Conjugates of poly(DL-lactide-co-glycolide) on amino

合集下载

乳酸菌的乙醇耐受机制及其在食醋生产中的应用

乳酸菌的乙醇耐受机制及其在食醋生产中的应用

乳酸菌的乙醇耐受机制及其在食醋生产中的应用张霖,夏程程,王文悦,余帆,肖柯,易弛,樊鑫,朱晓青,肖俊锋,李琴,汪超,穆杨,周梦舟*(湖北工业大学发酵工程教育部重点实验室,工业发酵省部协同创新中心,湖北省食品发酵工程技术研究中心,湖北武汉430068)摘要:传统固态发酵食醋因其丰富的菌群在风味、品质等方面有着不可比拟的优势,乳酸菌作为固态食醋发酵中重要的功能微生物,广泛应用于食品、生物等领域。

然而,食醋在发酵过程中乳酸菌会受到高乙醇环境的胁迫,因此探究乳酸菌如何在高乙醇环境下生存具有积极意义。

该研究选择耐乙醇副干酪乳杆菌(PC-5)和不耐乙醇植物乳杆菌(PR-7)作为实验对比菌株,通过检测生物指标发现:在体积分数为8%的乙醇环境下,PC-5的多糖含量占比和细胞膜通透性分别提高至0.56%和75%,且显著高于PR-7。

此外,代谢途径中的己糖激酶(Hexokinase,HK)、6-磷酸果糖激酶(6-Phosphofructokinase,PFK)、丙酮酸激酶(Pyruvate Kinase,PK)的活性均高于PR-7,并分别提高至99.82、2.78、3.43 U/mg。

最后,在食醋不同发酵阶段中加入PC-5使其与酵母菌实现共同发酵,结果发现:共发酵食醋体系中多酚的生成和总抗氧化能力比单菌发酵分别提升了32.14%和55.56%。

因此乳酸菌对食醋发酵有着良好的促进作用,为乳酸菌参与食醋共发酵提供了良好的理论依据。

关键词:乳酸菌;细胞膜;乙醇胁迫;混菌发酵文章编号:1673-9078(2024)03-91-101 DOI: 10.13982/j.mfst.1673-9078.2024.3.0322Ethanol Tolerance Mechanism of Lactic Acid Bacteria and Its Application inVinegar FermentationZHANG Lin, XIA Chengcheng, WANG Wenyue, YU Fan, XIAO Ke, YI Chi, FAN Xin, ZHU Xiaoqing, XIAO Junfeng, LI Qin, WANG Chao, MU Yang, ZHOU Mengzhou*(Research Center of Food Fermentation Engineering and Technology of Hubei, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China)Abstract: Traditional solid-state fermented vinegar has superior flavor and quality due to its rich flora. As lactic acid bacteria are important functional microorganisms in solid-state vinegar fermentation, they are widely used in food-related and biological fields. However, lactic acid bacteria are stressed by high ethanol concentrations during vinegar fermentation.Therefore, how lactic acid bacteria survive at high ethanol concentrations should be explored. In this study, ethanol-tolerant Lactobacillus paracasei PC-5 and ethanol-intolerant Lactobacillus plantarum PR-7 were selected for comparison. Based on the biological indicators, the polysaccharide content and cell membrane permeability of PC-5 increased to 0.56% and 75%, 引文格式:张霖,夏程程,王文悦,等.乳酸菌的乙醇耐受机制及其在食醋生产中的应用[J] .现代食品科技,2024,40(3):91-101.ZHANG Lin, XIA Chengcheng, WANG Wenyue, et al. Ethanol tolerance mechanism of lactic acid bacteria and its application in vinegar fermentation [J] . Modern Food Science and Technology, 2024, 40(3): 91-101.收稿日期:2023-03-16基金项目:国家自然科学基金青年科学基金项目(31601455);湖北省粮食局科技创新项目(2017-58)作者简介:张霖(1997-),男,硕士研究生,研究方向:食品发酵与微生物,E-mail:通讯作者:周梦舟(1986-),男,博士,教授,研究方向:食品发酵与微生物,E-mail:91respectively, and were significantly higher than those of PR-7 in an ethanol environment with a volume fraction of 8%. PC-5 outperformed PR-7 in terms of the activities of hexokinase (HK), 6-phosphofructokinase (PFK), and pyruvate kinase (PK) in the metabolic pathway, with activities increasing to 99.80, 2.78, and 3.43 U/mg, respectively. Finally, PC-5 was added to the vinegar at different fermentation stages to achieve mixed culture co-fermentation with yeast. Polyphenol production and total antioxidant capacity were found to increase by 32.14% and 55.56%, respectively, compared with those of single culture bacteria fermentation. Therefore, lactic acid bacteria had positive stimulation effects on vinegar fermentation. Such findings provide a good theoretical basis for the use of lactic acid bacteria in mixed culture fermentation of vinegar.Key words: lactic acid bacteria; cell membrane; ethanol stress; mixed culture fermentation食醋作为酸性调味品在我国有着悠久的酿造历史,不仅富含营养,而且具有降血糖、降血脂等多种有益于人体的功能,其发酵方式主要分为传统固态发酵和液态发酵。

食用菌多糖的提取和纯化英语

食用菌多糖的提取和纯化英语

食用菌多糖的提取和纯化英语Extraction and Purification of Edible Fungi Polysaccharides.Edible fungi, known for their nutritional and medicinal properties, have gained significant attention in recent years. Among their various bioactive components, polysaccharides stand out due to their potential health benefits. Extraction and purification of these polysaccharides is crucial for their effective utilization in food, pharmaceutical, and cosmetic industries.Extraction Methods.The extraction of polysaccharides from edible fungi typically involves two main steps: solvent extraction and isolation. Common solvents used for polysaccharide extraction include water, dilute acids, and alkaline solutions. Water extraction is the most widely used method due to its simplicity and effectiveness. However, for somefungi species, dilute acid or alkaline extraction may be necessary to disrupt the cell wall and release the polysaccharides.During the extraction process, temperature, time, and solvent-to-solid ratio are critical parameters. Generally, higher temperatures and longer extraction times enhance the yield of polysaccharides. However, excessive temperatures can lead to degradation of the polysaccharides, thus affecting their biological activities. Therefore, it is essential to optimize these parameters for each specific fungi species.Purification Methods.After extraction, the crude polysaccharide mixture often contains impurities such as proteins, lipids, and small molecules. Purification is necessary to obtain a pure polysaccharide fraction with high biological activity. Common purification methods include precipitation, chromatography, and dialysis.Precipitation is a simple and effective method to remove proteins and other impurities. By adjusting the pHor adding specific chemicals, the polysaccharides can be precipitated while the impurities remain in the supernatant. Chromatography, especially anion-exchange and gelfiltration chromatography, is widely used to further purify the polysaccharides. These methods allow for the separation of polysaccharides based on their charge and molecular size, respectively.Dialysis is another purification technique thatinvolves the diffusion of smaller molecules through a semi-permeable membrane. This method is particularly useful for removing small molecules and salts from the polysaccharide solution.Applications of Edible Fungi Polysaccharides.The purified polysaccharides from edible fungi exhibita range of biological activities, including antioxidant, antitumor, immunomodulatory, and hypoglycemic effects. These properties make them valuable ingredients infunctional foods, nutraceuticals, and pharmaceutical formulations.In functional foods, edible fungi polysaccharides can enhance the nutritional value and provide health benefits to consumers. For example, they can be added to beverages, yogurts, and cereals to improve their nutritional profile and functional properties.In the pharmaceutical industry, edible fungi polysaccharides are being investigated for their potential in treating various diseases such as cancer, diabetes, and immune disorders. The purified polysaccharides can be formulated into tablets, capsules, or injectable formulations for therapeutic use.Conclusion.The extraction and purification of polysaccharides from edible fungi is a crucial step in harnessing their numerous biological activities. By optimizing extraction conditions and employing suitable purification methods, it is possibleto obtain pure polysaccharides with high biologicalactivity. These polysaccharides find applications invarious industries, including food, pharmaceutical, and cosmetics, offering health benefits to consumers and therapeutic potential for treating various diseases.(Note: This article is a simplified overview of the extraction and purification of edible fungi polysaccharides. For a more detailed and comprehensive understanding, it is recommended to consult research articles and technical reports in this field.)。

酵母多糖

酵母多糖

酵母多糖1、酵母多糖就分子量而论,有从0.5万个分子组成的到超过106个的多糖。

由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖才称为多糖。

比10个少的短链的称为寡糖。

不过,就糖链而论即使是寡糖,在寡糖上结合了蛋白质和脂类的,就整个分子而论,如果是属于高分子,则从广义上来看也属于多糖,因此特称为复合多糖(conjugated polysaccharide,complex poly-saccharide)或复合糖质(glycoconjugate)(糖蛋白、糖脂类、蛋白多糖)。

2、酵母多糖的生物学功能通常具有贮藏生物能〔如:淀粉、糖原、菊粉(inulin)〕和支持结构〔如:纤维素、几丁质(chitin)、粘多糖〕的作用。

但是,细胞膜和细胞壁的多糖成份不仅是支持物质,而且还直接参与细胞的分裂过程,在许多情况下成为细胞和细胞,细胞和病毒,细胞和抗体等相互识别结构的活性部位。

多糖无甜味,在水中不能形成真溶液,只能形成胶体,无还原性,无变旋性,但有旋光性。

3、多糖的分类均一多糖:由一种单糖分子缩合而成的多糖,叫做均一多糖。

常见的有:淀粉、糖原、纤维素等。

不均一多糖:有不同的单糖分子缩合而成的多糖,叫做不均一多糖。

常见的有:透明质酸、硫酸软骨素等。

4、酵母多糖生物学特性某些多糖,如纤维素和几丁质,可构成植物或动物骨架。

淀粉和糖原等多糖可作为生物体储存能量的物质。

不均一多糖通过共价键与蛋白质构成蛋白聚糖发挥生物学功能,如作为机体润滑剂、识别外来组织的细胞、血型物质的基本成分等。

多糖类化合物广泛存在于动物细胞膜和植物、微生物的细胞壁中,是由醛基和酮基通过苷键连接的高分子聚合物,也是构成生命的四大基本物质之一。

多糖是存在于灵芝、香菇、酵母等真菌类生物中的一种功能因子;酵母多糖:侧重于抗辐射(电脑族),抗病毒(增强免疫力),特殊环境职业者;清肠排毒(清除体内毒素和垃圾),瘦身族主推酵母葡聚糖,配合酵母B族维生素服用。

羧甲基纤维素高甲氧基酸盐

羧甲基纤维素高甲氧基酸盐

羧甲基纤维素高甲氧基酸盐1. 简介羧甲基纤维素高甲氧基酸盐(Carboxymethyl Cellulose Glycol Ethers, CMC-GE)是一类重要的纤维素衍生物,广泛应用于日用化学品、食品、医药、农药等领域。

作为一种天然高分子聚合物,纤维素在酸性条件下与氯乙酸钠反应,可得到羧甲基纤维素(Carboxymethyl Cellulose, CMC)。

进一步通过羟乙基化反应,可得到羧甲基纤维素高甲氧基酸盐。

2. 结构与性质羧甲基纤维素高甲氧基酸盐的结构特点是在纤维素分子链上引入了羧甲基和羟乙基。

这些官能团的存在使得CMC-GE具有优异的溶解性、增稠性、稳定性和生物降解性。

同时,其分子结构的可调性使得CMC-GE在不同领域具有广泛的应用前景。

3. 应用3.1 日用化学品在日用化学品领域,CMC-GE作为表面活性剂、增稠剂和稳定剂,广泛应用于洗发水、沐浴露、护肤品等。

其优异的增稠性能可提高产品的粘度,从而增加泡沫和稳定性。

同时,CMC-GE的生物降解性使其成为环保型日用品的首选原料。

3.2 食品在食品工业中,CMC-GE可用作稳定剂、增稠剂和乳化剂。

其良好的乳化性能使得CMC-GE在冰淇淋、饮料、巧克力等食品中得到广泛应用。

此外,CMC-GE还具有保水性,可用作面包改良剂,提高面包的柔软度和保质期。

3.3 医药CMC-GE在医药领域中的应用主要包括缓控释制剂、注射剂溶剂和生物医学材料等。

其优异的溶解性能和生物相容性使得CMC-GE成为医药制品的重要原料。

3.4 农药在农药领域,CMC-GE作为助剂,可以提高农药的分散性、附着性和渗透性。

从而提高农药的利用率和防治效果,减少农药对环境的影响。

4. 发展趋势随着人们环保意识的提高和绿色化学的不断发展,羧甲基纤维素高甲氧基酸盐以其优异的性能和环保特点,在各个领域中的应用将越来越广泛。

未来,研究人员将继续开发CMC-GE新型衍生物,以满足不同领域对高性能材料的需求。

生物化学英语单词读音

生物化学英语单词读音

Chapter 2 Proteins 第二章 蛋白质
Alanine 丙氨酸 Amino acids 氨基酸 Arginine 精氨酸 Asparagine 天冬酰胺 Aspartic acid 天冬氨酸 Cysteine 半胱氨酸 Glutamic acid 谷氨酸 Glutamine 谷氨酰胺 Glutathione 谷胱甘肽 Glycine 甘氨酸 Hemoglobin 血红蛋白 Histidine 组氨酸 Isoleucine 异亮氨酸 Leucine 亮氨酸 Lysine 赖氨酸 Methionine 蛋氨酸 Myoglobin 肌红蛋白 Peptide 肽 Phenylalanine 苯丙氨酸 Primary structure 一级结构 Proline 脯氨酸 Proteome 蛋白质组 Proteomics 蛋白质组学 Quaternary structure 四级结构 Secondary structure 二级结构 Serine 丝氨酸 Tertiary structure 三级结构 Threonine 苏氨酸 Tryptophan 色氨酸 Tyrosine 酪氨酸 Valine 缬氨酸
Adenine 腺嘌呤 Adenosine 腺苷 Adenosine monophosphate 腺苷一磷酸 Chromatin 染色质 Cytosine 胞嘧啶 Cytidine 胞苷 Deoxyribonucleic acid 脱氧核糖核酸 Double helix 双螺旋 Genome 基因组 Genomics 基因组学 Guanine 鸟嘌呤 Guanosine 鸟苷 Messenger RNA 信使RNA Nucleoside triphosphate 核苷三磷酸 Nucleosome 核小体 Purine 嘌呤 Pyrimidine 嘧啶 Ribonucleic acid 核糖核酸 Ribosomal RNA 核糖体RNA Ribozyme 核酶 Transfer RNA 转运RNA Uracil 尿嘧啶 Uridine 尿苷

