导数与函数解析式、单调性

合集下载

函数单调性与导数的关系

函数单调性与导数的关系

函数单调性与导数的关系
函数的单调性与函数的导数有着密不可分的关系。

单调性指函数f(x)在一个区
间上,对傍端改变都呈现某一种状态(升序或者降序),而函数的导数则指在一个特定点上,其自变量发生变化后,函数值变化率快慢的大小。

首先,单调递增函数f(x)其一阶导数只可能是正值。

反之,单调递减函数f(x)
其一阶导数只可能是负值。

换句话说,在变化的密度上,对于单调递增函数,其变化率是正向的,而对于单调递减函数,其变化率是负向的。

此外,当某一函数的一阶导数f'(x)在定义区间内的值恒为正值时,那么函数
f(x)在定义区间内就是单调递增函数;而当某一函数的一阶导数f'(x)在定义区间内
的值恒为负值时,那么函数f(x)在定义区间内就是单调递减函数。

因此,函数的单调性与函数的导数有着紧密的联系。

函数内部变化率的大小,反映在一阶导数值上;一阶导数是正值或负值,反映在函数的单调性上。

准确地说,函数的单调性与函数的导数形成了一个严密的套路,使函数的变化更加的精密明晰,有几何的结构性表述。

导数与函数的单调性解析与归纳

导数与函数的单调性解析与归纳

导数与函数的单调性解析与归纳导数与函数的单调性在微积分中占据着重要的地位,它们能够帮助我们更深入地了解函数的性质。

本文将围绕导数与函数的单调性展开讨论,并对其中的解析与归纳进行详细阐述。

一、导数的定义与计算方法函数的导数可以理解为函数在某一点上的变化率。

导数的定义可以用极限来表达,即函数在某点处的导数等于该点附近的函数值变化量与自变量变化量的比值,在数学中可以表示为:\[ f'(x) = \lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{{\Delta x}} \]具体计算导数的方法有多种,如基本的导数运算法则、链式法则、高阶导数等。

这些计算方法能够帮助我们在具体问题中快速求得函数的导数。

二、导数与单调性的关系函数的单调性指的是函数在定义域上的增减性质。

导数与函数的单调性有着密切的联系,具体而言,函数在某一区间上单调递增的条件是其导函数大于零,而单调递减的条件是导函数小于零。

通过导数的符号变化,我们可以判断函数的单调性。

三、导数与函数单调性的解析和证明为了判断函数的单调性,我们需要分析函数的导数在定义域内的符号变化。

具体解析单调性的方法有以下几个步骤:1. 求得函数的导数;2. 找出导数的零点,即导数为零的点,这些点即为函数可能改变单调性的位置;3. 针对导函数的零点,作出符号变化表,利用导函数的符号变化可以得出函数的单调性。

举个例子,考虑函数 $f(x) = x^3 - 3x^2 + 2x$,我们可以按照上述步骤解析其单调性:1. 求导得到 $f'(x) = 3x^2 - 6x + 2$;2. 根据 $f'(x) = 0$,我们可以解得导数的零点为 $x_1 = 1-\frac{{\sqrt{3}}}{{3}}$ 和 $x_2 = 1+\frac{{\sqrt{3}}}{{3}}$;3. 绘制导数的符号变化表:\[\begin{array}{ccccc}x & (-\infty, x_1) & x_1 & (x_1, x_2) & x_2 \\f'(x) & \text{负} & 0 & \text{正} & \text{负} \\\end{array}\]根据符号变化表可以得出函数在 $(-\infty, x_1)$ 单调递减,在 $(x_1, x_2)$ 单调递增,在 $(x_2, +\infty)$ 单调递减。

导数与函数的单调性

导数与函数的单调性

导数与函数的单调性导数与函数的单调性是微积分中的重要概念,它们能够帮助我们理解函数的变化趋势以及函数在不同区间的单调性。

在本文中,我们将探讨导数与函数的单调性之间的关系,并介绍如何通过导数来确定函数的单调性。

一、导数的定义与意义导数描述了函数在某一点的变化率。

对于函数f(x)来说,其导数可以用以下形式表示:f'(x) = lim┬(h→0)⁡〖(f(x+h)-f(x))/h 〗其中,h表示自变量x的增量。

导数的几何意义是函数曲线在某一点处的切线的斜率。

二、导数与函数的单调性导数在函数上的正负性与函数的单调性密切相关。

具体而言,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的。

三、通过导数确定函数的单调性要通过导数确定函数的单调性,我们需要进行以下几个步骤:1. 求取函数的导数。

2. 解方程 f'(x) = 0,求得导数的零点。

3. 在导数的零点处画出数轴,将数轴分为小区间。

4. 取各个小区间上的代表点,代入原函数并求出函数值。

5. 通过函数值的正负确定函数在小区间上的单调性。

举例来说,我们考虑函数f(x) = x^2,进行上述步骤:1. 求取导数:f'(x) = 2x2. 解方程 f'(x) = 0:2x = 0解得 x = 0。

3. 在数轴上画出导数的零点x = 0,并将数轴分为三个小区间:(-∞,0),(0,+∞)。

4. 取小区间上的代表点,例如取小区间 (-∞,0) 的代表点 x = -1,取小区间 (0,+∞) 的代表点 x = 1。

5. 分别代入原函数 f(x) = x^2,求出函数值:f(-1) = (-1)^2 = 1f(1) = (1)^2 = 1根据函数值的正负性,我们可以得出以下结论:在小区间 (-∞,0) 上,函数递增;在小区间 (0,+∞) 上,函数递增。

结论:函数f(x) = x^2 在整个定义域上都是递增的。

通过上述例子,我们可以看出导数与函数的单调性之间的联系。

导数与函数的单调性

导数与函数的单调性

第2节导数在研究函数中的应用知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.3.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.第1课时导数与函数的单调性考点一 求函数的单调区间【例1】 (经典母题)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x , 故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x =⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x . 令g ′(x )<0,得x (x +1)(x +4)<0,解之得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4).【迁移探究1】 若本例中函数f (x )变为“f (x )=ln x -12x 2+x ”,试求f (x )的单调区间.解 因为f (x )=ln x -12x 2+x ,且x ∈(0,+∞),所以f ′(x )=1x -x +1=-⎝ ⎛⎭⎪⎫x -1-52⎝ ⎛⎭⎪⎫x -1+52x. 令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).由f ′(x )>0,得0<x <1+52;由f ′(x )<0,得x >1+52.所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+52,单调递减区间为⎝ ⎛⎭⎪⎫1+52,+∞.【迁移探究2】若本例的函数变为“f(x)=x22-a ln x,a∈R”,求f(x)的单调区间.解因为f(x)=x22-a ln x,所以x∈(0,+∞),f′(x)=x-ax=x2-ax.(1)当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上为单调递增函数.(2)当a>0时,f′(x)=(x+a)(x-a)x,则有①当x∈(0,a)时,f′(x)<0,所以f(x)的单调递减区间为(0,a).②当x∈(a,+∞)时,f′(x)>0,所以f(x)的单调递增区间为(a,+∞).综上所述,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间. 当a>0时,函数f(x)的单调递减区间为(0,a),单调递增区间为(a,+∞). 规律方法求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f′(x);(3)在定义域内解不等式f′(x)>0,得单调递增区间;(4)在定义域内解不等式f′(x)<0,得单调递减区间.【训练】已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=1 2x.(1)求a的值;(2)求函数f(x)的单调区间.解(1)对f(x)求导得f′(x)=14-ax2-1x,由f(x)在点(1,f(1))处的切线垂直于直线y=12x知f′(1)=-34-a=-2,解得a=5 4.(2)由(1)知f(x)=x4+54x-ln x-32(x>0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.但-1∉(0,+∞),舍去.当x ∈(0,5)时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).考点二 证明(判断)函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0.(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增.②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2. 当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练】 (2015·全国Ⅱ卷改编)已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 考点三 导数在函数单调性中的应用【例3】 (1)(2018·武汉模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2, ∵当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0.∴g (x )在(0,+∞)上是减函数.由f (x )为奇函数,知g (x )为偶函数,则g (-3)=g (3),又a =g (e),b =g (ln 2),c =g (-3)=g (3),∴g (3)<g (e)<g (ln 2),故c <a <b .答案 D【训练】.已知f (x )=1+x -sin x ,则f (2),f (3),f (π)的大小关系正确的是( )A.f (2)>f (3)>f (π)B.f (3)>f (2)>f (π)C.f (2)>f (π)>f (3)D.f (π)>f (3)>f (2)(2)已知函数f (x )=ln x ,g (x )=12ax 2+2x .①若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;②若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 ①h (x )=ln x -12ax 2-2x ,x >0. ∴h ′(x )=1x -ax -2.若函数h (x )在(0,+∞)上存在单调减区间,则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min .(*)又G (x )=⎝ ⎛⎭⎪⎫1x -12-1, 所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞).②由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x ,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x, ∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x≤0, 当且仅当x =4时等号成立.(***)∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞. 规律方法 1.已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围.2.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.3.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.【训练】 (2018·郑州质检)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.(2018·兰州模拟)已知函数f (x )=12x 2-2a ln x +(a -2)x .(1)当a =-1时,求函数f (x )的单调区间;(2)是否存在实数a ,使函数g (x )=f (x )-ax 在(0,+∞)上单调递增?若存在,求出a 的取值范围;若不存在,说明理由.解 (1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x. 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.∴f (x )的单调增区间为(0,1)和(2,+∞),单调减区间为(1,2).(2)假设存在实数a ,使g (x )=f (x )-ax 在(0,+∞)上是增函数,∴g ′(x )=f ′(x )-a =x -2a x -2≥0恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. ∴x 2-2x -2a ≥0当x >0时恒成立,∴a ≤12(x 2-2x )=12(x -1)2-12恒成立.又φ(x )=12(x -1)2-12,x ∈(0,+∞)的最小值为-12. ∴当a ≤-12时,g ′(x )≥0恒成立.又当a =-12,g ′(x )=(x -1)2x当且仅当x =1时,g ′(x )=0. 故当a ∈⎝ ⎛⎦⎥⎤-∞,-12时,g (x )=f (x )-ax 在(0,+∞)上单调递增.解析 因为f (x )=1+x -sin x ,所以f ′(x )=1-cos x , 当x ∈(0,π]时,f ′(x )>0,所以f (x )在(0,π]上是增函数,所以f (π)>f (3)>f (2).答案 D9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23. (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),令f ′(x )>0,解得x >1或x <-13;令f ′(x )<0,解得-13<x <1.所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.。

