Al掺杂和石墨烯改性的V2O5正极材料

合集下载

v2o5晶胞结构

v2o5晶胞结构

v2o5晶胞结构摘要:一、引言二、V2O5 晶体的结构特点1.晶胞参数2.空间群3.原子排布三、V2O5 晶体的性质与应用1.电学性质2.磁学性质3.催化性能4.其它应用四、V2O5 晶体的研究进展与展望1.制备方法2.改性研究3.新型应用探索五、结论正文:一、引言V2O5 晶体是一种广泛应用于电化学、磁学以及催化领域的材料。

本文旨在介绍V2O5 晶体的结构特点、性质与应用,并对其研究进展与展望进行探讨。

二、V2O5 晶体的结构特点1.晶胞参数V2O5 晶体的晶胞参数为:a = 5.64 , b = 5.64 , c = 7.88 ,α = β = 90°,γ = 120°。

2.空间群V2O5 晶体属于Pbca 空间群,具有四方晶系(D 四方)的对称性。

3.原子排布V2O5 晶体的晶胞中包含2 个V 原子和5 个O 原子。

V 原子位于晶胞的顶点和面心,O 原子位于V 原子的相邻位置。

三、V2O5 晶体的性质与应用1.电学性质V2O5 晶体具有良好的电导性能,是锂离子电池和钠离子电池的理想正极材料。

2.磁学性质V2O5 晶体在低温下具有铁磁性,可应用于磁性能的研究和磁性材料的开发。

3.催化性能V2O5 晶体具有优异的氧化还原催化性能,广泛应用于催化剂的制备和研究。

4.其它应用V2O5 晶体还可用作离子导体、氧传感器等领域的材料。

四、V2O5 晶体的研究进展与展望1.制备方法V2O5 晶体的制备方法主要包括化学法和物理法,研究者们一直在寻求更高效、低成本的制备方法。

2.改性研究通过对V2O5 晶体进行改性,可以提高其性能,拓宽应用领域。

例如,掺杂、包覆、纳米化等。

3.新型应用探索随着科学技术的发展,V2O5 晶体在新领域的应用逐渐受到关注,如超级电容器、太阳能电池等。

五、结论V2O5 晶体具有独特的结构特点和优异的性能,已在多个领域得到广泛应用。

《2024年正极补锂材料Li5FeO4与Li5AlO4的性能研究》范文

《2024年正极补锂材料Li5FeO4与Li5AlO4的性能研究》范文

《正极补锂材料Li5FeO4与Li5AlO4的性能研究》篇一一、引言随着新能源汽车和储能系统的高速发展,对锂离子电池的能量密度、安全性及循环寿命的要求日益提高。

正极材料作为锂离子电池的关键组成部分,其性能的优劣直接决定了电池的整体性能。

近年来,Li5FeO4与Li5AlO4作为新型正极补锂材料,因其高能量密度、环保性及良好的循环稳定性受到了广泛关注。

本文旨在研究这两种材料的性能,为锂离子电池的进一步发展提供理论支持。

二、Li5FeO4材料性能研究1. 结构与组成Li5FeO4具有正交晶系结构,其化学组成中铁元素以+3价形式存在,与锂离子形成稳固的框架结构。

该结构有利于锂离子的嵌入和脱出,从而提高电池的充放电性能。

2. 电化学性能Li5FeO4材料具有较高的理论比容量和能量密度,同时其充放电平台较为平稳,有利于提高电池的能量利用率。

实验数据显示,Li5FeO4在充放电过程中表现出良好的循环稳定性,即使在高温环境下也能保持较高的容量保持率。

三、Li5AlO4材料性能研究1. 结构与组成Li5AlO4具有立方晶系结构,铝元素以+3价形式与锂离子形成稳定的化合物。

该结构的稳定性有助于提高材料的循环寿命和安全性。

2. 电化学性能Li5AlO4材料具有较高的工作电压和较好的充放电平台。

实验结果显示,该材料具有较高的初始放电容量和良好的容量保持率,尤其在高温和高倍率充放电条件下表现出色。

此外,Li5AlO4还具有良好的倍率性能,能够在短时间内完成充放电过程。

四、性能对比与分析通过对Li5FeO4与Li5AlO4两种材料的性能进行对比分析,可以发现它们在结构、组成和电化学性能方面具有各自的优点。

Li5FeO4具有较高的理论比容量和能量密度,而Li5AlO4则具有较高的工作电压和良好的循环稳定性。

在实际应用中,可以根据具体需求选择合适的材料。

此外,两种材料均具有良好的安全性和环保性,符合当前锂电池的发展方向。

五、结论本文对正极补锂材料Li5FeO4与Li5AlO4的性能进行了研究。

锌离子二次电池的研究进展

锌离子二次电池的研究进展

第48卷第7期 2020年7月硅 酸 盐 学 报Vol. 48,No. 7 July ,2020JOURNAL OF THE CHINESE CERAMIC SOCIETY DOI :10.14062/j.issn.0454-5648.2020.07.20200029锌离子二次电池的研究进展刘佳昊,何平鸽,范丽珍(北京科技大学新材料技术研究院,北京 100083)摘 要:通过探寻合适的储锌正极材料、优化锌负极结构以及深入了解电池的储锌机理,能够显著地提高锌离子电池的电化学性能。

综述了锌离子二次电池的研究进展,详细介绍了各类正极材料的结构特征、电化学性能以及储锌机理,另外对锌负极面临的问题和解决方法进行总结,同时讨论了电解质对锌离子电池电化学性能的影响。

最后,对锌离子二次电池面临的问题和未来的研究方向进行了总结与展望。

关键词:锌离子二次电池;正极结构;锌负极;储锌机理;电化学性能中图分类号:O646; TM911 文献标志码:A 文章编号:0454–5648(2020)07–0990–13 网络出版时间:2020–04–13Research Progress on Zinc-ion BatteriesLIU Jiahao , HE Pingge , F AN Lizhen(Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China)Abstract: Exploring suitable cathode materials to effectively accommodate Zn ions, optimizing Zn anode structure and clarifing the mechanism of battery can favor the improvement of the electrochemical performance of zinc-ion batteries (ZIBs). In this review, recent development on ZIBs was represented and various kinds of cathode materials were introduced. The structural characters, electrochemical properties and Zn ion storage mechanism were reviewed. Some solutions to solve the problems faced by Zn anode were described. Meanwhile, the effect of electrolyte on the electrochemical performance of ZIBs was discussed. In addition, challenges on ZIBs and prospects for future research directions were also given.Keywords: zinc ion battery; cathode structure; zinc anode; zinc ion storage mechanism; electrochemical performance随着经济社会和工业文明的发展,对电力能源的需求日益增长。

用于电致变色玻璃的氧化钒薄膜的研究进展

用于电致变色玻璃的氧化钒薄膜的研究进展

分析研究与探讨Doors&WindowsD0I:10.12258/j.issn.1673-8780.2021.01.063用于电玫变色玻璃的氧化钒薄膜的研究进展王科研1刘红英2宋羽茜2张远洋2梁小平1,1天津耀皮工程玻璃有限公司天津市节能玻璃企业重点实验室2天津工业大学材料科学与工程学院摘要:建筑能耗在我国所有能耗中的占比越来越高,而电致变色玻璃作为一种节能环保的绿色智能建筑材料将成为降低建筑物能耗的首选。

五氧化二钒(V20s)因其特殊结构和特性在智能窗中分别作为离子储存层和电致变色层成为研究热点。

本文从掺杂改性和纳米结构等方面综述了电致变色玻璃用V205变色层和离子储存层改性的研究进展。

关键词:五氧化二钒;电致变色玻璃;离子储存层;电致变色层Abstract:With the growing global energy consumption,the electrochromic device(ECD)technology has gained a lot of attention due to its great potential to reduce building energy consumption.vanadium pentoxide(V205)has become a research hotspot as electrochemical ionic storage films and electrochromic films in smart windows due to its special structure and characteristics.The modifications of V205 layer as electrochromic film and electrochemical ionic storage films for electrochromic glass are reviewed from doping and nanostructure .Key words:vanadium pentoxide,electrochromic glass,electrochromic films,electrochemical ionic storage films1前言目前建筑能耗占我国社会总能耗的27%左右,其中门窗能耗占其中的40%-50%m,节能建筑材料的应用是减少建筑物能耗的最有效途径,但是就现在国内的节能建筑材料而言,其科研和应用还是比较落后的。

锂离子电池过渡金属氧化物基正极材料

锂离子电池过渡金属氧化物基正极材料

锂离子电池是目前广泛应用于手机、平板电脑、电动汽车和储能系统等领域的重要能量存储设备。

而锂离子电池的正极材料是决定其性能的关键因素之一。

传统的过渡金属氧化物基正极材料在提高锂离子电池能量密度和循环寿命方面存在一定局限性。

研究人员不断致力于寻找新型过渡金属氧化物基正极材料,以满足锂离子电池在能量密度、安全性和成本方面的不断提升的需求。

1. 传统过渡金属氧化物基正极材料的局限性传统过渡金属氧化物基正极材料如钴酸锂(LiCoO2)、镍酸锂(LiNiO2)和锰酸锂(LiMn2O4)等在锂离子电池中具有一定的应用历史。

然而,这些材料在高温下易发生热失控,存在安全隐患;它们的能量密度和循环寿命相对较低,难以满足日益增长的电池性能要求。

2. 新型过渡金属氧化物基正极材料的研究进展近年来,诸如钴酸铝(LiCo1-xAlxO2)、镍钴锰酸锂(LiNixCoyMnzO2)、氧化钒基材料(V2O5)等新型过渡金属氧化物基正极材料受到广泛关注。

这些新材料在提高锂离子电池能量密度、改善循环寿命和提高安全性等方面表现出了较强的潜力。

3. 新型过渡金属氧化物基正极材料的优势和挑战相较于传统材料,新型过渡金属氧化物基正极材料具有以下优势:a.较高的比容量:一些新型正极材料具有更高的比容量,能够实现更高的能量密度,满足电动汽车等领域对电池续航能力的要求;b.较长的循环寿命:新材料的晶格稳定性和结构稳定性较高,可实现较长的循环寿命;c.较低的成本:部分新型正极材料采用廉价原料制备,能够降低电池成本。

然而,新型过渡金属氧化物基正极材料也面临一些挑战,如材料合成工艺难以控制、结构稳定性不足、电极与电解质界面反应等问题仍待解决。

4. 未来发展趋势随着科学技术的不断进步,人们对锂离子电池正极材料的要求也在不断提高。

未来,新型过渡金属氧化物基正极材料的研究将继续深入,从材料合成、结构设计到电极构成等方面进行全面的优化和创新,以实现更高能量密度、更长循环寿命和更高安全性的锂离子电池正极材料的商业化应用。

氧化铝包覆天然石墨提升电池循环稳定性和安全性

氧化铝包覆天然石墨提升电池循环稳定性和安全性

氧化铝包覆天然石墨提升电池循环稳定性和安全性研究背景Al2O3在锂离子电池中的应用由来已久,其中最著名的属Celgard的张正铭博士提出的隔膜表面进行Al2O3涂覆以提高隔膜热稳定性以及三星SDI在负极进行氧化铝涂覆改善电池性能和安全。