微生物培养基名称英汉对照-

微生物培养基名称英汉对照-

微生物培养基名称英汉对照大肠杆菌显色培养基E.Coli Chromogenic Medium大肠菌群显色培养基Coliform Chromogenic Medium大肠杆菌/大肠菌群显色培养基E.Coli/Coliform Chromogenic Medium细菌总数显色培养基Total Genes Chromogenic MediumO157显色培养基O157 Chromogenic Medium沙门氏菌显色培养基Salmonella Chromogenic Medium李氏菌显色培养基Listera Chromogenic Medium金黄色葡萄球显色培养基Staphylococcus Chromogenic Medium霉菌和酵母菌显色培养基Mould and Yeast Chromogenic Medium弧菌显色培养基Vibrio Chromogenic Medium坂崎杆菌显色培养基Enterobacter sakazakii Chromogenic Medium平板计数琼脂〔PCA〕Plate Count Agar月桂基硫酸盐胰蛋白胨肉汤〔LST〕Lauryl Sulfate Tryptose Broth4-甲基伞形酮-D-葡萄糖醛酸苷〔MUG〕煌绿乳糖胆盐肉汤〔BGLB〕Brilliant Green Lactose Bile BroghEC 肉汤E.Coli Broth新生霉素A伊红美蓝琼脂(EMB)Eosin-Methylene Blue Agar营养肉汤(NB)Nutrient Broth营养琼脂(NA)Nutrient Agar乳糖胆盐发酵培养基Lactose Bile Broth乳糖复发酵培养基Lactose Broth去氧胆酸盐琼脂Desoxycholate Lactose AgarMR-VP培养基Methyl Red Voges Proskauer Broth 结晶紫中性红胆盐琼脂(VRBA) Violet Red Bile Agar西蒙氏枸橼酸盐琼脂Simmons Citrate Agar肠道菌计数琼脂(VRBDA)Violet Red Bile Dextrose Agar菌种储存培养基Strain Store Medium品红亚硫酸钠琼脂Fuchsin Basic Sodium Sulfite Agar 乳糖蛋白胨培养液Lactose Peptone BrothCary-Blair 氏运送培养基Cary-Blair Transport Medium山梨酸麦康凯琼脂基础Sorbitol Maconkey Agar Base噻孢霉素A1%亚碲酸钾溶液亮绿乳糖培养基Brilliant Green Lactose Medium肠道菌增菌肉汤(EE) Enterobacteria Enrichment Bro%) 胰蛋白胨大豆肉汤Trypticase (Tryptic) Soy Broth Baird-Parker琼脂基础Baird-Parker Agar Base亚碲酸盐卵黄增菌液Egg-Yolk Tellurite Emulsion胰蛋白胨大豆肉汤Trypticase (Tryptic) Soy Broth Baird-Parker琼脂基础Baird-Parker Agar Base亚碲酸盐卵黄增菌液Egg-Yolk Tellurite Emulsion兔血浆Freeze-Dried PlasmaDNA酶琼脂DNase Agar7.5%氯化钠肉汤7.5% Sodium Chloride Broth一般肉汤培养基Broth Medium亚碲酸钠肉汤培养基基础Sodium Tellurite Broth Base葡萄球菌增菌肉汤Staphylococcus Enrichment Broth葡萄球菌选择性琼脂Staphylococcus Selective AgarEEM培养基EEM medium甘露醇高盐琼脂Manitol Salt Agar肠毒素产毒培养基TMP琼脂培养基缓冲蛋白胨水〔BPW〕Buffered Peptone Water亚硒酸盐胱氨酸增菌液〔SC〕Selenite Cystine Broth四硫磺酸盐煌绿增菌液基础(TTB)Tetrathionate Broth Base胆硫乳琼脂〔DHL〕Deoxycholate Hydrogen Sulfide Lactose Agar 三糖铁琼脂〔TSI〕Triple Sugar Iron AgarSS 琼脂Salmonella Shigella Agar亚硫酸铋琼脂〔BS〕Bismuth Sulfite Agar亚利桑那菌琼脂〔SA〕Salmonella Arizona Agar氯化镁孔雀绿肉汤〔MM,RV Medium〕Rappaport-Vassiliadis MdeiumHE 琼脂〔HE〕Hekton Enteric Agar赖氨酸脱羧酶培养基Lysine-decarboxylase Test Broth尿素酶琼脂基础Urease Agar Base40%尿素水40%Urea WaterV-P 半固体琼脂Voges-Proskauer Semisolid Agar吲哚培养基Indole MediumKovacs氏靛基质试剂盒硝酸盐氰化钾培养基基础Nitrate(KCN) Broth Base丙二酸钠培养基Malonate Broth卫矛醇半固体琼脂Dulcitol Semisolid AgarGN 增菌液Gram Negative Enrichment BrothXLD 培养基Xylose Lysine Desoxycholate MediumWS 琼脂WS Salmonella Agar葡萄糖铵培养基Ammonium Dextrose Medium葡萄糖半固体培养基Dextrose Semisolid Medium动力-吲哚-尿素培养基基础(MIU) Motility Indol Urea Medium Base 亚硒酸盐增菌液(SF)Selenite Enrichment Medium醋酸铅培养基Lead Acetate MediumSIM培养基Hydrogen Sulfide Indole Motility Medium乳糖肉汤Lactose BrothEF-18 琼脂EF-18 Agar新生霉素碱性蛋白胨水Alkaline Peptone WaterTCBS琼脂Thiosulfate Citrate Bile Salts Sucrose Agar氯化钠多粘菌素B肉汤基础(SCPB)Sodium Chloride Polymyxin Broth Base多粘菌素B庆大霉素琼脂Gentamycin Agar四号琼脂基础No.4Agar Base我妻氏培养基基础Wagstsuma Agar Base60%/L氯化钠蛋白胨肉汤60%/L NaCl Peptone Water氯化钠三糖铁NaCl Triple Sugar Iron Agar胰胨大豆琼脂斜面〔TSA〕Trypcasein Soy Agar42℃生长培养基42℃growth MediumO/F培养基(HLGB)O/F Medium氯化钠结晶紫增菌液Sodium Chloride Violet purple Enrichment Broth 氯化钠蔗糖琼脂Sodium Chloride Sucrose Agar嗜盐菌选择性琼脂氯化钠血琼脂基础Sodium Chloride Blood Agar Base霍乱双糖铁琼脂(KIA)副溶血性弧菌琼脂副溶血性弧菌增菌液T1N1 琼脂T1N1 AgarT1N0 肉汤T1N0 BrothT1N3 肉汤T1N3 Broth精氨酸葡萄糖斜面琼脂Arginine Dextrose Agar精氨酸双水解酶试验用培养基(AD)mCPC 培养基mCPC MediummCPC培养基添加剂mCPC Medium Supplement察氏琼脂Czapek Dox Agar产毒培养基Toxin-Producing Medium马铃薯葡萄糖琼脂(PDA)Potato Dextrose Agar高盐察氏琼脂Salt Czapek Dox Agar沙氏琼脂培养基Sabouraud's Agar改良沙氏琼脂培养基Sabouraud's Agar,ModifiedCorn Meat Medium孟加拉红培养基Rose Bengal Medium菌种培养基Strain Medium(for B.Cereus)四环素检定琼脂Tetracyline Examination Agar亚硫酸盐琼脂Sulfite Agar亚硫酸铁琼脂Iron Sulfite Agar布氏肉汤Brucella Broth改良Skirrow氏琼脂基础Skirrow Agar Base,Modified改良Camp-BAP氏琼脂基础Camp-BAP Agar Base,ModifiedTTC 琼脂基础TTC Agar Base甘氨酸培养基Glycine Medium快速硫化氢试验琼脂H2S Test MediumDNA酶甲基绿琼脂基础DNase Agar Base with Methyl Green马尿酸钠培养基快速硫化氢(H2S)试验琼脂CCDA基础CCDA BaseCCDA添加剂CCDA SupplementCampy-Cefex 琼脂基础Campy-Cefex Agar BaseCampy-Cefex 添加剂Campy-Cefex Supplement甘露醇卵黄多粘菌素琼脂基础〔MYP〕Mannitol-Egg-Yolk-Polymyxin Agar Base 胰酪胨大豆多粘菌素肉汤基础Trypticase-Soy-Polymyxin Broth Base 改良V-P培养基Medium,Modified胰酪胨大豆羊血琼脂基础Trypticase Soy Sheep Blood Agar BaseCasein Agar酚红葡萄糖肉汤硝酸盐肉汤动力-硝盐培养基木糖-明胶培养基胰月示-亚硫酸盐-环丝氨酸琼脂基础(TSC)Tryptose Sulfite Cycloserine Agar Base D-环丝氨酸产芽孢肉汤Sporulation Broth亚硫酸盐-多粘菌素-磺胺嘧啶琼脂基础Sulfite-Polymyxin-Sulphadiazine Agar Base 多粘菌素B多价蛋白胨-酵母膏(PY) 培养基Poly Peptone Yeast Extract Medium疱肉培养基基础Cooked Meat Medium Base疱肉牛肉粒Dried Meat Particle液体硫乙醇酸盐培养基Thiolglycollate Medium(Agar-free)卵黄琼脂培养基基础Egg Yolk Agar Base动力-硝酸盐培养基含铁牛奶培养基葡萄糖肉浸液肉汤Dextrose Meat Infusion Broth匹克匹克氏肉汤基础APick's Broth BaseA肉浸液肉汤培养基Meat Infusion Broth叠氮钠葡萄糖肉汤Aziode Dextrose Broth乙基紫叠氮钠肉汤Ethyl Violet Aziode BrothKF链球菌琼脂KF Streptococcus AgarLIM培养基LIM MediumCIN-1I培养基基础Cepulodin Irgasan Novobiocin Agar改良Y培养基Agar,Modified改良磷酸盐缓冲液PSB Phosphate Saline Buffer,Modified 0.5%葡萄糖肉汤培养基0.5% Dextrose Broth溴甲酚紫葡萄糖蛋白胨水培养基Glucase Peptone Water Medium 改良番茄汁培养基Tomato Juice Agar,Modified改良MC培养基Chalmers Agar ,ModifiedMRS 琼脂基础MRS Agar BaseLBS 琼脂LBS agar胰酪胨大豆酵母浸膏肉汤(TSB-YE) Trypticase Soy-Yeast Extract Broth 萘啶酮酸吖啶黄素放线菌酮胰酪胨大豆酵母浸膏琼脂(TSA-YE) Trypticase Soy-Yeast Extract Agar 李氏菌选择性培养基基础(MMA) Modified Mcbride Agar Base复达欣糖发酵基础肉汤Bromcresol Purple Broth Base李氏菌增菌肉汤(LB1,LB2)基础Listeria Enrichment Broth Base萘啶酮酸萘啶酮酸吖啶黄素吖啶黄素七叶苷培养基Esculin Medium半固体动力培养基Motility Test Medium(Semisolid)牛津琼脂(OXA)基础Oxford Agar Base多粘菌素E放线菌酮溴甲酚紫葡萄糖肉汤Bromcresol Purple Dextrose Broth 酸性肉汤Acid Borth麦芽浸膏汤Malt Extract Broth锰盐营养琼脂Mn2+Nutrient Agar疱肉培养基基础Cooked Meat Medium Base卵黄琼脂基础Egg Yolk Agar Base疱肉牛肉粒Dried Meat ParticleUBA培养基UBA MediumNBB培养基NBB AgarMRS 琼脂基础MRS Agar BaseRaka-Ray 培养基Raka-Ray MediumSCDLP液体培养基Soya Casein Digest Lecithin Polysorbate Broth 卵磷脂吐温80营养琼脂Lecithin Tween 80 Nutrient Agar乙酰胺琼脂Acetamide Agar十六烷三甲基溴化铵琼脂Cetrimide Agar甘露醇发酵培养基Mannitol Medium明胶培养基基础Gelatin Medium Base绿脓菌素测定培养基King Medium A乳糖胆盐培养基Lactose Bile MediumTTC卵磷脂-吐温80-营养琼脂TTC Lecithin Tween80 Nutrient Agar液体硫乙醇酸盐培养基Thioglycollate Medium液体硫乙醇酸盐培养基〔不含琼脂〕Thioglycollate Medium (without Agar)真菌培养基Fungi MediumYPD琼脂Yeast Peptone Dextrose Agar抗生素检定培养基1号〔高PH〕Antibiotic Agar No.1抗生素检定培养基1号〔低PH〕Antibiotic Agar No.1抗生素检定培养基2号〔高PH〕Antibiotic Agar No.2抗生素检定培养基2号〔低PH〕Antibiotic Agar No.2抗生素检定培养基3号Antibiotic Agar No.3胆盐乳糖增菌液Bile Lactose Broth玫瑰红钠琼脂Rose Bengal Medium0.5%葡萄糖肉汤培养基Broth Medium肉汤琼脂培养基Broth Agar Medium一般琼脂斜面培养基(Ph8.0-8.2)甘露醇高盐琼脂Manitol Salt Agar酪胨琼脂Peptone from Casein Agar葡萄糖蛋白胨培养基Dextrose Peptone Medium抗生素检定培养基4号Antibiotic Agar No.4抗生素检定培养基6号Antibiotic Agar No.6抗生素检定培养基7号Antibiotic Agar No.7抗生素检定培养基8号Antibiotic Agar No.8卵黄高盐琼脂基础Egg-Yolk Salt Agar Base抗生素5号Antibiotic No.5MUG培养基MUG Medium真菌琼脂培养基Fungi Agar Medium磷酸盐葡萄糖胨水培养基Phosphate Glucose Peptone Water Medium 甲基红批示剂盒胰蛋白胨水培养基Peptone Water MediumKovacs氏靛基质试剂盒硝酸盐胨水培养基Nitrate Saline Peptone Water Medium 硝酸盐还原试剂盒抗生素检定培养基3号Antibiotic Agar No.3改良马丁液体培养基Martin Broth ,Modified改良马丁琼脂培养基Martin Agar Medium ,Modified庆大霉素琼脂Gentamycin AgarMH 肉汤〔MHB〕Mueller-Hinton BrothMH 琼脂〔MHA〕Mueller-Hinton Agar中国蓝琼脂China Blue Agar克氏双糖铁琼脂Kligler Iron Agar血液琼脂基础Blood Agar Base血液增菌培养基Blood Enrichment Medium氯化三苯四氮唑-沙保罗培养基TTC-Sabourand's Medium麦康凯琼脂Maconkey Agar麦康凯琼脂2号Maconkey Agar No.2麦康凯琼脂3号Maconkey Agar No.3碱性琼脂平板Alkaline Agar碱性胆盐琼脂Alkaline Bile Salt Agar胰膘肉汤基础Tryptose Broth Base豆粉琼脂〔血琼脂基础〕Blood Agar Base赫氏培养基赫氏增菌液溶血琼脂基础亚硫酸钠琼脂Sulfite Agar龙胆紫血液琼脂基础叠、红、碲、铜琼脂硫酸十二烷基钠琼脂改良罗氏培养基基础L-G medium Base,modified酸性L-G培养基基础碱性L-G培养基基础PNB〔对硝基苯甲酸〕TCH〔噻吩-2-羧酸酰肼〕戊烷脒多粘菌素B琼脂基础碳酸氢钠琼脂基础指示选择性培养基基础PLET 琼脂基础戊烷脒炭疽杆菌疫苗炭疽杆菌沉淀血清炭疽杆菌噬菌体炭疽杆菌诊断抗原青霉素敏感纸片印度墨汁碘伏〔液体〕溶菌酶美蓝〔亚甲基蓝〕水杨素醋酸盐琼脂Acetate Agar气单胞菌鉴别琼脂Aeromonas Differential Agar厌氧菌琼脂Anaerobic AgarAPT 琼脂APT Agar曲霉素琼脂基础(AFPA)腊样芽胞杆菌选择琼脂基础Bacilus Cereus Selective Agar Base 去氧胆酸盐枸椽酸盐乳糖蔗糖琼脂DCLS Agar去氧胆酸盐枸椽酸盐琼脂Desoxycholate Citrate AgarFraser 培养基Fraser MediumFraser 添加剂Fraser SupplementUVM培养基UVM MediumUVM 添加剂1UVM Supplement1UVM 添加剂2UVM Supplement2假单胞分开琼脂Pseudomonas Isolation Agar假单胞分开肉汤Pseudomonas Isolation Broth水琼脂培养基Water Agar肌醇测定培养基Inositol Assay Broth烟酸测定培养基Vitamin PP Assay Broth叶酸测定培养基Folic Acid Assay Medium泛酸测定培养基Pantothenic Acid Assay Medium 游离生物素测定培养基Free Biotin Assay Medium气单胞菌培养基基础Aeromonas Medium Base(Ryan) 气单胞菌培养基添加剂Ampicillin Selective Supplement LES Endo 琼脂Endo Agar,LES支原体培养基基础Mycoplasma Broth Base梭菌琼脂Clostridium Agar梭菌鉴别肉汤Clostridium Differential Broth梭菌选择琼脂Clostridium Selective Agar胰蛋白胨大豆琼脂Tryptose Soya Agar布氏菌选择性培养基Brucella Selective Medium细菌蛋白胨Peptone Bacterial胰蛋白胨Tryptone酪蛋白胨Peptone from Casein植物〔大豆〕蛋白胨Peptone from soy月示胨Proteose peptone多价蛋白胨Polypeptone特别蛋白胨Peptone Special牛心浸粉Beef Heart Infusion肝浸粉Liver Infusion牛肉浸粉Beef Extract Powder酵母浸粉Yeast Extract Powder酸水解酪蛋白Casein acid Hydrolysate 细菌琼脂粉Bacterial Agar牛胆盐Bile Salt三号胆盐No. 3 Bile Salt革兰氏染色液试剂盒Kovacs氏靛基质试剂盒甲基红指示剂盒V-P 试剂盒硝酸盐还原试剂盒1%亚碲酸钾溶液萋- 尼氏染色液Ziehl - neelsen金胺O染色液瑞氏染色液。