如何解答与函数单调性有关的问题

如何解答与函数单调性有关的问题

16 x
的单调性.
解:由题意可知函数的定义域为 x ≠ 0 ,
设 x1 ≠ 0,x2 ≠ 0 ,且 x1 < x2 ,即 x1 - x2 < 0,

f
(
x1)
-
f
(
x2
)
=
æçè来自x2 1+
16 x1
ö
÷
ø
-
æ
ç
è
x2 2
+
16 x2
ö
÷
ø
=
( x1
-
x
2
)æç
è
x1
+
x2
-
16 x1 x 2
ö
÷
ø
.
间为(-∞,lna),
综上所述:当 a ≤ 0 时, f (x) 的单调递增区间是(-∞,
+ ∞);当 a > 0 时,f (x) 的单调递增区间是 (ln a, +∞) ,
单调递减区间为 (-∞,ln a) .
运 用 导 数 法 解 题 的 思 路 较 为 简 单 ,只 需 根 据
f ′(x) > 0 或 f ′(x) < 0 ,即可判断出函数 f (x) 的单调递
那么 g(x)( )
A.在(-2,0)上是增函数
B.在 (-∞, -1] 上是减函数
C.在(-1,0)上是减函数
D.在 [-1, +∞) 上是减函数 解 :函 数 g(x) 是 由 f (u) = 4 + 2u - u2 和 u = 2 - x2
复合而成的.
因为 f (u) = 4 + 2u - u2 在 u ∈ [1, +∞) 上单调递减,

(完整版)导数与函数单调性

(完整版)导数与函数单调性

a 0
a 0
4
4a 2
0
a
1或a
1
a
1
当a 1时f ( x)在R上单调递增
(2)解:f ( x) ax2 2x a
由题设知f ( x)在(2,)上单调递增
f ( x) 0对x (2,)恒成立,
即ax2 2x a 0在x (2,)上恒成立
a
2 x2
x
1
在x
(2,
)上

5 a 4 时f ( x)在(2, )上单调递增
5
方法总结
(1)已知函数f(x)在某个区间上的单调性, 求参数的取值范围时,将问题转化为导数 f'(x)在区间上大于等于0(或小于等于0) 恒成立。
(2)不等式恒成立问题,可转化为求最值问 题
巩固练习
1. f ( x) x3 ax2 x 6 在(0,1)上单调递减, 求a的 取 值 范 围
x
x
x
令f ( x) 2( x 1)(x 1) 0得 1 x 0或x 1 x
令f ( x) 2( x 1)(x 1) 0得0 x 1或x 1 x
函数f ( x)的单调递增区间是(1,0)和(1,)
函数f ( x)的单调递减区间是(,1)和(0,1)
方法总结
求可导函数f(x)单调区间的一般方法和步骤如下: ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f'(x); ⑶令f'(x)>0,所得x的范围(区间)为函数f(x) 的单调增区间;令f'(x)<0,得单调减区间.
令f '( x) 0得x
函数的单调递增区间是(,)
综上,当m 0时,单增区间是(1 m,1 m) 单减区间是(- ,1 m)和(1 m, )

专题12 导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题12  导数与函数的单调性--《2023年高考数学命题热点聚焦与扩展》【解析版】

