专题】计算题;作图题;压轴题.【分析】画出图象,利用线段的关系,角的三角函数,求解即可.【解答】解:依题意,BB1的长度即A1C1到上面ABCD的距离,∠B1AB=60°,BB1=1×tan60°=,故选:D.【点评】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念,属于基础知识、基本运算的考查.5.(5分)(2009•北京)“a=+2kπ(k∈Z)”是“cos2a=”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;任意角的三角函数的定义;二倍角的余弦.【分析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断.属于基础知识、基本运算的考查.将a=+2kπ代入cos2a易得cos2a=成立,但cos2a=时,a=+2kπ(k∈Z)却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:当a=+2kπ(k∈Z)时,cos2a=cos(4kπ+)=cos=反之,当cos2a=时,有2a=2kπ+⇒a=kπ+(k∈Z),或2a=2kπ﹣⇒a=kπ﹣(k∈Z),故选A.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q 的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6.(5分)(2009•北京)若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.80【考点】二项式定理的应用.【专题】计算题.【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选C【点评】本题考查二项式定理求二项展开式、组合数公式求二项式系数.7.(5分)(2009•北京)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648【考点】计数原理的应用.【专题】计算题;压轴题.【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选B【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.8.(5分)(2009•北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点"C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点"【考点】两点间距离公式的应用.【专题】计算题;压轴题;创新题型.【分析】根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l 上的所有点都符合.【解答】解:设A(m,n),P(x,x﹣1)则,B(2m﹣x,2n﹣x+1)∵A,B在y=x2上∴n=m2,2n﹣x+1=(2m﹣x)2消去n,整理得关于x的方程x2﹣(4m﹣1 )x+2m2﹣1=0∵△=8m2﹣8m+5>0恒成立,∴方程恒有实数解,∴故选A.【点评】本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2009•北京)=.【考点】极限及其运算.【专题】计算题.【分析】通过因式分解把原式转化为=,消除零因子后得到,由此能够得到的值.【解答】解:===.故答案为:.【点评】本题考查函数的极限,解题时要注意消除零因子.10.(5分)(2009•北京)若实数x,y满足则s=y﹣x的最小值为﹣6.【考点】简单线性规划.【分析】①画可行域如图②目标函数s为该直线纵截距③平移目标函数可知直线过(4,﹣2)点时s有最小值.【解答】解:画可行域如图阴影部分,令s=0作直线l:y﹣x=0平移l过点A(4,﹣2)时s有最小值﹣6,故答案为﹣6.【点评】本题考查线性规划问题:可行域画法目标函数几何意义11.(5分)(2009•北京)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.【考点】偶函数;导数的几何意义.【分析】偶函数关于y轴对称,结合图象,根据对称性即可解决本题.【解答】解;取f(x)=x2﹣1,如图,易得该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.故应填﹣1.【点评】函数性质的综合应用是函数问题的常见题型,在解决这一类问题是要注意培养数形结合的思想方法.12.(5分)(2009•北京)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=2,∠F1PF2的大小为120°.【考点】椭圆的简单性质.【专题】计算题;压轴题.【分析】第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.【解答】解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°【点评】本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是对曲线的定义和性质考查的很到位.13.(5分)(2009•北京)若函数则不等式的解集为[﹣3,1].【考点】其他不等式的解法.【专题】计算题;压轴题;转化思想.【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].【点评】本题主要考查分段函数和简单绝对值不等式的解法.属于基础知识、基本运算.14.(5分)(2009•北京){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014=0.【考点】数列的概念及简单表示法.【专题】压轴题.【分析】由a4n﹣3=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,第2009项的2009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.【解答】解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,1007=252×4﹣1,∴a2014=0,故答案为:1,0.【点评】培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.三、解答题(共6小题,满分80分)15.(13分)(2009•北京)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.【考点】正弦定理;同角三角函数基本关系的运用.【专题】计算题.【分析】(Ⅰ)由cosA=得到A为锐角且利用同角三角函数间的基本关系求出sinA的值,根据三角形的内角和定理得到C=π﹣﹣A,然后将C的值代入sinC,利用两角差的正弦函数公式化简后,将sinA和cosA代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC和(Ⅰ)可知公式里边的a不知道,所以利用正弦定理求出a即可.【解答】解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,∴A为锐角,则sinA==∴∴sinC=sin(﹣A)=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC中,由正弦定理,得∴a==,∴△ABC的面积S=absinC=×××=.【点评】考查学生灵活运用正弦定理、三角形的面积公式及同角三角函数间的基本关系化简求值.灵活运用两角和与差的正弦函数公式化简求值.16.(14分)(2009•北京)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.【考点】与二面角有关的立体几何综合题;直线与平面所成的角.【专题】计算题;证明题.【分析】(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC 内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件; (2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE 中,求出AD与平面PAC所成角即可;(3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A﹣DE﹣P 的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A ﹣DE﹣P是直二面角.【解答】解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=AB,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠ABC=60°,∴BC=AB,∴在Rt△ADE中,sin∠DAE===,即AD与平面PAC所成角的正弦值为.(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PBC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°,故存在点E使得二面角A﹣DE﹣P是直二面角.【点评】考查线面所成角、线面垂直的判定定理以及二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.17.(13分)(2009•北京)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【考点】离散型随机变量及其分布列;相互独立事件的概率乘法公式.【专题】计算题.【分析】(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.【解答】解:(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,∵事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,∴事件A的概率为(Ⅱ)由题意可得ξ可能取的值为0,2,4,6,8(单位:min)事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),∴,∴即ξ的分布列是ξ0 2 4 6 8P∴ξ的期望是【点评】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.18.(13分)(2009•北京)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间即可;(III)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1时,函数f(x)(﹣1,1)内单调递增,由此即可求k的取值范围.【解答】解:(Ⅰ)f′(x)=(1+kx)e kx,f′(0)=1,f(0)=0,曲线y=f(x)在点(0,f(0))处的切线方程为y=x;(Ⅱ)由f′(x)=(1+kx)e kx=0,得x=﹣(k≠0),若k>0,则当x∈(﹣∞,﹣)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣,+∞,)时,f′(x)>0,函数f(x)单调递增,若k<0,则当x∈(﹣∞,﹣)时,f′(x)>0,函数f(x)单调递增,当x∈(﹣,+∞,)时,f′(x)<0,函数f(x)单调递减;(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1,即k≤1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1,即k≥﹣1时,函数f(x)(﹣1,1)内单调递增,综上可知,函数f(x)(﹣1,1)内单调递增时,k的取值范围是[﹣1,0)∪(0,1].【点评】本小题主要考查直线的斜率、利用导数研究函数的单调性、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力以及分类讨论思想.属于基础题.19.(14分)(2009•北京)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x= (I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.【考点】圆与圆锥曲线的综合.【专题】计算题;综合题;压轴题;转化思想.【分析】( I)先利用条件列出关于a,c的方程解方程求出a,c,b;即可求出双曲线方程.