聚乳酸-羟基乙酸-三亚甲基碳酸酯三元共聚物中单体残留的测定

聚乳酸-羟基乙酸-三亚甲基碳酸酯三元共聚物中单体残留的测定

聚乳酸-羟基乙酸-三亚甲基碳酸酯三元共聚物中单体残留的测定马丽霞;朱爱臣;董浩;刘阳;王宪朋;王勤;王传栋【摘要】建立了聚乳酸-羟基乙酸-三亚甲基碳酸酯(PLGA-TMC)三元共聚物中丙交酯(DL-LA)、乙交酯(GA)、三亚甲基碳酸酯(TMC)三种单体残留测定的气相色谱法.采用GsBP-5毛细管色谱柱(30.0 m×0.32 mm, 0.25 μm),氢离子火焰检测器(FID),进样口温度250℃,检测器温度300℃,柱温135℃,分流比为10∶1.结果显示,DL-LA、GA和TMC分离良好,精密度试验RSD值均不大于2.0%,三种单体在相应范围内线性关系良好,相关系数均在0.999以上,平均加样回收率均在97.17%~101.71%,且RSD值均不大于5.0%.该方法专属性强、准确度高,可用于PLGA-TMC三元共聚物中DL-LA、GA、TMC三种单体的定量检测,更好地控制PLGA-TMC的质量.%To establish a method of determination of residual DL-lactide (DL-LA), glycolide (GA) and 1,3-trimethylene carbonate (TMC) in DL-lactide-glycolide-trimethylene carbonate terpolymers (PLGA-TMC) by gas chromatography.GsBP-5 capillary column (30 m×0.32 mm, 0.25 μm), and FID detecte r were used.The inlet temperature was set 250℃, the temperature of FID was 300℃, the column temperature was kept at 135℃, and the split ratio was 10:1.The results showed that DL-LA, GA and TMC were well separated, the relative standard deviations (RSDs) were all less than 2.0%, each monomer had a good linear relationship in the appropriate concentration range, and the correlation coefficient was not less than 0.999, the average recoveries were 97.17%~101.71%, and the RSDs were less than 5.0%.The method has good specificity and highaccuracy, and can be used in the determination of residual monomers and the quality control of PLGA-TMC.【期刊名称】《生物医学工程研究》【年(卷),期】2017(036)003【总页数】4页(P268-270,276)【关键词】丙交酯;乙交酯;三亚甲基碳酸酯;单体残留;气相色谱法【作者】马丽霞;朱爱臣;董浩;刘阳;王宪朋;王勤;王传栋【作者单位】山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101;山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101;山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101;山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101;山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101;山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101;山东省药学科学院,山东省医用高分子材料重点实验室,济南 250101【正文语种】中文【中图分类】R3181 引言聚乳酸是一种生物可降解的人工合成高分子聚合物,因其具有良好的生物相容性和可降解性,在体内无蓄积[1-2],而广泛应用于骨科植入材料[3]、手术防粘连[4-5]、手术缝合线、缓控释药物等医学领域[6-8]。