【热点聚焦】单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具.在高考导数的综合题中,所给函数往往是一个含参数的函数,且导函数含有参数,在分析函数单调性时面临分类讨论.从高考命题看,对函数单调性的考查主要有:利用导数求函数的单调区间、判断单调性、已知单调性,求参数等.【重点知识回眸】(一)函数的单调性与导数的关系 条件 结论函数y =f (x )在区间(a ,b )上可导f ′(x )>0 f (x )在(a ,b )内单调递增 f ′(x )<0 f (x )在(a ,b )内单调递减 f ′(x )=0f (x )在(a ,b )内是常数函数优先”原则. (二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零. (三)常见问题解题方法1.导数求单调区间的步骤:利用导数求函数单调区间的方法,大致步骤可应用到解含参函数的单调区间.即确定定义域→求出导函数→令()'0f x >解不等式→得到递增区间后取定义域的补集(减区间)→单调性列出表格.2.求含参函数单调区间的实质——解含参不等式,而定义域对x 的限制有时会简化含参不等式的求解3.求单调区间首先确定定义域,并根据定义域将导数不等式中恒正恒负的项处理掉,以简化讨论的不等式4.含参数问题分类讨论的时机分类时机:并不是所有含参问题均需要分类讨论,当参数的不同取值对下一步的结果影响不相同时,就是分类讨论开始的时机.【典型考题解析】热点一 不含参数的函数的单调性【典例1】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)- B .(0,1)C .(1,)+∞D .(0,2)【答案】B【分析】求导,解不等式()0f x '<可得. 【详解】()f x 的定义域为(0,)+∞ 解不等式1(1)(1)()0x x f x x x x-+'=-=<,可得01x <<, 故函数21()ln 2f x x x =-的递减区间为(0,1). 故选:B .【典例2】(广东·高考真题(文))函数的单调递增区间是 ( )A .B .(0,3)C .(1,4)D .【答案】D 【解析】 【详解】试题分析:由题意得,()()(3)(3)(2)x x x f x x e x e x e '=-+-=-'',令()0f x '>,解得2x >,所以函数()f x 的单调递增区间为,故选D .【典例3】(2023·全国·高三专题练习)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为________. 【答案】(0,)6π,5(,)6ππ【分析】对()f x 求导,令f ′(x )=0,得x =6π或x =56π,求出()0f x '> 的解即可求出答案. 【详解】f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =6π或x =56π, 当0<x <6π时,f ′(x )>0, 当6π<x <56π时,f ′(x )<0,当56π<x <π时,f ′(x )>0, ∴f (x )在(0,)6π和5(,)6ππ上单调递增,在5(,)66ππ上单调递减.故答案为:(0,)6π,5(,)6ππ.【典例4】(2023·全国·高三专题练习)已知函数211,0()2,0x f x x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,则函数12()log g x f x ⎛⎫= ⎪⎝⎭的单调递增区间为__. 【答案】20,2⎛⎫ ⎪ ⎪⎝⎭,[1,)+∞ 【分析】先根据题意求出()g x 的解析式,然后在每一段上求出函数的增区间即可 【详解】由12log 0x ≤,得1≥x ,由12log 0x >,得01x <<,所以当1≥x 时,12log 1()112xg x x ⎛⎫=-=- ⎪⎝⎭,则()g x 在[1,)+∞上递增,当01x <<时,21122()loglog g x x x =-+,则121212log 11()2log 111lnlnln222x g x x x x x -'=-⋅+=,由()0g x '>,得1212log 0x -<,解得202x <<, 所以()g x 在20,2⎛⎫ ⎪ ⎪⎝⎭上递增, 综上得函数()g x 的单调递增区间为20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. 故答案为:20,2⎛⎫⎪ ⎪⎝⎭,[1,)+∞. (1)函数的一阶导数可以用来研究函数图象的上升与下降,函数的二阶导数可以用来研究函数图象的陡峭及平缓程度,也可用来研究导函数图象的上升与下降. (2)求函数的单调区间时,一定要先确定函数的定义域,否则极易出错. 热点二 含参数的函数的单调性【典例5】(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.【典例6】(2023·全国·高三专题练习)已知函数()ln R kf x x k k x=--∈,,讨论函数()f x 在区间(1,e)内的单调性. 【答案】见解析 【分析】先求出2()x kf x x +'=-,然后分k -与(1,e)的关系进行分类讨论,从而得出答案. 【详解】由()ln kf x x k k R x=--∈,,(1,e)x ∈ 221()k x k f x x x x+'∴=--=- ①当1k -≤,即1k ≥-时,10x k x +≥->, ()0f x '∴< ,()f x ∴在(1,e)单调递减;②当e k -≥,即e k ≤-时,e 0x k x +≤-<, ()0f x '∴> ,()f x ∴在(1,e)单调递增;③当1e k <-<,即e 1k -<<-时,当1x k <<-时,()0f x '>,()f x 单调递增; 当e k x -<<时,()0f x '<,()f x 单调递减; 综上所述,当1k ≥-时,()f x 在(1,e)单调递减 当e k ≤-时,()f x 在(1,e)单调递增当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减.【方法总结】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.热点三 已知函数的单调性求参数的取值范围【典例7】(全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是( ) A .(],2-∞- B .(],1-∞- C .[)2,+∞ D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .【典例8】(全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】 【详解】试题分析:()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【典例9】(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞ 【规律方法】由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,从而构建不等式,求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间D 上的单调性,区间端点含有参数时,可先求出f (x )的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围. 热点四 函数单调性与函数图像【典例10】(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>,所以舍去C ;因此选B.【典例11】(2023·全国·高三专题练习)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是( )A .B .C .D .【答案】D【分析】根据导函数的图象判断原函数的单调性,即可判断选项.【详解】原函数先减再增,再减再增,且0x =位于增区间内.符合条件的只有D. 故选:D【典例12】(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解. 【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,221202164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D. 【规律方法】有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 热点五 函数单调性与比较大小、解不等式 【典例13】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->, 所以b a >,所以c b a >>, 故选:A【典例14】(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.【典例15】(2022·重庆南开中学高三阶段练习)已知函数()()3log 912xf x x =+-+,则不等式()()21f x f x -<的解集为( ) A .()1,3 B .(),1-∞ C .[)1,+∞D .1,13⎛⎫⎪⎝⎭【答案】D【分析】根据导数判断出函数的单调性,根据解析式可判断函数为偶函数,从而可求不等式的解.【详解】函数的定义域为R ,()()()9ln 92991119191ln 391x x x x x x f x ⋅-'=-=-=+++,当0x <时,0f x ;当0x >时,0f x ,故()f x 在(),0-∞上为减函数,在()0,+∞上为增函数. 又()()3391log 912log 29x xx f x x x -+-=+++=++()()3log 9122x x x f x =+-++=,故()f x 为R 上的偶函数,故()()21f x f x -<等价于()()21f x f x -<, 即21x x -<,两边平方得23410x x -+<,故1,13x ⎛⎫∈ ⎪⎝⎭.故选:D.'()f x 当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f x g x x=,()()()2'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =. 所以()()0f x g x x=>可得01x <<,此时()0f x >, 又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.【典例17】(2021·山东·临沂市兰山区教学研究室高三开学考试)已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()20f x x xf '+>,则不等式()()()220212021420x f x f +++-<的解集为( )A .()2019,+∞B .()2021,2019--C .(),2019-∞-D .()2019,0-【答案】C【分析】根据已知条件构造函数2()()g x x f x =,可得()g x 在(0,)+∞上为增函数,且()g x 为奇函数,然后将()()()220212021420x f x f +++-<可转化为(2021)(2)g x g +<,从而可求出不等式的解集.【详解】令2()()g x x f x =,则2()2()()[2()()]g x xf x x f x x f x xf x '=+''=+, 因为当0x >时,有()()20f x x xf '+>, 所以当0x >时,()0g x '>, 所以()g x 在(0,)+∞上为增函数,因为()f x 为奇函数,所以()()f x f x -=-, 所以22()()()()()g x x f x x f x g x -=--=-=-, 所以()g x 为R 上的奇函数, 所以()g x 在R 上为增函数,由()()()220212021420x f x f +++-<,得()()()22021202142x f x f ++<--, ()()()2220212021(2)2x f x f ++<---,所以(2021)(2)g x g +<--,因为()g x 为奇函数,所以(2021)(2)g x g +<, 所以20212x +<,得2019x <-,所以不等式的解集为(),2019-∞-, 故选:C【典例18】(2022·湖北·襄阳五中高三阶段练习)设11166,2ln sin cos ,ln 5101055a b c ⎛⎫==+= ⎪⎝⎭,则,,a b c 的大小关系是___________. 【答案】.b a c <<【分析】利用导数研究函数()sin f x x x =-,()ln(1)g x x x =-+,6()ln(1)5h x x x =-+在(0,1)上的单调性,利用函数的单调性可比较,,a b c 的大小.【详解】由已知可得2111112ln sin cos ln sin cos ln(1sin )101010105b ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭,设()sin f x x x =-,(0,1)x ∈,则()1cos 0f x x '=->, 所以()sin f x x x =-在(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,即11sin 55>,所以11ln 1sin ln 155b ⎛⎫⎛⎫=+<+ ⎪ ⎪⎝⎭⎝⎭,设()ln(1)g x x x =-+,(0,1)x ∈,则1()1011x g x x x '=-=>++, 所以()ln(1)g x x x =-+在(0,1)上单调递增,所以1(0)05g g ⎛⎫>= ⎪⎝⎭,即111ln 1ln 1sin 555⎛⎫⎛⎫>+>+ ⎪ ⎪⎝⎭⎝⎭,所以a b >,设6()ln(1)5h x x x =-+,(0,1)x ∈,则651()1551x h x x x -'=-=++,当105x ⎛⎫∈ ⎪⎝⎭,时,()0h x '<,当1,15x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,所以6()ln(1)5h x x x =-+在105⎛⎫⎪⎝⎭,上单调递减,在1,15⎛⎫ ⎪⎝⎭上单调递增,所以1(0)05h h ⎛⎫<= ⎪⎝⎭,即16166ln 1ln 55555⎛⎫<+= ⎪⎝⎭,所以a c <,所以.b a c << 故答案为:.b a c <<. 构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x );(2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′;(5)f ′(x )-f (x )→()[]'x f x e′.(6)()()f x f x '<→()()x f x g x e = (7)()()xf x f x '<→()()f x g x x=(8)()()0xf x f x '+<→()()g x xf x =.【精选精练】一、单选题1.(2022·全国·高三专题练习)函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦【答案】C【分析】()0f x '≥的解集即为()y f x =单调递增区间,结合图像理解判断. 【详解】()0f x '≥的解集即为()y f x =单调递增区间 结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦故选:C .2.(2023·全国·高三专题练习)已知函数()f x 的导函数()f x '的图像如图所示,则下列判断正确的是( )A .在区间()1,1-上,()f x 是增函数B .在区间()3,2--上,()f x 是减函数C .2-为()f x 的极小值点D .2为()f x 的极大值点【答案】D【分析】利用函数与导函数的关系及其极值的定义即可求解. 【详解】由导函数()f x '的图像可知,在区间()1,0-上为单调递减,在区间()0,1上为单调递增,则选项A 不正确; 在区间()3,2--上,()0f x '>,则()f x 是增函数,则选项B 不正确;由图像可知()20f '-=,且()3,2--为单调递增区间,()2,0-为单调递减区间,则2-为()f x 的极大值点,则选项C 不正确;由图像可知()20f '=,且()1,2为单调递增区间,()2,3为单调递减区间,则2为()f x 的极大值点,则选项D 正确; 故选:D.3.