(II)先求出圆的切线方程,再把切线与双曲线方程联立求出关于点A,B坐标之间的方程,再代入求出∠AOB的余弦值即可证明∠AOB的大小为定值.【解答】解:(Ⅰ)由题意,,解得a=1,c=,b2=c2﹣a2=2,∴所求双曲C的方程.(Ⅱ)设P(m,n)(mn≠0)在x2+y2=2上,圆在点P(m,n)处的切线方程为y﹣n=﹣(x﹣m),化简得mx+ny=2.以及m2+n2=2得(3m2﹣4)x2﹣4mx+8﹣2m2=0,∵切L与双曲线C交于不同的两点A、B,且0<m2<2,3m2﹣4≠0,且△=16m2﹣4(3m2﹣4)(8﹣2m2)>0,设A、B两点的坐标分别(x1,y1),(x2,y2),x1+x2=,x1x2=.∵,且=x1x2+[4﹣2m(x1+x2)+m2x1x2]=+[4﹣+]=﹣=0.∴∠AOB的大小为900.【点评】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.20.(13分)(2009•北京)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.【考点】数列的应用.【专题】证明题;综合题;压轴题;新定义;分类讨论.【分析】(I)根据性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A,验证给的集合集{1,3,4}与{1,2,3,6}中的任何两个元素的积商是否为该集合中的元素;(Ⅱ)由性质P,知a n a n>a n,故a n a n∉A,从而1=∈A,a1=1.再验证又∵<<…<<,,,…,,从而++…++=a1+a2+…+a n,命题得证;(Ⅲ)跟据(Ⅱ),只要证明即可.【解答】解:(Ⅰ)由于3×与均不属于数集{1,3,4,∴该数集不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6,∴该数集具有性质P.(Ⅱ)∵A={a1,a2,…,a n}具有性质P,∴a n a n与中至少有一个属于A,由于1≤a1<a2<…<a n,∴a n a n>a n故a n a n∉A.从而1=∈A,a1=1.∵1=a1<a2<…a n,n≥2,∴a k a n>a n(k=2,3,4,…,n),故a k a n∉A(k=2,3,4,…,n).由A具有性质P可知∈A(k=2,3,4,…,n).又∵<<…<<,∴,,…,,从而++…++=a1+a2+…+a n,∴且;(Ⅲ)由(Ⅱ)知,当n=5时,有,,即a5=a2•a4=a32,∵1=a1<a2<…<a5,∴a3a4>a2a4=a5,∴a3a4∉A,由A具有性质P可知∈A.由a2•a4=a32,得∈A,且1<,∴,∴,即a1,a2,a3,a4,a5是首项为1,公比为a2等比数列.【点评】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法.此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属于较难层次题.。
2009年高考试题(全国新课标)数学(理科)试卷及答案
(新课标)2009年高考理科数学试题一、选择题(1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B =I ( )(A) }{1,5,7 (B) }{3,5,7 (C) }{1,3,9 (D) }{1,2,3 (2) 复数32322323i ii i+--=-+( ) (A )0 (B )2 (C )-2i (D)2(3)对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关(4)双曲线24x -212y =1的焦点到渐近线的距离为( )(A)(B )2 (C(D )1 (5)有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny 3p : ∀x ∈[]0,π4p : sinx=cosy ⇒x+y=2π其中假命题的是( )(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,4p(6)设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则( )(A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最大值(7)等比数列{}n a 的前n 项和为n s ,且41a ,22a ,3a 成等差数列。
若1a =1,则4s =( ) (A )7 (B )8 (3)15 (4)16(8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且2EF =,则下列结论中错误的是( ) (A )AC BE ⊥ (B )//EF ABCD 平面(C )三棱锥A BEF -的体积为定值 (D )异面直线,AE BF 所成的角为定值(9)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且P A P B P B P C P C P A ∙=∙=∙,则点O ,N ,P 依次是ABC ∆的( )(A )重心 外心 垂心 (B )重心 外心 内心 (C )外心 重心 垂心 (D )外心 重心 内心(10)如果执行右边的程序框图,输入2,0.5x h =-=,那么输出的各个数的和等于( ) (A )3 (B ) 3.5 (C ) 4 (D )4.5(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为( )(A )(B )(C )(D )(12)用min{a,b,c}表示a,b,c 三个数中的最小值,设f (x )=min{2x, x+2,10-x} (x ≥ 0), 则f (x )的最大值为(A )4 (B )5 (C )6 (D )7 二、填空题(13)设已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点。
2009年高考北京数学(理科)试题及参考答案
2009年高考数学北京理科试卷含详细解答一. 选择题(本大题共8小题,共0分)1. (2009北京理1)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案详解加入试题篮收藏题目有误回顶部2. (2009北京理2)已知向量a、b不共线,c a b R),d a b,如果c d,那么()A.且c与d同向B.且c与d反向C.且c与d同向D.且c与d反向答案详解加入试题篮收藏题目有误回顶部3. (2009北京理3)为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度答案详解加入试题篮收藏题目有误回顶部4. (2009北京理4)若正四棱柱的底面边长为1,与底面成60°角,则到底面的距离为()A.B.1C. D.答案详解加入试题篮收藏题目有误回顶部5. (2009北京理5)“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案详解加入试题篮收藏题目有误回顶部6. (2009北京理6)若为有理数),则()A.45 B.55 C.70 D.80答案详解加入试题篮收藏题目有误回顶部7. (2009北京理7)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648答案详解加入试题篮收藏题目有误回顶部8. (2009北京理8)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是()A.直线上的所有点都是“点”B.直线上仅有有限个点是“点”C.直线上的所有点都不是“点”D.直线上有无穷多个点(点不是所有的点)是“点”答案详解加入试题篮收藏题目有误回顶部二. 填空题(本大题共12小题,共0分)9. (2009北京理9)._________.答案详解加入试题篮收藏题目有误回顶部10. (2009北京理10).若实数满足则的最小值为__________.答案详解加入试题篮收藏题目有误回顶部11. (2009北京理11)设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________.答案详解加入试题篮收藏题目有误回顶部12. (2009北京理12)椭圆的焦点为,点在椭圆上,若,则_________;的小大为__________.答案详解加入试题篮收藏题目有误回顶部13. (2009北京理13)若函数则不等式的解集为____________.答案详解加入试题篮收藏题目有误回顶部14. (2009北京理14)已知数列满足:则________;=_________.答案详解加入试题篮收藏题目有误回顶部15. (2009北京理15).在中,角的对边分别为,.(Ⅰ)求的值;(Ⅱ)求的面积.答案详解加入试题篮收藏题目有误回顶部16. (2009北京理16)如图,在三棱锥中,底面,点,分别在棱上,且(Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成的角的大小;(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.答案详解加入试题篮收藏题目有误回顶部17. (2009北京理17)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.18.设函数(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)若函数在区间内单调递增,求的取值范围.答案详解加入试题篮收藏题目有误回顶部19. (2009北京理19).已知双曲线的离心率为,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值答案详解加入试题篮收藏题目有误回顶部20. (2009北京理20)已知数集。
2009高考数学全国卷及答案理
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
2009年高考全国卷II数学(理科)试题及参考答案
田园风光清晨,田园里到处都是雾蒙蒙的,仿佛披上了一件白色的纱帘。
“喔喔喔”随着远处传来的一声鸡叫,整个田园就慢慢地热闹起来。
太阳公公也渐渐地露出了他的脸。
小溪发出叮叮咚咚的流水声,鸟儿叽叽喳喳地歌唱着,摆摊的人们不停地吆喝着,无精打采的柳树也精神起来了。
休息了一夜的人们开始了辛勤的劳动。
中午,火辣辣的太阳炙烤着大地。
知了“热啊热啊”的叫着。
小鸟们也停歇在树枝上打瞌睡。
大家都在午睡,而孩子们却纷纷跳进水里,在水中乘凉。
“扑通”一声,水花高高地溅起,像一朵绽开的花儿一样那么美丽。
那冰凉的水把他们的炎热都给抛到了九霄云外。
黄昏,一缕缕烟从烟囱中冒出,四处都弥漫着饭菜的香味。
天边的晚霞通红通红的,显得十分耀眼。
有的像一头威风凛凛的大狮子;有的像一者正在打盹的小狗;有的像一批膘肥体壮的马儿。
太阳渐渐落下,最后一抹霞光也渐渐消失了。
夜晚,弯弯的月亮挂上了天空。
劳累一天的人们回到家里,洗一把脸,吃一顿饭,准备上床睡觉。
慢慢的,狗不叫了,牛不再发出哞哞声,马儿忘记了踢马房的挡板,路上的车辆也渐渐少了。
整个田园都安静了下来。
辛勤劳动了一天的人们躺在床上,很快就进入了甜美的梦乡。
所有人都期待着美好的新一天的到来。
田园的风光仿佛是一幅美丽的风景画,一张会动的写意,让你无法忘记。
乡村风光1、早晨,人们还没有等到河里的鱼儿醒来,便纷纷用竹篙戳碎它们的梦。
雾正浓,对面不见人影,等两条船互相靠近了,才惊出一身的冷汗,连连说好险好险,船却已错开一丈有余。
这地方有个打鱼的老翁,七十八岁,鹤发童颜,声如洪钟。
“小鱼小虾卖哟--”,虽是普普通通的一声吆喝,却让人好似沉醉醒来饱饮一杯酽茶,遍体舒畅,浑身生津。
偶有船上懒汉,昨晚喝多了,迷迷糊糊爬出船舱,看天色未明,站在船尾扬下一线浑浊的臊尿。
少不得挨老婆一顿臭骂,煮饭的水还得从这河里拎呢!经常有两只可爱的小鸟,捉住河边柳树的梢头,四目相对,鸣鸣啾啾,无限柔情,相依相偎。
一对早晨出来透气的鲤鱼,趁着雾气迷蒙,尽情嬉戏,全不管老渔翁羡慕又无奈的目光。
2009年高考浙江数学(理科)试题及参考答案
浙江理工科考试本试题卷分选择题和非选择题两部分。
全卷共14页,选择题部分1至5页,非选择题部分6至14页。
满分300分,考试时间150分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共126分)注意事项:1.答题前,考试务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔写在答题纸上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
选择题部分共21小题,每小题6分,共126分。