源自罗伊氏乳杆菌的活性物质及其潜在应用

源自罗伊氏乳杆菌的活性物质及其潜在应用

源自罗伊氏乳杆菌的活性物质及其潜在应用田兆红㊀(玉林市食品药品检验检测中心,广西玉林537000)摘要㊀罗伊氏乳杆菌(Lactobacillus reuteri )属于乳酸菌,是人类和动物胃肠道中乳杆菌属的主要物种之一㊂综述来源于罗伊氏乳杆菌的活性代谢物,包括其在不同培养基中的培养物㊁代谢物㊁非活菌株和无细胞上清液㊂从益生菌㊁医药应用㊁食物保存3个方面系统分析罗伊氏乳杆菌活性代谢产物的应用,为源于罗伊氏乳杆菌的活性物质的潜在应用研究提供参考㊂关键词㊀罗伊氏乳杆菌;活性代谢物;应用中图分类号㊀TS 201.3㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2024)01-0001-06doi :10.3969/j.issn.0517-6611.2024.01.001㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):Active Substances from Lactobacillus reuteri and Their Potential ApplicationsTIAN Zhao-hong㊀(Yulin Food and Drug Inspection and Testing Center,Yulin,Guangxi 537000)Abstract ㊀Lactobacillus reuteri belongs to the lactic acid bacteria and is one of the main species of Lactobacillus in the human and animal gas-trointestinal tract.This paper reviews the active metabolites of Lactobacillus reuteri ,including their cultures,metabolites,inactive strains,and cell -free supernatants in different media,systematically analyzes the application of active metabolites of Lactobacillus reuteri from three as-pects:probiotics,pharmaceutical applications,and food preservation,so as to provide reference for the potential application research of active substances derived from Lactobacillus reuteri .Key words ㊀Lactobacillus reuteri ;Active metabolite;Application基金项目㊀广西科技基地和人才专项(桂科AD22080002)㊂作者简介㊀田兆红(1968 ),女,广西玉林人,副主任药师,从事食品药品质量分析研究㊂收稿日期㊀2023-01-02㊀㊀罗伊氏乳杆菌(Lactobacillus reuteri )属于乳酸菌,是人类和动物胃肠道中乳杆菌属的主要物种之一,属于乳杆菌的专性异源发酵群,可以基于磷酸酮酶的代谢途径来利用碳水化合物,可以单独发酵葡萄糖,并产生最终产物乳酸㊁乙醇和CO 2㊂1965年Reuter [1]将该物种重新分类为 发酵乳杆菌生物型II ㊂1980年Kandler 等[2]发现了罗伊氏乳杆菌和其他发酵乳杆菌生物型之间的显著差异,并最终将其确定为一个独特的物种,并以发现者Gerhard Reuter 的名字将该物种命名为 Reuteri ㊂罗伊氏乳杆菌是唯一一种在各种动物肠道中构成18种主要乳酸杆菌 主要成分 的细菌[3]㊂在动物和人类中,罗氏乳杆菌可以在出生和哺乳过程中通过乳腺导管从母亲传播给新生动物或婴儿㊂然而不同来源的罗氏乳杆菌菌株表现出宿主特异性定殖特征㊂罗伊氏乳杆菌菌株为革兰氏阳性,其细胞是略微不规则的弯曲棒,末端呈圆形,大小通常为(0.7~1.0)μm ˑ(2.0~3.0)μm [4]㊂该研究以物质为线索,回顾了来源于罗氏乳杆菌的活性物质及其应用,包括罗伊氏菌素(Reuterin㊁Reutericin㊁Reutericyclin)㊁胞外多糖㊁有机酸和菌株(活菌和非活菌)等,以期为源于罗伊氏乳杆菌的活性物质的潜在应用研究提供参考㊂1㊀来源于罗伊氏乳杆菌活性物质1.1㊀Reuterin ㊀Reuterin,即3-乳醛(3-HPA),由Geoffrey 于1742年首次观察到,由Nef [5]首次描述㊂直到1910年,Voisenet [6]发现,在甘油发酵过程中,3-HPA 作为中间体在甘油脱水酶催化下形成㊂Reuterin 最独特和吸引人的特点是其强大的抗菌活性㊂Reuterin 的生产涉及两步酶促反应[7],其中甘油首先由甘油脱水酶脱水生成Reuterin [8];同时糖酵解产生的NADH /H +被氧化成NAD +㊂其次,如果供给过量的葡萄糖,一部分Reuterin 被NAD +依赖的氧化还原酶进一步还原为甘油发酵的终产物1,3-丙二醇[9],剩余的则在溶液中积累㊂1.2㊀Reutericin ㊀Reutericin 是细菌产生的一种蛋白质类毒素,能抑制与其相似或密切相关的细菌菌株的生长㊂罗伊氏乳杆菌L22可产生抗耐甲氧西林金黄色葡萄球菌作用[10]物质,可以引起细胞抑制和细胞死亡㊂另一株罗伊氏乳杆菌菌株被发现在生物聚合物膜中产生Reutericin,可使细菌完全抑制一周[11]㊂来源于红高粱ogi 的罗伊氏乳杆菌产生的细菌素抑制了分离自白玉米ogi 的罗伊氏乳杆菌的生长[12]㊂研究最深入的是Reutericin 6,它是一种环状II 类细菌素,主要针对革兰氏阳性菌和密切相关的乳杆菌物种[13]㊂1991年首次被报道为罗伊氏乳杆菌LA6菌株的代谢产物[14],该菌株从人类婴儿粪便中分离出来㊂纯品Reutericin 6为疏水性蛋白,分子量为5.6kD [15]㊂发现其对商业菌株包括嗜酸乳杆菌㊁德氏乳杆菌保加利亚亚种和乳酸亚种具有溶菌作用㊂这种环状蛋白的抗菌机制被认为是在靶细菌的细胞膜上形成孔道,引起膜去极化和小细胞成分外排,导致细胞死亡[13,15]㊂1.3㊀Reutericyclin ㊀Reutericyclin 是第一个从乳酸菌罗伊氏乳杆菌LTH2584中分离的低分子量抗生素㊂它是一种天然存在的㊁两亲性的㊁具有黄褐色(其结构见图1)的特特拉姆酸液体[16]㊂罗伊氏乳杆菌LTH2584存在于酸面团中,在酸面团发酵过程中能够原位产生Reutericyclin㊂其他来源相同的菌株如TMW1.106㊁TMW1.112和TMW1.656也能产生Reutericyclin㊂Reutericyclin 有助于罗伊氏乳杆菌在生面团中的稳定存在[17-18]㊂据报道,它对许多革兰氏阳性菌具有杀菌和抑菌活性,包括乳酸菌㊁枯草芽孢杆菌㊁蜡样芽孢杆菌㊁粪肠球菌㊁金黄色葡萄球菌和无害李斯特菌,但不影响革兰氏安徽农业科学,J.Anhui Agric.Sci.2024,52(1):1-6㊀㊀㊀阴性菌[18]㊂其作用方式是作为质子离子载体,将质子跨过细胞膜,耗散跨膜pH 电位[19]㊂图1㊀Reutericyclin 化学结构Fig.1㊀Chemical structure of Reutericyclin1.4㊀胞外多糖EPS ㊀关于罗伊氏乳杆菌合成EPS 的早期报道是在1998年[20],其中菌株reuteri LB 121在蔗糖培养基中同时产生葡聚糖和果聚糖,但在棉子糖中只产生果聚糖㊂截至目前,发现的大多数EPS 都是同型多糖㊂EPS 在保护细胞免受干燥㊁吞噬作用和噬菌体攻击㊁参与金属离子的摄取㊁提供更高的氧张力㊁作为黏合剂㊁植物和细菌之间的相互作用以及黏细菌中发现的发育系统中可能非常重要[21]㊂EPS在发酵食品[22]的流变行为和质地中起着关键作用,并提高了保质期㊂EPS 的一些健康促进活性已被提出,包括免疫调节活性[22]㊁抗氧化潜力[22]㊁抗病毒[23]㊁抗癌[24]和益生潜力[25]㊂1.5㊀有机酸㊀作为一种乳酸菌,罗伊氏乳杆菌可以产生多种有机酸,如乳酸㊁乙酸㊁甲酸㊁丁酸㊁苯乳酸㊁丙酸㊁咖啡酸㊁羟基苯基乳酸㊁羟基苯基苯甲酸和脂肪酸等㊂其抗菌特性与有机酸的酸化作用有关,从而抑制腐败菌的生长㊂其中,3-苯基乳酸(PLA)由于其有效的抗菌活性,是一种广谱抗菌化合物而引起了人们极大的兴趣㊂罗伊氏乳杆菌在添加苯丙氨酸的MRS 培养基中可以形成3-苯基乳酸[26]㊂1.6㊀细胞及其相关物㊀虽然不属于传统的代谢物,但细胞(或菌株)是来源于罗伊氏乳杆菌的重要物质,在各个领域得到应用㊂由活细胞通过加热或喷雾干燥制备的非活细胞在临床领域得到应用㊂罗伊氏乳杆菌DSMZ 17648被证实有潜力作为一种新的方式来减少幽门螺旋杆菌的负荷[27]㊂给予热灭活的罗伊氏乳杆菌GMNL -263可以显著下调肥胖大鼠的体脂和防止心肌细胞损伤[28]㊂它可以重新激活IGF1R /PI3K /Akt 细胞存活途径,减少高脂饮食喂养的仓鼠心脏中脂肪诱导的心肌细胞凋亡[29]㊂该菌株在改善高脂饮食诱导的肥胖大鼠的代谢功能方面也表现出类似的效果[30],并且可以通过TGF -β抑制减轻高脂饮食仓鼠肝脏和心脏的纤维化作用[31]㊂罗伊氏乳杆菌ATCC -PTA -6475的裂解物可以上调宿主催产素,与活细胞的功能相同[32]㊂1.7㊀其他活性代谢物㊀罗伊氏乳杆菌的其他活性代谢产物,如二氧化碳㊁乙醇㊁过氧化氢㊁乙偶姻㊁双乙酰[33]等,可能具有生物防腐作用㊂有报道罗伊氏乳杆菌可以将组氨酸转化为组胺[34]㊂组胺具有重要的生理功能,包括抑制肿瘤坏死因子的产生和肠道炎症[35]㊂2㊀罗伊氏乳杆菌活性代谢产物的应用来源于罗伊氏乳杆菌的活性代谢物的应用是由其性质决定的㊂作为益生菌,临床上用作补充剂或药物以及作为食品保鲜剂最为常见㊂2.1㊀罗伊氏乳杆菌作为益生菌㊀一些菌株如LR5㊁LR6㊁LR9㊁Pg4和ATCC 55730[36-38]等已被证明能够耐受低pH㊁胆盐和十二指肠液,可以通过胃肠道的上部而存活㊂一些罗伊氏菌通过产生抗菌物质发挥益生菌作用,例如DPC16㊁DSM 20016和JCM 1112产生Reuterin [39],RC -14产生H 2O 2㊂许多菌株通过竞争排斥作用为宿主提供益处,如罗伊氏菌ATCC 55730[40],这需要相对较强的疏水特性,以便其容易黏附在肠道并居住在肠道中[36]㊂菌株的免疫调节可能对宿主有益㊂据报道,ATCC 55730㊁ATCC PTA 6475㊁100-23和CRL1324等菌株在人的[41-45]和动物细胞中触发免疫反应㊂表1列出了一些具有免疫调节特性的菌株及其对应的模式㊂表1㊀免疫调节特性菌株和作用方式Table 1㊀Immunomodulatory characteristic strain and mode of action菌株Strain对象Object 作用机理Mode of action参考文献Reference ATCC 55730志愿者增加B 淋巴细胞和CD4阳性T 淋巴细胞[41]ATCC PTA 6475细胞通过增强丝裂原活化蛋白激酶(MAPK)活性,包括c -Jun N -末端激酶和p38MAPK㊂将L -组氨酸转化为组胺以抑制促炎性TNF 的产生[42]100-23小鼠增加T 细胞数量[43]CRL1324鼠科动物减少中性粒细胞数量[44]ATCC PTA4659,ATCC PTA 5289,ATCC PTA 6475大鼠㊁细胞降低肠黏膜KC /GRO(~IL -8)和IFN -γ水平[45]CRL1101小鼠㊁细胞增加细胞因子TNF -αand IL -10[46]ATCC 55730儿童降低脂磷壁酸诱导的CCL4㊁CXCL8㊁IL -1β和IL -6反应;减少CCL4和IL -1β的分泌[47]BM36301小鼠降低血清TNF -α[48]ZJ617,ZJ615小鼠降低TNF -α水平,下调细胞因子和Toll 样受体mRNA 水平,抑制MAPK 和NF -κB 信号的激活,上调抗炎细胞因子IL -10mRNA 水平[49]ATCC PTA 5289,DSM 17938人刺激前列腺素E2的产生[50]AB425917小鼠抑制脾细胞分泌的IFN -c 和IL -4,下调肠道IFN -c㊁IL -4㊁T -bet 和GATA3表达[51]2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年㊀㊀作为益生菌,罗伊氏菌株在人和动物中都已有应用㊂它主要对人类肠道㊁泌尿生殖道或口腔有益处㊂传统的肠道益生菌是酸奶等乳制品[52]㊂食用含有罗伊氏乳杆菌的酸奶显著减少了变形链球菌的口腔携带[53]㊂服用NCIMB 30242菌株胶囊有利于改善胃肠道健康状况[54]㊂在非乳制品中的应用,如制成燕麦奶[55]和杏仁奶[56]㊂此外,它还可用于功能性食品,如桦木基益生菌发酵饮料[57]㊁奶油[58]和高胆固醇血症成人酸奶配方[59]㊂该菌株被用作泌尿生殖道益生菌,其形式为阴道内胶囊㊁栓剂[60],以防止病原体如GBS 定植[44],可以替代抗生素治疗龋齿㊁牙龈炎和慢性牙周炎的新模式[61-64],用于抑制产生口腔异味的细菌以改善口臭[65]㊂在动物中,罗伊氏乳杆菌益生菌可以促进生长,提高饲料利用效率,防止腹泻,并调节家禽和/或家畜的免疫系统[66];显著提高沙门氏菌诱导的鸡白痢感染模型的存活率,并有望改善E.艾美球虫实验性感染肉鸡的肠道健康和生长性能[67]㊂2.2㊀医药应用㊀罗伊氏乳杆菌的药物应用是治疗容易暴露于细菌感染的系统中的疾病,如口腔㊁皮肤㊁伤口㊁胃肠道和泌尿生殖道㊂一项关于DSM 17938菌株治疗儿童腹泻疾病的荟萃分析显示,它减少了腹泻的持续时间,增加了治愈的机会㊂在预防性环境中,罗伊氏乳杆菌有可能降低其他健康儿童社区获得腹泻的风险[68],该菌株具有降低坏死性小肠结肠炎和晚发型败血症风险的潜力[69]㊂在抗幽门螺杆菌的治疗中,益生菌如乳酸杆菌GG [70]已被证明可以减轻胃炎的严重程度㊂Goossens 总结了胃肠病学中的益生菌,其中治疗和抗幽门螺杆菌不包括罗伊氏乳杆菌[71]㊂因此,近年来罗伊氏乳杆菌已用于幽门螺杆菌引起的胃炎㊁胃和十二指肠溃疡以及胃恶性肿瘤的治疗㊂罗伊氏乳杆菌也是一个很好的候选辅助治疗[72]㊂截至目前,ATCC55730[73-75]㊁DSM 17938[76-77]㊁ATCC PTA 6475[78-79]菌株被报道可作为抗幽门螺杆菌治疗的补充㊂与三联疗法相比,补充罗伊氏乳杆菌使根除率更高,不良反应发生率低㊂一些试点研究发现,非活细胞(菌株DSMZ 17648)能有效控制幽门螺杆菌[27,80]㊂与活的益生菌细胞相比,非活细胞的优点是储存和运送要求较低,保质期延长,生产成本降低[27],可以拓宽罗伊氏乳杆菌的应用模式㊂该菌在泌尿生殖道的应用主要用于妇科疾病如阴道病㊂目前只有极少数菌株进行了临床试验㊂RC -14是目前报道最多的株[60,81-86],PBS072株[87]也在其中㊂可单独使用,也可作为补充剂或与其他益生菌以阴道胶囊㊁栓剂[60]或口服[81-82]的形式混合使用,它可以减少妇女的阴道病原体定植率,是一种替代的㊁无副作用的治疗方法㊂据报道,罗伊氏乳杆菌GMNL -89具有抗炎活性[88]㊂它可以用来治疗和/或缓解与炎症相关的疾病,如类风湿性关节炎㊂KCTC -10301BP 和GMNL -89菌株可用于预防和/或治疗肥胖或糖尿病[89-90]㊂DSM 122460菌株对治疗特应性皮炎有益[91]㊂DSM 17938菌株可能是一个有用的补充,为全身性镍过敏综合征患者,以恢复肠道稳态的条件[92]㊂ATCC 55730菌株用于预防IgE 相关性湿疹[93]㊂2.3㊀食物保存㊀在食品保藏领域,罗伊氏菌株的强力抗菌活性是必要的㊂在某些情况下,低酸度利于食品保存,然而这可能会改变食物的味道㊂在添加甘油的食品发酵中产生的Reuterin 看起来很有吸引力,前提是不对食品的生化㊁物理和感官特性产生负面影响㊂INIA P572株已被证明具有这些优异的性能[94]㊂然而,如果仅仅利用Reuterin 优良的抗菌性能,它只是一种食品添加剂㊂因此,提出了一种新的生物保鲜剂系统,由含有罗伊氏乳杆菌和甘油的海藻酸钠涂层组成㊂为了控制腐败细菌和真菌的生长,罗伊氏乳杆菌可以添加在食品加工过程中,它发酵食品本身[95],也可以被添加到薄膜中并进一步用于控制无害李斯特菌[12]㊂罗伊氏乳杆菌在食品保鲜中的应用见表2㊂表2㊀罗伊氏乳杆菌在食品保鲜中的应用Table 2㊀Application of L.reuteri in food preservation食品Food菌株Strain主要目标微生物Main target microbe参考文献Reference半硬羊乳酪Semi -hard ewe milk cheese INIA P572酪丁酸梭菌[94][96]面包BreadKC700337.1KC561127.1枯草芽孢杆菌,蜡样芽孢杆菌,单核细胞增生李斯特菌,大肠杆菌,金黄色葡萄球菌草枝孢微孢菌,产黄青霉,短帚霉,巴西曲霉和杂色曲霉菌[97]面包Bread CRL1100禾谷镰刀菌[98]面包BreadR29真菌[95]猪血Porcine blood TA43假单胞菌属[98]乳制品Dairy products INIA P572or P579大肠杆菌K12[97]奶酪Cheese Granarolo 假单胞菌属[99]奶酪Cheese INIA P572单核细胞增生李斯特菌和大肠杆菌O157:H7[100][101]酸奶Yogurt ATCC 53608真菌[102][103]生菜LettuceDSM 20016T 肠杆菌科㊁酵母菌和霉菌[104]海鲈鱼片Sea bass filletsDSM 26866假单胞菌属[95]4㊀展望罗伊氏乳杆菌是唯一能使多种动物肠道中存在的主要乳酸杆菌物种成为 主要成分 的细菌[13]㊂源自罗伊氏乳杆菌的活性物质在很长一段时间内对人类和动物有益㊂除了352卷1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀田兆红㊀源自罗伊氏乳杆菌的活性物质及其潜在应用轻微的副作用,如腹胀㊁胀气等,罗伊氏乳杆菌将在益生菌㊁生物保鲜剂和疾病治疗领域得到广泛应用㊂作为益生菌,可用于肠道功能失调的人群,如婴幼儿或刚刚接受过长期抗生素治疗的人群,尽管已有研究证明其安全性,但还需要长期的后续安全评估㊂一些菌株如RC-14已经临床试验发现其在治疗疾病中的广泛应用,如阴道炎等㊂其他菌株也显示出良好的临床治疗效果,但尚需要进一步研究㊂非活性菌株及其应用的研究才刚刚起步,值得进一步研究㊂总之,来源于罗伊氏乳杆菌的活性物质的应用具有研发前景㊁值得期待㊂参考文献[1]REUTER G.Das vorkommen von laktobazillen in lebensmitteln und ihr verhalten im menschlichen intestinaltrakt[J].Zbl Bakt Hyg I Orig,1965, 197:468-487.[2]KANDLER O,STETTER K O,KÖHL ctobacillus reuteri sp.nov.,a new species of heterofermentative lactobacilli[J].Zentralbl Für Bakteriolo-gie,1980,1(3):264-269.[3]MITSUOKA T.The human gastrointestinal tract[M]ʊWOOD B J B.The lactic acid bacteria.Volume1:The lactic acid bacteria in health and dis-ease.Boston,MA:Springer US,1992:69-114.[4]KANDLER O,WEISS N.Regular,nonsporing Gram-positive rods[M]ʊSNEATH P H A,MAIR N S,SHARPE M E,et al.Bergey s manual of sys-tematic bacteriology(Vol.2).New York:Williams and Wilkins,1986. [5]NEF J U.Dissociationsvorgänge in der Glycol-Glycerinreihe[J].Justus Liebigs Ann Chem,1904,335(1/2):191-245.[6]VOISENET M E.Formation d croléine dans la maladie de l mertume des vins[J].C R Acad Sci,1910,150:1614-1616.[7]TALARICO T L,AXELSSON L T,NOVOTNY J,et al.Utilization of glycer-ol as a hydrogen acceptor by Lactobacillus reuteri:Purification of1,3-pro-panediol:NAD+oxidoreductase[J].Appl Environ Microbiol,1990,56(4): 943-948.[8]TORAYA T.Radical catalysis of B12enzymes:Structure,mechanism,inac-tivation,and reactivation of diol and glycerol dehydratases[J].Cell Mol Life Sci,2000,57(1):106-127.[9]BIEBL H,MENZEL K,ZENG A P,et al.Microbial production of1,3-pro-panediol[J].Appl Microbiol Biotechnol,1999,52(3):289-297. [10]VORAVUTHIKUNCHAI S P,BILASOI S,SUPAMALA O.Antagonisticactivity against pathogenic bacteria by human vaginal lactobacilli[J].An-aerobe,2006,12(5/6):221-226.[11]SÁNCHEZ-GONZÁLEZ L,SAAVEDRA J I Q,CHIRALT A.Antilisterialand physical properties of biopolymer films containing lactic acid bacteria [J].Food Contr,2014,35(1):200-206.[12]SANNI A I,ONILUDE A A,OGUNBANWO S T,et al.Antagonistic activi-ty of bacteriocin produced by Lactobacillus species from ogi,an indige-nous fermented food[J].J Basic Microbiol,1999,39(3):189-195. [13]KABUKI T,SAITO T,KAWAI Y,et al.Production,purification and char-acterization of reutericin6,a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6[J].Int J Food Microbiol,1997,34(2):145-156.[14]TOBA T,SAMANT S K,YOSHIOKA E,et al.Reutericin6,a new bacteri-ocin produced by Lactobacillus reuteri LA6[J].Lett Appl Microbiol, 1991,13(6):281-286.[15]KAWAI Y,ISHII Y,UEMURA K,et ctobacillus reuteri LA6and Lac-tobacillus gasseri LA39isolated from faeces of the same human infant pro-duce identical cyclic bacteriocin[J].Food Microbiol,2001,18(4):407-415.[16]HÖLTZEL A,GÄNZLE M G,NICHOLSON G J,et al.The first low-molec-ular-weight antibiotic from lactic acid bacteria:Reutericyclin,a new tetra-mic acid[J].Angew Chem Int Ed,2000,39(15):2766-2768. [17]GANZLE M G,VOGEL R F.Contribution of reutericyclin production tothe stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation[J].Int J Food Microbiol,2003,80(1):31-45. [18]GÄNZLE M G,HÖLTZEL A,WALTER J,et al.Characterization of reu-tericyclin produced by Lactobacillus reuteri LTH2584[J].Appl Environ Microbiol,2000,66(10):4325-4333.[19]GÄNZLE M G,VOGEL R F.Studies on the mode of action of reutericyc-lin[J].Appl Environ Microbiol,2003,69(2):1305-1307.[20]VAN GEEL-SCHUTTEN G H,FLESCH F,TEN BRINK B,et al.Screen-ing and characterization of Lactobacillus strains producing large amounts of exopolysaccharides[J].Appl Microbiol Biotechnol,1998,50(6):697-703.[21]CERNING J.Exocellular polysaccharides produced by lactic acid bacteria[J].FEMS Microbiol Rev,1990,87:113-130.[22]LIU C F,TSENG K C,CHIANG S S,et al.Immunomodulatory and antiox-idant potential of Lactobacillus exopolysaccharides[J].J Sci Food Agric, 2011,91(12):2284-2291.[23]ARENA A,MAUGERI T L,PAVONE B,et al.Antiviral and immunoregu-latory effect of a novel exopolysaccharidefrom a marine thermotolerant Ba-cillus licheniformis[J].Int Immunopharmacol,2006,6(1):8-13. [24]KITAZAWA H,NOMURA M,ITOH T,et al.Functional alteration of mac-rophages by a slime-forming Lactococcus lactis ssp.cremoris[J].J Dairy Sci,1991,74(7):2082-2088.[25]SALAZAR N,GUEIMONDE M,HERNÁNDEZ-BARRANCO A M,et al.Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria[J].Appl Environ Microbiol,2008,74(15):4737-4745.[26]SCHMIDT M,LYNCH K M,ZANNINI E,et al.Fundamental study on theimprovement of the antifungal activity of Lactobacillus reuteri R29through increased production of phenyllactic acid and reuterin[J].Food Contr, 2018,88:139-148.[27]MEHLING H,BUSJAHN A.Non-viable Lactobacillus reuteri DSMZ17648(Pylopass TM)as a new approach to Helicobacter pylori control in humans [J].Nutrients,2013,5(8):3062-3073.[28]LIAO P H,KUO W W,HSIEH D J Y,et al.Heat-killed Lactobacillus reu-teri GMNL-263prevents epididymal fat accumulation and cardiac injury in high-calorie diet-fed rats[J].Int J Med Sci,2016,13(8):569-577.[29]TING W J,KUO W W,KUO C H,et al.Supplementary heat-killed Lacto-bacillus reuteri GMNL-263ameliorates hyperlipidaemic and cardiac apop-tosis in high-fat diet-fed hamsters to maintain cardiovascular function [J].Br J Nutr,2015,114(5):706-712.[30]HSIEH F C,LAN C C E,HUANG T Y,et al.Heat-killed and live Lacto-bacillus reuteri GMNL-263exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats[J].Food Funct,2016,7(5): 2374-2388.[31]TING W J,KUO W W,HSIEH D J Y et al.Heat killed Lactobacillus reu-teri GMNL-263reduces fibrosis effects on the liver and heart in high fat diet-hamsters via TGF-βsuppression[J].Int J Mol Sci,2015,16(10): 25881-25896.[32]VARIAN B J,POUTAHIDIS T,DI BENEDICTIS B T,et al.Microbial ly-sate upregulates host oxytocin[J].Brain Behav Immun,2017,61:36-49.