(2023·全国·高三专题练习)函数()3221343f x x ax a x =---在()3,+∞上是增函数,则实数a 的取值范围是( ) A .0a ≥ B .1a ≥ C .3a ≤-或1a ≥ D .31a -≤≤【答案】D【分析】结合函数单调性得到()22230f x x ax a -'=-≥在()3,+∞上恒成立,分0a =,0a >和0a <三种情况,数形结合列出不等式,求出实数a 的取值范围. 【详解】∵函数()3221343f x x ax a x =---在()3,+∞上是增函数,∴()22230f x x ax a -'=-≥在()3,+∞上恒成立, ∵()()()22233f x x ax a x a x a =--=-+',∴当0a =时,()20f x x '=≥恒成立,满足题意;当0a >时,()0f x '>在()(),3,a a ∞∞--⋃+上恒成立,()0f x '<在(),3a a -上恒成立,故只需33a ≤,解得:1a ≤,故可得:(]0,1a ∈ 当0a <时,()0f x '>在()(),3,a a ∞∞-⋃-+上恒成立,()0f x '<在()3,a a -上恒成立,故只需3a -≤,解得:3a ≥-,故可得:[)3,0a ∈- 综上可得:实数a 的取值范围是[]3,1-, 故选:D .4.(2022·全国·长垣市第一中学高三开学考试(理))已知函数()12ln f x x x x=+-,则不等式()()211f x f x -<-的解集为( ) A .20,3⎛⎫ ⎪⎝⎭B .2,13⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .12,23⎛⎫ ⎪⎝⎭【答案】B【分析】利用导数说明函数的单调性,再根据函数的单调性及定义域将函数不等式转化为自变量的不等式,解得即可.【详解】解:由题意可知,函数()12ln f x x x x=+-的定义域为()0,∞+. 因为()22211110f x x x x ⎛⎫'=--=--≤ ⎪⎝⎭恒成立,所以()f x 在()0,∞+上单调递减.则由()()211f x f x -<-可得21010211x x x x->⎧⎪->⎨⎪->-⎩,解得213x <<,即原不等式的解集为2,13⎛⎫⎪⎝⎭.故选:B.a A .ln ln ab a b -<-e e B .ln ln b a a b < C .e a b ba-> D .sin sin 1a ba b-<-【答案】D【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误. 【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e x y x'=-,故12|e 20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除; B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=, 所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减; 故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除; C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增, 所以e e a b a b >,即e a b ba-<,排除; D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增, 所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D6.(2022·四川成都·高三期末(理))若函数()在区间()上单调递增,则实数k 的取值范围是( ) A .[)1,+∞ B .[)2,+∞ C .(]0,1 D .(]0,2【答案】B【分析】根据已知条件等价为()20f x k x =-≥'在()1,+∞上恒成立,即2k x≥在()1,+∞上恒成立,求解()()21g x x x=>的取值情况即可得出结果. 【详解】()2ln f x kx x =-由题意,已知条件等价为()20f x k x=-≥'在()1,+∞上恒成立, 即2k x≥在()1,+∞上恒成立, 令()()21g x x x=>, ()g x 在()1,+∞上单调递减,()2g x ∴<,2k ∴≥,k ∴的取值范围是[)2,+∞.故选:B.7.(2023·全国·高三专题练习)已知函数()3ln 3f x x x ax =--在()2,+∞上单调递增,则实数a 的取值范围为( )A .72a >-B .72a ≥-C .72a <D .72a ≤【答案】D【分析】由已知可得()210f x x a x '=--≥在()2,+∞恒成立,从而进行参变分离求最值即可.【详解】解:()210f x x a x'=--≥,因为函数()31ln 3f x x x ax =--在()2,+∞上单调递增,所以()210f x x a x '=--≥在()2,+∞恒成立,即21a x x≤-在()2,+∞恒成立,令()()212g x x x x =->,则()2120g x x x '=+>在()2,+∞恒成立, 故()g x 在()2,+∞单调递增,所以()()722g x g >=, 故a 的取值范围是72⎛⎤-∞ ⎥⎝⎦,,故选:D .8.(2023·全国·高三专题练习)已知R α∈,则函数()ex x f x =的图象不可能是( )A .B .C .D .【答案】C【分析】令12α=、2α=、1α=-,结合导数研究()f x 的单调性及值域判断可能的图象,即可得答案.【详解】当12α=时,()e x xf x =且0x ≥,则12()e x x f x x-'=,所以1(0,)2上 ()0f x '>,()f x 递增;1(,)2+∞上 ()0f x '<,()f x 递减,且(0)0f =,所以A 图象可能;当2α=时,2()0ex x f x =≥且R x ∈,则(2)()e x x x f x '-=,所以(,0)-∞上()0f x '<,()f x 递减,(0,2)上 ()0f x '>,()f x 递增,(2,)+∞上 ()0f x '<,()f x 递减,所以B 图象可能; 当1α=-时,1()e x f x x =且0x ≠,则21()e xxf x x +'=-,所以(,1)-∞-上()0f x '>,()f x 递增,(1,0)-上 ()0f x '<,()f x 递减,(0,)+∞上 ()0f x '>,()f x 递增,又0x <时()0f x <,而0x >时()0f x >, 所以D 图象可能; 综上,排除A 、B 、D. 故选:C3232b b =,03c <<且33c c =,则( )A .a b c <<B .c b a <<C .b a c <<D .a c b <<【答案】A【分析】构造函数()ln xf x x=,求导,根据函数的单调性比大小即可. 【详解】由88a a =,两边同时以e 为底取对数得ln ln 88a a =, 同理可得ln ln 3232b b =,ln ln33c c =, 设()ln xf x x=,0x >,则()()8f a f =,()()32f b f =,()()3f c f =, ()21ln xf x x -'=,令()0f x '=,解得e x =,当()0,e x ∈时,()0f x '>,函数()f x 单调递增, 当()e,x ∈+∞时,()0f x '<,函数()f x 单调递减, 则(),,0,e a b c ∈,且()()()3832f f f >>, 所以()()()f c f a f b >>, 故c a b >>, 故选:A.10.(2022·江苏·扬中市第二高级中学高三开学考试)已知()f x '是函数()f x 的导数,且()()f x f x -=,当0x ≥时,()3f x x '>,则不等式3()(1)32f x f x x --<-的解集是( ) A .1(,0)2-B .1(,)2-∞-C .1(,)2+∞D .1(,)2-∞【答案】D【分析】构造函数23()()2g x f x x =-,根据导数判断单调性,再利用奇偶性求出解集.【详解】设23()()2g x f x x =-,则()()3g x f x x '='-,因为当0x ≥时,()3f x x '>,所以当0x ≥时,()0g x '>, 即()g x 在[0,)+∞上单调递增,因为()()f x f x -=,所以()f x 为偶函数,则()g x 也是偶函数,所以()g x 在(,0]-∞上单调递减. 因为3()(1)32f x f x x --<-,所以2233()(1)(1)22f x x f x x -<---, 即()(1)g x g x <-, 则1x x <-,解得12x <, 故选:D.b a b =下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 【答案】B【分析】利用指对数互化及对数的运算性质可得1b a =,进而可得1121a b b<=<<+,然后构造函数,利用函数的单调性即得. 【详解】由log b a a b =,可得1log log log b a b a b a==,所以log 1b a =,或log 1b a =-, ∴b a =(舍去),或1b a=,即1ab =,故A 错误; 又02b a b <<<,故120a a a<<<, ∴12a <<,对于函数()112y x x x=+<<, 则2221110x y x x-'=-=>,函数()112y x x x =+<<单调递增,∴1322,2a b a a ⎛⎫+=+∈ ⎪ ⎪⎝⎭,故D 错误; ∵02b a b <<<,112a b<=<, ∴1212a b b <<<+<, 令()()ln 12x g x x x=<<,则()21ln 0xg x x -'=>,∴函数()()ln 12xg x x x=<<单调递增, ∴()ln 1ln 1b a a b +<+,即()()1ln ln 1b a a b +<+, ∴()1ln ln 1ab a b +<+,即1(1)b a a b +<+,故B 正确; ∵011b a b <<<<+,∴函数,x x y a y b ==-单调递增,故函数x x y a b =-单调递增, ∴11a a b b a b a b ++-<-,即11a b a b a a b b ++-<-,故C 错误. 故选:B. 12.(2023·全国·高三专题练习)已知0a <,函数322()2f x x ax a x =+-+的单调递减区间是________ . 【答案】,3a a ⎛⎫- ⎪⎝⎭【分析】求出函数导数,由()0f x '<即可求出单调递减区间. 【详解】22()32(3)()f x x ax a x a x a '=+-=-+,令()0f x '<,解得3ax a <<- , 所以()f x 的单调递减区间为,3a a ⎛⎫- ⎪⎝⎭.故答案为:,3a a ⎛⎫- ⎪⎝⎭.13.(2021·河南宋基信阳实验中学高三开学考试(文))若函数4y x x=+在()0,a 上为单调减函数,则实数a 的取值范围是_________. 【答案】(]0,2【分析】由题可得函数4y x x=+在区间(0,2]上是减函数,结合条件即得. 【详解】对于函数4y x x=+,0x >, ∴()()222222441x x x y x x x+--'=-==,0x >, 由0y '<,可得02x <<, 因为函数4y x x=+在()0,a 上为单调减函数, 所以02a <≤,即实数a 的取值范围是(]0,2. 故答案为:(]0,2.14.(2022·江苏·扬中市第二高级中学高三开学考试)函数()2x x f x =的单调递增区间为__________. 【答案】2(0,)ln 2【分析】先求得导函数,并令'0f x ,再判断导函数的符号,由此可得函数的单调递增区间.【详解】函数2()2x xf x =,则()()()2'22ln 2ln 222222x x xxx fx x x x -⋅-⋅⋅⋅==,令()0f x '=解得20,ln 2x x ==, 当(),0x ∈-∞时,()0f x '<,函数()f x 单调递减,当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增,当2,ln 2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减, 故答案为:2(0,)ln 2. 15.(2023·全国·高三专题练习)()3211232f x x x ax =-++,若()f x 在,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______【答案】1,9⎛⎫-+∞ ⎪⎝⎭【分析】分析可知,2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()212a x x >-,求出函数()212y x x =-在2,3⎛⎫+∞ ⎪⎝⎭上的值域,可得出实数a 的取值范围.【详解】因为()3211232f x x x ax =-++,则()22f x x x a '=-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()0f x '>,即()212a x x >-,当()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-.故答案为:1,9⎛⎫-+∞ ⎪⎝⎭.16.(2022·重庆巴蜀中学高三阶段练习)已知奇函数()的定义域为R ,当0x >讨,()()20f x f x '+>,且()20f =,则不等式()0f x >的解集为___________.【答案】()(2,02,)-⋃+∞【分析】构造函数2()e ()=x g x f x ,利用导函数判断出当x >0时, ()g x 单调递增,得到当x >2时()0g x >,从而()0f x >;当02x <<时,()0g x <,从而()0f x <.由()f x 为奇函数得到不等式()0f x >的解集.【详解】构造函数2()e ()=x g x f x ,则当0x >时,[]2()e 2()()0xg x f x f x ''=+>,所以当x >0时()g x 单调递增.因为f (2)=0,所以()()42e 20g f ==,所以当x >2时()0g x >,从而()0f x >.当02x <<时,()0g x <,从而()0f x <.又奇函数()f x 的图像关于原点中心对称,所以()0f x >的解集为()(2,02,)-⋃+∞. 故答案为: ()(2,02,)-⋃+∞. 三、解答题17.(2022·四川成都·高三期末(理))设函数()()321113f x x x a x =-++--,其中a ∈R .若函数()f x 的图象在0x =处的切线与x 轴平行. (1)求a 的值;(2)求函数()f x 的单调区间. 【答案】(1)1a =(2)单调递增区间为()0,2;单调递减区间为(),0∞-,()2,+∞【分析】(1)根据导数的几何意义求解即可;(2)由(1)得()32113f x x x =-+-,再求导分析函数的单调区间即可(1)()221f x x x a '=-++-.∵函数()f x 的图象在0x =处的切线与x 轴平行,∴()010f a =-=',解得1a =.此时()010f =-≠,满足题意.∴1a =. (2)由(1)得()32113f x x x =-+-,故()()222f x x x x x '=-+=--.令()0f x '=,解得0x =或2x =.当x 变化时,()f x ',()f x 的变化情况如下表:x(),0∞-0 ()0,22 ()2,+∞()f x ' - 0 +0 -()f x单调递减1- 单调递增13单调递减∴函数()的单调递增区间为();单调递减区间为(),().18.(2023·全国·高三专题练习)已知函数()22ln x f x x a =-(a ∈R 且0a ≠).(1)2a =,求函数()f x 在()()22f ,处的切线方程. (2)讨论函数()f x 的单调性; 【答案】(1)2ln 2y x =- (2)答案见解析【分析】(1)求得函数的导数,根据导数的几何意义即可求得切线方程;(2)求出函数的导数,分类讨论a 的取值,判断导数的正负,从而确定函数的单调性. (1)当2a =时,()22ln 2x f x x =-,所以()22n2l 2f =-,()2f x x x'=-,所以()22212f '=-=,所以函数()f x 在()()22f ,处的切线方程为()22ln 22y x --=-,即2ln 2y x =-. (2)()f x 的定义域为(0)+∞,, 22()x f x a x'=-,当0a <时, ()0f x '<恒成立,所以()f x 在(0)+∞,上单调递减; 当0a > 时, ()()222()x f x x a x a a x ax'=-=+-,在()0,a 上,()0f x '<,所以()f x 单调递减;在(),a +∞上,()0f x '>,所以()f x 单调递增.。