相对原子质量(原子量):H 1 C 12 N 14 O 16 Na 23 Cl 35.5 K 39 Mn 55 Fe 56一、选择题(本题共17小题。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.用动、植物成体的体细胞进行离体培养,下列叙述正确的是CO培养箱 B.都须用液体培养基A.都需用2C.都要在无菌条件下进行 D.都可体现细胞的全能性答案C【解析】动、植物成体的体细胞进行离体培养都要在无菌条件下进行,动物成体的体细胞离体培养用液体培养基,不能体现细胞的全能性,植物成体的体细胞离体培养不一定用液体培养基,能体现细胞的全能性。
故C正确。
2.破伤风梭状芽孢杆菌侵入了人体深部的组织细胞并大量繁殖,下列关于该菌的细胞呼吸类型和消灭该菌首先要通过的免疫途径的叙述,正确的是A.无氧呼吸和体液免疫B.无氧呼吸和细胞免疫C.有氧呼吸和体液免疫D.有氧呼吸和细胞免疫答案B【解析】破伤风梭状芽孢杆菌侵入了人体深部的组织细胞并大量繁殖,可见该菌的细胞呼吸类型是无氧呼吸,消灭该菌首先要通过细胞免疫的途径。
故选B。
3.下列关于基因工程的叙述,错误..的是 A .目的基因和受体细胞均可来自动、植物或微生物B .限制性核算内切酶和DNA 连接酶是两类常用的工具酶C .人胰岛素原基因在大肠杆菌中表达的胰岛素原无生物活性D .载体上的抗性基因有利于筛选含重组DNA 的细胞和促进目的基因的表达答案D【解析】基因工程中目的基因和受体细胞均可来自动、植物或微生物;常用的工具酶是限制性核酸内切酶和DNA 连接酶;人胰岛素原基因在大肠杆菌中表达的胰岛素原无生物活性,只有经过一定的物质激活以后,才有生物活性。
2009年全国高考数学陕西卷理科18题的另解与解析
别解·解析·启示——谈2009年全国高考数学陕西卷理科18题、文科19题(陕西省西安市田家炳中学 710500)内容提要:本文通过对2009年全国高考数学(陕西卷)理科18题、文科19题的研究,既有通性通法,又有优美解法,揭示了证明线线垂直、求二面角的各种方法,均适用此题;明确了新课改高考学习、复习的方向。
关键词:2009 高考陕西理科 18题文科19题别解解析启示2009年全国高考数学陕西卷理科18题、文科19题为同一题;如图,直三棱柱ABC-A1B1C1中, AB=1,AC= AA1= 3,∠ABC=600。
(Ⅰ)证明:AB⊥A1C;(Ⅱ)求二面角A-A1C-B的大小。
解答为评析方便,先引述陕西省招生委员会办公室提供的参考答案:解答一:(I)证:∵三棱柱ABC-A1B1C1为直三棱柱∴AB⊥AA1在△ABC中,AB=1,AC = 3,∠ABC = 60°由正弦定理得∠ACB = 30°∴∠BAC = 90°即 AB⊥AC∴AB⊥平面ACC1A1又A1C 平面AC C1A1∴AB⊥A1C(II) 解:如图,作AD⊥A1C 交A1C 于点D,连结BD由三垂线定理BD ⊥A 1C ∴∠ ADB 为二面角A-A 1C-B 的平面角 在Rt △A 1AC 中AD=C A AC AA 11∙= 633⨯= 26 在Rt △BAD 中,tanADB=AD AB = 36∴∠ADB =arc tan36 即二面角A-A 1C-B 的大小为arc tan36 解答二(I )证 ∵ 三棱柱ABC-A 1B 1C 1为直三棱柱 ∴AA 1⊥AB AA 1⊥AC在△ABC 中,AB=1,AC = 3,∠ABC = 60°由正弦定理得∠ACB = 30°∴∠BAC = 90° , 即 AB ⊥AC 如图,建立空间直角坐标系, 则 A (0,0,0), B (1,0,0),C (0,3,0),A 1(0,0,3), ∴=(1,0,0),C A 1=(0,3,-3), ∵C A AB 1∙=1×0+0×3+0×(-3)=0,∴ AB ⊥A 1CABCA 1B 1C 1D(II )解 如图,可取==(1,0,0)为平面AA 1C 的法向量,设平面A 1BC 的法向量为n =( l ,m,n),则∙ =0,∙A 1 =0,又 =(-1,3,0),∴{03033=+-=-m l n m , ∴l = 3m,n = m.不妨取m =1,则 =(3,1,1)Cos<m , n >=→→→→∙∙nm nm =()222222001113010113++∙++⨯+⨯+⨯=515∴二面角A-A 1C-B 的大小为arc COS515另解再给出其它证法(I )另证:∵三棱柱ABC-A 1B 1C 1为直三棱柱∴AA 1⊥平面ABC ∴AC 是A 1C 在平面ABC 内的射影在△ABC 中,AB=1,AC = 3,∠ABC = 60°由正弦定理得∠ACB = 30° ∴∠BAC = 90° 即 AB ⊥AC 由三垂线定理知 AB ⊥A 1C(II )另解1(定义法) 在Rt △A 1AC 中,∵AC =AA 1=3∴取A 1C 的中点D ,连结AD ,则AD ⊥A 1C 且 AD =26在Rt △ABC 中AB = 1 , AC=3 , ∠BAC = 90°∴BC = 2同理, 在Rt △A 1AB 中 A 1B = 2 ∴△A 1BC 为等腰三角形∴BD ⊥A 1C 且BD = 22262⎪⎪⎭⎫ ⎝⎛- = 210 ∴∠ ADB 为二面角A-A 1C-B 的平面角 在△ABD 中 AD =26, BD=210, AB =1 由余弦定理COS ADB= BD AD AB BD AD ∙∙-+2222 = 210262121026222∙∙-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛ =515∴二面角A-A 1C-B 的大小为arc COS515另解2(射影法) 由(I )知AB ⊥平面ACA 1 ∴△A 1 AC 是△A 1BC 在平面A 1 AC 上的射影 在△A 1BC 中∵A 1 C = 6 A 1 B = BC =2ABCA 1B 1C 1D∴S △A1BC =216 ×22262⎪⎪⎭⎫ ⎝⎛- = 215又△A 1AC =213×3 = 23设二面角A-A 1C-B 为θ ,则S △A1AC = S △A1BC COS θ∴23 = 215cos θ 即cos θ=515 ∴二面角A-A 1C-B 的大小为arc cos515另解3(垂面法) 由(I )知AB ⊥A 1C 设过AB 垂直于A 1C 的平面交A 1C 于D ,则平面A 1AC ∩平面ABD=AD, 平面A 1BC ∩平面ABD=BD AD ⊥A 1C BD ⊥A 1C ∴∠ADB 为二面角A-A 1C-B 的平面角 在Rt △A 1AC 中 ∵AA 1= AC= 3 AD ⊥A 1C ∴D 为A 1C 的中点 且AD=26(下同另解1) 评析粗看此题似曾相识。
2009年辽宁高考数学理科卷带详解
2009 年全国统一考试(辽宁卷)理科数学一、选择题(每小题 5 分,共 60 分) .1.已知集合 M x3x , 5 , N x5x 5 则M N( ),A.x 5 x5B.x3x5C. x 5 x , 5D. x 3 x , 5【测量目标】集合的基本运算 .【考查方式】给出两个集合运用集合间的交集运算求解交集表示的范围.【难易程度】容易【参考答案】 B【试题解析】直接利用交集性质求解,或者画出数轴求解 .2.已知复数z 12i,那么1=() zA. 5 2 5 iB. 5 2 5 iC. 1 2i D.1 2i55555555【测量目标】复数的基本运算、共轭复数.【考查方式】给出复数的共轭复数的分数形式求其值.【难易程度】容易【参考答案】 D【试题解析】111(11 2i2i)12i12i .z2i2i)(1122553.平面向量a与b的夹角为60, a(2,0), b 1 则a2b()A.3B. 2 3C. 4D. 12【测量目标】平面向量的数量积运算.【考查方式】给出平面向量之间的夹角及一个向量的坐标表示求模.【难易程度】容易【参考答案】 Ba2, a 2a24a b4b244 2 1 cos60412 ,【试题解析】由已知2b∴a 2b 2 3.4. 已知圆 C 与直线x y0 及 x y 40都相切,圆心在直线x y 0 上,则圆 C 的方程为() A. ( x 1)2( y 1)22 B. ( x1)2( y 1)22C. (x 1)2( y 1)22D. ( x1)2( y1)22【测量目标】直线与圆的位置关系,圆的方程.【考查方式】已知圆与一条已知直线之间的位置关系和圆心所在的直线方程求圆的一般方程【难易程度】容易【参考答案】B.【试题解析】圆心在x y 0 上,排除C、D,再结合图象,或者验证 A 、B 中圆心到两直线的距离等于半径 2即可 .5.从 5 名男医生、 4 名女医生中选 3 名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( ) A.70 种 B. 80 种 C. 100 种 D.140 种【测量目标】排列组合 .【考查方式】给出实际问题运用排列组合的性质运算求解答案.【难易程度】容易【参考答案】 A【试题解析】直接法:一男两女,有C15C42= 5×6= 30 种 ,两男一女 ,有C52C14= 10×4=40种 ,共计70 种.间接法:任意选取C93=84种,其中都是男医生有 C53=10种 ,都是女医生有C14= 4 种,于是符合条件的有 84- 10- 4= 70 种 .6.设等比数列a n的前 n 项和为 S n,若S63,则S9=() S3S6A. 278D.3 B. C.33【测量目标】等比数列的前n 项和,等比数列的性质.【考查方式】给出等比数列的前n 项和的比的形式求解其值.【难易程度】容易【参考答案】B【试题解析】设公比为q,则 S6(1 q3 )S31q33q3 2 .S3S3S9 1 q3q6 1 2 4 7于是1 q312.S367.曲线yx(1,1) 处的切线方程为()在点x 2A. y x2B. y3x2C.y2x3D. y2x 1【测量目标】函数的导数,切线方程.【考查方式】给出一个曲线的解析式求其在某个定点的切线方程.【难易程度】中等【参考答案】 Dx 2 x22 ,当 x1时切线斜率为 k2 .【试题解析】 y2)2( x 2)( x8.已知函数 f ( x) A cos(xπ 2 ( )) 的图象如图所示, f ( ),则 f 0)( =23第 8 题图2 2 1 1A.B.C.D.w.w.w.k3322【测量目标】函数 yAsin( x) 的图像与性质 .【考查方式】给出函数 yA sin( x) 的图像,运用其性质求解未知数 .【难易程度】中等【参考答案】 B【试题解析】由图象可得最小正周期为2π f (2π 2π π 7π 于是 f (0) ) ,注意到与关于对称333212所以2ππ 2f ()f ( ).3231 9.已知偶函数 f ( x) 在区间0, ) 单调增加,则满足 f (2 x 1) f () 的 x 取值范围是3( )1 2B.1 21 2 D.1 2w.w.w.k.s.5.u.c.o.mA. ( ,),3 C. ( ,)2 ,3 33 2 33【测量目标】利用函数的单调性求参数范围.【考查方式】已知函数在某个区间的单调性求未知参数的取值范围.【难易程度】中等【参考答案】 A【试题解析】由于f ( x) 是偶函数 ,故 f ( x) f ( x ) ∴得 f ( 2x 1) f (1 ) ,再根据 f ( x) 的单11 2 3调性得 2x解得13x.3310.某店一个月的收入和支出总共记录了N 个数据 a 1 , a 2 , ...a N ,其中收入记为正数,支出记为负数 .该店用下边的程序框图计算月总收入 S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )第10 题图A. A0,V S TB. A0,V S TC. A0,V S T w.w.w.k.s.5.u.c.o.mD. A0,V S T【测量目标】循环结构的程序框图.【考查方式】已知某个循环结构的程序框图,给出输出结果逆推出原程序框图中的残缺部分.【难易程度】容易【参考答案】 C【试题解析】月总收入为S,因此A0 时归入S,判断框内填 A0 支出T为负数,因此月盈利V S T .11.正六棱锥 P-ABCDEF 中, G 为 PB 的中点,则三棱锥 D-GAC 与三棱锥P-GAC体积之比为 ()A. 1:1B. 1: 2C. 2 :1D. 3: 2【测量目标】锥的体积 .【考查方式】求解已知几何体中部分几何体的体积之比.【难易程度】中等【参考答案】 C【试题解析】由于G 是 PB 的中点 ,故 P-GAC 的体积等于 B-GAC 的体积 .在底面正六边形ABCDEF 中BH AB tan 303AB 而BD3AB 故DH=2BH3于是22VD GACVB GACVP GAC第 11 题图12.若x1满足2x2x 5 ,x2满足 2x2log 2 ( x 1) 5 , x1 x2()5B.37D.4A. C.22【测量目标】对数函数、指数函数的性质.【考查方式】给出满足对数函数、指数函数的未知数,运用对数函数、指数函数的性质求解未知数之和 .