[33]HELLAND M H,WICKLUND T,NARVHUS J A.Growth and metabolismof selected strains of probiotic bacteria,in maize porridge with added malted barley[J].Int J Food Microbiol,2004,91(3):305-313. [34]GREIFOVÁG,MÁJEKOVÁH,GREIF G,et al.Analysis of antimicrobialand immunomodulatory substances produced by heterofermentative Lacto-bacillus reuteri[J].Folia Microbiol,2017,62(6):515-524. [35]GAO C X,MAJOR A,RENDON D,et al.Histamine H2receptor-mediatedsuppression of intestinal inflammation by probiotic Lactobacillus reuter [J].mBio,2015,6(6):1-96.[36]SINGH T P,KAUR G,MALIK R K,et al.Characterization of intestinalLactobacillus reuteri strains as potential probiotics[J].Probiotics&Anti-micro Prot,2012,4(1):47-58.[37]YU B,LIU J R,CHIOU M Y,et al.The effects of probiotic Lactobacillusreuteri Pg4strain on intestinal characteristics and performance in broilers [J].Asian-Aust J Anim Sci,2007,20(8):1243-1251. [38]WHITEHEAD K,VERSALOVIC J,ROOS S,et al.Genomic and geneticcharacterization of the bile stress response of probiotic Lactobacillus reu-teri ATCC55730[J].Appl Environ Microbiol,2008,74(6):1812-1819.[39]BIAN L,MOLAN A L,MADDOX I,et al.Antimicrobial activity of Lacto-bacillus reuteri DPC16supernatants against selected food borne pathogens [J].World J Microbiol Biotechnol,2011,27(4):991-998. [40]PRINCE T,MCBAIN A J,O NEILL C ctobacillus reuteri protectsepidermal keratinocytes from Staphylococcus aureus-induced cell death by competitive exclusion[J].Appl Environ Microbiol,2012,78(15):5119-5126.[41]VALEUR N,ENGEL P,CARBAJAL N,et al.Colonization and immuno-modulation by Lactobacillus reuteri ATCC55730in the human gastrointes-tinal tract[J].Appl Environ Microbiol,2004,70(2):1176-1181.4㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年[42]IYER C,KOSTERS A,SETHI G,et al.Probiotic Lactobacillus reuteri pro-motes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kB and MAPK signalling[J].Cell Microbiol,2008, 10(7):1442-1452.[43]LIVINGSTON M,LOACH D,WILSON M,et al.Gut commensal Lactoba-cillus reuteri100-23stimulates an immunoregulatory response[J].Immu-nol Cell Biol,2010,88(1):99-102.[44]DE GREGORIO P R,JUÁREZ TOMÁS M S,NADER-MACÍAS M E F.Immunomodulation of Lactobacillus reuteri CRL1324on group B Streptococcus vaginal colonization in a murine experimental model[J].Am J Reprod Immunol,2016,75(1):23-35.[45]LIU Y Y,FATHEREE N Y,MANGALAT N,et al.Human-derived probi-otic Lactobacillus reuteri strains differentially reduce intestinal inflamma-tion[J].Am J Physiol Gastrointest Liver Physiol,2010,299(5):G1087-G1096.[46]JUAREZ G E,VILLENA J,SALVA S,et ctobacillus reuteri CRL1101beneficially modulate lipopolysaccharide-mediated inflammatory response in a mouse model of endotoxic shock[J].J Funct Foods,2013,5(4): 1761-1773.[47]FORSBERG A,ABRAHAMSSON T R,BJÖRKSTÉN B,et al.Pre-andpostnatal administration of Lactobacillus reuteri decreases TLR2responses in infants[J].Clin Transl Allergy,2014,4(1):1-7.[48]LEE J,YANG W,HOSTETLER A,et al.Characterization of the anti-in-flammatory Lactobacillus reuteri BM36301and its probiotic benefits on aged mice[J].BMC Microbiol,2016,16:1-13.[49]GAO K,LIU L,DOU X X,et al.Doses Lactobacillus reuteri depend on ad-hesive ability to modulate the intestinal immune response and metabolism in mice challenged with lipopolysaccharide[J].Sci Rep,2016,6:1-12.[50]CASTIBLANCO G A,YUCEL-LINDBERG T,ROOS S,et al.Effect ofLactobacillus reuteri on cell viability and PGE2production in human gin-gival fibroblasts[J].Probiotics&Antimicro Prot,2017,9(3):278-283.[51]HUANG C H,LIN Y C,JAN T ctobacillus reuteri induces intestinalimmune tolerance against food allergy in mice[J].J Funct Foods,2017, 31:44-51.[52]HEKMAT S,SOLTANI H,REID G.Growth and survival of Lactobacillusreuteri RC-14and Lactobacillus rhamnosus GR-1in yogurt for use as a functional food[J].Innov Food Sci Emerg Technol,2009,10(2):293-296.[53]NIKAWA H,MAKIHIRA S,FUKUSHIMA H,et ctobacillus reuteri inbovine milk fermented decreases the oral carriage of mutans streptococci [J].Int J Food Microbiol,2004,95(2):219-223.[54]JONES M L,MARTONI C J,GANOPOLSKY J G,et al.Improvement ofgastrointestinal health status in subjects consuming Lactobacillus reuteri NCIMB30242capsules:A post-hoc analysis of a randomized controlled trial[J].Expert Opin Biol Ther,2013,13(12):1643-1651. [55]BERNAT N,CHÁFER M,GONZÁLEZ-MARTÍNEZ C,et al.Optimisationof oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms[J].Food Sci Technol Int,2015,21(2):145-157.[56]BERNAT N,CHÁFERA M,CHIRALT A,et al.Probiotic fermented al-mond milk as an alternative to cow-milk yoghurt[J].Int J Food Stud, 2015,4:201-211.[57]SEMJONOVS P,DENINA I,FOMINA A,et al.Development of birch(Bet-ula pendula Roth.)sap based probiotic fermented beverage[J].Int Food Res J,2014,21(5):1763-1767.[58]BARBOZA Y,MÁRQUEZ E,PARRA K,et al.Development of a potentialfunctional food prepared with pigeon pea(Cajanus cajan),oats and Lacto-bacillus reuteri ATCC55730[J].Int J Food Sci Nutr,2012,63(7):813-820.[59]JONES M L,MARTONI C J,PARENT M,et al.Cholesterol-lowering effi-cacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB30242yoghurt formulation in hypercholesterolaemic adults[J].Br J Nutr,2012,107(10):1505-1513.[60]ANUKAM K,OSAZUWA E,AHONKHAI I,et al.Augmentation of antimi-crobial metronidazole therapy of bacterial vaginosis with oral probiotic Lactobacillus rhamnosus GR-1and Lactobacillus reuteri RC-14:Random-ized,double-blind,placebo controlled trial[J].Microbes Infect,2006,8(6):1450-1454.[61]JANG H J,KANG M S,YI S H,et parative study on the character-istics of Weissella cibaria CMU and probiotic strains for oral care[J].Molecules,2016,21(12):1-11.[62]SAHA S,TOMARO-DUCHESNEAU C,RODES L,et al.Investigation ofprobiotic bacteria as dental caries and periodontal disease biotherapeutics [J].Benef Microbes,2014,5(4):447-460.[63]TEUGHELS W,DURUKAN A,OZCELIK O,et al.Clinical and microbio-logical effects of Lactobacillus reuteri probiotics in the treatment of chron-ic periodontitis:A randomized placebo-controlled study[J].J Clin Peri-odontol,2013,40(11):1025-1035.[64]INIESTA M,HERRERA D,MONTERO E,et al.Probiotic effects of orallyadministered Lactobacillus reuteri-containing tablets on the subgingival and salivary microbiota in patients with gingivitis.A randomized clinical trial[J].J Clin Periodontol,2012,39(8):736-744.[65]KELLER M K,BARDOW A,JENSDOTTIR T,et al.Effect of chewinggums containing the probiotic bacterium Lactobacillus reuteri on oral mal-odour[J].Acta Odontol Scand,2012,70(3):246-250. [66]HOU C L,ZENG X F,YANG F J,et al.Study and use of the probioticLactobacillus reuteri in pigs:A review[J].J Anim Sci Biotechnol,2015,6(1):1-8.[67]GIANNENAS I,PAPADOPOULOS E,TSALIE E,et al.Assessment of di-etary supplementation with probiotics on performance,intestinal morphol-ogy and microflora of chickens infected with Eimeria tenella[J].Vet Par-asitol,2012,188(1/2):31-40.[68]URBAN'SKA M,GIERUSZCZAK-BIAŁEK D,SZAJEWSKA H.Systematicreview with meta-analysis:Lactobacillus reuteri DSM17938for diarrhoeal diseases in children[J].Aliment Pharmacol Ther,2016,43(10):1025-1034.[69]ATHALYE-JAPE G,RAO S,PATOLE ctobacillus reuteri DSM17938as a probiotic for preterm neonates:A strain-specific systematic review [J].J Parenter Enteral Nutr,2016,40(6):783-794.[70]ARMUZZI A,CREMONINI F,BARTOLOZZI F,et al.The effect of oraladministration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy[J].Aliment Pharmacol Ther,2001,15(2):163-169.[71]GOOSSENS D,JONKERS D,STOBBERINGh E,et al.Probiotics in gas-troenterology:Indications and future perspectives[J].Scand J Gastroen-terol,2003,239:15-23.[72]HOMAN M,OREL R.Are probiotics useful in Helicobacter pylori eradica-tion?[J].World J Gastroenterol,2015,21(37):10644-10653. [73]EFRATI C,NICOLINI G,CANNAVIELLO C,et al.Helicobacter pylori e-radication:Sequential therapy and Lactobacillus reuteri supplementation [J].World J Gastroenterol,2012,18(43):6250-6254. [74]OJETTI V,BRUNO G,AINORA M E,et al.Impact of Lactobacillus reuterisupplementation on anti-Helicobacter pylori levofloxacin-based second-line therapy[J].Gastroenterol Res Pract,2012,2012:1-7. [75]FRANCAVILLA R,LIONETTI E,CASTELLANETA S P,et al.Inhibitionof Helicobacter pylori infection in humans by Lactobacillus reuteri ATCC 55730and effect on eradication therapy:A pilot study[J].Helicobacter, 2008,13(2):127-134.[76]DORE M P,CUCCU M,PES G M,et ctobacillus reuteri in the treat-ment of Helicobacter pylori infection[J].Intern Emerg Med,2014,9(6): 649-654.[77]DORE M P,SORO S,ROCCHI C,et al.Inclusion of Lactobacillus reuteriin the treatment of Helicobacter pylori in Sardinian patients:A case report series[J].Medicine,2016,95(15):1-3.[78]EMARA M H,MOHAMED S Y,ABDEL-AZIZ H ctobacillus reuteriin management of Helicobacter pylori infection in dyspeptic patients:A double-blind placebo-controlled randomized clinical trial[J].Ther Adv Gastroenterol,2014,7(1):4-13.[79]FRANCAVILLA R,POLIMENO L,DEMICHINA A,et ctobacillus re-uteri strain combination in Helicobacter pylori infection:Arandomized, double-blind,placebo-controlled study[J].J Clin Gastroenterol,2014,48(5):407-413.[80]HOLZ C,BUSJAHN A,MEHLING H,et al.Significant reduction in Heli-cobacter pylori load in humans with non-viable Lactobacillus reuteri DSM17648:A pilot study[J].Probiotics&Antimicro Prot,2015,7(2): 91-100.[81]VUJIC G,KNEZ A J,STEFANOVIC V D,et al.Efficacy of orally appliedprobiotic capsules for bacterial vaginosis and other vaginal infections:A double-blind,randomized,placebo-controlled study[J].Eur J Obstet Gy-necol Reprod Biol,2013,168(1):75-79.[82]MARTINEZ R C R,FRANCESCHINI S A,PATTA M C,et al.Improvedcure of bacterial vaginosis with single dose of tinidazole(2g),Lactobacil-552卷1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀田兆红㊀源自罗伊氏乳杆菌的活性物质及其潜在应用lus rhamnosus GR-1,and Lactobacillus reuteri RC-14:A randomized, double-blind,placebo-controlled trial[J].Can J Microbiol,2009,55(2): 133-138.[83]HUMMELEN R,CHANGALUCHA J,BUTAMANYA N L,et ctoba-cillus rhamnosus GR-1and L.reuteri RC-14to prevent or cure bacterial vaginosis among women with HIV[J].Int J Gynaecol Obstet,2010,111(3):245-248.[84]HO M,CHANG Y Y,CHANG W C,et al.Oral Lactobacillus rhamnosusGR-1and Lactobacillus reuteri RC-14to reduce Group B Streptococcus colonization in pregnant women:A randomized controlled trial[J].Taiwan J Obstet Gynecol,2016,55(4):515-518.[85]ANUKAM K C,DURU M U,EZE C C,et al.Oral use of probiotics as anadjunctive therapy to fluconazole in the treatment of yeast vaginitis:A study of Nigerian women in an outdoor clinic[J].Microb Ecol Heath Dis, 2009,21(2):72-77.[86]LEE B B,TOH S L,RYAN S,et al.Probiotics[LGG-BB12or RC14-GR1]versus placebo as prophylaxis for urinary tract infection in persons with spinal cord injury[ProSCIUTTU]:A study protocol for a random-ised controlled trial[J].BMC Urol,2016,16:1-8.[87]MEZZASALMA V,MANFRINI E,FERRI E,et al.Orally administeredmultispecies probiotic formulations to prevent uro-genital infections:A randomized placebo-controlled pilot study[J].Arch Gynecol Obstet, 2017,295(1):163-172.[88]YU T W,LI J S,HSIEH F C,et ctobacillus isolates having anti-in-flammatory activities and uses of the same:US20080340081[P].2011-03 -08.[89]SONG S H,KANG S K,KIM J H,et al.Microorganisms for preventingand/or treating obesity or diabetes mellitus:US20030635858[P].2005-09 -13.[90]LEU Y C,HSIEH F ctobacillus strain,composition and use thereoffor improving the syndrome of diabetes and complication thereof: US20100792276[P].2012-10-30.[91]ROSENFELDT V,BENFELDT E,NIELSEN S D,et al.Effect of probioticLactobacillus strains in children with atopic dermatitis[J].J Allergy Clin Immunol,2003,111(2):389-395.[92]RANDAZZO C L,PINO A,RICCIARDI L,et al.Probiotic supplementa-tion in systemic nickel allergy syndrome patients:Study of its effects on lactic acid bacteria population and on clinical symptoms[J].J Appl Mi-crobiol,2015,118(1):202-211.[93]ABRAHAMSSON T R,JAKOBSSON T,BÖTTCHER M F,et al.Probioticsin prevention of IgE-associated eczema:A double-blind,randomized,pla-cebo-controlled trial[J].J Allergy Clin Immunol,2007,119(5):1174-1180.[94]GÓMEZ-TORRES N,ÁVILA N,DELGADO D,et al.Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile frac-tion,odour and aroma of semi-hard ewe milk cheese[J].Int J Food Mi-crobiol,2016,232:103-110.[95]AXEL C,BROSNAN B,ZANNINI E,et al.Antifungal sourdough lacticacid bacteria as biopreservation tool in quinoa and rice bread[J].Int J Food Microbiol,2016,239:86-94.[96]ÁVILA M,GÓMEZ-TORRES N,DELGADO D,et al.Industrial-scale ap-plication of Lactobacillus reuteri coupled with glycerol as a biopreservation system for inhibiting Clostridium tyrobutyricum in semi-hard ewe milk cheese[J].Food Microbiol,2017,66:104-109.[97]KRAUTER H,WILLKE T,VORLOP K D.Production of high amounts of3-hydroxypropionaldehyde from glycerol by Lactobacillus reuteri with strongly increased biocatalyst lifetime and productivity[J].New Biotechn-ol,2012,29(2):211-217.[98]DÀVILA E,SAGUER E,TOLDRÀM,et al.Preservation of porcine bloodquality by means of lactic acid bacteria[J].Meat Sci,2006,73(2):386-393.[99]ANGIOLILLO L,CONTE A,ZAMBRINI A V,et al.Biopreservation ofFior di Latte cheese[J].J Dairy Sci,2014,97(9):5345-5355. [100]MARTÍN-CABREJAS I,LANGA S,GAYA P,et al.Optimization of reu-terin production in cheese by Lactobacillus reuteri[J].J Food Sci Techn-ol,2017,54(5):1346-1349.[101]LANGA S,MARTÍN-CABREJAS I,MONTIEL R,et al.Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7in semi-hard cheese[J].Food Contr, 2018,84:284-289.[102]VIMONT A,FERNANDEZ B,AHMED G,et al.Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its po-tential application in yogurt[J].Int J Food Microbiol,2019,289:182-188.[103]ORTIZ-RIVERA Y,SÁNCHEZ-VEGA R,GUTIÉRREZ-MÉNDEZN,et al.Production of reuterin in a fermented milk product by Lactobacillus reuteri:Inhibition of pathogens,spoilage microorganisms,and lactic acid bacteria[J].J Dairy Sci,2017,100(6):4258-4268. [104]ASARE P T,GREPPI A,STETTLER M,et al.Decontamination of mini-mally-processed fresh lettuce using reuterin produced by Lactobacillus reuteri[J].Front Microbiol,2018,9:1-12.6㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2024年。