不过近来关于Al2O3在锂电中应用的研究渐渐多起来。

远一点,中科院宁波材料所刘兆平研究员课题组的研究显示在常规电解液中添加硅烷-Al2O3不仅可以提升电池的循环、倍率等电化学性能,还能有效改善电池的安全性。

紧接着,韩国的Dae Sik Kim等的研究显示石墨表面包覆非晶Al2O3能提高电池的快充性能。

最近,Jeff Dahn老哥提出新的见解,认为NCM表面包覆的Al2O3能同LiPF6反应生成LiPO2F2进而能提升电池性能。

由于各种因素的趋势,动力电池的容量和能量密度不断提高,电池的安全性日益受到关切。

电池的安全问题很复杂,但根源之一还是在化学体系上。

只有从根本上提高材料的安全性才可能提高电池的整体安全特性。

总部位于深圳的贝特瑞在负极材料领域颇有声誉,研发实力在国内材料厂中也是首屈一指。

最近,贝特瑞专攻负极安全性改善的徐涛博士提出在天然石墨表面通过sol-gel法包覆Al2O3,不仅能提高电池的循环稳定性,同时还能改善安全性,成果以Synthesisof Alumina-Coated Natural Graphite for Highly Cycling Stability and Safety of Li-Ion Batteries为题发表在Chinese Journal of Chemistry上。

图1. (a-c)分别为天然石墨(NG)、包覆1 wt% Al2O3的天然石墨(记为AN-1)和包覆3 wt% Al2O3的天然石墨(记为AN-3)的SEM图像;(a’-c’)为(a-c)中方框区域的放大图像。

图2. (a)和(e)分别为AN-1和AN-3的SEM图像;(b-d)和(f-h)分别为AN-1和AN-3的元素分布图像。

五氧化二钒(V_(2)O_(5))在锌离子电池中的应用进展

五氧化二钒(V_(2)O_(5))在锌离子电池中的应用进展

五氧化二钒(V_(2)O_(5))在锌离子电池中的应用进展
万欣;张楠楠;赵丽萍;姜晓蕾;胡芳东
【期刊名称】《河南化工》
【年(卷),期】2024(41)1
【摘要】锌离子电池具有本征安全性、低成本和高倍率特性,是一种极具竞争力的绿色储能装置。

层状五氧化二钒(V_(2)O_(5))理论比容量和能量密度高,在优化储锌性能方面具有重要意义。

然而,V_(2)O_(5)电子导电率低,在工作过程中,常常会受到电化学性能衰减的困扰。

从复合材料、表面包覆、离子掺杂及层间插层四个常用改性方法进行了综述。

并对未来促进Zn/V_(2)O_(5)性能提升及应用进行了展望。

【总页数】5页(P31-35)
【作者】万欣;张楠楠;赵丽萍;姜晓蕾;胡芳东
【作者单位】临沂大学化学化工学院
【正文语种】中文
【中图分类】TQ135.11;TQ152
【相关文献】
1.高温退火五氧化二铌晶体的电化学性能与其在锂离子电池中的应用
2.聚吡咯@二氧化锰/碳纳米管薄膜电极的制备及在高性能锌离子电池中的应用
3.钒基氧化物在水系锌离子电池中的应用进展
4.二氧化钛涂层改性锌负极及其在水系锌离子电池中的应用
5.V_(2)O_(5)@rGO纳米材料的制备及其在水系锌离子电池中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。

钒氧化物在锂离子电池正极材料中的应用状况综述

钒氧化物在锂离子电池正极材料中的应用状况综述

钒氧化物在锂离子电池正极材料中的应用状况综述钒氧化物在锂离子电池正极材料中的应用状况综述钒氧化物作为新型锂离子电池正极材料的研究热点之一,已经取得了一些重要进展。