【难易程度】中等【参考答案】 C【试题解析】由题意2x2x5①2x2log 2 ( x1)5②(步骤 1)所以 2x52x , x log(52x) 即 2x2log2(52x ) (步骤2)11211令 2x172t ,代入上式得 72t2log 2 (2t 2)22log 2 (t1)52t2log 2 (t1) 与②式比较得 t x2于是 2 x17 2x2(步骤3)x17x2,故选 C.(步骤 4)213.某企业有 3 个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1: 2:1,用分层抽样方法(每个分厂的产品为一层)从 3 个分厂生产的电子产品中共取100 件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h, 1032h,则抽取的100 件产品的使用寿命的平均值为_________h.【测量目标】分层抽样 .【考查方式】给出实际问题运用分层抽样的方法求解答案.【难易程度】容易【参考答案】 1013【试题解析】x 98011020210321.4101314.等差数列a n的前 n 项和为 S n,且 6S55S35, 则 a4.【测量目标】数列的通项公式a n与前 n 项和 S n的关系.【考查方式】已知数列的通项与其前n 项和之间的关系求解数列的未知项.【难易程度】中等【参考答案】131n(n【试题解析】∵ S n na11)d ∴S55a110d , S3 3a13d .2∴ 6S55S330a160d (15a115d ) 15a145d 15(a13d )15a4.∵ 6S5 5S3 5, 故a41 . 315.设某几何体的三视图如下(尺寸的长度单位为m ).则该几何体的体积为m 3. w.w.w.k.s.5.u.c.o.m第15 题图【测量目标】三视图,求几何体的体积【考查方式】给出几何体的三视图,求其体积.【难易程度】容易【参考答案】4【试题解析】这是一个三棱锥,高为 2,底面三角形一边为4,这边上的高为3,体积等于 1 ×2×4×3=4.616.已知F是双曲线x2y21 的左焦点, A(1,4), P 是双曲线右支上的动点,则PF PA 的412最小值为.【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线的标准方程,运用其简单的几何性质求两条线段模的最值.【难易程度】中等【参考答案】 9【试题解析】注意到P 点在双曲线的两只之间,且双曲线右焦点为 F (4,0) ,于是由双曲线性质PF PF2a 4 而 PA PF ⋯ AF5两式相加得 PF PA ⋯9,当且仅当A, P, F三点共线时等号成立.17.(本小题满分 12 分)如图, A,B,C,D 都在同一个与水平面垂直的平面内,,B D 为两岛上的两座灯塔的塔顶 .测量船于水面 A 处测得 B 点和 D 点的仰角分别为75 , 30,于水面 C 处测得 B 点和 D 点的仰角均为60 , AC 0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B, D 的距离(计算结果精确到0.01km,2 1.414,6 2.44)第 17 题图【测量目标】正弦定理的实际应用.【考查方式】运用正弦定理在实际问题中构建三角形求解实际问题 .【难易程度】中等【试题解析】在△ABC 中, DAC30 ,ADC 60 DAC 30 . (步骤1 )所以CD AC 0.1 又 BCD180 60 6060 ,(步骤 2)故 CB 是 △ CAD 底边 AD 的中 垂 线 , 所 以 BDBA , ( 步 骤 3 ) 在 △ ABC 中 ,A BA C即s i n B C A s i n A B CAC sin 603 263 26AB20(步骤 4)因此, BD0.33km .故 B ,D 的距离sin1520约为 0.33km. (步骤 5)18.(本小题满分 12 分)如图,已知两个正方行ABCD 和 DCEF 不在同一平面内, M ,N 分别为 AB , DF 的中点 .( 1)若平面 ABCD ⊥平面 DCEF ,求直线 MN 与平面 DCEF 所成角的正值弦;( 2)用反证法证明:直线 ME 与 BN 是两条异面直线 .w.w.w.k.s.5.u.c.o.m第 18 题图【测量目标】面面垂直,异面直线之间的关系.【考查方式】给出立体几何体,由已知知识点求解面面垂直与异面直线之间的关系 .【难易程度】较难【试题解析】( 1)解法一:取 CD 的中点 G ,连接 MG , NG.设正方形 ABCD , DCEF 的边长为 2,则 MG ⊥CD , MG =2, NG2 (步骤 1)因为平面 ABCD ⊥平面 DCED ,所以 MG ⊥平面 DCEF ,可得∠ MNG 是 MN 与平面 DCEF 所成的角 . (步骤 2)因为 MN 6 ,所以 sin MNG6为 MN 与平面 DCEF 所成角的正弦值.(步骤 3)3解法二:设正方形 ABCD ,DCEF 的边长为2,以 D 为坐标原点,分别以射线DC ,DF , DA 为 x, y, z轴正半轴建立空间直角坐标系如图. (步骤 1)则 M( 1,0,2) ,N(0,1,0),可得MN( 1,1,2) (步骤2)MN DA6又 DA (0,2,2) 为平面DCEF的法向量,可得 cos(MN , DA )·MN DA3所以 MN 与平面 DCEF 所成角的正弦值为cos MN , DA 6(步骤 3)3第18 题 (1)图(2)假设直线 ME 与 BN 共面,则 AB 平面 MBEN ,且平面 MBEN 与平面 DCEF 交于 EN由已知,两正方形不共面,故AB平面DCEF .又AB//CD ,所以 AB //平面 DCEF .而 EN 为平面 MBEN 与平面 DCEF 的交线,所以 AB //EN.又 AB//CD//EF ,所以 EN//EF,这与 EN EF=E 矛盾,故假设不成立.所以 ME 与 BN 不共面,它们是异面直线 .19.(本小题满分 12 分)某人向一目射击1.该目标分为 3 个不4 次,每次击中目标的概率为3同的部分,第一、二、三部分面积之比为1: 3: 6 .击中目标时,击中任何一部分的概率与其面积成正比 .( 1)设 X 表示目标被击中的次数,求X 的分布列;( 2)若目标被击中 2 次, A 表示事件“第一部分至少被击中 1 次或第二部分被击中 2 次”,求P( A)【测量目标】数学期望,分布列.【考查方式】运用数学期望的相关知识求解实际问题.【难易程度】中等【试题解析】( 1)依题意 X 的分列为X 0 1 2 3 4P16 32 24 8 18181818181( 2)设A 1 表示事件 “第一次击中目标时,击中第i 部分 ”, i1,2 .B 1 表示事件 “第二次击中目标时,击中第i 部分 ”,i1,2依题意知 P ( A 1) =P(B 1)=0.1 , P (A 2) =P(B 2)=0.3,(步骤 1)A A 1B 1 A 1 B 1 A 1B 1A 2B 2 ,(步骤 2)所求的概率为 P( A)P( A B ) P( A B ) P (A B ) P( A B )1 11 11 122= P( A 1 B 1 )P( A 1) P( B 1) P (A 1 )P(B 1 ) P( A 2 ) P( B 2 )= 0.1 0.9 0.9 0.1 0.1 0.1 0.3 0.3 0.28 . (步骤 3)20.(本小题满分 12 分)已知,椭圆C 过点 A (1,3) ,两个焦点为 ( 1,0),(1,0) .2( 1) 求椭圆 C 的方程; w.w.w.k.s.5.u.c.o.m( 2) E,F 是椭圆 C 上的两个动点, 如果直线 AE 的斜率与 AF 的斜率互为相反数, 证明直线EF 的斜率为定值,并求出这个定值.【测量目标】椭圆的标准方程,直线与椭圆的位置关系 .【考查方式】已知椭圆的几个参数求解椭圆的标准方程,判断直线与椭圆的位置关系 .【难易程度】较难【试题解析】 (1)由题意,c=1,可设椭圆方程为191(,步骤 1)解得 b23 ,b231 b2 4b 24(舍去)所以椭圆方程为x2y241. (步骤 2)3(2) 设直线 AE 方程为: yk (x 1)3,代入x2y2241得3(3 4k 2 ) x24k (3 2k )x4(3k )2120 (步骤 3)2设 E(x E , y E ) , F (x F , y F ) ,因为点 A(1,3) 在椭圆上,所以24( 3 k) 2123 x F2, y E kx E 4k 2k (步骤 4) 又直线 AF 的斜率与 AE 的斜率3 24(3k )2123 互为相反数,在上式中以k 代 k ,可得 x F2y Ekx E3 4k2k2(步骤 5)所以直线EF 的斜率 k EFy F y E k (x Fx E ) 2k 1x FxE x Fx E2即直线 EF 的斜率为定值,其值为1 (步骤 6).221.(本小题满分 12 分)已知函数 f (x)1 x2 ax ( a1)ln x,a1 .2( 1)讨论函数 f ( x) 的单调性; w.w.w.k.s.5.u.c.o.m( 2)证明:若 a 5 ,则对任意 x 1 , x 2(0, ) , x 1 x 2 ,有f ( x 1 )f ( x 2 ) 1.x 1x 2【测量目标】函数的单调性 .【考查方式】已知函数解析式求解函数的单调性,已知参数范围求解区间内函数的单调性.【难易程度】较难【试题解析】 (1) f ( x) 的定义域为 (0,) . f ( x) x aa 1 x 2ax a1xx(x 1)( x 1 a)(步骤1)x( i )若 a 11 即 a2 ,则 f (x)(x1)2) 单调增加 . (步骤 2)x故 f ( x) 在 (0,(ii)若 a 1 1 , , a, x (a 1,1) 时, f ( x) 0 ; (步骤 3 )而 a 1 故 12 则当当 x(0, a 1)及 x (1, ) 时, f ( x)故 f ( x) 在 ( a 1,1)单调减少,在 (0, a 1),(1, ) 单调增加 . (步骤 4)(iii) 若 a 11 ,即 a2 ,同理可得 f ( x) 在 (1,a 1) 单调减少, 在 (0,1),( a 1,) 单调增加 . (步骤 5)(2) 考虑函数 g( x)f ( x) x1 x2 ax (a 1)ln xx (步骤 6)2则 g ( x)x (a1)a1⋯2 xga 1(a1) 1 ( a 1 1)2(步骤 7)xx由 于 1 a 5 , 故 g (x)0 , 即 g( x) 在 (4, +∞)单 调 增 加 , 从 而 当 x 1 x 2 0 时 有g(x1 )g (x2 ) 0 ,(步骤8 )即f ( x1) f ( x2 )x1x20 ,故f (x1 ) f (x2 )x11 ,当x20 x1x2f ( x1 ) f ( x2 ) f ( x2 ) f ( x1)1.(步骤9)时,有x2x2x1x122.(本小题满分 10 分)已知△ABC中, AB=AC, D 是△ABC外接圆劣弧AC上的点(不与点 A,C 重合),延长 BD 至 E.(1)求证: AD 的延长线平分CDE ;(2) 若BAC= 30,△ABC中 BC边上的高为2+ 3 ,求△ABC 外接圆的面积.w.w.w.k.s.5.u.c.o.m第 22 题图【测量目标】直线与圆的位置关系,圆的简单几何性质.【考查方式】给出圆与直线的位置关系,运用其简单几何性质求解角与线的关系【难易程度】中等【试题解析】(1)如图,设 F 为 AD 延长线上一点∵A, B, C,D 四点共圆,∴∠(步骤 1)又AB=AC∴∠ ABC=∠ ACB,且∠ ADB =∠ACB ,∴∠ ADB=∠ CDF ,.CDF= ∠ ABC (步骤 2)对顶角∠ EDF =∠ ADB, 故∠ EDF =∠ CDF ,即 AD 的延长线平分∠CDE . (步骤 3)第22 题图(2)设 O 为外接圆圆心,连接 AO 交 BC 于 H ,则 AH⊥BC.连接 OC, OA 由题意∠ OAC=∠OCA=15 , ∠ACB= 75 ,∴∠ OCH = 60 .(步骤 4)设圆半径为 r,则 r+33 ,a 得 r=2, 外接圆的面积为4 π.(步骤 5)r=2+223.(本小题满分 10分)选修4- 4 :坐标系与参数方程在直角坐标系xOy 中,以O为极点,x 正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为cos(π) =1,M,N分别为C与x 3轴, y 轴的交点 .( 1)写出 C 的直角坐标方程,并求M,N 的极坐标; w.w.w.k.s.5.u.c.o.m ( 2)设 MN 的中点为 P,求直线 OP 的极坐标方程 .【测量目标】坐标系与参数方程.【考查方式】建立坐标系求解参数方程.【难易程度】中等【试题解析】( 1)由cos(π13)1得 ( cos sin ) 1(步骤1)322从而 C 的直角坐标方程为 1 x3y 1即x3y 2 (步骤2)220 时,2,M (2,0)π=,N (,)3所以时, 2 3所以23π (步骤)2332( 2) M 点的直角坐标为(2,0) N 点的直角坐标为(0,23) (步骤4)3所以 P 点的直角坐标为(1,323π) ,则 P 点的极坐标为(,)336所以直线OP 的极坐标方程为π,(,) (步骤5)624.(本小题满分 10 分)设函数f ( x)| x1| | x a | .(1)若a1, 解不等式 f ( x) ⋯3;(2)如果x R , f ( x)⋯2 ,求a的取值范围 .w.w.w.k.s.5.u.c.o.m【测量目标】不等式 .【考查方式】给出函数解析式求解不等式.【难易程度】中等【试题解析】(1)当a 1 时, f ( x)x1x1.由 f ( x)⋯3得x 1 x 1 ⋯3 (步骤1)1 当x , 1 时,不等式化为 1 x1x ⋯3即2x ⋯ 3(步骤 2)○2 当x 1 时,联立不等式组x1解得其解集为3 ,,综上得 f ( x) ⋯3 的解集+○ f ( x) ⋯32为33,,.(步骤 3)22(2)若a1, f ( x) 2 x 1 ,不满足题设条件.2x a1, x ,a,1 若a 1 , f ( x)1a, a x1, f ( x)的最小值为 1 a (步骤4)○2x(a1), x ⋯12x a1, x , 1,2若a1, f (x)1a,1x a, f (x) 的最小值为 a1(步骤5)○2x(a1), x ⋯ a所以x R,f(x)⋯ 2的充要条件是 a 1⋯2,从而a的取值范围为(- ,13,).(步骤6)。