临床医学英语Unit7

临床医学英语Unit7

The laparoscope, a fiber-optic telescope, is inserted through one port (口, 孔) and attached to a camera. It sends images from the abdominal cavity to television monitors placed for easy viewing by all the operating room personnel. Thus, the surgeon and his or her assistants can view the abdominal cavity and its contents. Through the remaining ports, long-handled instruments are used to perform various procedures.
gastr/o ( stomach) e.g. gastrectomy
peritone/o ( peritoneum) e.g. intraperitoneal
corpus- ( body) e.g. extracorporeal -oma ( tumor) cyt/o ( cell ) e.g. phaeochromocytoma contra- (against) e.g. contraindication lymph/o ( lymph) -pathy ( disease) e.g. lymphadenopathy axilla- ( armpit ) e.g. axillary
MAS (ie, laparoscopy) has been used by gynecologists for more than 5 decades. Its application to general surgery began when the first laparoscopic cholecystectomy was performed in 1985. In 1987, the laparoscopic cholecystectomy was popularized, and laparoscopic cholecystectomy soon became the standard of care. Since that time, MAS has been applied to numerous other procedures with good results.

(生物科技行业)密歇根大学生物系实验室的常用试剂配方

(生物科技行业)密歇根大学生物系实验室的常用试剂配方

Table of ContentsLB Medium (1)NZ Medium (2)SM Buffer (3)SET Buffer (4)6X Prehyb Soln (5)10 X TBE (6)10 X TAE (7)20 X SSC (8)1% SDS, 0.2 M NaOH (9)14% PEG (8000), 2M NaCl, 10 mM MgSO4 (10)20% SDS (11)1.0 M Tris, pH 8.0, 1.5 M NaCl (12)10mM Tris-HCl, pH 7.5, 10mM MgSO4 (13)10 mM Tris, 50 mM EDTA, pH 7.5 (14)10 mM Tris-HCl, 1 mM EDTA, pH 7.5 (15)3 M Sodium Acetate, pH 4.8 (16)Electrophoresis dye (17)Labelling Stop dye (18)Sequencing gel dye (19)5% Acrylamide (20)6% Acrylamide in TBE, 50% Urea (21)40% Acrylamide (22)LB Medium (1 Liter)10g Bacto-tryptone5g Bacto-yeast extract10g NaClFor forty plates add 1% agar--1g. Autoclave media. When cool, add ampicillin and pour plates. For 1L of media, add 1.8 mL amp.NZ Medium (500 mL)5 g Bacto-tryptone2.5 g Bacto-yeast extract2.5 g NaCl1.25 g MgSO4For 20 plates add 1.2% agar--6g. Autoclave and pour plates at 50o CSM Buffer (1L)5.8 g NaCl1.2 g MgSo450 mL 1M Tris-HCl, pH 7.50.1 g Gelatin (doesn't dissolve)AutoclaveUsed for phage dilution and storage.SET Buffer50 mM Tris-HCl, pH 8.0, 50 mM EDTA, 20% w/v Sucroseto make 200mL:40 g Sucrose10 mL of 1M Tris20 mL of 0.5 M EDTA, disodium saltbring to 200 mL with H206X Prehybridization Solutionto make 500 mL300 mL ddH20150 mL 20X SSC50 mL 50X Denhardt's solution1 mL 0.5 M EDTA (disodium salt)2.5 mL 20% SDS6X refers to the concentration of SSC10X TBE Buffer (for polyacrylamide gels) to make one liter:60.75 g Tris3.7 g EDTA (tetrasodium salt)30 g Boric acid10X TAE Buffer (For agarose gels)to make one liter:48.20 g Tris6.75 g NaAce3.75 g EDTA (disodium salt)Adjust pH to 7.6 with acetic acid. (Approx. 20 mL)20X SSCto make one liter:175.3 g NaCl88.2 g NaCitrateadd water to bring volume to one liter.adjust to pH 7.0 with HCl.1% SDS, 0.2 M NaOHto make 100 mL:93 mL ddH205 mL 20% SDS2 mL 10 M NaOH14% PEG (8000), 2M NaCl, 10 mM MgSO4 to make one liter:140 g PEG117 g NaCl2.46 g MgSO4For use in phage DNA preparation.20% SDSto male 250 mL:50 g of SDS in a beakerAdd stir bar and H20 last.This solution will have to be heated for the SDS to dissolve.1.0 M Tris, pH 8.0, 1.5 M NaClto make one liter:121.1 g Trizma87.6 g NaClin a volume of water less than 1L. Adjust pH with HCl, then bring to 1L with H2010 mM Tris-HCl, pH 7.5, 10 mM MgSO4to make one liter:10 mL 1 M Tris-HCl2.46 g MgSO4for use in phage DNA preparation10 mM Tris, 50 mM EDTA, pH 7.5to make 200 mL:2 mL 1 M Tris20 mL 0.5 M EDTA (tetrasodium salt)178 mL ddH20adjust pH with HCl.10 mM Tris-HCl, 1 mM EDTA, pH 7.5to make 200 mL:2.0 mL 1 M Tris-HCl, pH 7.50.4 mL 0.5 M EDTA197.6 mL ddH203 M Sodium Acetate, pH 4.8to make one liter:408.1 g NaAce (trihydrate; gets cold in soln)about 700 mL H20adjust pH with glacial acetic acid (takes a lot)Measure tru pH by dilution with water; range will be between 4.8 and 5.5.Electrophoresis Dyeto make 4 mL:3 mL 50 mM EDTA, 10 mM Tris-HCl, pH 8.01 mL glycerol20 μL BPB10 μL Xylene cyanolStop dye for labelled probe1 mL 50 mM EDTA, 10 mM Tris, pH 7.5-8.5about 200 μl glyceroladd a few grains of blue dextran (8000)Sequencing gel dyefor approx 1 mL:1 mL formamide10 μL xylene cyanol10 μl BPB3 μL 10 M NaOH5% acrylamideto make 200 mL:20 mL 10X TBE25 mL 40% acrylamide155 mL H206% Acrylamide in TBE, 50% Ureato make 500 mL:50 mL 10X TBE75 mL 40% acrylamide250 g Ureabring to 500 mL with H2O40% Acrylamide (38:2 acrylamide:bis acrylamide) to make 200 mL:76 g acrylamide4 g bis acrylamidebring to 200 mL with H2O。

长茎葡萄蕨藻藻渣多糖制备工艺流程

长茎葡萄蕨藻藻渣多糖制备工艺流程

长茎葡萄蕨藻藻渣多糖制备工艺流程英文回答:The process of preparing polysaccharides from long-stemmed grape fern algae residue involves several steps. Here is a general outline of the process:1. Collection and preparation of long-stemmed grape fern algae residue: The algae residue is harvested from the long-stemmed grape fern algae plants. It is then thoroughly washed to remove any impurities or debris.2. Extraction of polysaccharides: The washed algae residue is subjected to a solvent extraction process to isolate the polysaccharides. Common solvents used for this purpose include water, ethanol, or a combination of both. The extraction process can be carried out using methods such as maceration, reflux, or ultrasound-assisted extraction.3. Filtration and concentration: After the extraction, the resulting solution is filtered to remove any solid particles or impurities. The filtrate is then concentrated using techniques like rotary evaporation or freeze-dryingto obtain a concentrated polysaccharide solution.4. Purification: The concentrated polysaccharidesolution may undergo further purification steps to remove any remaining impurities or unwanted compounds. Techniques such as chromatography or membrane filtration can be employed for this purpose.5. Characterization and analysis: The purified polysaccharides are characterized and analyzed usingvarious techniques such as nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). These analyses help in determining the chemical composition, structure, and molecular weight of the polysaccharides.6. Formulation and application: The purified polysaccharides can be formulated into different forms suchas powders, gels, or solutions depending on their intended applications. They can be used in various industries suchas food, pharmaceuticals, cosmetics, and biotechnology.中文回答:制备长茎葡萄蕨藻藻渣多糖的工艺流程涉及几个步骤。

聚糖的结构和功能

聚糖的结构和功能
(三)神经节苷脂(ganglioside)是含唾液酸旳酸性 鞘糖脂
目录
几种鞘糖脂旳化学构造
目录
二、髓磷脂中具有甘油糖脂
• 甘油糖脂(glyceroglycolipid)也称糖基甘油脂, 由二酰甘油分子3位上旳羟基与糖基连接而成。
单半乳糖基二酰甘油
二半乳糖基二酰甘油
目录
目录
第四节
聚糖构造中蕴含大量生物信息
• 糖蛋白和蛋白聚糖都由共价连接旳蛋白质和 聚糖两部分构成。
• 糖蛋白分子中蛋白质重量百分比不小于聚糖; 而蛋白聚糖中聚糖所占重量在二分之一以上。
目录
第一节
糖蛋白分子中聚糖及 其合成过程
目录
糖蛋白
➢ 一种或多种糖以共价键连接到肽链上旳蛋白质。 ➢ 蛋白质含量较多,糖所占百分比变动大,体现
为蛋白质旳特征。 ➢ 分布细胞膜、溶酶体、细胞外液
目录
蛋白聚糖聚合物
透明质酸 连接蛋白
硫酸角质素 硫酸软骨素 糖蛋白亚基 关键蛋白
骨骺软骨蛋白聚糖聚合物
目录
三、关键蛋白逐一加上糖基而形成 蛋白聚糖
➢ 在内质网上合成关键蛋白多肽链,同步在高 尔基体内进行糖链延长或加工。
➢ 多糖链旳形成是由单糖逐一加上去旳,糖醛 酸由UDPGA提供;单糖要由UDP活化;硫酸 由PAPS提供;糖胺氨基来自于Gln。
目录
聚糖作为信息分子作用 ➢ 特异旳聚糖构造被细胞用来编码若干主要信 息,诸如糖蛋白旳胞内定向转运、细胞与细 胞旳相互作用、组织与器官发育以及细胞外 信号转导等。 ➢ 每一聚糖都有一种独特旳能被蛋白质阅读, 并与蛋白质相结合旳三维空间构象,即糖密 码(sugar code)。
目录
一、聚糖组分是糖蛋白执行功能所必需

生物化学糖复合物

生物化学糖复合物
(Glc,▲)
-D-半乳糖
(Gal,●)
D-甘露糖
(Man,○)
D-木糖 (Xyl, )
-D-N-乙酰葡糖胺
(GlcNAc ,■)
-D-葡糖醛酸
(GlcUA, )
-L-艾杜糖醛酸
(IdoUA, )
-D-葡糖胺
(GlcN)
-D-N-乙酰半乳糖胺

(GalNAc,□)
-L-岩藻糖
(Fuc,△)
2.三种生物大分子结构特点
生物大分子
结构单位 连接键 端 多聚体方向 寡聚体数* (n =3) 5’→3’ 6 N→C 6 还原端→非还原端 > 1056
核酸
核苷酸
蛋白质
氨基酸 肽键
聚糖
单糖 糖苷键
3’,5’ -磷酸二酯键
游离末端 5’磷酸,3’羟基
氨基端,羧基端 非还原端,还原
(* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
HO
CH2
NH CH C O
肽 链
丝氨酸或苏氨酸残基
O
CH2
NH CH C O
肽 链
丝氨酸或苏氨酸残基
1.
O-连接糖蛋白的合成
① ② ③ ④ ⑤
细胞内场所--粗面内质网和高尔基体。 不需糖链载体 催化糖链生成的酶—(各种)糖基转移酶 糖基供体—UDP/GDP-糖基衍生物 糖链的合成在肽链合成后进行
糖复合物功能多样
二、什么是糖生物学(glycobiology)
研究与蛋白质或脂类连接的糖(糖链)的
分子结构、合成及生物功能的新兴学科
核酸和蛋白质研究成就,极大推动了糖生物学发展。
第一节 糖复合物的结构与功能

水杨酸甲酯糖苷抗大鼠急性胸膜炎的作用研究

水杨酸甲酯糖苷抗大鼠急性胸膜炎的作用研究

水杨酸甲酯糖苷抗大鼠急性胸膜炎的作用研究黄超;张丹;辛文妤;李永洁;张天泰;杜冠华【期刊名称】《中国药理学通报》【年(卷),期】2013(29)3【摘要】目的水杨酸甲酯糖苷(DL0309)是来源于民族药滇白珠的新型非甾体抗炎药,本实验的主要目的是评价其对角叉菜胶致大鼠胸膜炎模型的抗炎作用及其可能的机制.方法将48只♂ SD大鼠按体重随机分为正常对照组、模型对照组、阳性对照组(地塞米松)、DL0309低、中、高剂量组.通过注射角叉菜胶,建立大鼠急性胸膜炎模型.造模后5 h处死大鼠,通过测定胸腔渗出液的体积,对渗出液中的白细胞计数,并测定渗出液中蛋白质的含量来观察药物对该模型的抗炎作用;通过测定渗出液中一氧化氮(NO)、肿瘤坏死因子(TNF-α)、白介素1β(IL-1β)和前列腺素E2(PGE2)以及血浆中超氧化物歧化酶(SOD)和丙二醛(MDA)的含量,来考察DL0309对该模型的抗炎作用机制.结果结果显示地塞米松和DL0309均可明显降低胸膜炎大鼠胸腔炎性渗出液的体积以及渗出液中的白细胞数量和蛋白质含量,同时对于胸腔炎性渗出液中的NO、TNF-α、IL-1β和PGE2的含量均有不同程度的抑制,能不同程度地降低血浆中MDA含量,升高SOD活力.结论 DL0309具有抗角叉菜胶诱导的大鼠急性胸膜炎作用.%Aim To study the anti-inflammatory effect and mechanism of methyl salicylate glycosides ( DL0309 ) in carrageenan-induced acute pleurisy model in rats, and to provide the pharmacology mechanism for the effects and clinical use of DL0309. Methods Forty-eight male rats were divided into 6 groups: normal group, pleurisy model group, dexamethasone group ( positive drug ), DL0309 low dose ( 150 mg · kg-1 ),medium dose ( 300 mg · kg-1 ), and hig h dose (600 mg · kg-1 ) groups. The acute pleurisy model was established by injecting carrageenan into chest. The rats were sacrificed after 5 h and the blood and the exudates were collected. The ELISA method was used to detect the production of TNF-a, IL-1β, PGE2 in exudates. The NO content was measured by Griess assay. The contents of malondialdehyde ( MDA ) and the activity of superoxide dismutase ( SOD ) were detected by kit instruction. Results Compared with acute pleurisy model group, DL0309 decreased the volume of exudates, the total leukocyte numbers and protein contents in exudates. Meanwhile, DL0309 could significantly reduce the levels of IL-1β and PGE2 and decrease the contents of TNF-a and NO. In addition, DL0309 was also able to decrease the contents of MDA and the activity of SOD in plasma in carrageenan-trea-ted rats. Conclusion DL0309 has potent anti-inflammatory effects on carrageenan-induced acute pleurisy model in rats.【总页数】5页(P328-332)【作者】黄超;张丹;辛文妤;李永洁;张天泰;杜冠华【作者单位】药物靶点研究与药物筛选北京市重点实验室,北京协和医学院&中国医学科学院药物研究所,北京,100050【正文语种】中文【中图分类】R-332;R284.1;R561.105.31【相关文献】1.白芷提取物欧前胡素对急性胸膜炎大鼠抗炎作用研究 [J], 胡荣;李祖伦;杨露;杨金荣2.心痛泰颗粒对大鼠抗急性心肌缺血保护作用的实验研究 [J], 邓育兵;郭志华;吴钟琴;宋汝汝3.水杨酸和水杨酸甲酯在植物抗虫中的作用及机制研究进展 [J], 苗进;李国平;韩宝瑜4.月光花豆乙醇提取物对大鼠急性胸膜炎的作用及其机制的研究 [J], 唐秀能;黄建春;贺敏;张志伟;黄仁彬5.蜂胶提取液对大鼠急性胸膜炎的作用及其机制的研究 [J], 胡福良;李英华;朱威;陈民利;应华忠因版权原因,仅展示原文概要,查看原文内容请购买。

以白藜芦醇为分子骨架的活性衍生物研究进展

以白藜芦醇为分子骨架的活性衍生物研究进展

以白藜芦醇为分子骨架的活性衍生物研究进展程京超;樊士勇;仲伯华;史卫国;张亚通【期刊名称】《国际药学研究杂志》【年(卷),期】2016(43)4【摘要】Natural product resveratrol has antioxidation,cardiovascular protection and many other useful biological activities. In recent years,many researchers have paid more and more attention to it. However it cannot be used as candidate for the development of new drug due to its poor druggability. Novel resveratrol derivates with improved water solubility and highly potent biological activity could be obtained by chemical modifying of chemical structure of resveratrol. Researches have shown that resveratrol derivatives exhib⁃it many kinds of attractive activities,including antitumor,reducing blood fat,antiviral,anti-neurodegenerative diseases and so on, which makes them could be used as leads for the further developing of new drugs. This review discusses the development of novel resve⁃ratrol derivatives by chemical modification in recent years..%天然产物白藜芦醇具有抗氧化、心血管保护等多种有益的生物活性,近年来吸引了越来越多科研工作者的关注;但其成药性差,不能直接作为药物开发。

葡糖醋杆菌的研究最新进展!