本文将对钒氧化物在锂离子电池正极材料中的应用状况进行综述。

1. 引言锂离子电池是一种颇具应用前景的能量存储设备,广泛应用于电动汽车、便携设备等领域。

其中正极材料是影响电池性能的重要关键之一。

近年来,随着对能源密度和循环寿命的要求不断增加,新型正极材料的研究成为了锂离子电池领域的热点之一。

2. 钒氧化物的性质钒氧化物是一类具有较高容量和良好循环稳定性的正极材料,其晶体结构和电子结构可调控,具有较高的锂离子嵌入/脱嵌反应活性。

此外,钒氧化物具有较高的电导率和较低的电极材料包容性,有利于提高电池的能量密度和循环寿命。

3. 钒氧化物及其衍生物在锂离子电池中的应用3.1 V2O5V2O5是钒氧化物中应用最广泛的一种。

其在锂离子电池中的嵌入/脱嵌反应可实现准四电子反应,具有较高的容量和较长的循环寿命。

研究者通过改变V2O5的形貌和结构,可以进一步提高其电化学性能。

例如,利用氧化锌、聚合物等杂化结构制备的V2O5纳米片材料,具有大量的活性位点和良好的电荷传输性能,能够实现大容量的嵌入/脱嵌反应。

3.2 钒氧化物/碳复合材料钒氧化物/碳复合材料是一种将钒氧化物和碳材料结合的新型正极材料。

通过在钒氧化物表面包覆碳材料,能够提高材料的导电性和离子传输性能,同时抑制钒氧化物颗粒的聚集和容量衰减。

此外,碳材料还能够提供更好的结构稳定性和电池安全性能。

3.3 钒氧化物基复合材料钒氧化物基复合材料是将钒氧化物与其他金属氧化物或石墨烯等复合材料相结合的新型锂离子电池正极材料。

这些复合材料能够兼具钒氧化物和其他材料的优势,同时改善钒氧化物的电荷传输性能和结构稳定性。

例如,将钒氧化物与三氧化二铁复合,能够提高正极材料的电导率和离子扩散性能,从而提高电池的性能。

4. 钒氧化物在锂离子电池正极材料中的挑战尽管钒氧化物在锂离子电池正极材料中具有很大的潜力,但仍面临着一些挑战。

氮掺杂石墨烯的制备及氧还原电催化性能

氮掺杂石墨烯的制备及氧还原电催化性能

氮掺杂石墨烯的制备及氧还原电催化性能一、本文概述随着能源危机和环境问题的日益严峻,寻求高效、清洁、可持续的能源技术已成为全球科研工作者的重要任务。

作为新一代能源技术的重要组成部分,燃料电池和金属-空气电池等电化学能源转换装置因具有高能量密度和环保特性而备受关注。

在这些电化学能源转换装置中,氧还原反应(ORR)是关键步骤之一,其催化剂的性能直接影响到整个装置的能量转换效率和使用寿命。

因此,开发高效、稳定的氧还原电催化剂成为了当前研究的热点。

近年来,石墨烯作为一种新兴的二维纳米材料,因其独特的电子结构和物理化学性质,在电催化领域展现出巨大的应用潜力。

而氮掺杂石墨烯作为一种通过引入氮原子对石墨烯进行改性的材料,不仅保留了石墨烯原有的优点,还在电催化性能上有了显著提升。

氮掺杂石墨烯的引入可以改变石墨烯的电子结构,提高其对氧分子的吸附能力,从而优化氧还原反应的动力学过程。

因此,氮掺杂石墨烯被认为是一种具有广阔应用前景的氧还原电催化剂。

本文旨在探讨氮掺杂石墨烯的制备方法以及其在氧还原电催化反应中的性能表现。

我们将详细介绍氮掺杂石墨烯的合成方法,包括化学气相沉积法、热解法、溶剂热法等,并分析各种方法的优缺点。

我们将通过电化学测试手段,如循环伏安法、线性扫描伏安法等,评估氮掺杂石墨烯在氧还原反应中的催化性能,并探讨其催化机理。

我们还将讨论氮掺杂石墨烯在实际应用中所面临的挑战和可能的解决方案。

通过本文的研究,我们期望能够为氮掺杂石墨烯在氧还原电催化领域的应用提供有益的理论指导和实验依据,为推动新一代电化学能源转换装置的发展做出贡献。

二、氮掺杂石墨烯的制备方法氮掺杂石墨烯的制备是提升其氧还原电催化性能的关键步骤。

目前,常见的氮掺杂石墨烯制备方法主要包括化学气相沉积法、热处理方法、化学还原法以及原位合成法等。

化学气相沉积法是一种在气相中通过化学反应生成固态物质并沉积在基底上的方法。

在氮掺杂石墨烯的制备中,含碳和含氮的前驱体在高温下分解,碳原子和氮原子在基底上重新排列,形成氮掺杂石墨烯。

石墨烯文献

石墨烯文献

1、Free-Sta nding Hierarchically San dwich-Type Tun gste n Disulfide Nano tubes/Graphe neAnode for Lithium-Io n Batteries (独立的分层三明治型WS2纳米管与石墨烯复合型锂离子电池阳极材料)Renjie Chen, Teng Zhao, Weiping Wu, Feng Wu, Li Li, Ji Qian, Rui Xu,Huiming Wu, Hassan M. Albishri, A.S. Al-Bogami, Deia Abd El-Hady, Jun Lu, and Khalil AmineNano Lett., 2014, 14 (10), pp 5899 -5904Publication Date (Web): August 27, 2014 (Letter)DOI: 10.1021/nl502848z2、Graphene Nanoribbon/V z O s Cathodes in Lithium-IonBatteries (石墨烯纳米带与V2O5复合锂离子电池阴极)Yang Yang, Lei Li, Huilong Fei, Zhiwei Peng, Gedeng Ruan, and James M.TourACS Appl. Mater. Interfaces, 2014, 6 (12), pp 9590 -9594Publication Date (Web): May 20, 2014 (Research Article)DOI: 10.1021/am501969m3、Ano malous In terfacial Lithium Storage in Graphe ne/TiO2for Lithium Ion Batteries (锂离子电池用石墨烯/TiO2复合材料的无定形界面中Li存储研究)Enzuo Liu, Jiamei Wang, Chunsheng Shi, Naiqin Zhao, Chunnian He, JiajunLi, and Jian-Zhong JiangACS Appl. Mater. Interfaces, 2014, 6 (20), pp 18147 -8151Publication Date (Web): September 23, 2014 (Research Article)DOI: 10.1021/am50504234、Carbon-Coated Mesoporous TQ2 Nano crystals Grow n on Graphe ne forLithium-Ion Batteries (在石墨烯上生长用于锂离子电池的碳包覆介孔TiO2纳米晶)Zehui Zhang, Ludan Zhang, Wei Li, Aishui Yu, and Peiyi WuACS Appl. Mater. Interfaces, 2015, 7 (19), pp 10395 -0400Publication Date (Web): April 30, 2015 (Research Article)DOI: 10.1021/acsami.5b014505、Tin Disulfide Nano plates on Graphe ne Nan oribb ons for Full Lithium Ion Batteries (在石墨烯纳米带上生长用于全锂离子电池的SnS2纳米盘)Caitian Gao, Lei Li, Abdul-Rahman O. Raji, Anton Kovalchuk, Zhiwei Peng,Huilong Fei, Yongmin He, NamDong Kim, Qifeng Zhong, Erqing Xie, andJames M. TourACS Appl. Mater. Interfaces, 2015, 7 (48), pp 26549 -26556Publication Date (Web): November 12, 2015 (Research Article)DOI: 10.1021/acsami.5b077686、Si ~Mn/Reduced Graphe ne Oxide Nano composite Ano des with Enhanced Capacity and Stability for Lithium-Io nBatteries (用于提高锂离子电池的容量和稳定性的Si-Mn/还原氧化石墨烯纳米复合阴极材料)A Reum Park, Jung Sub Kim, Kwang Su Kim, Kan Zhang, Juhyun Park, Jong Hyeok Park, Joong Kee Lee, and PilJ. YooACS Appl. Mater. Interfaces, 2014, 6 (3), pp 1702 -1708Publication Date (Web): January 20, 2014 (Research Article)DOI: 10.1021/am404608d7、Branched Graphene Nanocapsules for Anode Material ofl.ithium-lon Batteries (用于锂离子电池阴极材料的树枝状石墨烯纳米胶囊材料)Chuangang Hu, Lingxiao Lv, Jiangli Xue, Minghui Ye, Lixia Wang, andLiangti QuChem. Mater., 2015, 27 (15), pp 5253 -5260Publication Date (Web): July 14, 2015 (Article)DOI: 10.1021/acs.chemmater.5b01398& Three-Dimensional Macroporous Graphene -_i2FeSiO4Composite as Cathode Material for Lithium-lo n Batterieswith Superior Electrochemical Performa nces (用于锂离子电池、具有优异的电化学性能的三维多孔石墨烯-Li 2FeSiO4复合阳极材料)Hai Zhu, Xiaozhen Wu, Ling Zan, and Youxiang ZhangACS Appl. Mater. Interfaces, 2014, 6 (14), pp 11724 -1733Publication Date (Web): June 25, 2014 (Research Article)DOI: 10.1021/am502408m9、Fluorine-Doped SnO?@Graphene Porous Composite for HighCapacity Lithium-Ion Batteries (用于高容量锂离子电池的氟掺杂SnO2@石墨烯多孔复合材料)Jinhua Sun, Linhong Xiao, Shidong Jiang, Guoxing Li, Yong Huang, andJianxin GengChem. Mater., 2015, 27 (13), pp 4594 -4603Publication Date (Web): June 16, 2015 (Article)DOI: 10.1021/acs.chemmater.5b0088510、H ighly Conductive Freestanding Graphene Films as Anode Current Collectors for Flexible Lithium-lonBatteries (用于柔性锂离子电池集流体的具有高电导率独立石墨烯薄膜)Kuldeep Rana, Jyoti Singh, Jeong-Taik Lee, Jong Hyeok Park, and Jong-Hyun AhnACS Appl. Mater. Interfaces, 2014, 6 (14), pp 11158 -1166Publication Date (Web): April 23, 2014 (Research Article)DOI: 10.1021/am500996c11、G raphe ne as an In terfacial Layer for Improv ing Cycli ng Performa nee of Si Nano wiresin Lithium-Ion Batteries (石墨烯作为界面层提高锂离子电池用Si纳米线的循环性能)Fan Xia, Sunsang Kwon, Won Woo Lee, Zhiming Liu, Suhan Kim, TaeseupSong, Kyoung Jin Choi, Ungyu Paik, and Won Il ParkNano Lett., 2015, 15 (10), pp 6658 七664Publication Date (Web): September 11,2015 (Letter)DOI: 10.1021/acs.nanolett.5b0248212、F abrication of Graphene Embedded LiFePO4 Using a Catalyst Assisted Self AssemblyMethod as a Cathode Material for High Power Lithium-lo n Batteries (用催化辅助自组装法制备用于高能量型锂离子电池的嵌有石墨烯的LiFePO4的阳极材料)WonKeun Kim, WonHee Ryu, DongWook Han, SungJin Lim, JiYong Eom, and HyukSang KwonACS Appl. Mater. Interfaces, 2014, 6 (7), pp 4731 -4736Publication Date (Web): March 12, 2014 (Research Article)DOI: 10.1021/am405335k13、M esoporous Td Nanocrystals Grown in Situ onGraphene Aerogels for High Photocatalysis and Lithium-lon Batteries (在石墨烯上原位生长微孔TiO2纳米晶以用于高效光催化和锂离子电池)Bocheng Qiu, Mingyang Xing, and Jinlong ZhangJ. Am. Chem. Soc., 2014, 136 (16), pp 5852 -855Publication Date (Web): April 8, 2014 (Communication)DOI: 10.1021/ja500873u14、F abrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries (在中空微米球上制备氮掺杂多孑L石墨烯机器用于锂离子电池的活性电极中)Zhong-Jie Jiang and Zhongqing JiangACS Appl. Mater. Interfaces, 2014, 6 (21), pp 19082 -9091Publication Date (Web): October 13, 2014 (Research Article)DOI: 10.1021/am505060415、E lastic a-Silic on Nano particle Backb oned Graphe neHybrid as a Self-Compact ing Anode for High-Rate Lithiumlon Batteries (用于高倍率锂离子电池的具有自密实的阴极材料:生长弹性a-Si纳米颗粒的石墨烯)Minseong Ko, Sujong Chae, Sookyung Jeong, Pilgun Oh, and Jaephil ChoACS Nano, 2014, 8 (8), pp 8591 七599Publication Date (Web): July 31,2014 (Article)DOI: 10.1021/nn503294z16、H igh-Rate, Ultralong Cycle-Life Lithium/Sulfur BatteriesEnabled byNitrogen-Doped Graphene (用于高倍率超长循环寿命Li-S电池的氮掺杂石墨烯)Yongcai Qiu, Wanfei Li, Wen Zhao, Guizhu Li, Yuan Hou, Meinan Liu, LishaZhou, Fangmin Ye, Hongfei Li, Zha nhua Wei, Shihe Yang, Wenhui Duan,Yifan Ye, Jinghua Guo, and Yuegang ZhangNano Lett., 2014, 14 (8), pp 4821 -4827Publication Date (Web): July 29, 2014 (Letter)DOI: 10.1021/nl502047518、P hosphorus and Nitrogen Dual-Doped Few-Layered Porous Graphene: AHigh-Performa nee Anode Material for Lithium-I on Batteries (一种用于锂离子电池的具有高性能阴极材料:磷和氮双共掺杂少层多孔石墨烯)Xinlong Ma, Guoqing Ning, Chuanlei Qi, Chenggen Xu, and Jinsen GaoACS Appl. Mater. Interfaces, 2014, 6 (16), pp 14415 -4422Publication Date (Web): August 8, 2014 (Research Article)DOI: 10.1021/am503692g19、A n Advaneed Lithium-Ion Battery Based on a GrapheneAnode and a Lithium Iron Phosphate Cathode (一种基于石墨烯阴极和LiFePO4阳极的先进锂离子电池)Jusef Hassoun, Francesco Bonaccorso, Marco Agostini, Marco Angelucci,MariaGrazia Betti, Roberto Cingolani, Mauro Gemmi, Carlo Mariani,Stefania Panero, Vittorio Pellegrini, and Bruno Scrosati Nano Lett., 2014, 14 (8), pp 4901 -4906Publication Date (Web): July 15, 2014 (Letter)DOI: 10.1021/nl502429m20、U ltrasmall TiO 2 Nanoparticles in Situ Growth onGraphene Hybrid as Superior AnodeACS Appl. Mater. Interfaces, 2015, 7 (21), pp 11239 -1245Publication Date (Web): May 12, 2015 (Research Article)DOI: 10.1021/acsami.5b02724Material for Sodium/Lithium Ion Batteries (石墨烯上原位生长超小TiO2纳米颗粒复合材料用作钠/锂离子电池阴极材料)Huiqiao Liu, Kangzhe Cao, Xiaohong Xu, Lifang Jiao, Yijing Wang, andHuatang Yuan21、General Strategy for Fabricating Sandwich-likeGraphene-Based Hybrid Films for Highly ReversibleLithium Storage (用于高可逆Li存储的类三明治石墨烯基混合薄膜的常用制备方法)Xiongwu Zhong, Zhenzhong Yang, Xiaowu Liu, Jiaqing Wang, Lin Gu, andYan YuACS Appl. Mater. Interfaces, 2015, 7 (33), pp 18320 -8326Publication Date (Web): August 10, 2015 (Research Article)DOI: 10.1021/acsami.5b0394222、An ionic self-assembly approach towards sandwich-like graphene/SnOgraphene nano sheets for enhan ced lithium storage一种离子自组装法制备用于提高Li存储的类三明治型纳米片:石墨烯/SnO2/石墨烯)Jin zua n Wang, Ping Liu, Yan sha n Huang, Jia nzhong Jia ng, Sheng Han, Dongqing Wu andXin lia ng FengRSC Adv., 2014,4, 57869-57874DOI: 10.1039/C4RA10573G, Paper23、3D porous hybrids of defect-rich MoS2/graphe ne nano sheets with excelle nt electrochemical performa nee as anode materials for lithium ion batteries锂离子电池用具有优异的电化学性能的三维多孔复合阴极材料:具有大量缺陷的MoS2/石墨烯纳米片)Lon gshe ng Zhang, Wei Fan, Weng Weei Tjiu and Tianxi LiuRSC Adv., 2015,5, 34777-34787DOI: 10.1039/C5RA04391C, Paper24、Nb2O5/graphe ne nano composites for electrochemical en ergy storag 用于电化学能量存储的Nb2O5/石墨烯纳米复合材料)Paulraj Arun kumar, Ajithan G. Ashish, Bi nson Babu, Som Sara ng, Abhi n Suresh, Chithra H. Sharma, Madhu Thalakulam and Manikoth M. ShaijumonRSC Adv., 2015,5, 59997-60004DOI: 10.1039/C5RA07895D, Paper25、Green synthesis of 3D SnO2/graphene aerogels and their application in lithium-ion batteries (绿色合成3DSnO2/石墨烯气凝胶机器在锂离子电池中的应用)Chen Gong, Yon gqua n Zhang, Min ggua ng Yao, Yin gji n Wei, Quanjun Li, Bo Liu, Ran Liu, Zhen Yao, Tia n Cui, Bo Zou and Bingbing LiuRSC Adv., 2015,5, 39746-39751DOI: 10.1039/C5RA05711F, Paper26、Electrochemical lithium storage of a ZnF e2O4/graphe ne nano composite as an anode material for rechargeable lithium ion batterie (可充电锂离子电池阴极材料ZnFe2O4/ 石墨烯纳米复合材料的电化学Li存储)Alok Kumar Rai, Sungjin Kim, Jihyeon Gim, Muhammad Hilmy Alfaruqi, Vinod Mathew andJaekook KimRSC Adv., 2014,4, 47087-47095DOI: 10.1039/C4RA08414D, Paper27、TiO2 nano tubes grow n on graphe ne sheets as adva need anode materials for high rate lithium ion batteries (用于高倍率锂离子电池的在石墨烯片上生长TiO2纳米管的阴极材料)Yufeng Tang, Zhanqiang Liu, Xujie L , Baofe ngWa ng and Fuqia ng HuangRSC Adv., 2014,4, 36372-36376DOI: 10.1039/C4RA05027D, Paper28、N-doped TiO 2 nano tubes/N-doped graphe ne nano sheets composites as high performa nee anode materials in lithium-ion battery (氮掺杂TiO2纳米管/氮掺杂石墨烯纳米片复合材料用于高性能锂离子电池阴极材料)Yuem ing Li, Zhigua ng Wang and Xiao-Jun LvJ. Mater. Chem. A , 2014,2, 15473-15479DOI: 10.1039/C4TA02890B, Paper29、A highly nitrogen-doped porous graphene —an anode material for lithium ion batteries (高氮掺杂多孔石墨烯一一种用于锂离子电池的阴极材料)Zhu-Yin Sui, Caiy un Wang, Qua n-She ng Ya ng, Kewei Shu, Yu-Wen Liu, Bao-Ha ng Han and Gordo n G. WallaceJ. Mater. Chem. A , 2015,3, 18229-18237DOI: 10.1039/C5TA05759K, Paper30、The effect of titanium in Li 3V2(PO4)3/graphene composites as cathode material for high capacity Li-ion batteries (一种用于高容量锂离子电池阳极材料:Ti在Li3V2(PO4)3/石墨烯复合物中的作用)Man soo Choi, Kisuk Kang, Hyun-Soo Kim, Young Moo Lee and Bon g-Soo JinRSC Adv., 2015,5, 4872-4879DOI: 10.1039/C4RA09389E, Pap er31、Assess ing the improved performa nee of freesta nding, flexible graphe ne and carb on nano tube hybrid foams for lithium ion battery an odes (组装用于提高锂离子电池阴极性能的具有独立柔性的石墨烯和碳纳米管混合泡沫)Adam P. Coh n, La ndon Oakes, Rachel Carter, Shaha na Chatterjee, An drew S. Westover, Keith Share and Cary L. PintNan oscale, 2014,6, 4669-4675DOI: 10.1039/C4NR00390J, Pap er32、Con trolled Lithium Den drite Growth by a Syn ergistic Effect ofMultilayered Graphe ne Coati ng and an Electrolyte Additive (通过多层石墨烯包覆和电解液添力口剂的协同效应来控制锂枝晶的生长)Joo-Se ong Kim, Dae Woo Kim, Hee Tae Jung, and Jang Wook ChoiChem. Mater., 2015, 27 (8), pp 2780 T2787Publication Date (Web): March 26, 2015 (Article)DOI: 10.1021/cm503447u33、Self-assembled graphene and LiFePO4 composites with superior high rate capability forlithium ion batteries (自组装具有高倍率容量的石墨烯和LiFePO4复合材料用于锂离子电池)Wen-Bin Luo, Shu-Lei Chou, Yu-Chun Zhai and Hua-Kun LiuJ. Mater. Chem. A , 2014,2, 4927-4931DOI: 10.1039/C3TA14471B, Paper34、Graphe ne enhanced carb on-coated tin dioxide nano particles for lithium-i on sec on dary batteries (石墨烯增强碳包覆TiO2纳米颗粒用于锂离子电池)Zhon gtao Li, Guilia ng Wu, Dong Liu, Wen ti ng Wu, Bo Jia ng, Jin gta ng Zheng, Yanpeng Li,Jun hua Li and Min gbo WuJ. Mater. Chem. A , 2014,2, 7471-7477DOI: 10.1039/C4TA00361F, Paper35、Mild soluti on syn thesis of graphe ne loaded with LiFePO 4 -C nano platelets for highperformanee lithium ion batteries (温和溶液法在碳包覆LiFePO4上合成石墨烯用于提高锂离子电池性能)Much un Liu, Yan Zhao, Sen Gao, Yan Wang, Yuex in Duan, Xiao Han and Qi DongNew J. Chem., 2015,39, 1094-1100DOI: 10.1039/C4NJ01485E, Paper36、Flexible free-standing graphene paper with intereonneeted porous structure for energy storage (互联多孔结构的柔性独立石墨烯纸用于能量存储)Kewei Shu, Caiy un Wang, Sha Li, Chen Zhao, Yang Yang, Huak un Liu and Gordon WallaceJ. Mater. Chem. A , 2015,3, 4428-4434DOI: 10.1039/C4TA04324C, Paper37、Dual roles of iron powder on the syn thesis of LiFePO 4@C/graphe ne cathode a nano compositefor high-performanee lithium ion batteries (Fe粉在合成用于高性能锂离子电池阳极材料LiFePO4@C/石墨烯纳米复合材料中的双重作用)Tiefe ng Liu, Jin gxia Qiu, Bo Wang, Yazhou Wang, Dianlong Wang and Shanqing ZhangRSC Adv., 2015,5, 100018-100023DOI: 10.1039/C5RA20712F, Paper38、TiO2(B) -CNT -graphene ternary composite anode material for lithium ion batteries (用于锂离子电池的TiO2 (B)-碳纳米管-石墨烯三元复合阳极材料)Tao Shen, Xufe ng Zhou, Hailia ng Cao, Chao Zhe ng and Zhaop ing LiuRSC Adv., 2015,5, 22449-22454DOI: 10.1039/C5RA01337B, Pap er39、Desired crystal oriented LiFePO 4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage (用于快离子存储的在石墨烯上原位生长具有一定晶向方向的且互联导电LiFePO4纳米盘网络)Bo Wang, Anmin Liu, Wael Al Abdulla, Dia nlong Wang and X. S. ZhaoNanoscale, 2015,7, 8819-8828DOI: 10.1039/C5NR01831E, Paper40、Nitrogen and fluorine co-doped graphene as a high-performanee anode material forlithium-ion batteries (用于锂离子电池的高性能阴极材料:氮和氟共掺杂石墨烯)Shizhe ng Huang, Yu Li, Yiyu Feng, Haora n An, Peng Long, Chengqun Qin and Wei FengJ. Mater. Chem. A , 2015,3, 23095-23105DOI: 10.1039/C5TA06012E, Paper41、Ge -raphene -carbon nanotube composite anode for high performance lithium-ion ba卄eries (用于高性能锂离子电池的锗-石墨烯-碳纳米管复合材料)Shan Fang, Laifa Shen, Hao Zheng and Xiaoga ng ZhangJ. Mater. Chem. A , 2015,3, 1498-1503DOI: 10.1039/C4TA04350B, Paper42、Reduced Graphene Oxide in Cathode Formulations Based on LiNi0.5Mn 1.5O4 Batteries and Energy Storage(基于LiNi0.5Mn 1.5O4电池的还原氧化石墨烯在阳极中的构成)C. Arbizza ni, L. Da Col, F. De Giorgio, M. Mastragost ino, and F. SoaviJ. Electrochem. Soc. 2015 162:A2174-A2179; doi:10.1149/2.0921510jes。