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

导数与函数的解析式与其图像之间的关系

导数与函数的解析式与其图像之间的关系

导数大于0时,函数在该区间内单调递增 导数小于0时,函数在该区间内单调递减 二阶导数大于0时,函数在该区间内凹 二阶导数小于0时,函数在该区间内凸
导数在研究函数图像变换中的应用 导数与函数解析式和图像的关系 利用导数研究函数图像的增减性 导数在研究函数极值和拐点中的应用
感谢您的观看
汇报人:XX
导数在求函数极 值中起到关键作 用,通过求导数 可以判断函数的 单调性,进而确 定函数的极值点。
导数可以用来判 断函数的增减性, 当导数大于0时, 函数单调递增; 当导数小于0时, 函数单调递减。
导数还可以用 来求函数的极 值,当导数等 于0时,函数可 能达到极值点。
导数在求函数极 值中的应用广泛, 不仅限于数学领 域,也涉及到物 理学、工程学等
导数与函数解析式 和图像的综合应用
导数在研究函数极值和最值问题中的应用 利用导数求函数极值的步骤和方法 利用导数求函数最值的步骤和方法 极值和最值的实际应用举例
导数定义:函数在某一点的导数描述了该点附近函数的斜率 零点定理:如果函数在某点的导数由正变为负或由负变为正,则该点为函数的零点 应用实例:通过求导数确定函数的单调性,进而确定函数的零点位置 结论:利用导数可以有效地研究函数的零点问题,为解决实际问题提供有力工具
导数的符号变化点即 为函数的拐点,可以 用来判断函数在极值 点附近的图像变化趋 势。
导数还可以用来研究 函数的极值点,通过 求导数并令其为零, 可以找到函数的极值 点。
导数可以判断函数的单调性,进而确定函数的拐点 导数的符号变化可以确定函数图像的凹凸性,进而判断拐点的位置 利用导数求函数图像的拐点,可以更好地理解函数的性质和变化规律 导数在研究函数图像拐点中的作用,是数学分析中重要的知识点之一

导数与函数的单调性、极值、最值

导数与函数的单调性、极值、最值
因为-e2<-1e,所以 a=-e2 为所求. 故实数 a 的值为-e2.
[变式训练] (2017·北京卷)已知函数 f(x)=excos x-x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间0,π2上的最大值和最小值.
解:(1)因为 f(x)=excos x-x,所以 f(0)=1, f′(x)=ex(cos x-sin x)-1,所以 f′(0)=0, 所以 y=f(x)在(0,f(0))处的切线方程为 y=1. (2)f′(x)=ex(cos x-sin x)-1,令 g(x)=f′(x),
考点 2 利用导数求函数的最值(讲练互动) 【例】 (2019·广东五校联考)已知函数 f(x)=ax+ln x,其中 a 为常数. (1)当 a=-1 时,求 f(x)的最大值; (2)若 f(x)在区间(0,e]上的最大值为-3,求 a 的值. 解:(1)易知 f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令 f′(x)=0,得 x=1. 当 0<x<1 时,f′(x)>0;当 x>1 时,f′(x)<0.
由题设知 f′(1)=0,即(1-a)e=0,解得 a=1. 此时 f(1)=3e≠0. 所以 a 的值为 1. (2)f′(x)=[ax2-(2a+1)x+2]ex =(ax-1)(x-2)ex. 若 a>12,则当 x∈(1a,2)时,f′(x)<0; 当 x∈(2,+∞)时,f′(x)>0.
②当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a, 当 x∈(-∞,ln a)时,f′(x)<0;
当 x∈(ln a,+∞)时,f′(x)>0, 所以 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞) 上单调递增,故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,f(x)在 x=ln a 处取得极小值 ln a,无极大 值.

导数大题20种主要题型

导数大题20种主要题型

导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。

2. 给出函数解析式和区间,求函数在区间内的单调性。

二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。

4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。

三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。

6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。

四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。

8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。

五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。

10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。

六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。

12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。

七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。

14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。

八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。

导数与函数的单调性

导数与函数的单调性

导数与函数的单调性函数是数学中的重要概念,而导数是研究函数变化率的工具。

在本文中,我们将探讨导数与函数的单调性之间的关系。

一、导数的定义与计算方法导数描述了函数在某一点的变化率。

对于函数f(x),其在点x处的导数可以用以下公式表示:f'(x) = lim(h→0) [f(x+h) - f(x)] / h导数可以理解为函数在某一点的瞬时变化率,也即函数的切线斜率。

二、导数与函数的单调性函数的单调性指的是函数递增或递减的性质。

导数与函数的单调性之间有如下关系:1. 若在某一区间上,函数的导数恒大于零(即导数大于零),则该函数在该区间上是递增的。

这是因为导数大于零意味着函数的变化率始终为正,即函数逐渐增大。

2. 若在某一区间上,函数的导数恒小于零(即导数小于零),则该函数在该区间上是递减的。

这是因为导数小于零意味着函数的变化率始终为负,即函数逐渐减小。

3. 若在某一区间上,函数的导数恒为零(即导数等于零),则该函数在该区间上是常数函数。

这是因为导数为零意味着函数的变化率为零,即函数在该区间上不变化。

基于以上关系,我们可以通过计算函数的导数来确定其在某一区间上的单调性。

三、示例考虑函数f(x) = x^2,我们将通过求导的方式来分析其单调性。

1. 计算导数:f'(x) = lim(h→0) [f(x+h) - f(x)] / h= lim(h→0) [(x+h)^2 - x^2] / h= lim(h→0) (x^2 + 2xh + h^2 - x^2) / h= lim(h→0) (2xh + h^2) / h= lim(h→0) 2x + h= 2x2. 根据导数的计算结果,得知当2x > 0时,即x > 0时,函数f(x)的导数大于零,即函数递增;当2x < 0时,即x < 0时,函数f(x)的导数小于零,即函数递减。

综上所述,对于函数f(x) = x^2,其在负无穷到0的区间上递减,在0到正无穷的区间上递增。

函数的单调性与导数的关系

函数的单调性与导数的关系

一:函数的单调性与导数的关系1:导数f ’(x)的正负决定了原函数的增减性。

2:导数f ’(x)的绝对值|f ’(x)|的大小决定了原函数的增减的快慢。

二:具体情况如下图:1.导函数f ’(x)在区间(a,b )上大于零且导函数的值随着自变量x 的增大而增大,即导函数是增函数,则原函数f(x)的图像向上且增加的越来越快,图像向上越来越陡峭,呈右凹型。

2.导函数f ’(x)在区间(a,b )上大于零且导函数的值随着自变量x 的增大而减小,即导函数是减函数,则原函数f(x)的图像向上且增加的越来越慢,图像向上且越来越平缓,呈左凸型。

导函数f ’(x)原函数f (x)指数函数型幂函数型幂函数型3.导函数f ’(x)在区间(a,b )上大于零且导函数的值为常数,即导函数是常数函数,则原函数f(x)的图像向上且匀速增加,图像是一次函数,呈平直型。

导函数f ’(x)原函数f (x)幂函数型导函数f ’(x)幂函数型原函数f(x)4.导函数f ’(x)在区间(a,b )上小于零且导函数的值随着自变量x 的的增大而增大,即导函数是增函数,则导函数的绝对值|f ’(x)|随着自变量x 的增大而减小,则原函数f(x)的图像向下且减小的越来越慢,图像向下且越来越平缓,呈左凹型。