2009年浙江省高考数学试卷(理科)答案与解析
, ∴∠ADE=60°. 故选C
【点评】求直线和平面所成的角时,应注意的问题是:(1)先判断直 线和平面的位置关系.(2)当直线和平面斜交时,常用以下步骤:① 构造﹣﹣作出或找到斜线与射影所成的角;②设定﹣﹣论证所作或找到 的角为所求的角;③计算﹣﹣常用解三角形的方法求角;④结论﹣﹣点 明斜线和平面所成的角的值. 6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k 的值是( )
菁优网版权所有
,前n项和为Sn,则
= 15 . 【考点】等比数列的性质. 【专题】等差数列与等比数列.
菁优网版权所有
【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而 把a1和q代入 约分化简可得到答案. 【解答】解:对于
,∴
【点评】本题主要考查了等比数列中通项公式和求和公式的应用.属基 础题. 12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所 示,则该几何体的体积是 18 cm3.
, 满足:| |=3,| |=4, • =0.以 , , ﹣ 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( ) A.3 B.4 C.5 D.6 【考点】直线与圆相交的性质;向量的模;平面向量数量积的运算.
版权所有
菁优网
【专题】平面向量及应用. 【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内 切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于 圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出 答案. 【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为 3,4,5,进而可知其内切圆半径为1, ∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三 个交点, 对于圆的位置稍一右移或其他的变化,能实现4个交点的情况, 但5个以上的交点不能实现. 故选B 【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的 方法较为直观.
高考数学总复习《立体几何》部分试题及答案
高考数学总复习试卷立体几何综合训练第 I 卷(选择题共60分)一、选择题(本大题共 12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.以下命题正确的选项是()A .直线 a, b 与直线 l 所成角相等,则a//bB.直线 a,b 与平面α成相等角,则a//bC.平面α,β与平面γ所成角均为直二面角,则α// βD.直线 a, b 在平面α外,且a⊥α, a⊥b,则 b//α2.空间四边形ABCD , M , N 分别是 AB 、 CD 的中点,且AC=4 , BD=6 ,则()A . 1<MN<5B . 2<MN<10C. 1≤ MN ≤ 5 D . 2<MN<53.已知 AO 为平面α的一条斜线,O 为斜足, OB 为 OA 在α内的射影,直线OC 在平面α内,且∠AOB=∠ BOC=45 °,则∠ AOC 等于()A . 30°B. 45°C.60°D.不确立4.甲烷分子构造是:中心一个碳原子,外头四个氢原子组成四周体,中心碳原子与四个氢原子等距离,且连成四线段,两两所成角为θ,则cosθ值为()A .1B.111 33C.D.225.对已知直线 a,有直线 b 同时知足下边三个条件:①与 a 异面;②与 a 成定角;③与 a 距离为定值 d,则这样的直线 b 有()A.1 条B.2 条C.4条D.无数条6.α,β是不重合两平面,l, m 是两条不重合直线,α//β的一个充足不用要条件是()A .l, m,且 l// β, m// βB .l,m,且 l//mC. l ⊥α, m⊥β,且 l//m D .l// α, m//β,且 l//m7.如图正方体ABCD A B C D中, E, F 分别为 AB ,CC的中点,则异面直线A C 与EF所成角的余111111弦值为()A .3B.2C.1D .133368.关于任一个长方体,都必定存在一点:①这点到长方体的各极点距离相等;②这点到长方体的各条棱距离相等;③这点到长方体的各面距离相等,以上三个结论中正确的选项是()A .①②B.①C.②D.①③9.在斜棱柱的侧面中,矩形最多有几个?A.2B.3C.4D.610.正六棱柱的底面边长为2,最长的一条对角线长为 2 5 ,则它的侧面积为()A.24B.12C.242D.12211.异面直线a,b 成 80°角, P 为 a,b 外的一个定点,若过P 有且仅有 2 条直线与a, b 所成的角相等且等于α,则角α属于会合()A . { α|0° <α <40° }B. { α |40° <α <50 ° }C. { α |40° <α <90° } D . { α |50°<α <90 ° }12.从水平搁置的球体容器的顶部的一个孔向球内以同样的速度灌水,容器中水面的高度与灌水时间t 之间的关系用图象表示应为()第 II 卷(非选择题共90分)二、填空题(本大题共 4 个小题,每题 4 分,共 16 分,把答案填在题中横线上)13.正四棱锥S-ABCD 侧棱长与底面边长相等, E 为 SC 中点,BE 与 SA 所成角的余弦值为_____________ 。
2009年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)
、 、 A .B .2009 年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共 12 小题,每小题 5 分,满分 60 分)1.(5 分)设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3 个B .4 个C .5 个D .6 个2.(5 分)已知=2+i ,则复数 z=( ) A .﹣1+3i B .1﹣3iC .3+iD .3﹣i 3.(5 分)不等式<1 的解集为( )A .{x |0<x <1}∪{x |x >1}B .{x |0<x <1}C .{x |﹣1<x <0}D .{x |x <0}4.(5 分)已知双曲线﹣=1(a >0,b >0)的渐近线与抛物线 y=x 2+1 相切,则该双曲线的离心率为( )A .B .2C .D .5.(5 分)甲组有 5 名男同学,3 名女同学;乙组有 6 名男同学、2 名女同学.若 从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有( )A .150 种B .180 种C .300 种D .345 种 6.(5 分)设 是单位向量,且,则•的最小值为( )A .﹣2B .﹣2C .﹣1D .1﹣7.(5 分)已知三棱柱 ABC ﹣A 1B 1C 1 的侧棱与底面边长都相等,A 1 在底面 ABC 上的射影 D 为 BC 的中点,则异面直线 AB 与 CC 1 所成的角的余弦值为()C .D .8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.9.(5 分)已知直线y=x+1 与曲线y=ln(x+a)相切,则a 的值为()A.1 B.2 C.﹣1 D.﹣210.(5 分)已知二面角α﹣l﹣β为60°,动点P、Q 分别在面α、β内,P 到β的距离为,Q 到α的距离为,则P、Q 两点之间距离的最小值为()A.1 B.2 C.D.411.(5 分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数12.(5 分)已知椭圆C:+y2=1 的右焦点为F,右准线为l,点A∈l,线段AF 交C 于点B,若=3,则||=()A.B.2 C.D.3二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)(x﹣y)10的展开式中,x7y3的系数与x3y7的系数之和等于.14.(5 分)设等差数列{a n}的前n 项和为S n,若S9=81,则a2+a5+a8=.15.(5 分)直三棱柱ABC﹣A1B1C1 的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于.16.(5 分)若,则函数y=tan2xtan3x 的最大值为.三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,内角A、B、C 的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.18.(12 分)如图,四棱锥S﹣ABCD 中,底面ABCD 为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M 在侧棱SC 上,∠ABM=60°(I)证明:M 是侧棱SC 的中点;(II)求二面角S﹣AM﹣B 的大小.19.(12 分)甲、乙二人进行一次围棋比赛,约定先胜3 局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2 局中,甲、乙各胜1 局.(I)求甲获得这次比赛胜利的概率;(II)设ξ表示从第3 局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.20.(12 分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n 项和S n.21.(12 分)如图,已知抛物线E:y2=x 与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D 四个点.(I)求r 的取值范围;(II)当四边形ABCD 的面积最大时,求对角线AC、BD 的交点P 的坐标.22.(12 分)设函数f(x)=x3+3bx2+3cx 有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.2009 年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3 个B.4 个C.5 个D.6 个【考点】1H:交、并、补集的混合运算.【分析】根据交集含义取A、B 的公共元素写出A∩B,再根据补集的含义求解.【解答】解:A∪B={3,4,5,7,8,9},A∩B={4,7,9}∴∁U(A∩B)={3,5,8}故选A.也可用摩根律:∁U(A∩B)=(∁U A)∪(∁U B)故选:A.【点评】本题考查集合的基本运算,较简单.2.(5 分)已知=2+i,则复数z=()A.﹣1+3i B.1﹣3i C.3+i D.3﹣i【考点】A1:虚数单位i、复数.【分析】化简复数直接求解,利用共轭复数可求z.【解答】解:,∴z=1﹣3i故选:B.【点评】求复数,需要对复数化简,本题也可以用待定系数方法求解.3.(5 分)不等式<1 的解集为()A.{x|0<x<1}∪{x|x>1} B.{x|0<x<1} C.{x|﹣1<x<0}D.{x|x<0}【考点】7E:其他不等式的解法.【分析】本题为绝对值不等式,去绝对值是关键,可利用绝对值意义去绝对值,也可两边平方去绝对值.