V205正极材料的分类

V205正极材料的分类

V205正极材料的分类V2O5正极材料可分为非晶态和晶态两大类,非晶态的V2O5材料主要包括气凝胶、干凝胶和水凝胶。目前主要通过溶胶-凝胶法、水热合成法、电化学沉积法来制备非晶态的V2O5电极材料,由于钒的价态高、电子亲和力强,极易形成凝胶,因此溶胶-凝胶法广泛地被采用。用传统方法得到的V2O5嵌锂容量有限,凝胶V2O5的嵌锂容量大大增加。其原因可能是:一方面嵌锂的位置发生了变化,产生了热力学上更好的嵌锂位置;另一方面由于V2O5结构中层面间距增大,结果导致V2O5凝胶具有类似二维的有序结构,层之间的作用较弱,使得Li+更容易嵌入和脱嵌。通常有三种途径可获得V2O5凝胶,即将熔融的V2O5倒入水中,用可溶性的钒酸盐(如NaVO3)与阳离子交换树脂进行质子交换,用钒的有机盐(如VO(OC3H7)3)进行水解反应。在得到V2O5凝胶后,采用不同的脱水处理工艺,可分别获得气凝胶和干凝胶。Mege等采用四异戊基醇与V2O5反应制备相应的烷氧基钒酸盐。在有非离子表面活性剂存在的条件下,将钒的有机盐进行水解制备V2O5·0.2H2O干凝胶,该材料1molV2O5能嵌入2.7molLi+,但首次不可逆容量损失达到15%。Giorgetti等采用NaVO3溶液与离子交换树脂进行质子交换和冷冻干燥的工艺,制备出V2O5·0.5H2O干凝胶,该材料在C/55倍率下1molV2O5能可逆地嵌入2.5molLi+,在C/12倍率下1molV2O5能可逆地嵌入2molLi+,并且发现在嵌脱过程中其材料具有可逆的电子构型。尽管干凝胶基的V2O5材料具有大的比容量、制备工艺相对简单等特点,但它的电化学性能存在以下几个明显的缺点:(1)电子导电率较低;(2)相对较低的Li+扩散系数,电流倍率特性较差;(3)循环过程中容量衰减较快,并且在电化学氧化还原过程中会产生不可逆的结构变化而导致不可逆容量的产生;(4)对于含有少量水的V2O5·nH2O凝胶,具有对层状结构起稳定作用的少量层间结合水在循环过程中会逐步损失,导致材料结构的破坏,并且H2O分子与锂可能形成电化学惰性物质Li2O,导致材料的电化学性能变差;(5)对于具有多孔网络结构的气凝胶V2O5,在进行电化学循环过程中材料的原有结构会逐步塌陷,导致其电化学性能恶化。晶态V2O5材料作锂离子电池正极材料时,在首次嵌锂过程(即放电过程)中,随Li+的不断嵌入会形成几种Li x V2O5相,如下图:当x<0.1时出现α-V2O5相;当0.35时,[V2O5]锥体共用棱与角构造的层开始明显皱折,产生ε-Li x V2O5相;当x=1时形成δ-Li x V2O5相,此时一层从两层之间滑出;当x=2时不可逆的γ-Li x V2O5相形成,这时V2O5的框架进一步发生皱折,尽管此时锂离子脱嵌后γ-Li x V2O5相并不能回到最初的V2O5相,但Li+仍然可以可逆地进行嵌入和脱嵌;当Li+继续嵌入时(x>2),其结构发生明显变化,当x=3时形成了具有岩盐结构的ω-Li x V2O5相。ω-Li x V2O5相虽仍能可逆循环,但钒离子从原来的位置迁移到邻近的空八面体位置,发生了无序分布,因而Li+没有较好的迁移通道,并且由于Li x V2O5的结构稳定,使得Li+的迁移更加困难,其结果是造成了不可逆容量的发生。Delmas等对晶态V2O5材料的电化学性能研究发现:晶态V2O5典型的CV曲线(如下图)在约3.3V(1)、3.1V(2)和2.3V(3)处有三个阴极峰,表明晶态V2O5正极材料随Li+的嵌入在以上三个电压处分别发生了还原反应,形成了α-、ε-以及γ-Li x V2O5相;材料的放电曲线在相应的电压处有三个明显的放电平台,对材料的放电容量作出了巨大的贡献。Park等用晶态V2O5薄膜材料作二次锂离子电池正极的电化学研究中发现:首次放电曲线的形状不同于其后的放电曲线的形状。首次放电曲线有三个典型的放电平台,但其后的放电曲线形状变为一平滑的下降曲线。也就是说经过首次放电后,晶体V2O5材料无定形化,没有出现电压平台,并且第二次对首次有20%以上的不可逆容量损失。这是由于在首次放电到2.3V以下时,晶态V2O5经历一个不可逆的相变过程,形成了ω-Li x V2O5相,导致其容量衰减。因此晶态Li x V2O5电极材料可逆的充放电必须控制在2.3V以上,这样大约只有1mol的Li+能进行可逆的充放电,因而其电池的充放电安全性、容量和寿命受到极大的限制。。