导函数f ’(x)原函数f (x)导函数f ’(x)原函数f(x)一次函数型导函数f ’(x)原函数f(x)左凹型左凹型5.导函数f ’(x)在区间(a,b )上小于零且导函数的值随着自变量x 的的增大而减小,即导函数是减函数,则导函数的绝对值|f ’(x)|随着自变量x 的增大而增大,则原函数f(x)的图像向下且减小的越来越快,图像向下且越来越陡峭,呈右凸型。

原函数f(x)右凸型导函数f ’(x)右凸型二次函数型6.导函数f ’(x)在区间(a,b )上小于零且导函数的值为常数,即导函数是常数函数,则原函数f(x)的图像向下且匀速减少,图像是一次函数,呈平直型。

导数与函数单调性的几个常见误区剖析

导数与函数单调性的几个常见误区剖析

调性中出现的一些常见误区加以剖析 ,供参考. 误区一 :导数与函数单调性的关系不明确 例 1 已知函数 f ( x) = - x3 + ax2 - x - 1
在 R 上是减函数 ,求实数 a 的取值范围. 错解 : f′( x) = - 3 x2 + 2 ax - 1 , ∵f ( x) 在 R
上是减函数 , ∴f′( x) < 0 在 R 上恒成立 ,即Δ=
误区四 :混淆原函数与导函数的单调性关 系
例 4 如图是导函数 y = f′( x) 的图象 , 试 找出函数 y = f ( x) 的单调区间 , 极值点 , 并指出 那些是极大值点 ,那些是极小值点.
错解 :如图 , 易知函数 y = f ( x) 的单调递增 区间为 : ( a , x1 ) , ( x3 , x5 ) , ( x6 , b) ;单调递减区间 为 : ( x1 , x3 ) , ( x5 , x6 ) , 极值点分别为 : x1 , x3 , x5 , x6 .
- 3 ≤a ≤ 3 . 误区二 :忽视函数的定义域 例 2 求函数 f ( x) = lg (4 - x2 ) 的单调递增
区间.
错解 : ∵f′( x )
=
(4 -
1 x2 ) ln10
(
-
2 x)
=
( x2
2x - 4)
l
n10
,

∵f
′( x)
>0

,

x
2
2
x -
4
> 0,解
得 : - 2 < x < 0 或 x > 2 ,所以原函数的单调增区
,
1 e

导数与函数单调性的关系

导数与函数单调性的关系
导数与函数单调性的关系
一、利用导数判断函数的单调性
函数 y=f(x)在某个区间内可导,则 (1)若 f′(x)>0,则 f(x)在这个区间内单调递增. (2)若 f′(x)<0,则 f(x)在这个区间内单调递减. (3)若 f′(x)=0,则 f(x)在这个区间内是常数函数.
例1、已知函数f(x)=x-kln x,常数k>0. (1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间; (2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取 值范围.
值点,f'(1)=0⇒k=1,经检验k=1为所求,∴f'(x)=1- 1 .令f'(x)>0⇒x∈(1,+
x
∞),再令f'(x)<0⇒x∈(0,1),∴函数f(x)的单调递增区间是(1,+∞),单调 递减区间是(0,1).
名师诊断
专案突破
对点集训
决胜高考
(2)∵函数g(x)=xf(x)在区间(1,2)上是增函数,∴g'(x)=2x-k(1+ln x)≥0
三、解答题
17.已知函数f(x)=x-kln x,常数k>0. (1)若x=1是函数f(x)的一个极值点,求f(x)的单调区间;
(2)若函数g(x)=xf(x)在区间(1,2)上是增函数,求k的取值范围.
【解析】(1)定义域为(0,+∞),f'(x)=1- k ,因为x=1是函数f(x)的一个极
x
变式训练 2、(2014·兰州模拟)已知函数 f(x)=-x2+ax-ln x(a∈R). (1)当 a=3 时,求函数 f(x)在21,2上的最大值和最小值; (2)当函数 f(x)在21,2上单调时,求 a 的取值范围.