【解答】解:∵<1,∴|x+1|<|x﹣1|,∴x2+2x+1<x2﹣2x+1.∴x<0.∴不等式的解集为{x|x<0}.故选:D.【点评】本题主要考查解绝对值不等式,属基本题.解绝对值不等式的关键是去绝对值,去绝对值的方法主要有:利用绝对值的意义、讨论和平方.4.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1 相切,则该双曲线的离心率为()A.B.2 C.D.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】11:计算题.【分析】先求出渐近线方程,代入抛物线方程,根据判别式等于0,找到a 和b 的关系,从而推断出a 和c 的关系,答案可得.【解答】解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得ax2﹣bx+a=0,因渐近线与抛物线相切,所以b2﹣4a2=0,即,故选:C.、 、 【点评】本小题考查双曲线的渐近线方程直线与圆锥曲线的位置关系、双曲线的离心率,基础题.5.(5 分)甲组有 5 名男同学,3 名女同学;乙组有 6 名男同学、2 名女同学.若 从甲、乙两组中各选出 2 名同学,则选出的 4 人中恰有 1 名女同学的不同选法共有( )A .150 种B .180 种C .300 种D .345 种【考点】D1:分类加法计数原理;D2:分步乘法计数原理. 【专题】5O :排列组合.【分析】选出的 4 人中恰有 1 名女同学的不同选法,1 名女同学来自甲组和乙组两类型.【解答】解:分两类(1)甲组中选出一名女生有 C 51•C 31•C 62=225 种选法; (2)乙组中选出一名女生有 C 52•C 61•C 21=120 种选法.故共有 345 种选法.故选:D .【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,后分步!6.(5 分)设 是单位向量,且,则• 的最小值为( )A .﹣2B .﹣2C .﹣1D .1﹣【考点】9O :平面向量数量积的性质及其运算. 【专题】16:压轴题. 【分析】由题意可得=,故要求的式子即﹣()•+=1﹣cos=1﹣cos,再由余弦函数的值域求出它的最小值. 【解答】解:∵、、 是单位向量,,∴, =.∴•=﹣()•+ =0﹣()•+1=1﹣cos=1﹣cos ≥.故选:D.【点评】考查向量的运算法则;交换律、分配律但注意不满足结合律.7.(5分)已知三棱柱ABC﹣A1B1C1 的侧棱与底面边长都相等,A1 在底面ABC 上的射影D 为BC 的中点,则异面直线AB 与CC1 所成的角的余弦值为()C.D.A.B.【考点】LO:空间中直线与直线之间的位置关系.【分析】首先找到异面直线AB 与CC1 所成的角(如∠A1AB);而欲求其余弦值可考虑余弦定理,则只要表示出A1B 的长度即可;不妨设三棱柱ABC﹣A1B1C1的侧棱与底面边长为1,利用勾股定理即可求之.【解答】解:设BC 的中点为D,连接A1D、AD、A1B,易知θ=∠A1AB 即为异面直线AB 与CC1 所成的角;并设三棱柱ABC﹣A1B1C1 的侧棱与底面边长为1,则|AD|=,|A1D|=,|A1B|=,由余弦定理,得cosθ==.故选:D.【点评】本题主要考查异面直线的夹角与余弦定理.8.(5分)如果函数y=3cos(2x+φ)的图象关于点(,0)中心对称,那么|φ|的最小值为()A.B.C.D.【考点】HB:余弦函数的对称性.【专题】11:计算题.【分析】先根据函数y=3cos(2x+φ)的图象关于点中心对称,令x=代入函数使其等于0,求出φ的值,进而可得|φ|的最小值.【解答】解:∵函数y=3cos(2x+φ)的图象关于点中心对称.∴∴由此易得.故选:A.【点评】本题主要考查余弦函数的对称性.属基础题.9.(5 分)已知直线y=x+1 与曲线y=ln(x+a)相切,则a 的值为()A.1 B.2 C.﹣1 D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选:B.【点评】本题考查导数的几何意义,常利用它求曲线的切线10.(5 分)已知二面角α﹣l﹣β为60°,动点P、Q 分别在面α、β内,P 到β的距离为,Q 到α的距离为,则P、Q 两点之间距离的最小值为()A.1 B.2 C.D.4【考点】LQ:平面与平面之间的位置关系.【专题】11:计算题;16:压轴题.【分析】分别作QA⊥α于A,AC⊥l 于C,PB⊥β于B,PD⊥l 于D,连CQ,BD 则∠ACQ=∠PBD=60°,在三角形APQ 中将PQ 表示出来,再研究其最值即可.【解答】解:如图分别作QA⊥α于A,AC⊥l 于C,PB⊥β 于B,PD⊥l 于D,连CQ,BD 则∠ACQ=∠PDB=60°,,又∵当且仅当AP=0,即点A 与点P 重合时取最小值.故选:C.【点评】本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.11.(5 分)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则()A.f(x)是偶函数B.f(x)是奇函数C.f(x)=f(x+2)D.f(x+3)是奇函数【考点】3I:奇函数、偶函数.【专题】16:压轴题.【分析】首先由奇函数性质求f(x)的周期,然后利用此周期推导选择项.【解答】解:∵f(x+1)与f(x﹣1)都是奇函数,∴函数f(x)关于点(1,0)及点(﹣1,0)对称,∴f(x)+f(2﹣x)=0,f(x)+f(﹣2﹣x)=0,故有f(2﹣x)=f(﹣2﹣x),函数f(x)是周期T=[2﹣(﹣2)]=4 的周期函数.∴f(﹣x﹣1+4)=﹣f(x﹣1+4),f(﹣x+3)=﹣f(x+3),f(x+3)是奇函数.故选:D.【点评】本题主要考查奇函数性质的灵活运用,并考查函数周期的求法.12.(5 分)已知椭圆C:+y2=1 的右焦点为F,右准线为l,点A∈l,线段AF 交C 于点B,若=3,则||=()A.B.2 C.D.3【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】过点B 作BM⊥x 轴于M,设右准线l 与x 轴的交点为N,根据椭圆的性质可知FN=1,进而根据,求出BM,AN,进而可得|AF|.【解答】解:过点B 作BM⊥x 轴于M,n n n nn r +1 n 10 10 10 10 10 10并设右准线 l 与 x 轴的交点为 N ,易知 FN=1.由题意,故 FM=,故 B 点的横坐标为,纵坐标为±即 BM=, 故 AN=1, ∴.故选:A .【点评】本小题考查椭圆的准线、向量的运用、椭圆的定义,属基础题.二、填空题(共 4 小题,每小题 5 分,满分 20 分)13.(5 分)(x ﹣y )10 的展开式中,x 7y 3 的系数与 x 3y 7的系数之和等于 ﹣240 .【考点】DA :二项式定理. 【专题】11:计算题.【分析】首先要了解二项式定理:(a +b )n =C 0a n b 0+C 1a n ﹣1b 1+C 2a n ﹣2b 2++C r a n ﹣ r b r ++C n a 0b n ,各项的通项公式为:T =C r a n ﹣r b r .然后根据题目已知求解即可. 【解答】解:因为(x ﹣y )10 的展开式中含 x 7y 3 的项为 C 3x 10﹣3y (3 含 x 3y 7 的项为 C 7x 10﹣7y 7(﹣1)7=﹣C 7x 3y 7. 由 C 3=C 7=120 知,x 7y 3 与 x 3y 7 的系数之和为﹣240.故答案为﹣240.﹣1)3=﹣C 3x 7y 3, 【点评】此题主要考查二项式定理的应用问题,对于公式:(a +b )n =C n 0a n b 0+C n 1a n﹣1b1+C 2a n﹣2b2++C r a n﹣r b r++C n a0b n,属于重点考点,同学们需要理解记忆.n n n14.(5 分)设等差数列{a n}的前n 项和为S n,若S9=81,则a2+a5+a8= 27 .【考点】83:等差数列的性质;85:等差数列的前n 项和.【分析】由s9 解得a5 即可.【解答】解:∵∴a5=9∴a2+a5+a8=3a5=27故答案是27【点评】本题考查前n 项和公式和等差数列的性质.15.(5 分)直三棱柱ABC﹣A1B1C1 的各顶点都在同一球面上,若AB=AC=AA1=2,∠BAC=120°,则此球的表面积等于20π.【考点】LR:球内接多面体.【专题】11:计算题;16:压轴题.【分析】通过正弦定理求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积.【解答】解:在△ABC 中AB=AC=2,∠BAC=120°,可得由正弦定理,可得△ABC 外接圆半径r=2,设此圆圆心为O',球心为O,在RT△OBO'中,易得球半径,故此球的表面积为4πR2=20π故答案为:20π【点评】本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.16.(5 分)若,则函数y=tan2xtan3x 的最大值为﹣8 .【考点】3H:函数的最值及其几何意义;GS:二倍角的三角函数.【专题】11:计算题;16:压轴题.【分析】见到二倍角2x 就想到用二倍角公式,之后转化成关于tanx 的函数,将tanx 看破成整体,最后转化成函数的最值问题解决.【解答】解:令tanx=t,∵,∴故填:﹣8.【点评】本题主要考查二倍角的正切,二次函数的方法求最大值等,最值问题是中学数学的重要内容之一,它分布在各块知识点,各个知识水平层面.以最值为载体,可以考查中学数学的所有知识点.三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,内角A、B、C 的对边长分别为a、b、c,已知a2﹣c2=2b,且sinAcosC=3cosAsinC,求b.【考点】HR:余弦定理.【分析】根据正弦定理和余弦定理将sinAcosC=3cosAsinC 化成边的关系,再根据a2﹣c2=2b 即可得到答案.【解答】解:法一:在△ABC 中∵sinAcosC=3cosAsinC,则由正弦定理及余弦定理有:,化简并整理得:2(a2﹣c2)=b2.又由已知a2﹣c2=2b∴4b=b2.解得b=4 或b=0(舍);法二:由余弦定理得:a2﹣c2=b2﹣2bccosA.又a2﹣c2=2b,b≠0.所以b=2ccosA+2①又sinAcosC=3cosAsinC,∴sinAcosC+cosAsinC=4cosAsinCsin(A+C)=4cosAsinC,即sinB=4cosAsinC 由正弦定理得,故b=4ccosA②由①,②解得b=4.【点评】本题主要考查正弦定理和余弦定理的应用.属基础题.18.(12 分)如图,四棱锥S﹣ABCD 中,底面ABCD 为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M 在侧棱SC 上,∠ABM=60°(I)证明:M 是侧棱SC 的中点;(II)求二面角S﹣AM﹣B 的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(Ⅰ)法一:要证明M 是侧棱SC 的中点,作MN∥SD 交CD 于N,作NE⊥AB 交AB 于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,解RT△MNE 即可得x 的值,进而得到M 为侧棱SC 的中点;法二:分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,并求出S 点的坐标、C 点的坐标和M 点的坐标,然后根据中点公式进行判断;法三:分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,构造空间向量,然后数乘向量的方法来证明.(Ⅱ)我们可以以D 为坐标原点,分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,我们可以利用向量法求二面角S﹣AM﹣B 的大小.【解答】证明:(Ⅰ)作MN∥SD 交CD 于N,作NE⊥AB 交AB 于E,连ME、NB,则MN⊥面ABCD,ME⊥AB,设MN=x,则NC=EB=x,在RT△MEB 中,∵∠MBE=60°∴.在RT△MNE 中由ME2=NE2+MN2∴3x2=x2+2解得x=1,从而∴M 为侧棱SC 的中点M.(Ⅰ)证法二:分别以DA、DC、DS 为x、y、z 轴如图建立空间直角坐标系D﹣xyz,则.设M(0,a,b)(a>0,b>0),则,,由题得,即解之个方程组得a=1,b=1 即M(0,1,1)所以M 是侧棱SC 的中点.(I)证法三:设,则又故,即,解得λ=1,所以M 是侧棱SC 的中点.(Ⅱ)由(Ⅰ)得,又,,设分别是平面SAM、MAB 的法向量,则且,即且分别令得z1=1,y1=1,y2=0,z2=2,即,∴二面角S﹣AM﹣B 的大小.