石墨烯/铝复合材料的研究现状及应用展望

石墨烯/铝复合材料的研究现状及应用展望

石墨烯/铝复合材料的研究现状及应用展望作者:杨文澍武高辉肖瑞董蓉桦来源:《新材料产业》 2014年第11期文/ 杨文澍1 武高辉1,2 肖瑞3 董蓉桦11. 哈尔滨工业大学材料学院金属复合材料与工程研究所2. 哈尔滨翔科新材料有限公司3. 中国电子科技集团公司南京第十四研究所石墨烯(Graphene)是一种由碳原子构成的单层片状结构新材料。

由于其特殊的二维结构,石墨烯的电学、光学、热学和机械性能优异。

自2004年被成功制备后[1],石墨烯相关的基础研究和工程应用研究也成为近几年的研究热点之一,在我国已经得到了政府、学术界和企业界的高度重视。

国家科技重大专项、国家“973”计划围绕“石墨烯宏量可控制备”、“石墨烯基电路制造设备、工艺和材料创新”等方向也均部署了一批重大项目[2]。

随着宁波300t石墨烯规模生产线的投产,我国在石墨烯宏量制备方面取得了重要突破[3],但石墨烯的应用仍然处于由研发向产业化迈进的阶段。

利用石墨烯的高强高韧性能来增强树脂、陶瓷或金属是石墨烯应用研究的一个重要方向[4,5]。

本文结合笔者课题组的相关研究结果,重点讨论了石墨烯增强铝基复合材料的性能特点和相关应用前景。

一、金属基复合材料简介金属基复合材料是采用人工的方法,将不同尺寸和形态的增强相(包括纤维、晶须、颗粒、纳米相等)加入到金属基体中而获得的一类新材料,其最大的特点是性能的可设计性:通过选择不同的增强体、基体合金以及不同的界面,可以获得所需要的特性及功能[6]。

由于其性能的多样性明显优于传统合金和其他复合材料,所以金属基复合材料被称为“21世纪的材料”[7]。

因此金属基复合材料的研发获得了世界技术发达国家的高度重视,并在已广泛应用的国防及高端民用领域发挥着具有不可替代的作用[8]。

近年来,金属基复合材料的应用逐渐地从军事领域转向民用领域,并在陆上运输(汽车和火车)、热处理、民用航空、休闲娱乐等诸多领域实现商业化的应用。

水系锌离子电池用钒基正极材料的研究进展

水系锌离子电池用钒基正极材料的研究进展

水系锌离子电池用钒基正极材料的研究进展一、本文概述随着全球对可再生能源和环保技术的需求日益增长,水系锌离子电池(ZIBs)作为一种绿色、安全、高效的储能设备,近年来受到了广泛关注。

作为水系锌离子电池的重要组成部分,正极材料的研究对于提升电池性能具有至关重要的意义。

在众多正极材料中,钒基正极材料因其独特的物理化学性质,如丰富的价态、高的理论容量和良好的结构稳定性,被认为是水系锌离子电池正极材料的理想选择。

本文旨在综述钒基正极材料在水系锌离子电池中的研究进展,包括其种类、合成方法、性能优化等方面,以期为钒基正极材料的进一步研究与应用提供参考。

本文将介绍钒基正极材料的基本性质和研究背景,阐述其在水系锌离子电池中的重要地位。

将详细综述不同类型的钒基正极材料,包括钒氧化物、钒酸盐、钒硫化物等,以及它们的合成方法和结构特点。

在此基础上,将重点讨论钒基正极材料在水系锌离子电池中的电化学性能,包括容量、循环稳定性、倍率性能等,并分析其性能优化的策略和方法。

将展望钒基正极材料在水系锌离子电池中的未来发展方向和应用前景,以期为推动水系锌离子电池技术的进步和可持续发展做出贡献。

二、钒基正极材料概述钒基正极材料作为水系锌离子电池的重要组成部分,近年来受到了广泛的关注和研究。

这类材料以其高能量密度、良好的环境友好性和相对较低的成本,在水系锌离子电池领域具有巨大的应用潜力。

钒基正极材料主要包括钒氧化物、钒酸盐、钒硫化物等。

其中,钒氧化物以其高理论容量和稳定的晶体结构成为研究的热点。

例如,五氧化二钒(V2O5)因其独特的层状结构,能够允许锌离子快速嵌入和脱出,展现出较高的电化学性能。

钒酸盐如钒酸锂(LiV3O8)和钒酸铵(NH4V3O8)等也因其良好的离子传导性和结构稳定性被广泛应用于水系锌离子电池中。

然而,钒基正极材料在实际应用中也面临一些挑战,如导电性差、离子扩散速率慢等问题。

为了解决这些问题,研究者们通过纳米结构设计、元素掺杂、表面修饰等手段对钒基正极材料进行改性。

一种石墨烯包覆锂离子电池三元正极材料[发明专利]

一种石墨烯包覆锂离子电池三元正极材料[发明专利]

专利名称:一种石墨烯包覆锂离子电池三元正极材料
专利类型:发明专利
发明人:杜萍,温宇,于春奇,邬素月,刘晓雨,王浩,步绍宁,王欣全
申请号:CN201910589591.3
申请日:20190702
公开号:CN110311136A
公开日:
20191008
专利内容由知识产权出版社提供
摘要:本发明涉及锂离子二次电池电极材料的相关技术领域,更具体地,本发明提供了一种石墨烯包覆锂离子电池三元正极材料。

本发明第一方面提供一种石墨烯包覆的锂离子电池三元正极材料,其制备原料包括溶剂‑1、正极活性物质以及含石墨烯的浆料;其中,含石墨烯的浆料与正极活性物质的重量比为(0.01~8):1。

本发明通过石墨烯均匀分散于三元正极材料颗粒之间,三元正极表面的石墨烯对材料表面的O原子起到“固定”作用,从而稳定材料结构,抑制电解液在三元正极表面的分解,改善材料的循环性能,尤其是高温循环性能。

申请人:宁夏汉尧石墨烯储能材料科技有限公司
地址:750004 宁夏回族自治区银川市金凤区银川经济技术开发区创新园78号
国籍:CN
代理机构:上海微策知识产权代理事务所(普通合伙)
代理人:谭慧
更多信息请下载全文后查看。

钠离子电池正极材料的研究现状

钠离子电池正极材料的研究现状

钠离子电池正极材料的研究现状方学舟,吕景文,郑涛,郭艳艳*(长春理工大学材料科学与工程学院,吉林长春130000 )摘要:综述钠离子电池正极材料的研究现状,主要包括过渡金属氧化物材料、聚阴离子化合物材料和普鲁士蓝类化合物材料等晶态材料,非晶态FePO 4 ,V 2O 5-P 2O 5体系玻璃等非晶态材料。

总结离子掺杂、碳包覆等手段对于提高材料导电性、增强电化学性能方面的研究进展。

关键词:钠离子电池;正极材料;非晶态;晶态中图分类号:TM912.9 文献标志码:A 文章编号:1001-1579( 2021) 02-0201-04Research status quo of cathode materials for sodium ion batteryFANG Xue-zhou,LYU Jing-wen ,ZHENG Tao,GUO Yan-yan *(School of Materials Science and Engineering , Changchun University of Science and Technology , Changchun , Jilin 130000, China )Abstract :The research status quo of cathode materials for sodium ion battery was summarized ,including crystalline materials suchas transition metal oxides ,polyanion compounds and prussian blue compound ,amorphous materials such as crystalline FePO q ,V 205-P 2O 5 glass. The research progress in ion doping , carbon coating on improving the conductivity and enhancing the electrochemicalperformance of materials was summarized.Key words :sodium ion battery; cathode material; amorphous; crystalline锂离子电池是电子设备和电动汽车领域的主要储能器件。

二维材料在能源储存中的应用

二维材料在能源储存中的应用

二维材料在能源储存中的应用二维材料是指厚度只有一两个原子的材料,通常具有大量独特的物理和化学性质,如电荷载波输运性质、表面反应性质和力学性质等。

因此,它们已被广泛用于超级电容器、锂离子电池、燃料电池等能源储存领域。

一种广泛使用的二维材料是石墨烯。

这种材料具有极高的表面积和良好的导电性能,使其成为优秀的电极材料。

同时,石墨烯还可以作为锂离子电池和超级电容器中的负极材料,由于其高电导率和耐腐蚀性能,可以减少电池内部的损耗并提高其寿命。

除了石墨烯,其他许多二维材料也显示出了良好的储能能力。

例如,硫化钼(MoS2)具有高电化学活性,并且可以通过调整其层数来增强其储能性能。

与此类似,铜铝(Cu3Al)材料也被证明是一种潜在的电极材料,其层状结构可以增强能量储存性能。

此外,其他二维材料如二硫化钼(MoS2)和氧化钒(V2O5)等也被广泛研究。

MoS2是一种具有优异的储能能力的可重复充放电材料,其离子插入/脱插过程与材料的分层和摩擦力有关。

V2O5在高储能密度和高比容量方面具有巨大潜力,但其同位素效应需要进一步研究。

此外,二维纳米小球也是一种由二维材料制成的储能材料。


二氧化钼(MoS2)为例,在一定温度下,该材料可以呈现出二维
纳米小球状结构,具有较高的比表面积和良好的储能性能。

总体而言,二维材料在能源储存中的应用具有广泛的前景。


然存在诸多挑战,如其面积较小、制备复杂和纯度较低等问题,
但通过技术和理论的不断发展,这些问题逐渐得到解决,二维材
料作为一种新型的储能材料仍然受到精细研究和广泛应用的追捧。