第2讲 导数与函数的单调性

第2讲 导数与函数的单调性

第2讲导数与函数的单调性1.借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).1.函数的单调性与导数的关系条件恒有结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)上□1单调递增f′(x)<0f(x)在(a,b)上□2单调递减f′(x)=0f(x)在(a,b)上是□3常数函数“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.利用导数判断函数单调性的步骤第1步,确定函数的□4定义域;第2步,求出导函数f′(x)的□5零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.若可导函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若可导函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)<0有解.2.可导函数f(x)在(a,b)上单调递增(减)的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)任意子区间内都不恒为零.1.思考辨析(在括号内打“√”或“×”)(1)函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.()(4)函数f(x)=x-sin x在R上是增函数.()答案:(1)×(2)√(3)×(4)√2.回源教材(1)函数f (x )=cos x -x 在(0,π)上的单调性是()A.先增后减B.先减后增C.增函数D.减函数解析:D ∵当x ∈(0,π)时,f ′(x )=-sin x -1<0,∴f (x )在(0,π)上是减函数.(2)函数f (x )=x 3+2x 2-4x 的单调递增区间是.解析:由f ′(x )=3x 2+4x -4>0得x <-2或x >23,故单调递增区间为(-∞,-2),(23,+∞).答案:(-∞,-2),(23,+∞)(3)若函数y =x +a 2x(a >0)在[2,+∞)上单调递增,则a 的取值范围是.解析:由题意可知,y ′=1-a 2x 2≥0,即a 2≤x 2在[2,+∞)上恒成立,由x 2≥4,∴a 2≤4,即-2≤a ≤2.又a >0,故0<a ≤2.答案:(0,2]求函数的单调性不含参函数的单调区间1.函数f (x )=x ln x -3x +2的单调递减区间为.解析:f (x )的定义域为(0,+∞),f ′(x )=ln x -2,当x ∈(0,e 2)时,f ′(x )<0,当x ∈(e 2,+∞)时,f ′(x )>0,∴f (x )的单调递减区间为(0,e 2).答案:(0,e 2)2.若函数f (x )=ln x +1e x,则函数f (x )的单调递增区间为.解析:f (x )的定义域为(0,+∞),f′(x)=1x-ln x-1e x,令φ(x)=1x-ln x-1(x>0),φ′(x)=-1x2-1x<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴函数f(x)的单调递增区间为(0,1).答案:(0,1)反思感悟确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.含参函数的单调性例1已知函数g(x)=(x-a-1)e x-(x-a)2,讨论函数g(x)的单调性.解:g(x)的定义域为R,g′(x)=(x-a)e x-2(x-a)=(x-a)(e x-2),令g′(x)=0,得x=a或x=ln2,①若a>ln2,则当x∈(-∞,ln2)∪(a,+∞)时,g′(x)>0,当x∈(ln2,a)时,g′(x)<0,∴g(x)在(-∞,ln2),(a,+∞)上单调递增,在(ln2,a)上单调递减.②若a=ln2,则g′(x)≥0恒成立,且g′(x)不恒等于0,∴g(x)在R上单调递增,③若a<ln2,则当x∈(-∞,a)∪(ln2,+∞)时,g′(x)>0,当x∈(a,ln2)时,g′(x)<0,∴g(x)在(-∞,a),(ln2,+∞)上单调递增,在(a,ln2)上单调递减.综上,当a >ln 2时,g (x )在(-∞,ln 2),(a ,+∞)上单调递增,在(ln 2,a )上单调递减;当a =ln 2时,g (x )在R 上单调递增;当a <ln 2时,g (x )在(-∞,a ),(ln 2,+∞)上单调递增,在(a ,ln 2)上单调递减.反思感悟1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.训练1已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解:函数f (x )的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x .令f ′(x )=0,得x =1a 或x =1.①当0<a <1时,1a>1,∴x ∈(0,1)和(1a ,+∞)时,f ′(x )>0;x ∈(1,1a)时,f ′(x )<0,∴函数f (x )在(0,1)和(1a ,+∞)上单调递增,在(1,1a )上单调递减;②当a =1时,1a=1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增;③当a >1时,0<1a<1,∴x ∈(0,1a)和(1,+∞)时,f ′(x )>0;x ∈(1a,1)时,f ′(x )<0,∴函数f (x )在(0,1a )和(1,+∞)上单调递增,在(1a,1)上单调递减.综上,当0<a <1时,函数f (x )在(0,1)和(1a ,+∞)上单调递增,在(1,1a )上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在(0,1a )和(1,+∞)上单调递增,在(1a,1)上单调递减.函数单调性的应用比较大小或解不等式例2(1)已知函数f (x )=x sin x ,x ∈R ,则f (π5),f (1),f (-π3)的大小关系为()A.f (-π3)>f (1)>f (π5)B.f (1)>f (-π3)>f (π5)C.f (π5)>f (1)>f (-π3)D.f (-π3)>f (π5)>f (1)解析:A因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f (-π3)=f (π3).又当x ∈(0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在(0,π2)上是增函数,所以f (π5)<f (1)<f (π3),即f (-π3)>f (1)>f (π5),故选A.(2)(2024·苏锡常镇四市第一次调研)已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=e x +sin x ,则不等式f (2x -1)<e π的解集是()A.(1+π2,+∞) B.(0,1+π2)C.(0,1+e π2)D.(1-π2,1+π2)解析:D 当x ≥0时,f ′(x )=e x +cos x ,因为e x ≥1,cos x ∈[-1,1],所以f ′(x )=e x +cos x ≥0在[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增.又因为f (x )是定义在R 上的偶函数,所以f (x )在(-∞,0)上单调递减.因为f (-π)=f (π)=e π,所以由f (2x -1)<e π可得-π<2x -1<π,解得x ∈(1-π2,1+π2).根据函数的单调性求参数的值(范围)例3(2023·新课标Ⅱ卷)已知函数f (x )=a e x -ln x 在区间(1,2)上单调递增,则a 的最小值为()A.e 2B.eC.e -1D.e -2解析:C依题可知,f ′(x )=a e x -1x≥0在(1,2)上恒成立,显然a >0,所以x e x ≥1a ,设g (x )=x e x ,x ∈(1,2),所以g ′(x )=(x +1)e x >0,所以g (x )在(1,2)上单调递增,g (x )>g (1)=e ,故e ≥1a ,即a ≥1e=e -1,即a 的最小值为e -1.故选C.反思感悟1.根据函数单调性求参数的方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增(减)函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f ′(x )≤0),且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解(需验证解的两侧导数是否异号).2.利用导数比较大小,其关键是判断已知(或构造后的)函数的单调性,利用其单调性比较大小.3.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数,再利用导数研究新函数的单调性,从而解不等式.训练2(1)已知函数f(x)=sin x+cos x-2x,a=f(-π),b=f(2e),c=f(ln2),则a,b,c的大小关系是()A.a>c>bB.a>b>cC.b>a>cD.c>b>a解析:A∵f(x)的定义域为R,f′(x)=cos x-sin x-2=2cos(x+π4)-2<0,∴f(x)在R上单调递减,又2e>1,0<ln2<1,∴-π<ln2<2e,故f(-π)>f(ln2)>f(2e),即a>c>b.(2)已知函数f(x)=2ln x+1x-x,则不等式f(2x-1)<f(1-x)的解集为()A.(0,23) B.(23,1)C.(12,1) D.(1 2,23)解析:B由题意可知,函数f(x)的定义域为(0,+∞).因为f′(x)=2x-1x2-1=-(1x-1)2≤0恒成立,所以f(x)在(0,+∞)上单调递减.则由f(2x-1)<f(1-x)可x-1>0,-x>0,x-1>1-x,解得23<x<1,即原不等式的解集为(23,1).故选B.(3)已知函数g(x)=2x+ln x-ax在区间[1,2]上不单调,则实数a的取值范围是.解析:g′(x)=2x2+x+ax2,∵函数g(x)在区间[1,2]上不单调,∴g′(x)=0在区间(1,2)内有解,则a=-2x2-x=-2(x+14)2+18在(1,2)内有解,易知函数y=-2x2-x在(1,2)上是减函数,∴y=-2x2-x的值域为(-10,-3),因此实数a的取值范围为(-10,-3).答案:(-10,-3)限时规范训练(十八)A 级基础落实练1.(2023·三明一中月考)函数f (x )=x -ln(2x +1)的单调递增区间是()A.(-12,0)B.(-12,12)C.(-12,+∞)D.(12,+∞)解析:D f (x )的定义域是(-12,+∞),f ′(x )=1-22x +1=2x -12x +1,令f ′(x )>0,得x >12,故f (x )的单调递增区间是(12,+∞),故选D.2.已知f ′(x )是函数y =f (x )的导函数,且y =f ′(x )的图象如图所示,则y =f (x )函数的图象可能是()解析:D 根据导函数的图象可得,当x ∈(-∞,0)时,f ′(x )<0,则f (x )单调递减;当x ∈(0,2)时,f ′(x )>0,则f (x )单调递增;当x ∈(2,+∞)时,f ′(x )<0,则f (x )单调递减,所以只有D 选项符合.3.(2024·亳州一中考试)若函数y =f (x )满足xf ′(x )>-f (x )在R 上恒成立,且a >b ,则()A.af (b )>bf (a )B.af (a )>bf (b )C.af (a )<bf (b )D.af (b )<bf (a )解析:B 由题意,设g (x )=xf (x ),则g ′(x )=xf ′(x )+f (x )>0,所以g (x )在R 上是增函数,又a >b ,所以g (a )>g (b ),即af (a )>bf (b ),故选B.4.(2024·甘肃部分学校联考)已知R 上的可导函数f (x )的图象如图所示,则不等式(x -2)f ′(x )>0的解集为()A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(2,+∞)D.(-1,1)∪(2,+∞)解析:D 由图象知f ′(x )>0的解集为(-∞,-1)∪(1,+∞),f ′(x )<0的解集为(-1,1),则(x -2)f ′(x )>0-2>0,(x )>0-2<0,(x )<0,所以x >2或-1<x <1,即所求不等式的解集为(-1,1)∪(2,+∞).故选D.5.(2024·洛阳新安一高摸底)函数f (x )x -x +2a ,x >0,a -1)x +3a -2,x ≤0在(-∞,+∞)上是单调函数,则a 的取值范围是()A.[1,+∞) B.(1,3]C.12,D.(1,2]解析:B当x >0时,f (x )=e x -x +2a ,则f ′(x )=e x -1>0,所以函数f (x )在(0,+∞)上单调递增,由题意可知,函数f (x )在(-∞,+∞)上是单调函数,故当x ≤0时,f (x )=(a -1)x +3a -2单调递增,则a -1>0,且3a -2≤e 0+2a ,得1<a ≤3.故选B.6.(2024·豫南地区联考)不等式2ln x >x ln 2的解集是()A.(1,2)B.(2,4)C.(2,+∞)D.(4,+∞)解析:B设f (x )=ln xx(x >0),则f ′(x )=1-ln xx 2,当0<x <e 时,f ′(x )>0,当x >e 时,f ′(x )<0,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.原不等式可化为ln x x >ln 22,即f (x )>f (2),结合f (2)=f (4),可得2<x <4.7.函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为.解析:f ′(x )=-e -x cos x -e -x sin x=-e -x (cos x +sin x )=-2e -x sin(x +π4),当x ∈(0,3π4)时,e -x >0,sin(x +π4)>0,则f ′(x )<0;当x ∈(3π4,π)时,e -x >0,sin(x +π4)<0,则f ′(x )>0,∴f (x )在(0,π)上的单调递增区间为(3π4,π).答案:(3π4,π)8.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是.解析:由题意知f ′(x )=3ax 2+6x -1.由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3且a ≠0,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)9.已知函数f (x )=x 3+x -sin x ,则满足不等式f (2m 2)≤f (1-m )成立的实数m 的取值范围是.解析:由f (x )=x 3+x -sin x ,得f ′(x )=3x 2+1-cos x ≥0,∴函数f (x )为增函数,由f (2m 2)≤f (1-m ),得2m 2≤1-m ,∴2m 2+m -1≤0,解得-1≤m ≤12.答案:-1,1210.已知函数f(x)=x2+ax-ln x,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在[1,3]上是减函数,求实数a的取值范围.解:(1)当a=1时,f(x)=x2+x-ln x.所以f′(x)=2x+1-1x,f′(1)=2,又f(1)=2,所以曲线y=f(x)在点(1,f(1))处的切线方程为2x-y=0.(2)因为函数f(x)在[1,3]上是减函数,所以f′(x)=2x+a-1x=2x2+ax-1x≤0在[1,3]上恒成立.即2x2+ax-1≤0在[1,3]上恒成立,则a≤1x-2x在[1,3]上恒成立,令h(x)=1x-2x,显然h(x)在[1,3]上单调递减,则a≤h(x)min=h(3),得a≤-173.即实数a的取值范围为(-∞,-173].11.(2024·吉安质检)已知函数f(x)=3a ln x-12x2-(a-3)x,a∈R.(1)当a=1时,求曲线g(x)=f(x)-3ln x+12x2-sin x在x=π2处的切线方程;(2)试讨论f(x)的单调性.解:(1)当a=1时,g(x)=f(x)-3ln x+12x2-sin x=2x-sin x,则g(π2)=π-1,g′(x)=2-cos x,∴g′(π2)=2,∴曲线g(x)在x=π2处的切线方程为y-(π-1)=2(x-π2),即2x-y-1=0.(2)由题意,f(x)的定义域为(0,+∞),f′(x)=3ax-x-(a-3)=-x2+(a-3)x-3ax=-(x-3)(x+a)x,①若a≥0,则当0<x<3时,f′(x)>0,当x>3时,f′(x)<0,∴f(x)在(0,3)上单调递增,在(3,+∞)上单调递减;②若-3<a<0,由f′(x)<0,得0<x<-a或x>3,由f′(x)>0,得-a<x<3,∴f(x)在(0,-a),(3,+∞)上单调递减,在(-a,3)上单调递增;③若a=-3,则f′(x)≤0恒成立,∴f(x)在(0,+∞)上单调递减;④若a<-3,由f′(x)<0,得0<x<3或x>-a,由f′(x)>0,得3<x<-a,∴f(x)在(0,3),(-a,+∞)上单调递减,在(3,-a)上单调递增.B级能力提升练12.(多选)已知函数f(x)=ln(e2x+1)-x,则下列说法正确的是()A.f(ln2)=ln52B.f(x)是奇函数C.f(x)在(0,+∞)上单调递增D.f(x)的最小值为ln2解析:ACD f(ln2)=ln(e2ln2+1)-ln2=ln5-ln2=ln 52,A正确;f(x)=ln(e2x+1)-x=ln(e x+e-x)定义域为R,其中f(-x)=ln(e-x+e x)=f(x),故f(x)是偶函数,B错误;f′(x)=e x-e-xe x+e-x,当x∈(0,+∞)时,f′(x)=e x-e-xe x+e-x>0,故f(x)在(0,+∞)上单调递增,C正确;根据f(x)在(0,+∞)上单调递增,且f(x)是偶函数,可得f(x)在(-∞,0)上单调递减,故f(x)的最小值为f(0)=ln2,D正确.13.设函数f(x)的定义域为R,f′(x)是其导函数,若3f(x)+f′(x)>0,f(0)=1,则不等式f(x)>e-3x的解集是()A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)解析:A令g(x)=e3x f(x),则g′(x)=3e3x f(x)+e3x f′(x),因为3f(x)+f′(x)>0,所以3e3x f(x)+e3x f′(x)>0,所以g′(x)>0,所以函数g(x)=e3x f(x)在R上单调递增,而f(x)>e-3x可化为e3x f(x)>1,又g(0)=e3×0f(0)=1,即g(x)>g(0),解得x>0,所以不等式f(x)>e-3x的解集是(0,+∞).14.讨论函数f(x)=(a-1)ln x+ax2+1的单调性.解:f(x)的定义域为(0,+∞),f′(x)=a-1x+2ax=2ax2+a-1x.①当a≥1时,f′(x)>0,故f(x)在(0,+∞)上单调递增;②当a≤0时,f′(x)<0,故f(x)在(0,+∞)上单调递减;③当0<a<1时,令f′(x)=0,解得x=1-a 2a,则当x∈(0,1-a2a)时,f′(x)<0;当x∈(1-a2a,+∞)时,f′(x)>0,故f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.综上,当a≥1时,f(x)在(0,+∞)上单调递增;当a≤0时,f(x)在(0,+∞)上单调递减;当0<a<1时,f(x)在(0,1-a2a)上单调递减,在(1-a2a,+∞)上单调递增.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学第二轮复习教学案
第二十一课时 导数与函数解析式、单调性
班级 学号 姓名
【考纲解读】
1. 了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等). 2. 掌握函数的导数公式,会求多项式函数的导数. 【解题目标】
1. 会用导数求多项式函数的单调区间.
2. 可导函数)(x f 在(),b a 单调递增的充要条件是.0)('≥x f 【例题讲解】
例题1(1)已知函数3
343
4)(x a x a x f -
=在()1,∞-内是增函数,在(),1(+∞内是减函数,则( )
A )(x f 的极大值是
12
1 B )(x f 的极小值是-
121 C )(x f 的极大值是0
D )(x f 的极小值是12
7
-
(2)函数)(x f b x b x a ax +-+-+=)3(48)1(2
3的图象关于原点成中心对称,则
)(x f ( )
A 在]34,34[-上为增函数
B 在]34,(--∞上为减函数
C 在),34[+∞上为增函数,在]34,(--∞上为减函数
D 在]34,(--∞上为增函数,在),34[+∞上为增函数
(3)路灯距地平面为m 8,一个身高m 7.1的人以s m /4.1的速度匀速地从路灯的正底下,沿某直线离开路灯,那么人影长度的变化速率v 为( )
A
s m /4517 B s m /46
17 C
s m /6317 D s m /66
29
(4)若函数)(x f 1)(,)1(22-=-=x x g x ,则)]([x g f 的单调递减区间为_______,单调递增区间为________.
(5)已知函数)(x f )0(1)1(3223>+-+-=k k x k kx ,若)(x f 的单调减区间为
)4,0(,则._______=k
(6)设函数)(x f y =在定义域内可导,导函数)('x f y =的图象如图,则函数)(x f y =的图象可能为( )
例2 设)(x f =522
12
3
+--
x x x (1)求函数)(x f 的单调区间.
(2)当]2,1[-∈x 时,m x f <)(恒成立,求实数m 的取值范围.
例 3 若函数1)1(2
131)(2
3+-+-=
x a ax x x f 在区间(1,4)内为减函数,在区间(),6+∞上为增函数,试求实数a 的范围.
例4 已知)(x f )(,3
243
2
R x x ax x ∈-
+=在区间[-1,1] 上是增函数 (1)求实数a 的值组成的集合A (2)设关于x 的方程3
3
12)(x x x f +
=的两个非零实根为21,x x ,试问:是否存在实数m ,
使得不等式||1212x x tm m -≥++对任意]1,1[-∈∈t A a 及恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.
高三数学第二轮复习教学案
第二十二课时 导数与函数的最值
班级 学号 姓名
【考纲解读】
理解极大值、极小值、最大值、最小值的概念,并会求用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最值. 【解题目标】
1.能利用导数求函数的最大值、最小值.
2.会求某些简单实际问题的最大值和最小值. 【例题讲解】
例题1(1)设函数1)(23-++=bx ax x x f ,若当1=x 时,有极值1,则=+b a ( ) A -1
B 0
C 1 D
2
1
(2)若函数c x x y +-=324
有最小值38-,则c=_________. A 4
B 5
C 8
D 10
(3)已知11232)(2
3
++--=x x x x f 在区间[]1,m 上的最小值为17-,则m 的值为________.
(4)已知函数2
3)(ax x x f -=,若],[a a x -∈,则)(x f 的最大值为_________.
(5)若函数)0(3)1(2
3
)(23
≥---
=a ax x a x x f ,且在区间[-1,2]上的最小值为0,则)(x f 的最大值为________.
(6)当半径为R 的球的内接圆锥的体积最大时,高为________.
例 2 函数)(x f 是定义在[-1,0)]1,0(⋃上的偶函数,当)0,1[-∈x 时,
)()(3R a ax x x f ∈-=
(1)当]1,0(∈x 时,求)(x f 的解析式.
(2)若3>a ,试判断)(x f 在]1,0(的单调性,并证明你的结论.
(3)是否存在a ,使得当]1,0(∈时,)(x f 有最大值-1.
例3 某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规化建成一个矩形的高科技工业园区,已知BC OA BC AB //,⊥,且km AO BC AB 42===,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB 、BC 上,且一个顶点落在曲线段OC 上,问应如何规划,才能使矩形工业园区的用地面积最大?并求出最大的用地面积.(精确到0.1km 2)
例 4 设21,x x 是函数)0(2
3)(2
23>-+=
a x a x
b x a x f 的两个极值点,且2||||21=+x x .
(1)证明:39
4
||≤
b . (2)若函数)(2)(')(1x x a x f x g --=,证明:当21<<x x 且01<x 时,a x g 4|)(|≤
高三数学第二轮复习教学案l
第二十三课时 导数与函数的切线
班级 学号 姓名
【考纲解读】
1.了解导数概念的某些实际背景,如光滑曲线切线的斜线等.
2.掌握函数在一点处的导数的定义和导数的几何意义. 【教学目标】
1.会求过一点的曲线的切线方程.
2.会求一些与函数图象的切线相关的问题. 【例题讲解】
例题1(1)若直线l 过点)
278
,32(p ,且与曲线3x y =相切于点)32)(,(000≠x y x Q ,则Q
点坐标为________. (2)若过抛物线a
y
x =2
焦点的直线与抛物线交于A 、B 两点,则过点A 、B 的两条切线的夹角( ) A
2
π B
3
π C
4
π D
6
π (3)函数a x x x x f +-+-=2
3)(与直线b y =( )
A 有三个交点
B 有两个交点
C 有且只有一个交点
D 相切
(4)已知抛物线2
ax y =在点1=x 处的切线与圆9
1
22=
+y x 相切,则a 的值为( ) A
5
B 5
5-
C 5±
D 5