【点评】空间两条直线夹角的余弦值等于他们方向向量夹角余弦值的绝对值;空间直线与平面夹角的余弦值等于直线的方向向量与平面的法向量夹角的正弦值;空间锐二面角的余弦值等于他的两个半平面方向向量夹角余弦值的绝对值;19.(12 分)甲、乙二人进行一次围棋比赛,约定先胜3 局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2 局中,甲、乙各胜1 局.(I)求甲获得这次比赛胜利的概率;(II)设ξ表示从第3 局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知前2 局中,甲、乙各胜1 局,甲要获得这次比赛的胜利需在后面的比赛中先胜两局,根据各局比赛结果相互独立,根据相互独立事件的概率公式得到结果.(2)由题意知ξ表示从第3 局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3,由于各局相互独立,得到变量的分布列,求出期望.【解答】解:记A i 表示事件:第i 局甲获胜,(i=3、4、5)B i 表示第j 局乙获胜,j=3、4(1)记B 表示事件:甲获得这次比赛的胜利,∵前2 局中,甲、乙各胜1 局,∴甲要获得这次比赛的胜利需在后面的比赛中先胜两局,∴B=A3A4+B3A4A5+A3B4A5由于各局比赛结果相互独立,∴P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648(2)ξ表示从第3 局开始到比赛结束所进行的局数,由上一问可知ξ的可能取值是2、3由于各局相互独立,得到ξ的分布列P(ξ=2)=P(A3A4+B3B4)=0.52 P(ξ=3)=1﹣P(ξ=2)=1﹣0.52=0.48∴Eξ=2×0.52+3×0.48=2.48.【点评】认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题.另外,还要注意表述,这也是考生较薄弱的环节.20.(12 分)在数列{a n}中,a1=1,a n+1=(1+)a n+.(1)设b n=,求数列{b n}的通项公式;(2)求数列{a n}的前n 项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;15:综合题.=b n+,由此能够推导出所求的通【分析】(1)由已知得=+,即b n+1项公式.(2)由题设知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,由错位相减法能求出T n=4﹣.从而导出数列{a n}的前n 项和S n.【解答】解:(1)由已知得b1=a1=1,且=+,即b n=b n+,从而b2=b1+,+1b3=b2+,b n=b n﹣1+(n≥2).于是b n=b1+++…+=2﹣(n≥2).又b1=1,故所求的通项公式为b n=2﹣.(2)由(1)知a n=2n﹣,故S n=(2+4+…+2n)﹣(1++++…+),设T n=1++++…+,①T n=+++…++,②①﹣②得,T n=1++++…+﹣= ﹣=2﹣﹣,∴T n=4﹣.∴S n=n(n+1)+﹣4.【点评】本题考查数列的通项公式和前n 项和的求法,解题时要注意错位相减法的合理运用.21.(12 分)如图,已知抛物线E:y2=x 与圆M:(x﹣4)2+y2=r2(r>0)相交于A、B、C、D 四个点.(I)求r 的取值范围;(II)当四边形ABCD 的面积最大时,求对角线AC、BD 的交点P 的坐标.【考点】IR :两点间的距离公式;JF :圆方程的综合应用;K8:抛物线的性质.【专题】15:综合题;16:压轴题.【分析】(1)先联立抛物线与圆的方程消去 y ,得到 x 的二次方程,根据抛物线E :y 2=x 与圆 M :(x ﹣4)2+y 2=r 2(r >0)相交于 A 、B 、C 、D 四个点的充要条件是此方程有两个不相等的正根,可求出 r 的范围.(2)先设出四点 A ,B ,C ,D 的坐标再由(1)中的 x 二次方程得到两根之和、两根之积,表示出面积并求出其的平方值,最后根据三次均值不等式确定得到最大值时的点 P 的坐标.【解答】解:(Ⅰ)将抛物线 E :y 2=x 代入圆 M :(x ﹣4)2+y 2=r 2(r >0)的方程,消去 y 2,整理得 x 2﹣7x +16﹣r 2=0(1)抛物线 E :y 2=x 与圆 M :(x ﹣4)2+y 2=r 2(r >0)相交于 A 、B 、C 、D 四个点的充要条件是:方程(1)有两个不相等的正根.(II ) 设四个交点的坐标分别为、 、 、 .∴ 即 .解这个方程组得,则直线AC、BD 的方程分别为y﹣= •(x﹣x1),y+=(x﹣x1),解得点P 的坐标为(,0),则由(I)根据韦达定理有x1+x2=7,x1x2=16﹣r2,则∴令,则S2=(7+2t)2(7﹣2t)下面求S2的最大值.由三次均值有:当且仅当7+2t=14﹣4t,即时取最大值.经检验此时满足题意.故所求的点P 的坐标为.【点评】本题主要考查抛物线和圆的综合问题.圆锥曲线是高考必考题,要强化复习.22.(12 分)设函数f(x)=x3+3bx2+3cx 有两个极值点x1、x2,且x1∈[﹣1,0],x2∈[1,2].(1)求b、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b,c)的区域;(2)证明:.【考点】6D:利用导数研究函数的极值;7B:二元一次不等式(组)与平面区域;R6:不等式的证明.【专题】11:计算题;14:证明题;16:压轴题.【分析】(1)根据极值的意义可知,极值点x1、x2 是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域即可;(2)先用消元法消去参数b,利用参数c 表示出f(x2)的值域,再利用参数c 的范围求出f(x2)的范围即可.【解答】解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)依题意知,方程f'(x)=0 有两个根x1、x2,且x1∈[﹣1,0],x2∈[1,2]等价于f'(﹣1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0.由此得b,c 满足的约束条件为(4 分)满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则,故.(8 分)由于x2∈[1,2],而由(Ⅰ)知c≤0,故.又由(Ⅰ)知﹣2≤c≤0,(10 分)所以.【点评】本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域和不等式的证明,属于基础题.。
2009年高考湖北卷数学(理科)试题及参考答案
提高后勤保障服务质量,服务监狱安全稳定大局夯实基础突显服务构建保障有力的行政后勤工作体系今年以来,河南省第三劳教所进一步健全制度,完善体制,提高效率,扎实做好后勤保障工作,有力推动了劳教工作科学发展。
健全制度,理顺后勤工作管理体制。
该所坚持从管理目标、管理体制、管理手段入手,立足工作实际,突出抓好车辆管理、会务接待等方面的建章立制,逐步建立起完善的后勤保障管理体系。
健全完善《车辆管理制度》,对新、旧车辆全部采取包干制度,驾驶员定位到车,油料、维修实行定点管理,确保财尽其用。
规定了派车的权限,明确了车辆的停放位置,制定了车辆管理暂行规定。
在此基础上,特别加强了对司机的教育培训,使车辆保养水平和安全责任意识明显提高,连续多年保持安全责任无事故。
制定出台《接待管理暂行规定》并严格落实,日常及会务接待既保持节俭,又充分体现劳教所的热情和地方特色,有效堵塞了接待管理上的漏洞。
在借鉴其它行业标准化管理经验基础上,根据会议轻重缓急和规模大小,围绕会议通知、会场布置、签到、会议保障等关键环节,分别制定了一整套行之有效的会务组织工作标准,对会务组织实行全程标准化管理。
开拓创新,工作效率不断提高。
全所后勤工作开展以定岗、定位、定责为重点的"三定"活动,使每项工作既有质的要求,又有量的标准,每一步工作程序既有时限规定,又有程序规范依据,达到了行有规范,做有标准。
同时,为确保"三定"活动真正取得实效,该所强化对后勤人员的管理考核,制定了《后勤工作考核制度》,对全科后勤工作人员定期考核,要求每个工作人员每天填写工作日志,每月考评一次,每季度汇总一次,年终总排位,并将考核结果与年底评先挂钩,推动了各项后勤工作的高效运转。
威海监狱坚持以人为本强化基础设施建设提升基本保障功能威海监狱以强基础、促规范、保安全为主线,坚持立足实际、突出重点,真抓实干、打造亮点,务求实效、增加支点,积极完善监狱基础设施建设,逐步改善监管场所条件,不断优化执法环境。
2009年-2012年高考数学试题分类汇编(立体几何)
2012高考真题分类汇编:立体几何26.【2012高考真题辽宁理18】(本小题满分12分) 如图,直三棱柱///ABC A B C -,90BAC ∠=,/,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点。
(Ⅰ)证明:MN ∥平面//A ACC ;(Ⅱ)若二面角/A MN C --为直二面角,求λ的值。
【答案】【点评】本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。
第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明。
28.【2012高考真题新课标理19】(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,BDDC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【答案】(1)在Rt DAC ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合 且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则122a C O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒29.【2012高考江苏16】(14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点.求证:(1)平面ADE ⊥平面11BCC B ;(2)直线1//A F 平面ADE .【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。
2009年新课标地区高考数学试题汇编 圆锥曲线方程(理科)部分
2009年普通高等学校招生全国统一考试试题数学(理)汇编圆锥曲线方程部分1.(安徽3(A )22124x y -= (B )22142x y -= (C )22146x y -= (D )221410x y -=答案:B解析:由2e =得222222331,1,222c b b a a a =+==,选B2.(安徽20)(本小题满分13分)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>上,00cos ,sin ,0.2x a y b πβββ==<<直线2l 与直线00122:1x y l x y a b+=垂直,O 为坐标原点,直线OP 的倾斜角为α,直线2l 的倾斜角为γ.(I )证明: 点P 是椭圆22221x y a b+=与直线1l 的唯一交点;(II )证明:tan ,tan ,tan αβγ构成等比数列.解:本小题主要考查直线和椭圆的标准方程和参数方程,直线和曲线的几何性质,等比数列等基础知识。
考查综合运用知识分析问题、解决问题的能力。
本小题满分13分。
解:(I )(方法一)由00221x y x y a b +=得22020(),b y a x x a y =-代入椭圆22221x y a b +=,得22222002422200021()(1)0b x b x b x x a a y a y y +-+-=.将00cos sin x a y b ββ=⎧⎨=⎩代入上式,得2222cos cos 0,x a x a ββ-⋅+=从而cos .x a β= 因此,方程组2222002211x y a b x y x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩有唯一解00x x y y =⎧⎨=⎩,即直线1l 与椭圆有唯一交点P.(方法二)显然P 是椭圆与1l 的交点,若Q 111(cos ,sin ),02a b βββπ≤<是椭圆与1l 的交点,代入1l 的方程cos sin 1x y a bββ+=,得11cos cos sin sin 1,ββββ+= 即11cos()1,,ββββ-==故P 与Q 重合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 得 。