V2O5干凝胶薄膜电极的储钠性能

V2O5干凝胶薄膜电极的储钠性能

V2O5干凝胶薄膜电极的储钠性能李延伟;李世玉;谢志平;姚金环;姜吉琼;张灵志【期刊名称】《桂林理工大学学报》【年(卷),期】2018(038)002【摘要】以V2O5溶胶为电解液,采用电沉积法在不锈钢基体上制备了V2O5薄膜.采用场发射扫描电子显微镜(FESEM)和X射线衍射(XRD)分析了薄膜的表面形貌和晶体结构;用循环伏安(CV)、电化学交流阻抗(EIS)和充放电测试研究了该薄膜作为钠离子电池正极材料的储钠性能.结果表明,该薄膜是具有片状纳米结构的V2O5干凝胶薄膜;作为钠离子电池正极,该薄膜表现出很好的储钠活性、优异的循环稳定性和高Na+扩散能力,是一种非常有应用前景的钠离子电池正极材料.【总页数】6页(P306-311)【作者】李延伟;李世玉;谢志平;姚金环;姜吉琼;张灵志【作者单位】中国科学院可再生能源重点实验室,广州 510640;桂林理工大学广西电磁化学功能物质重点实验室,广西桂林 541004;桂林理工大学化学与生物工程学院,广西桂林 541004;桂林理工大学广西电磁化学功能物质重点实验室,广西桂林541004;桂林理工大学化学与生物工程学院,广西桂林 541004;桂林理工大学广西电磁化学功能物质重点实验室,广西桂林 541004;桂林理工大学化学与生物工程学院,广西桂林 541004;桂林理工大学广西电磁化学功能物质重点实验室,广西桂林541004;桂林理工大学化学与生物工程学院,广西桂林 541004;桂林理工大学广西电磁化学功能物质重点实验室,广西桂林 541004;桂林理工大学化学与生物工程学院,广西桂林 541004;中国科学院可再生能源重点实验室,广州 510640;桂林理工大学广西电磁化学功能物质重点实验室,广西桂林 541004;桂林理工大学化学与生物工程学院,广西桂林 541004【正文语种】中文【中图分类】TM912.9【相关文献】1.V2O5干凝胶薄膜的制备及应用 [J], 麦立强;陈文;徐庆;郑锦霞;柯满竹2.V2O5干凝胶薄膜电极电化学性能的研究 [J], 张勇;刘玉文;张翠芬;郑伟;胡信国3.电沉积法制备V2O5薄膜及其储钠性能研究 [J], 李延伟;李世玉;潘观林;姚金环;张灵志4.电化学沉积制备V2O5薄膜电极的表面结构及储钠性能 [J], 李延伟;李世玉;谢志平;姚金环;姜吉琼;张灵志5.原位相分离合成V2O5/Fe2V4O13纳米复合材料及其储钠性能 [J], 周鹏;盛进之;高崇伟;董君;安琴友;麦立强因版权原因,仅展示原文概要,查看原文内容请购买。