葡糖醋杆菌的研究最新进展!

葡糖醋杆菌的研究最新进展!葡糖醋杆菌的研究最新进展!由于葡糖醋杆菌1997年才被提升为属,⽬前对它的研究不是很透彻,国内更是少见这⽅⾯的报道,作者在此综述了葡糖醋杆菌的研究进展,以期为醋酸菌研究提供参考。

葡糖醋杆菌为周⽣鞭⽑、可运动或⽆运动性的细菌种群,在⼄醇、葡萄糖或醋酸盐作为碳源时⽣长最佳,如Ga.oboediens菌株能在含30%葡萄糖的培养基上⽣长,并积累⾼浓度的葡萄糖酸,⽽Ga.europae-us和Ga.entanii的⽣长需要⼄酸。

葡糖醋杆菌可以从⼄醇、葡萄糖、果糖和⽢油产酸,还可超氧化⼄醇为CO2和H2O,依靠培养基中醋酸盐的浓度,决定能否将⼄酸盐氧化为CO2和H2O。

其最适⽣长pH值为2.5~6.0。

其呼吸链包括细胞⾊素C、辅酶Q和末端辅酶Q氧化酶,有⼀个完整的TCA循环。

其DNA中G+C的含量为56%~67%,以Q10为主要的泛醌类型。

葡糖醋杆菌属不同种间的⽣理⽣化特征见表1。

葡糖醋杆菌在分类地位上属于变形菌门(Pro-teobacteria)a-变形菌纲(Alphaproteobacteria)红螺菌⽬(Rhodospirillales)醋酸菌科(Acetobacteraceae)。

该属是醋酸菌科中较晚出现的⼀个属,最早是作为醋杆菌属的⼀个亚属出现的。

1984年,Yamada等建议将可氧化⼄酸盐、泛醌类型为Q10的醋酸菌如Ace-tobacter、liquefaciens、A.xylinus等,划⼈醋杆菌属下的⼀个亚属中,并命名为葡糖醋杆菌亚属(Glucono-acetobacter)。

1997年,Yamada等在进⾏辅酶Q类型和16S rRNA序列分析的基础上,提出应将葡糖醋杆菌由亚属提升为属,并将原本归属于醋杆菌属。

但泛醌类型为Q10的⼏个种A.liquefaciens、A.di-azotrophicus、A.europaeus、A.hansenii和A.xylinus划归⼊葡糖醋杆菌属。