又因为
故四棱锥H-ABCD的体积
13.(福建17)(13分) 如图,四边形ABCD是边长为1的正方形, , ,且MD=NB=1,E为BC的中点
(1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由
A. B. 学网C. D.
答案:C解析:取BC的中点E,则 面 , ,因此 与 平面 所成角即为 ,设 ,则 , ,即有
7. (天津12) 如图是一个几何体的三视图,若它的体积是 ,则
_______
【考点定位】本小题考查三视图、三棱柱的体积,基础题。
解析:知此几何体是三棱柱,其高为3,底面是底边长为2,底边上的高为 的等腰三角形,所以有
设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.
则M(1,0,2),N(0,1,0),可得 ,
又 为平面DCEF的法向量,
可得 ,
所以MN与平面DCEF所成的角的正弦值为 .
(2)假设直线ME与BN共面,
则AB 平面MBEN,且平面MBEN与平面DCEF交于EN,
又 ,所以 ,
连 ,由(Ⅰ)知 ,所以 ,
且 ,所以 是二面角 的平面角。
由 ,知 ,所以 ,
即二面角 的大小为 。
(Ⅲ)在棱SC上存在一点E,使
由(Ⅱ)可得 ,故可在 上取一点 ,使 ,过 作 的平行线与 的交点即为 。连BN。在 中知 ,又由于 ,故平面 ,得 ,由于 ,故 .
解法二:
(Ⅰ);连 ,设 交于 于 ,由题意知 .以O为坐标原点, 分别为 轴、 轴、 轴正方向,建立坐标系 如图。
11.(辽宁15)设某几何体的三视图如下(尺寸的长度单位为m),
则该几何体的体积为_________m3。
答案:4解析:设几何体的直观图如右,
则 。
12. (安徽18)(本小题满分13分)
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD= ,AE、CF都与平面ABCD垂直,AE=1,CF=2.
由已知,两正方形不共面,故AB 平面DCEF.
又AB∥CD,所以AB∥平面DCEF,而EN为平面MBEN与平面DCEF的交线,
所以AB∥EN,又AB∥CD∥EF,所以EN∥EF,这与EN∩EF=E矛盾,故假设不成立.
所以ME与BN不共面,它们是异面直线.
16. (宁夏海南19)(本小题满分12分) 如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的 倍,P为侧棱SD上的点。
上面命题中,真命题的序号▲(写出所有真命题的序号). 学科网
解析:考查立体几何中的直线、平面的垂直与平行判定的相关定理。真命题的序号是(1)(2)
9.(浙江12)若某几何体的三视图(单位: )如图所示,
则此几何体的体积是 .
答案:18
解析:该几何体是由二个长方体组成,下面体积为 ,
上面的长方体体积为 ,因此其几何体的体积为18
A.①和②B.②和③C..③和④D.②和④
D
2.(宁夏海南11)一个棱锥的三视图如图,则该棱锥的全面积
(单位:c )为
(A)48+12 (B)48+24
(C)36+12 (D)36+24
解析:选A.
3. (宁夏海南8)如图,正方体 的棱线长为1,线段 上有两个动点E,F,且 ,则下列结论中错误的是
(A)
边长为 ,高为 ,所以体积为
所以该几何体的体积为 .
答案:C
【命题立意】:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地
计算出.几何体的体积.
5.(辽宁11)正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为
(A)1:1(B)1:2(C)2:1(D)3:2
2009年普通高等学校招生全国统一考试数学试题汇编
立体几何(理科)部分
1.(广东5)给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
解法一:
(Ⅰ)连BD,设AC交BD于O,由题意 。在正方形ABCD中, ,所以 ,得 .
(Ⅱ)设正方形边长 ,则 。
∴ , ,即 , ,
又 ,∴ 平面 .
(3) , ,则 ,设异面直线 所成角为 ,则 .
15.(辽宁18)(本小题满分12分)
如图,己知两个正方形ABCD和DCEF不在同一平面内,
M,N分别为AB , DF的中点。
(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF
所成角的正弦值;
(2)用反证法证明:直线ME与BN是两条异面直线。
解:(I)(综合法)连接AC、BD交于菱形的中心O,过O作OG AF,
G为垂足。连接BG、DG。由BD AC,BD CF得BD 平面ACF,故BD AF。
于是AF 平面BGD,所以BG AF,DG AF, BGD为二面角B-AF-D的平面角。
由 , ,得 ,
由 ,得
(向量法)以A为坐标原点, 、 、 方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系(如图)
答案:C解析:连接FC、AD、BE,设正六边形
的中心为O,连接AC与OB相交点H,
则GH∥PO,故GH⊥平面ABCDEF,
∴平面GAC⊥平面ABCDEF
又DC⊥AC,BH⊥AC,
∴DC⊥平面GAC,BH⊥平面GAC,
且DC=2BH,故三棱锥D-GAC与
三棱锥P-GAC体积之比为2:1。
6.(浙江5)在三棱柱 中,各棱长相等,侧掕垂 直于底面,点 是侧面 的中心,则 与 平面 所成角的大小是 ( )
(1)求以E为顶点,以四边形 在平面 内的正投影为底面边界的棱锥的体积;
(2)证明:直线 ;
(3)求异面直线 所成角的正统值
解:(1)依题作点 、 在平面 内的正投影 、 ,则 、 分别为 、 的中点,连结 、 、 、 ,则所求为四棱锥 的体积,其底面 面积为
,
又 面 , ,∴ .
(2)以 为坐标原点, 、 、 所在直线分别作 轴, 轴, 轴,得 、 ,又 , , ,则 , , ,
解析:(1)在如图,以D为坐标原点,建立空间直角坐标
依题意,得 。
,
所以异面直线 与 所成角的余弦值为 .A
(2)假设在线段 上存在点 ,使得 平面 .
,可设
又 .
由 平面 ,得 即
故 ,此时 .
经检验,当 时, 平面 .
故线段 上存在点 ,使得 平面 ,此时 .
14.(广东18)(本小题满分14分)如图6,已知正方体 的棱长为2,点E是正方形 的中心,点F、G分别是棱 的中点.设点 分别是点E,G在平面 内的正投影.
,则D(0,0,0),A( ,-1,0),F( ,1,0),C(0,2,0),
C1(0,2,2),E( , ,0),E1( ,-1,1),所以 , , 设平面CC1F的法向量为 则 所以 取 ,则 ,所以 ,所以直线EE //平面FCC .
(2) ,设平面BFC1的法向量为 ,则 所以 ,取 ,则 ,
10.(浙江17)如图,在长方形 中, , , 为 的中点, 为线段 (端点除
外)上一动点.现将 沿 折起,使平面 平面 .在平面 内过点
作 , 为垂足.设 ,则 的取值范围是.
答案: 【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时, ,随着F点到C点时,因 平面 ,即有 ,对于 ,又 ,因此有 ,则有 ,因此 的取值范围是
, ,
所以 ,由图可知二面角B-FC -C为锐角,所以二面角B-FC -C的余弦值为 .
【命题立意】:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.
18.(浙江 20)(本题满分15分)如图,平面 平面 ,
是以 为斜边的等腰直角三角形, 分别为 ,
在Rt△OPF中, , ,所以二面角B-FC -C的余弦值为 .
解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点,
所以BF=BC=CF,△BCF为正三角形,因为ABCD为
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,
连接DM,则DM⊥AB,所以DM⊥CD,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
设平面ABF的法向量 ,则由 得
令 ,得 ,
同理,可求得平面ADF的法向量 。
由 知,平面ABF与平面ADF垂直,二面角B-AF-D的大小等于 。
(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。过H作HP⊥平面ABCD,P为垂足。
(1)证明:直线EE //平面FCC ;
(2)求二面角B-FC -C的余弦值。
解法一:(1)在直四棱柱ABCD-A B C D 中,取A1B1的中点F1,
连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,