高熵掺杂氧化物正极

高熵掺杂氧化物正极

高熵掺杂氧化物正极高熵掺杂氧化物正极是当今锂离子电池领域的一个热门研究方向。

随着电动汽车、可再生能源等领域的快速发展,对高性能电池的需求越来越迫切。

而高熵掺杂氧化物正极作为一种新型材料,具有很大的潜力来提升电池性能。

我们需要了解什么是高熵掺杂氧化物正极。

高熵掺杂氧化物正极是一种由多种金属元素组成的复合材料。

传统的锂离子电池正极材料通常由一种或少数几种金属元素组成,而高熵掺杂氧化物正极则是由多种金属元素均匀掺杂在一起。

这种复合材料的特点是具有高熵效应,即具有高度混杂的晶体结构。

这种结构使得高熵掺杂氧化物正极具有更高的能量密度和更好的循环稳定性。

高熵掺杂氧化物正极的研究主要集中在提高电池的能量密度和循环寿命两个方面。

首先,高熵掺杂氧化物正极具有更高的容量和更高的电压平台,可以提高电池的能量密度。

其次,高熵掺杂氧化物正极具有更好的循环稳定性,可以延长电池的使用寿命。

这些优势使得高熵掺杂氧化物正极成为了锂离子电池正极材料的研究热点。

研究人员已经通过实验和理论计算发现了一些潜在的高熵掺杂氧化物正极材料。

这些材料包括了多种金属元素,如镍、锰、钴等。

通过调控不同金属元素的比例和掺杂方式,可以得到不同性能的高熵掺杂氧化物正极材料。

研究人员通过实验和测试发现,一些高熵掺杂氧化物正极材料具有很高的电容量和较低的内阻,能够实现高能量密度和高功率输出。

然而,高熵掺杂氧化物正极材料的研究仍面临一些挑战和困难。

首先,如何选择合适的金属元素和掺杂比例是一个关键问题。

不同的金属元素和不同的比例会对材料的性能产生很大影响,需要进行深入的研究和优化。

其次,高熵掺杂氧化物正极材料的制备方法也需要进一步改进和完善。

目前,常用的制备方法包括固相反应、溶胶凝胶法等,但仍存在一些制备难题,如材料的均匀性、晶体结构的稳定性等。

尽管高熵掺杂氧化物正极材料的研究仍存在一些难题,但其在锂离子电池领域的应用前景依然广阔。

高熵掺杂氧化物正极材料具有很高的能量密度和循环稳定性,可以满足电动汽车、可再生能源等领域对高性能电池的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synergetic Effects of Al 3+Doping and GrapheneModification on the Electrochemical Performance of V 2O 5Cathode MaterialsKai Zhu,[a]Hailong Qiu,[a]Yongquan Zhang,[a]Dong Zhang,[a]Gang Chen,[a,b]and Yingjin Wei*[a]IntroductionThe continuous progress in portable,electrical vehicles and stationary energy storage requires advanced lithium ion batter-ies with a low cost,high energy density,and long cycle life.However,traditional cathode materials such as layered LiCoO 2,spinel LiMn 2O 4,and olivine LiFePO 4only deliver small specific capacities of approximately 100–160mAh g À1.To increase the energy storage of lithium ion batteries,it is desired to develop new cathode materials with larger specific capacities and/or a higher output voltage.A major strategy to achieve large spe-cific capacities is to use cathode materials that can accommo-date more than one lithium ion in the formula unit such as S (S 8to Li 2S x )[1]and V 2O 5(V 2O 5to Li 2V 2O 5).[2]Numerous studies on these materials have increased the specific capacities of cath-ode materials to over 250mAh g À1.The electrochemical properties of V 2O 5were first reported by Whittingham in 1976.[3]The material has a specific capacity of 294mAh g À1based on two lithium insertions per formula unit in the voltage widow of 2.0–4.0V versus Li/Li +.However,the intrinsic low lithium diffusion coefficient (~10À12cm 2s À1)and the moderate electronic conductivity (10À2–10À3S cm À1)of V 2O 5hinder the rate capability and capacity retention of thismaterial.[4]To improve the electronic conductivity of V 2O 5,Yu et al.prepared Cu 0.02V 1.98O 5.The electronic conductivity in-creased by approximately 20times with respect to the pristine material to result in a high reversible capacity of 97mAh g À1at the 20C rate.[5]Another effective approach to enhance the electrochemical performance of the V 2O 5cathode is the prepa-ration of nanostructured materials that can offer a range of unique advantages over their bulk counterparts,which include a shorter lithium diffusion distance and larger contact area be-tween the electrode and electrolyte.[6]In addition,the electro-chemical performance of nanostructured V 2O 5can be further improved by hybridization with carbonaceous materials such as porous carbon [7]or carbon nanotubes.[8]Among carbona-ceous materials,graphene which has a high conductivity,large surface area,and excellent structural stability,has attracted particular attention not only in battery science but also in many other applied research fields such as photocatalysis,elec-trochemical sensors,and solar cells.[9]It has been reported that the graphene in battery electrodes provides a 3D electron transport network in the active materials and it acts as an elas-tic buffer to accommodate the volume change of the materials during repeated lithium insertion and removal.[10]Consequent-ly,the modification of nanostructured V 2O 5[11]and many other electrode materials such as Sn,[12]TiO 2,[13]SnO 2,[14]and MoO 2[15]with graphene has attracted a broad interest in the battery community.Even though nanostructured V 2O 5cathode materials have shown a significantly improved electrochemical performance with respect to their bulk counterparts,the capacity retention of these materials is still a big obstacle for their practical appli-cation.For example,the discharge capacity of V 2O 5hollowmi-[a]K.Zhu,H.Qiu,Y.Zhang,Dr.D.Zhang,Prof.Dr.G.Chen,Prof.Dr.Y.WeiKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education)College of Physics,Jilin University Changchun 130012(PR China)(Y.J.Wei)E-mail:yjwei@ [b]Prof.Dr.G.ChenState Key Laboratory of Superhard Materials Jilin UniversityChangchun 130012(PR China)Full PapersDOI:10.1002/cssc.201500027crospheres decreased from 290to 187mAh g À1after 100cycles at a current density of 300mAh g À1,which corresponds to a ca-pacity fading rate of 0.35%per cycle.[16]In another example,the capacity fading rate of V 2O 5nanosheet/reduced graphene oxide (RGO)was approximately 0.3%per cycle at the 2C rate.[17]Similar results can also be seen in numerous related publications.[6b,18]One of the key factors that affects the capaci-ty retention of electrode materials is their structural stability during prolonged charge–discharge cycling.As the [VO 5]layers of V 2O 5are linked only by weak van der Waals forces,the com-pound undergoes a sequence of phase transitions easily,that is,a -L x V 2O 5(x <0.01)!e -L x V 2O 5(0.35<x <0.7)!d -L x V 2O 5(0.7<x <1.0)!g -L x V 2O 5(1.0<x <2.0)during lithium intercalation.[19]The involved lattice distortion and volume expansion will ac-celerate the structural deformation of V 2O 5and thus limit the electrochemical performance of the material.If some metal ions with positive charges (M n +)are doped into the VO 5layers,the interaction between the dopant ions (M n +)and the nega-tive oxygen ions (O 2À)will strengthen the combination of [VO 5]layers,which could increase the structural stability of the V 2O 5material.[20]In the present work,we prepared an Al 3+-doped V 2O 5/RGO nanocomposite by a simple soft chemical method.The synergetic effects of Al 3+doping and graphene sandwich-ing are established,which improve the electrochemical per-formance of V 2O 5significantly.Results and DiscussionThe formation mechanism of the V 2O 5/RGO nanocomposite is illustrated in Scheme 1.In the first step,commercial V 2O 5pow-ders are converted into soluble VOC 2O 4under the reductive ef-fects of oxalic acid according to Equation (1).V 2O 5þ3H 2C 2O 2!VOC 2O 4þ3H 2O þ2CO 2ð1ÞThe color of the solution becomes blue,which indicates that the V 5+ions are reduced to V 4+.If graphene oxide (GO)isadded to the solution,VOC 2O 4will adhere to the GO sheets as a result of electrostatic interactions between the negative charges on GO and the positive charges on VOC 2O 4.During the freeze-drying process,small VOC 2O 4nucleates will form around the functional groups on the GO sheets such as hy-droxyl,carboxyl,and carbonyl groups.These VOC 2O 4nucleates will decompose during calcination and then revert into V 2O 5nanoparticles to form a highly porous RGO-supported V 2O 5nanocomposite.Optical images show that the V 2O 5/RGO nano-composite is sponge-like.SEM images show that numerous V 2O 5nanoparticles are em-bedded in the RGO sheets to form a “sandwich”hybrid struc-ture (Figure 1a),which is believed to prevent the stacking of the RGO sheets.The presence of RGO is favorable for electron transport in the material matrix,which gives rise to a high elec-tronic conductivity.An SEM image of the Al 3+-doped V 2O 5/RGO sample is shown in Figure 1b.The material is also com-posed of small particles that are anchored on the RGO sheets.However,this morphology is somewhat different from that ofV 2O 5/RGO,which indicates that the Al ions may influence the nu-cleation and crystal growth of the material.In addition,we present SEM images of V 2O 5(Fig-ure 1c)and Al 3+-doped V 2O 5(Figure 1d).The materials are composed of ordinary nanoparti-cles with a particle size of 20–70nm.The crystal structure of the materials was determined by XRD (Figure 2a).All of the sam-ples can be indexed based on or-thorhombic V 2O 5with the space group Pmmn (PDF #85-0601).No impurity phases such as Al 2O 3or AlV 2O 4are detected in theXRDScheme 1.Formation mechanism of the V 2O 5/RGOnanocomposite.Figure 1.SEM images of (a)V 2O 5/RGO,(b)Al 0.16V 2O 5/RGO,(c)V 2O 5,and (d)Al 0.14V 2O 5patterns,which indicates that the Al ions are successfully doped in the V 2O 5lattice.Inductively coupled plasma atomic emission spectroscopy analysis shows that the Al/V molar ratio is 0.07:1for Al 3+-doped V 2O 5and 0.08:1for Al 3+-doped V 2O 5/RGO.Hereafter,the chemical formulas of the samples are rep-resented as Al 0.14V 2O 5and Al 0.16V 2O 5/RGO,respectively.In addi-tion,the amount of carbon in the RGO-containing samples was measured to be 2.42wt %for V 2O 5/RGO and 2.37wt %for Al 0.16V 2O 5/RGO.The small hump between 2q =20and 258for V 2O 5/RGO and Al 0.16V 2O 5/RGO is caused by disordered (002)stacking layers of RGO.Enlarged views of some typical XRD peaks are shown in Figure 2b.The XRD peaks of V 2O 5shift to lower angles upon Al 3+doping,which indicates the expansion of the lattice.The lattice parameters of the materials were cal-culated by using the Celref program.The lattice parameters of V 2O 5/RGO are similar to those of pure V 2O 5(Table 1).However,Al 0.14V 2O 5and Al 0.16V 2O 5/RGO show larger lattice parameters that result in a volume expansion of ~1.6%with respect to un-doped V 2O 5.Substitution doping of V 5+by Al 3+can be exclud-ed because the ionic radii of Al 3+(0.50 )is smaller than that of V 5+(0.59 ),which would not cause a lattice expansion of V 2O 5.If we consider that the VO 5layers of V 2O 5are linked by weak van der Waals forces,it is believed that the Al ions reside in the interlayer space of the [VO 5]layers,such as those ofCu 2+-and Zn 2+-doped V 2O 5.[21]These guest cations cause the lattice expansion of V 2O 5.Raman scattering was applied to study the effects of Al 3+doping on the local structure properties of V 2O 5.The V atom in V 2O 5is coordinated by two vanadyl (O 1),three chain (O 2),and one bridging (O 3)oxygen atom (Figure 3a).However,the V atom shows distinct displacements away from the center of the [VO 6]octahedron.As a result,the basic structural unit of V 2O 5is viewed as a [VO 5]square pyramid rather than a regular octahedron.The V 2O 5lattice is built up from these [VO 5]pyra-mids by sharing edges and corners.[22]The Raman patterns of the samples are shown in Figure 3b.For undoped V 2O 5,the Raman bands at n ˜=995,701,and 528cm À1are caused by the stretching vibrations of the vanadyl V ÀO 1,bridging V ÀO 3,and chain V ÀO 2bonds,respectively.The bands at n ˜=404and284cm À1correspond to the bending vibrations of the V ÀO 1bond.The bands at n ˜=482and 303cm À1are assigned to the bending vibrations of the V ÀO 3and V ÀO 2bonds,respectively.There is a Raman band at n ˜=144cm À1that corresponds to the external [VO 5]À[VO 5]vibration.This vibration mode is observed at a low wavenumber because of the weak van der Waals forces between the [VO 5]layers.[23]The Raman pattern of V 2O 5/RGO is quite similar to that of V 2O 5,which indicates that RGO does not influence the local structure of V 2O 5.If Al ions are doped in V 2O 5and V 2O 5/RGO,the V ÀO 1and V ÀO 3stretching vi-brations as well as the external [VO 5]À[VO 5]vibration shift to higher wavenumbers with respect to their undoped counter-parts (Figure 3c).This indicates that Al 3+doping strengthens not only the V ÀO bonds of the [VO 5]unit but also the linkage of the [VO 5]layers.Thus,the structural stability of V 2O 5and V 2O 5/RGO is improved by the Al ions.In addition,V 2O 5/RGO and Al 0.16V 2O 5/RGO show two addi-tional peaks at n ˜=1360and 1601cm À1,which are attributed to the D and G bands of carbonaceous materials,respective-ly.[24]The intensity ratio of the D and G bands (I D /I G )is 0.74,which is lower than that of GO (I D /I G =0.86)used in the synthe-sis process.This indicates that the degree of graphite crystallin-ity is increased as a result of the removal of oxygen-containing groups such as C ÀO,C =O,and COOH after reduction and calci-nation.TEM images of the Al 0.16V 2O 5/RGO nanocomposite are shown in Figure 4a and b.The sheet-like morphology of RGO can be seen clearly from the TEM images.There are numerous nano-sized Al 0.16V 2O 5particles that anchor on the RGO sheets.In the high-resolution transmission electron microscopy (HRTEM)image (Figure 4c),the lattice fringes with an interplanar dis-tance of 0.63nm correspond to the (200)planes of orthorhom-bic V 2O 5.The selected area electron diffraction pattern(SAED)Figure 2.(a)XRD patterns of the materials and (b)enlarged views of the (020),(001),and (110)diffractionpeaks.of Al 0.16V 2O 5/RGO is shown in Figure 4d.The (121),(003),and (242)planes of orthorhombic V 2O 5can be seen clearly.In addi-tion,the SAED pattern is composed of a series of diffraction rings,which indicates the polycrystalline nature of the material.The X-ray energy dispersive spectroscopy analysis of Al 0.16V 2O 5/RGO is shown in Figure 5.The even distribution of V,O,and Al confirms that homogeneous Al doping in V 2O 5is successful.In addition,C is dispersed uniformly in the whole sample,which indicates that the Al 0.16V 2O 5particles are loaded on the RGO sheets.X-ray photoelectron spectroscopy (XPS)patterns of the sam-ples are shown in Figure 6.The Al 2p peak of Al 0.14V 2O 5and Al 0.16V 2O 5/RGO is observed at a binding energy (BE)of 74.2eV (Figure 6e),which is consistent with that of Al 3+ions.[25]The V 2p 3/2spectra of all samples (Figure 6a–d)are dominatedbyFigure 4.a,b)TEM images of the Al 0.16V 2O 5/RGO nanocomposite.c)HRTEM and d)SAED pattern of the Al 0.16V 2O 5/RGOnanocomposite.Figure 5.EDS analysis of the Al 0.16V 2O 5/RGOnanocomposite.Figure 3.a)Basic structural unit of V 2O 5.b)Raman scattering patterns of the samples and graphene oxide.c)Enlarged views of the Raman scattering pat-terns.a main peak at BE =517.6eV,which is attributed to V 5+ions.[26]However,a small shoulder peak is observed at BE =516.3eV,which indicates the incomplete oxidation of the V 4+ions inthe VOC 2O 4precursor.