Glycoconjugate

Glycoconjugate

classification
Carbohydrates
Monosaccharides: simple sugars Oligosaccharides: 2 ~ 10 simple sugars Polysaccharides: > 10 simple sugars
Glycoconjugates
Glycolipids: with lipids Covalent linking Glycoproteins: with proteins
A. Replacement of OH- by H- convert the sugar into deoxymonosaccharide. B. Replacement of OH- by –NH2 convert the sugar into amino sugar, designated as –osamine, eg, glucosamine C. Oxidation of the terminal –CH2OH to – COOH converts the sugar into a-uronic acid, such as glucuronic acid.
What is the structure and chemistry of Oligosaccharides?
Lactose (galactose-β-1,4-glucose)
Maltose (glucose-α-1,4-glucose)
Free anomeric carbon (reducing end)
Diastereomers and epimers
Glucose
Fructose
Epimers? Diastereomers
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Conjugates of poly(DL-lactide-co-glycolide)on amino cyclodextrins and their nanoparticles as protein delivery systemHui Gao,*Yi-Nong Wang,Yun-Ge Fan,Jian-Biao MaKey Laboratory of Functional Polymer Materials,Ministry of Education,Institute of Polymer Chemistry, Nankai University,Tianjin300071,People’s Republic of ChinaReceived18October2005;revised14March2006;accepted27March2006Published online7September2006in Wiley InterScience().DOI:10.1002/jbm.a.30861Abstract:Poly(DL-lactide-co-glycolide)(PLG)was chemi-cally conjugated on two amino cyclodextrins,mono(6-(2-aminoethyl)amino-6-deoxy)-b-cyclodextrin and ethylene-diamino bridged bis(b-cyclodextrin),to afford novel amphiphilic conjugates.Those conjugates were then char-acterized with infrared spectrometry(IR),proton nuclear magnetic resonance(1H NMR)and gel permeation chro-matography(GPC).A repeat-nanoprecipitation(RP-NP) method was also developed to fabricate the nanoparticles of the conjugates with a water-soluble model protein,bo-vine serum albumin(BSA).At the end of RP-NP process, the availability of BSA was over80%while the entrapment efficiency was40–50%for each nanoprecipitation.The nanoparticles were rigid and spherical with diameters of 110–180nm determined by transmission electron micro-scope(TEM),atomic force microscopy(AFM)and particle size analyzer.Nanoparticles possessed good steric stability during freeze-drying and resuspensions due to the exis-tence of cyclodextrins corona.Interactions between BSA and the conjugates in the nanoparticles were then eluci-dated with IR experiments.About25%BSA adsorbed on the surface of nanoparticles due to the interaction and was easy to release in thefirst day.The release of BSA from the nanoparticles was in three phases:a burst effect in the first day,a followed plateau in about a week,and a sus-tained release of the protein over14days.By changing the lactide/glycolide ratio,the degradation time of the conju-gates and the release rate of BSA could be controlled.The loss of CDs content was faster than that of overall Mw during degradation since CDs formed outer corona of the nanoparticles.Both the novel biomaterials and the nano-sphere fabrication technique contributed to the mainte-nance of protein structure.Ó2006Wiley Periodicals,Inc.J Biomed Mater Res80A:111–122,2007Key words:poly(DL-lactide-co-glycolide);amino b-cyclo-dextrin;biodegradable polymer;repeat-nanoprecipitation; protein deliveryINTRODUCTIONThere are many methods currently available for the preparation of polymeric nanoparticles,such as emulsification–evaporation method,1salting-out pro-cedure,2–4and nanoprecipitation method.However, several difficulties have been encountered for adopt-ing thefirst two methods.For example,the usage of chloric solvent may cause toxicity;the additives such as surfactants like poly(vinyl alcohol)and poloxamer may arouse toxicity and side-effects.1,5Salt perme-ates biological systems and is crucial for life.How-ever,salts also affect the stability of proteins.Neutral salts perturb various protein structures in ways that go well beyond simple,nonspecific charge effects, which has been reported for many years.6–8There-fore,the nanoprecipitation method becomes appeal-ing to us because it has been characterized to be ab-sence of oily–aqueous interfaces and avoid the usages of additives,toxic organic solvent,saturated electrolyte solution,and higher energy sources required for the formation of nanoparticles,all of which may damage the protein structure.The nano-precipitation technique wasfirst developed and patented by Fessi et al.9This method is based on the interfacial deposition of a polymer following dis-placement of a semipolar solvent miscible with water from a lipophilic solution,10which is mostly suitable for entrapment of hydrophobic drugs.11,12 Two modifications have been proposed to improve the versatility of the nanoprecipitation technique, particularly with respect to the entrapment of hydro-*Present address:Faculty of Pharmacy,University of Mon-treal,C.P.6128,Succ.Centre-ville,Montreal,Qc H3C3J7, CanadaCorrespondence to:J.-B.Ma;email:jbma@'2006Wiley Periodicals,Inc.philic ender et al.have improved the incorporation of a water-soluble drug into the poly (DL -lactide-co -glycolide)nanoparticles by increasing the aqueous phase pH and thereby decreasing the solubility of the drug.13However,this method is not suitable for protein delivery since it often causes a protein deactivation when decreasing the solubility of the protein.Bilati et al.recently proposed that di-methyl sulfoxide (DMSO)could be one of the most useful organic solvents during nanoprecipitation,es-pecially for protein drugs.14However,they did not consider that some protein was not well soluble in DMSO and removing of DMSO is time-consuming.In our laboratory,a new technique was developed as the repeat-nanoprecipitation (RP-NP)method for protein delivery,which may solve the above-men-tioned problems.After the conventional precipitation of organic polymer solution in an aqueous protein solution,the protein solution in the supernatant re-covered from the centrifugation was not discarded but adjusted the concentration by adding protein for the next performance of nanoprecipitation.The pro-tein availability was enhanced after repeating nano-precipitation (RP-NP)several times,even though the entrapment efficiency of each time was relatively low.This technique keeps the advantages of the nanopre-cipitation method,but avoids loss of the drug during the fabrication of drug delivery system.It also allows us to prepare large amount of the protein nanopar-ticles since sonication and homogenization are not required in the process.When biodegradable polymers are used in protein delivery,the stabilization of proteins in delivery devices and the enhancement of entrapment effi-ciency into appropriate protein carriers are major issues.With this consideration in mind,we recently synthesized two kinds of biodegradable polymers composed of poly(lactic acid)(PLA)and cyclodextrin derivatives.15,16However,the degradation of PLA is time-consumed.17The copolymers of lactide and gly-colide,poly(lactide-co -glycolide)(PLG),as a matrix for drug delivery applications can preferably meet the requirements including suitable mechanical pro-perties,biodegradability,and tissue compatibility.18Furthermore,the degradation rate of a PLG copoly-mer can be controlled by the molar ratio of the lactic and glycolic acids in the polymer chain.19–23To cre-ate new biodegradable nanoparticles and evaluate their potential as protein carriers,two kinds of new conjugates of PLG with amino cyclodextrins,mono (6-(2-aminoethyl)amino-6-deoxy)-b -cyclodextrin and ethylenediamino bridged bis(b -cyclodextrin),were synthesized according to the synthesis route as illus-trated in the Scheme 1.The feasibility of the RP-NP method using these new materials was also eval-uated for bovine serum albumin (BSA)delivery.MATERIALS AND METHODSMaterialsPoly(DL -lactide-co -glycolide)copolymers (free acid end)with the molecular weight of 18KDa and monomer com-position of 50/50or 75/25(LA/GA)were obtained from Durect Company.b -Cyclodextrin (b -CD)was obtained from Aldrich Chemical Company.N ,N 0-Dicyclohexycarbo-diimide (DCC)was purchased from Shanghai Chemical Reagent Company,China.Bovine serum albumin (BSA)in electrophoresis purity was purchased from Institute of He-matology and Hospital of Blood Diseases,Chinese Acad-emy of Medical Sciences,Tianjin,China.The deuterated agents were obtained from Cambridge isotope laboratories Inc.N ,N 0-Dimethylformamide (DMF)was dried over cal-cium hydride for 2days and then distilled under a reduced pressure before use.Other chemicals were analyti-cal grade.Conjugating reaction of PLG with amino cyclodextrinsThe conjugating reactions were performed as reported pre-viously,15,16except that the reactant used was PLG instead of PLA.Briefly,PLG was respectively reacted with mono (6-(2-aminoethyl)amino-6-deoxy)-b -cyclodextrin (CDen)24and ethylenediamino bridged bis(b -cyclodextrin)(BCDen)25at a feeding ratio of 2:1(amino CD to PLG)using N ,N 0-Dicy-Scheme 1.Synthesis route of the CDenPLG and BCDenPLG copolymer.112GAO ET AL.Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.aclohexycarbodiimide(DCC)as conjugating agent in DMF. The former was reacted at room temperature while the latter was at608C.Both of them reacted for3days.After keeping at room temperature for another3days,solid dicyclohexylurea (DCU)wasfiltered out.Thefiltrate was diluted with DMF to 1%concentration of the conjugated product and fractioned with deionized water carefully.No complete phase separation took place after aging for about12h.After centrifuged at8000 rpm for0.5h,however,phase separation occurred.The sec-ond fraction in38–53%of total product weight was regarded as the principal component of the conjugated product. Characterization of the PLG-conjugated amino cyclodextrins1H NMR spectra of the products as well as PLG were measured in deuterated DMSO on the Varian UNITY-plus 400spectrometer at400MHz.Their infrared spectra were recorded on the NICOLET5DX FTIR apparatus using dif-fuse reflection technology.GPC was performed on a Waters510/410GPC apparatus with a polystyrene gel col-umn and a differential refractive index detector using lin-ear polystyrenes as the standards and DMF as thefluent.Nanoparticles fabricationA repetition nanoprecipitation(RP-NP)technique was developed.Typically,5mL of the polymer solution(10mg/ mL)in acetone was added dropwise to10mL of water with BSA(2mg/mL)at a rate of0.5mL/min using a syringe pump(74900series multichannel syringe pumps,Cole-Parmer Instrument Company,USA)under magnetic stirring. Acetone was eliminated by evaporation under reduced pres-sure using a rotation evaporator at308C for0.5h.The NPs were recovered by centrifugation at21,000rpm for20min. The supernatant concentration of BSA was measured accord-ing to the blue coomassie G250protein assay26and adjusted to2mg/mL through adding calculated weight of BSA.Then another batch of polymer acetone solution was added into the BSA supernatant with the adjusted concentration.These procedures were repeated for four times.Characterization of the nanoparticlesFTIR studies of the nanoparticlesThe NPs were made by RP-NP technique with the com-position of CDenPLG75.The IR spectra of blank NPs,BSA loaded NPs,and the physical mixture of BSA(10%)and CDenPLG75NPs(90%)were obtained by FTIR(NICOLET 5DX FTIR).Determination of entrapment efficiency andparticle sizeAfter centrifugation of NPs,the entrapment efficiency (EE)was determined by measuring the BSA concentration in the supernatant according to the blue coomassie G250protein assay.26NPs size was determined through BI-90 Plus Particle Size Analyzer(Brookhaven Instruments Cor-poration)at258C in distilled water.Electron spectroscopy for chemical analysis(ESCA) The presence of BSA at or near the surface of the sys-tems was investigated by electron spectroscopy for chemi-cal analysis(ESCA)(PerkinElmer Phi-1600ESCA System) using the K a ray of aluminum.The analysis depth was less than100A˚and it was possible to quantify the BSA at or near the surface,taking into account that an elemental composition in N(N(%))of14.4%corresponds to100%of BSA27at or near the surface.Thus,the percentage of BSA at or near the surface in the developed formulations(sur-face%BSA)can be calculated according to:Surface%BSA¼Nð%ÞÂ100=14:4:Morphology observation of the polymer nanoparticlesThe shape and surface morphology of the produced BSA-loaded nanoparticles(NPs)were investigated by transmission electron microscope(TEM,Tecnai,G220S-TWIN,Philips Co.,Netherlands)and atomic force micros-copy(AFM).A drop of NPs suspension(0.1mg/mL)was placed on copper grids with a carbonfilm and allowed to dry at room temperature before being loaded in the TEM microscope.Samples for AFM imaging were prepared by placing a drop of BSA-loaded NPs suspension(typical con-centration about0.01mg/mL)on a clean glass slide and allowing it to dry in the air.AFM imaging was performed using a Nanoscope IIIa system in a tapping mode at room temperature.Feasibility of RP-NP methodAt the end of the5th nanoprecipitation,the following experiments were performed to identify the feasibility of RP-NP method.The molecular weight of BSA in the super-natant was tested by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE).The parti-cle size was determined as described by particle size ana-lyzer.At last,the availability of BSA at the end of RP-NP performance was calculated as follows:Availability%¼100%ðW tÀW sÞ=W twhere W t and W s are the total weight of BSA inputted and that of BSA detected in the supernatant after nanoprecipi-tation forfive times.Results were represented as the aver-age value of triplicate experiments.Colloidal stability and lyophilized stabilityColloidal stability of NPs suspensions was studied through measuring their turbidity as a function of the elec-trolyte concentrations.Na2SO4(2.0mL,0.05–1M)wereCONJUGATES OF PLG ON AMINO CYCLODEXTRINS113Journal of Biomedical Materials Research Part A DOI10.1002/jbm.aadded to the NPs suspensions(0.25mL,0.15%w/v)in test tubes placed on a rotary shaker(SHZ-88Constant Temper-ature Water-bath Shaker,China).The samples were allowed to stand for20min at378C and their absorbencies were measured at680nm(U-3010spectrophotometer, HITACHI,Japan).Using a plot of suspension turbidity versus electrolyte concentration,the critical coagulation concentration was determined.28Suspensions of NPs were lyophilized and rehydrated. The nanospheres before and after lyophilization and rehy-dration were compared by particle size analyzer. Degradation of the polymeric nanoparticlesand protein releasePolymer degradation was studied by monitoring the changes in molecular weight of the polymer NPs.About10 mg of blank NPs were incubated with2mL of PBS(pH7.4) at378C in a water bath rotary shaker at72rpm.Three repli-cate tubes were used for each time point.At predetermined time intervals,the samples were centrifuged at21,000rpm and the pellets from each sample were lyophilized and then dissolved in DMSO.The insoluble inorganic salts from PBS solutions werefiltered before GPC measurement.GPC con-ditions were the same as earlier.The release tests have been described in Ref15.After release for14days,the centrifuged pellet was also ana-lyzed for the shape of degraded NPs by TEM.The protein released from NPs was analyzed by SDS-PAGE and circu-lar diachronic spectra.15The change of cyclodextrin content in the nanoparticles during degradation was then evaluated.In DMSO-d6,the content of CDen/BCDen in copolymer using1H-NMR was determined by comparing integrals of signals of1H of cyclodextrin glucose units(d¼3.64ppm)and of methyl groups of LA unit(d¼5.20ppm).Three samples were used for detection and the results were recorded as the av-erage value.Remained CDen/BCDen%was calculated according:Remained CDsð%Þ¼100ÂCDs content atdetermined time/original CDscontent in NPs:RESULTS AND DISCUSSION Characterization of the copolymer conjugatesThe1H-NMR spectrum of the CDenPLG75is exhibited in Figure1.The spectrum is dominated by the signals of the PLG chains.Overlapping doublets are at d¼1.45ppm(\a")for the methyl groups and at d¼5.20ppm(\d")for CHÀÀgroups of the lactic acid(LA)repeating units,and the multiplets at d¼4.85ppm(\c")are assigned to the methylene groups of GA residues,which confirm the chemical struc-ture of PLG.The LA/GA ratios in the PLG can be calculated from the ratios of peak\d"and\c".29The small peak\b"at d3.64ppm is aroused from theprotons C2–C6of the CDen unit.The integration ra-tio of\c"and\b"indicates that the approximatemolar content of PLG to CDen was1:1.Infrared spectra are exhibited in Figure 2.Theabsorption peak at1675cmÀ1can be attributed to the stretching vibration of amido carbonyl C¼¼O from thecopolymer CDenPLG75,suggesting that the amino group of CDen reacted with the carboxylic group ofPLG in the conjugating reaction.Their contrast spec-trum clearly presents the multihydroxy characteristic peak(3435cmÀ1)and d vibrations(815cmÀ1)of ÀÀNHÀÀfrom CDen.All the samples have the main peaks from the functional groups of PLG moleculesuch asÀÀCH,ÀÀCH2,ÀÀCH3stretching(2850–3000 cmÀ1),ÀÀC¼¼O stretching vibrations(1700–1800cmÀ1), CÀÀO stretching(1050–1250cmÀ1),andÀÀOH stretch-ing vibrations(3200–3500cmÀ1).30Molecular weights of the copolymer conjugates are shown in Table I.The two copolymers,CDenPLG and BCDenPLG,possess the average molecular weights(M n)about1KDa and2KDa larger than the corresponding initial PLG.This indicated that only one PLG chain is linked on one molecule of CDen or BCDen due to precise molecular weights of CDen and BCDen is1177and2294Da,respectively.In addition,the molecular weight of thefirst fraction of the crude products is also tested based on GPC.There are two peaks in GPC(Figure not shown).One minor peak of M w is corresponding to the double of the coupling product and the other is the coupling prod-uct.Two PLG chains couple on CDen,which appears as the double molecular weight of main product. With two PLG chains linking on CDen,thefirst frac-tion is more hydrophobic and precipitate preferen-tially using water as the precipitator.FTIR study of the nanoparticlesFTIR is a useful tool to study the interactions of mo-lecular group.Hyvonen et al.reported that IR spectra of the PLA nanoparticles remained the same as matrix homopolymer PLA.31For CDenPLG75,as seen from Figure3(a),the same characteristic peaks aroused from the NPs present as those from the matrix.However, the relative sharp multihydroxyl peaks become broaden after the nanoparticle fabrication,which may be due to the formation of hydrogen bond.To our knowledge,the hydrogen bond formation after the NPs fabrication with the nanoprecipitation technique has not been put forward yet and this hydrogen bond may contribute to the NPs stabilization.Comparing IR spectrum of the BSA-loaded NPs to the blank NPs[Fig.3(b)],two additional peaks present in the BSA-loaded NPs spectrum at1653cmÀ1114GAO ET AL. Journal of Biomedical Materials Research Part A DOI10.1002/jbm.a(amides I)and 1518cm À1(amides II),which can be attribute to BSA.The lower wavenumber of amides I band indicates the existence of hydrogen bond because the free amides I band appears due to at higher wavenumber (1685–1690cm À1).Meanwhile,thereis no significant difference in the spectrum of the BSA-loaded NPs and their physical mixture.This sug-gests that some BSA may be absorbed on NPs during the RP-NP performance and the physicochemical in-tegrity of BSA retains within the NPs.Morphology of nanoparticlesTEM photographs in Figure 4show a spherical shape and a rough surface of CDenPLG75NPs with-out any aggregation or adhesion.However,TEM can only give morphology of NPs.Herein,AFM is used to observe the three-dimensional structures,which is capable of resolving surface details down to the atomic level and acquiring morphological images in high resolution.30AFM images reveal that the NPs of CDenPLG50are in fine spherical shape with an average diameter of 130nm and an average height of 119nm,indicating that the NPs surface is rigid and has sufficient mechanical resistance to collapse.Moreover,the particle size observed by microscope is very consistent with the result measured by parti-cle sizeanalyzer.Figure 2.IR spectra of CDenPLG75(a)and PLG75(b)and their contrast spectrum(c).Figure 1.1H-NMR spectrum of CDenPLG75.CONJUGATES OF PLG ON AMINO CYCLODEXTRINS 115Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.aEffect of copolymer composition on particle size and EEAs shown in Table II,the EE of the conjugate NPs has been improved compared with the PLG NPs,which can be explained by the interactions of the CD moieties with BSA.32Furthermore,the binding ability of BCDen with BSA is stronger than that of CDen due to the coopera-tive action of two CDs cavity,32which also contributes to the enhancement of the EE.The type of CD composi-tion has no effect on the mean diameter because the hydrophilicity of CDen is similar to that of BCDen.Onthe other hand,the particle size of NPs decreases after introduction of the CD units due to enhancing the hydrophilicity of the products.As for the composition of PLG,when the ratio of LA/GA decreases,the hydro-philicity of the polymer increases,which is the benefit for the NPs formation.Thereafter,the smaller NPs are obtained with the decreased ratio of LA/GA and the size distribution becomes narrower as well.Little effect of LA/GA ratio on EE is observed,whereas almost no difference of EE is either found between the nanopar-ticles of CDs-PLG with corresponding CDs-PLA nano-particles.This evidences that introduction of GA unit has little effect on the EE.Effect of fabrication method on particle size and EEThe effect of fabrication method on particle size and EE is displayed in Table III.Stirring provides the energy to disperse acetone in aqueous phase.As expected,a higher stirring speed yields smaller NPs because nanoprecipitation is broken up into smaller droplets at a higher input power.However,EE becomes lower with higher stirring rate because the exchange rate of acetone with water is too fast at a high stirring rate and less BSA molecules can be incorporated into the formed NPs,and as a result more BSA remain in aqueous phase.Therefore,the stirring speed needs to be optimized in order to obtain a sufficiently high EE with a desired particle size.All following experiments are performed at 500rpm.The increase in concentration of copolymer causes higher viscosity of organic phase,accordingly indu-ces a higher EE and a larger particle size.Neverthe-less,too much polymer in acetone prevents the pre-cipitation,which is probably due to the high viscos-ity of the polymeric solution that hampers an appropriate diffusion of the solvent toward the non-solvent.14Therefore,10mg/mL concentration is cho-sen to make biodegradable NPs.Increased concentration of BSA in aqueous phase causes a decrease of particle size and a slight decrease of EE.BSA may serve as a surfactant,high concentration of which results in the decrease in par-ticle size,while the decrease in particle size causesaFigure 3.IR spectra of CDenPLG75(A)matrix and blank NPs;(B)blank NPs,BSA-loaded NPs,mixture of blank NPs (90%)and BSA (10%).[Color figure can be viewed in the online issue,which is available at .]TABLE IConjugating Reaction of PLG with Amino CDs and the Molecular Weights of the ConjugatesFeeding PLA Feeding CD Product Samples M n (KDa)M w (KDa)M w /M n Yield a (%)PLG50CDen CDenPLG501924 1.2653.6PLG50BCDen BCDenPLG502125 1.2038.4PLG75CDen CDenPLG752028 1.4351.2PLG75BCDenBCDenPLG7521301.4443.3aThe yield was calculated from the ratio of principal component to the crude product.116GAO ET AL.Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.aCONJUGATES OF PLG ON AMINO CYCLODEXTRINS117Figure4.TEM images(a and b with deferent magnified ratio)of BSA-loaded CDenPLG75NPs,AFM images(c and d represents two or three dimensionsfigure,respectively)of BSA-loaded CDenPLG50NPs,e:TEM image of BSA-loaded CDenPLG75NPs after released for14days.[Colorfigure can be viewed in the online issue,which is available at www. .]Journal of Biomedical Materials Research Part A DOI10.1002/jbm.adecrease amount of BSA encapsulated in NPs and thus a decreased EE.On the basis of the abovementioned results,fine-tuning of various formulation parameters,including the copolymer composition,the stirring speed,con-centration of polymer solution and BSA solution,will be necessary to optimize the polymer EE and particle size.Electron spectroscopy for chemical analysis ESCA clearly reveals the presence of N,hence of BSA,in the surface of the nanoparticles.BSA remains on the surface of copolymer with a single wash of NPs due to the binding interactions between CDs and BSA.CDenPLG50and CDenPLG75were used to test for ESCA.Since their elemental composition in N is less than BCDenPLG copolymers,the effect on analysis of N on the surface is less correspondingly.The blank nanoparticles made by CDenPLG50and CDenPLG 75were text as a control and N%is 0.0960.04and 0.160.02,repectively (calculation value is 0.07),while for BSA-loaded nanoparticles,the calculated \Surface %BSA "is 2363%and 2864%,correspondingly.The fabrication method determines the amount of protein existing near the surface of NPs.When the excipients,i.e.polymers,are not soluble in water,drug moleculesdissolved in water may be very close to the outer NPs surface,forming a layer of molecules,susceptible to be easily and rapidly released.33Feasibility of the RP-NP methodAt the end of RP-NP,the supernatant is analyzed by the SDS-PAGE and a single binding correspond-ing to the Mw of BSA is presented (Figure not shown),indicating the maintenance of structure in-tegrity of BSA.On the other hand,the particle size of nanoprecipitation for the last time remains the same as the first time.The availability of BSA in the NPs is listed in Table II.Even though the EE is rela-tively low using RP-NP method,the availability of all formulations can exceed 80%after five-time pre-cipitation.Therefore,the RP-NP is a feasible tech-nique to increase the protein availability without any change of both protein integrity and particle size.Colloidal stability of NPsThe colloidal stability of NPs was examined at various Na 2SO 4concentrations.The difference in floc-culation provides a simple method to detect modifi-cation in the surface characteristics of the NPs.Above 0.05M Na 2SO 4,suspensions of unmodifiedTABLE IIIInfluence of Processing Factors on EE and Particle Size Using RP-NP Technique (CDenPLG50was Used)Polymer Concentration (mg/mL)BSAConcentration (mg/mL)Stirring Rate (rpm)Entrapment Efficiency (%)Mean Diameter (nm)PolydispersityIndex10230048.8162.40.14210250046.4137.80.11210270040.9125.50.0395250040.3112.20.05815250047.5175.10.12310150047.9175.30.13310350042.3112.50.042TABLE IIEffect of Copolymer Composition on EE and Particle SizeCopolymer CompositionEntrapment Efficient (%)Mean HydrodynamicDiameterPolydispersityIndexAvailabilityPLG7531.5235.20.19369.7PLG5028.1203.80.16762.6CDenPLA17a 48.3140.90.10482.9CDenPLG5046.4137.80.11281.2CDenPLG7547.8178.90.14882.1BCDenPLA17b 49.3166.50.04483.0BCDenPLG5049.6139.10.06383.1BCDenPLG7550.3174.30.08583.3Typical condition:5mL of the polymer solution (10mg/mL)in acetone was added dropwise to 10mL of water with BSA (2mg/mL)at a rate of 0.5mL/min,and the stirring rate was 500rpm.aFrom Ref.15.bFrom Ref.16.118GAO ET AL.Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.aPLG NPs are no longer stable,due to the screening of the surface charge by salt ions.Therefore,floccula-tion as the result of Van der Waals attraction occurs when salt concentration increases.34As for the CDenPLG50and BCDenPLG50NPs,the critical coagulation concentration is observed at Na 2SO 4con-centrations up to 0.6M and 0.8M ,respectively.The observed colloid stability of the conjugate NPs under high ionic strength strongly suggests the presence of a nonelectrostatic contribution to nanosphere stabili-zation,such as steric component to the stabiliza-tion.28The BCDenPLG NPs show even more stability in the presence of electrolyte.The two nearly situ-ated CDs cavity can offer more steric stability.Stability of freeze-dried samplesThe industrial development of polymeric nanopar-ticle suspensions,as drug delivery systems,is lim-ited due to the problems in maintaining stability of suspensions.According to the literature,freeze-dry-ing was a good method to dry nanospheres in order to increase the stability of these colloidal systems.35SiO 235or glucose/threalose was added to permit adequate reconstitution of the freeze-dried product.36In our systems,the resulting fluffy powder is easily resuspendable in water after lyophilization of super-natant without any additives.Moreover,there is no change in the size of NPs.The particle suspension exhibits good steric stability.Similar stability is observed with methoxy poly(ethylene glycol)-poly (lactide)(MPEG-PLA)nanoparticles due to the pres-ence of PEG on the particles surface to prevent the coagulation cascade.37CDenPLG/BCDenPLG nanoparticles are of a core-corona structure 15:the hydrophobic PLG comprises the core while thehydrophilic CDen/BCDen extends to the outer aqueous environment to form a corona.This struc-ture is believed to possess self-stabilization function.NPs degradation and protein releaseFigure 5illustrates the in vitro release profiles.For all NPs,BSA release occurs as following:(1)an initial burst release (the 1st day)of a certain amount of pro-tein which releases from the NPs surface,primarily due to the adsorption of the protein to the NPs surface,(2)a plateau followed for about a week,from an equi-librium between the amount of BSA released in the su-pernatant and the amount of BSA adsorbed on the NPs,(3)a sustained release of the drug over 14days resulting from the erosion of the polymers.To our knowledge,the burst release is often con-sidered to avoid when the NPs are used as drug delivery systems.However,the burst effect can mimic the effect of booster doses required for cur-rent vaccination programs.The release characteristics are also considered advantageous because the dose of antigen necessary to stimulate the secondary response is much lower than that required for evok-ing a primary response.3830–37%of BSA released for the first day.As discussed above,about 25%of BSA appeared on the surface of the nanoparticles,which led to the bust release of BSA.It has been generally accepted that the third phase of the sustained release profiles correspond to the erosion of the polymers 39To investigate the release mechanism of protein from the NPs,we evaluated the polymer Mw by GPC.The Mw of NPs immedi-ately after the fabrication remains the same as that of before device preparation.Results in Figure6Figure 5.In vitro release profiles of BSA from the conju-gate NPs.[Color figure can be viewed in the online issue,which is available at.]Figure 6.Weight molecular weight changes (solid line)and remained CDen/BCDen%(dash line)of the degrading NPs as a function of incubation time.[Color figure can be viewed in the online issue,which is available at .]CONJUGATES OF PLG ON AMINO CYCLODEXTRINS 119Journal of Biomedical Materials Research Part A DOI 10.1002/jbm.a。

相关文档
最新文档