(5)曲线3
x y =在点()0)(,3
≠a a a 处的切线与x 轴,直线a x =所围成的三角形的面积为
6
1
,则.________=a (6)已知曲线3
x y -=在点p 处的切线l 在y 轴上的截距为2,则l 的方程为
___________,过p 点的曲线3x y -=的切线方程为_______.
例 2 已知0>a ,函数a x x f -=3)(,),0[+∞∈x ,设,01>x 记曲线)(x f y =在点
))(,(11x f x M 处的切线为l .
(1) 求l 的方程
(2) 设l 与x 轴交于点)0,(2x
证明:①3
12a x ≥ ②若3
11a x >,则123
1x x a <<
例 3 函数)(x f y =在区间),0(+∞内可导,导函数)('x f 是减函数,且0)('>x f ,设
m kx y x +=+∞∈),,0(0是曲线)(x f y =在点())(,00x f x 处的切线方程,并设函数
.)(m kx x g +=
(1) 用)('),(,000x f x f x 表示m
(2) 证明:当),0(0+∞∈x 时,)()(x f x g ≥
例4 过点)0,1(P 作曲线()
1,),,0(:*4>∈+∞∈=k N k x x y C 的切线切点为1Q ,设1Q 点在
x 轴上的投影是点1P ,又过点1P 作曲线C 的切线切点为2Q ,设2Q 在x 轴上的投影是2P ,……,依此下去,得到一系列点1Q 、2Q …、n Q 、…,设点n Q 的横坐标为n a .
(1)求证:n
n k k a )1
(-= *N n ∈ (2)求证:1
1-+≥k n
a n
(3)求证:
k k a n a n a a n
n -<+-++-21211 (21)。

相关文档
最新文档