[26]According to Smyrl et al.the electron-ic conductivity of V 2O 5is attributed to the small-polarontheory.The residence of V 4+ions in V 2O 5will produce more small polarons and thus increase the electronic conductivity.[4a]By fitting the XPS curves,we can see that Al 0.14V 2O 5andAl 0.16V 2O 5/RGO possess more V 4+ions than V 2O 5and V 2O 5/RGO.This implies that Al 3+doping may improve the electronic con-ductivity of V 2O 5.However,the measurement of electronic con-ductivity was unsuccessful because of the difficulty to preparedense pellets of these nanopowders.The C 1s XPS spectrum of V 2O 5/RGO and Al 0.16V 2O 5/RGO can be fitted by four components that can be assigned to the C =C/C ÀC bonds of graphene (BE =284.7eV),and different carbon-based functional groups,that is,hy-droxyl or epoxide (BE =286.4eV),carbonyl (BE =287.1eV),and carboxyl (BE =288.6eV;Figure 6f–g).[24]Compared with the C 1s XPS spectrum of GO (Figure h),the relative intensities of these functional groups decrease markedly,which suggests that GO is reduced successfully.Galvanostatic charge–discharge measurements were preformed in the voltage window of 2.0–4.0V.The representative voltage profiles of the samples at a current density of 300mA g À1(which corresponds to the 1C rate)are shown in Figure 7a.The initial dis-charge capacities of V 2O 5,Al 0.14V 2O 5,V 2O 5/RGO,and Al 0.16V 2O 5/RGO are 213,216,268,and 274mAh g À1,re-spectively.Clearly,the incorporation of RGO improves the Li capacities of V 2O 5and Al 0.14V 2O 5significantly.RGO is also known as a Li ion storage material.To identify the capacity contribution from RGO,the charge–discharge performance of RGO was measured (Figure 7b).An initial discharge capacity of 7mAh g À1is obtained in the voltage window of 2.0–4.0V.The discharge capacity remains at 16mAh g À1after 50cycles.Thus,the increased discharge capacity of V 2O 5/RGO and Al 0.16V 2O 5/RGO is not caused by the ca-pacity contribution from RGO but from its high elec-tronic conductivity,which improves the Li ion storage in the material.The discharge capacity of V 2O 5after 50cycles is 150mAh g À1,which corresponds to a ca-pacity retention of 70%.The capacity retention is im-proved to 75%(Al 0.14V 2O 5,162mAh g À1)and 79%(V 2O 5/RGO,213mAh g À1)by Al 3+doping or incorpo-ration with RGO (Figure 7c).Importantly,the capacity retention increases significantly to 90%for the mate-rial that contains both Al 3+dopants and RGO (Al 0.16V 2O 5/RGO).This material shows a high discharge capacity of 247mAh g À1after 50cycles.Rate-depen-dent cycling experiments show that Al 0.16V 2O 5/RGO exhibits the best rate performance of all the samples (Figure 7d)and it displays the highest discharge ca-pacity at each current rate.A high discharge capacity of 122mAh g À1is obtained at the 10C -pared with results reported in the literature,the as-prepared Al 0.16V 2O 5/RGO sample shows a better rate capability than cation-doped V 2O 5[4a,5,27]and better capacity retention than V 2O 5/RGO nanocomposites.[11a,b,17]This indicates that the syner-getic effects of Al 3+doping and graphene modification could improve both the rate capability and cycle stability of the V 2O 5nanomaterials.We have also studied the electrochemical performance of the Al x V 2O 5/RGO materials with different Al contents (x =0,0.16,0.32).The cycling performance (at the 1C rate)and rate capability of the materials are shown in Figure 8.The Al 0.32V 2O 5/RGO sample with the largest Al content showsthe Figure 6.a–d)V 2p XPS of V 2O 5,Al 0.16V 2O 5,V 2O 5/RGO,and Al 0.16V 2O 5;e)Al 2p XPS ofAl 0.14V 2O 5and Al 0.16V 2O 5/RGO;f–h)C 1s XPS of V 2O 5/RGO,Al 0.16V 2O 5/RGO,and GO.best capacity retention but it also shows the smallest dis-charge capacities.Even though the Al 3+ions could increase the structural stability of V 2O 5to improve the capacity reten-tion,too many Al ions in the interlayer space will block the in-sertion of Li ions.Therefore,an appropriate Al 3+content at around x =0.16is required to obtain the optimum electro-chemical performance.The excellent electrochemical performance of Al 0.16V 2O 5/RGO indicates that the combination of Al 3+doping and RGO modi-fication has significant advantages for the electrochemical per-formance of V 2O 5.To identify these advantages,we performed cyclic voltammetry (CV)and electrochemical impedance spec-troscopy (EIS)studies.The CVs of the V 2O 5,Al 0.14V 2O 5,V 2O 5/RGO,and Al 0.16V 2O 5/RGO samples at different voltage scan rates are shown in Figure 9.All samples show three pairs of redox peaks that are ascribed to a series of phase transforma-tions of Li x V 2O 5[19]as shown in Equations (2)–(4).$3:3=3:5V :a -V 2O 5þ0:5Li þþ0:5e À!e -Li 0:5V 2O 5ð2Þ$3:1=3:3V :e -Li 0:5V 2O 5þ0:5Li þþ0:5e À!d -Li 1:0V 2O 5ð3Þ$2:2=2:6V :d -Li 1:0V 2O 5þ1:0Li þþ1:0e À!g -Li 2:0V 2O 5ð4ÞThe voltage gap between the redox peaks (the so-called electrode polarization)is a measure of electrochemical kinetics of a specific electrode reaction.The electrode polarizations of the samples at a voltage scan rate of 80mV s À1are summar-ized in Table 2.The a /e redox couple shows the smallest elec-trode polarization,and the d /g couple shows the largest elec-trode polarization.The continu-ous increase of electrode polari-zation indicates that the electro-chemical barrier becomes in-creasingly higher with Li +inter-calation into the material.In addition,the electrode polariza-tions of Al 0.14V 2O 5are smaller than those of V 2O 5,which indi-cates that the electrochemical ki-netics of V 2O 5is improved by Al 3+doping.However,the elec-trochemical kinetics improved more significantly if RGO is in-corporated in the material.More importantly,the material that contains both Al 3+dopants and RGO (Al 0.16V 2O 5/RGO)exhibits the smallest electrode polarization,which indicates that this material has the best electrochemical ki-netics of all the samples.CV has been used to deter-mine the Li +diffusion coeffi-cients (D Li )of electrode materials according to Equation (5).[28]I p ¼2:69Â105n 3=2AD 1=2v 1=2C ð5Þin which n is the number of electrons per specific reaction,which is 1for Li +;A is the surface area of the electrode,which is 0.64cm 2in this work;C is the concentration of Li ions in the material,for example,C is 4.6 10À3mol cm À3at the peak-a /e in which the chemical composition of the material is Li 0.5V 2O 5;I p is the current intensity,and v is the scan rate.At rel-atively low scan rates,Li ions accumulate in the active material thus I p varies linearly with v 1/2(Figure 10).The lithium diffusion coefficients of the samples during the reduction process are listed in Table 2.The lithium diffusion coefficient of V 2O 5de-creases from peak-a /e to peak-e /d and then to peak-d /g .This indicates that the diffusion of Li +in Li x V 2O 5becomes increas-ingly difficult,which may be because of the puckering of the [VO 5]layers that accompanies the structuraltransformation.Figure 7.a)Charge–discharge profiles of the samples,b)cycling performance of RGO,c)cycling performance of the samples at a current density of 300mA g À1,and d)rate-dependent cycling performance of thesamples.However,Al 0.14V 2O 5shows higher lithium diffusion coefficients than those of undoped V 2O 5.Raman scattering has shown that the Al 3+ions not only strengthen the V ÀO bonds of the [VO 5]unit but also strengthen the linkage of the [VO 5]layers.There-fore,the puckering of [VO 5]layers may be inhibited to some extent by these Al 3+dopants,which thus facilitates the diffu-sion of lithium ions.In addition,the lithium diffusion coeffi-cients increase with the incorporation of RGO.It is known that the RGO sheets can act as an electronic conductive network in the electrode.The higher electronic conductivity of V 2O 5/RGO and Al 0.16V 2O 5/RGO will produce a stronger internal electricalfield.This will facilitate the trans-port of electrons and Li +ions and thus give rise to a higher lithium diffusion coefficient.[29]It is not surprising that Al 0.16V 2O 5/RGO shows the largest lithium diffusion coefficients of all of the samples because of the syner-getic effects of Al 3+doping and RGO modification.The Nyquist plots of the sam-ples at 2.0V in the first dis-charge are shown in Figure 11.All samples display two well-de-fined regions:a depressed semi-circle in the high-frequency region and a sloping line in the low-frequency region.These re-gions correspond to the charge-transfer reactions at the elec-trode–electrolyte interface and the Warburg impedance associ-ated with Li +diffusion in the materials,respectively.Here we use a widely accepted equiva-lent circuit to simulate the impe-dance spectra,in which R s is the internal resistance of the battery cell,R ct is the charge-transfer re-sistance at the electrode–electro-lyte interface,CPE is the double layer capacitance on the elec-trode surface,and W is the War-burg impedance.The charge-transfer resistance of Al 0.16V 2O 5/RGO is 59W ,which is the small-est of all the samples.Corre-spondingly,the charge-transfer resistances of V 2O 5,Al 0.14V 2O 5,and V 2O 5/RGO are 399,218,and 184W ,respectively.This further demonstrates that the material that contains both Al 3+ions and RGO exhibits the best electro-chemical kinetics in all samples.ConclusionsWe prepared a series of V 2O 5-based nanomaterials by a simple soft chemical method.Galvanostatic charge–discharge cycling shows that the Al 3+-doped V 2O 5/reduced graphene oxide (RGO)nanocomposite (Al 0.16V 2O 5/RGO)shows the highest dis-charge capacity,best rate capability,and excellent capacity re-tention in all samples.The superior electrochemical per-formance of Al 0.16V 2O 5/RGO can be attributed to the synergetic effects of Al 3+doping and RGO modification.First,the Al 3+ions reside in the interlayer space of the [VO 5]layers.TheseFigure 8.a)Cycling performance and b)rate capability of the Al x V 2O 5/RGO materials with different Al 3+contents (x =0,0.16,0.32).Figure 9.CV curves of the samples at different voltage scan rates.dopant ions strengthen both the V ÀO bonds of the [VO 5]unit and the linkage of the [VO 5]layers,which enhances the struc-tural stability of V 2O 5.Second,the RGO sheets construct an ef-fective network for electron transport,which increases the elec-tronic conductivity of the material.If the V 2O 5material is modi-fied by Al 3+ions and RGO,the above synergetic effects will im-prove the structural stability and electrochemical kinetics of the material,which leads to excellent electrochemical performance.Experimental SectionMaterial preparationGraphene oxide was synthesized from natural graphite by a modi-fied Hummers method.Typically,graphite powder (2.0g)wasadded to H 2SO 4(98wt %,8mL)mixed with K 2S 2O 8(1.67g)and P 2O 5(1.67g).The mixture was kept at 808C for 5h.Then the mixture was cooled to RT and diluted with deionized (DI)water (0.5L).The material was col-lected by filtration,washed with DI water several times,and dried under ambient condition.This preoxidized graphite was treated by H 2SO 4in iced water.Next,KMnO 4(15.0g)was added gradually with constant stir-ring at 358C for 2h.After dilution with water (0.7L),H 2O 2(30%,20mL)was added to the mixture,which was then washed with HCl and DI water.The graphene oxides were finally obtained after centrifugation,wash-ing with copious DI water,and drying.The powders were dispersed in DI water to form a 1g L À1solution by probe sonication.To prepare the Al 3+-doped V 2O 5/RGO nanocomposite,commercial V 2O 5powders (!99.0%,Sigma–Aldrich)and oxalic acid were dissolved in distilled water with con-stant stirring to form a pellucid blue solution.Al(NO 3)3·9H 2O (AR,Beijing Chemical Works,0.02g)and graphene oxides (44mL)were added dropwise,and the mixture was stirred for 4h.The suspension was then transferred into a freeze-drier to obtain a sponge-like precursor.The precursor was then treated at 3508C for 5h to obtain the final product.For comparison,three samples,V 2O 5nanoparticles,V 2O 5/RGO nanocomposite,and Al 3+-doped V 2O 5nanoparticles were prepared by modifying the above process.Material characterizationThe crystal structure of the materials was studied by XRD by using a Bruker AXS D8diffractometer with CuK a radiation.The morpholo-gy of the material was characterized by using a JSM-6700F scan-ning electron microscope.TEM and high-resolution transmission electron microscopy images were recorded by using an FEI Tacnai G2electron microscope equipped with an X-ray energy dispersive spectrometer (EDS,BRUKER AXS).Raman scattering was performed by using a RenishawinVia plus laser Raman spectrometer with a wavelength of 514nm.XPS was performed by using a VG scien-tific ESCALAB 250spectrometer using monochromic AlK a excita-tion.The relative amounts of metal elements (Al and V)of the sam-ples were analyzed by inductively coupled plasma atomic emission spectroscopy (PE,ICP-AES/1000).The amount of carbon in the samples was measured by using a Vario El III elemental analyzer.The electrochemical experiments were performed by using 2032-type coin cells with lithium foil as the anode electrode.To prepare the cathode electrode,a slurry mixture that contained 75wt %of active material,15wt %of super P conductive additive,and 10wt %of polyvinyl difluoride (PVDF)binder was pasted on an Al foil and dried in a vacuum oven at 1208C.Then the electrode was cut into a size of 8 8mm 2.The electrode loading of active materi-al was ~2.5mg cm À2.The electrolyte was a 1m LiPF 6solution dis-solved in ethylene carbonate (EC),dimethyl carbonate (DMC),and ethylmethyl carbonate (EMC)with EC/DMC/EMC =1:1:8v /v .The cathode and anode electrodes were separated by a Celgard 2320membrane.Galvanostatic charge–discharge cycling was performed by using a Land-2100automatic battery tester.CV and EIS were performed by using a Biologic VSP multichannel potentiostatic-gal-vanostatic system.The CV measurement was performed in the voltage window of 2.0–4.0V.The impedance spectra wererecord-Figure 10.Linear fitting of the I p versus v 1/2relationship of thesamples.Figure 11.Nyquist plots of the samples.Inset:equivalent circuit to fit the Nyquist plots.。

相关文档
最新文档