环境因素-碳通量类文献Environmental Factors Determining Carbon Isotope Discrimination and Yield

合集下载

环境卫生学试题解析之1

环境卫生学试题解析之1

公卫执业医师环境卫生学试题解析之一一、名词解释1.环境因素(environmentalfactors):是被环境介质容纳和转运的成分或环境介质中各种无机和有机的组成成分。

2.生态系统(ecosystem):在一定空间范围内,由生物群落及其环境组成,借助于各种功能流(物质流、能量流、物种流和信息流)所联结的稳态系统。

3.健康效应谱(spectrumofhealtheffect):环境有害因素对机体的效应是一个连续的多个阶段的过程,整个效应从弱到强分为5级,不同级别的效应在人群中的分布称为健康效应谱。

4.温室效应(greenhouseeffect):大气层中的某些气体能吸收地表发射的热辐射,使大气增温,从而对地球起到保温作用,称为温室效应。

5.有效氯:用于饮用水消毒的含氯化合物中具有杀菌能力的有效氯成分称为有效氯。

6.基准(criteria):根据环境中有害物质和机体之间的剂量反应关系,考虑敏感人群和暴露时间而确定的对健康不会产生直接或间接有害影响的相对安全剂量(浓度)。

7.生态系统健康(ecosystemhealth):指具有活力和自调节能力、结构稳定的生态系统,是生态系统的综合特性。

8.住宅朝向:指住宅建筑物主室窗户所面对的方向,它对住宅的日照。

采光、通风、小气候和空气清洁程度等都能产生影响。

9.地方性克汀病(endemiccretinism):是一种主要由于地区性环境缺碘引起的地方病,是碘缺乏病的主要表现之一,患儿表现为不同程度的智力低下,体格矮小,听力障碍,神经运动障碍和甲状腺功能低下,伴有甲状腺肿。

10.环境质量评价(environmentalqualityassessment):按照一定的评价标准和方法对一定区域范围内的环境质量进行客观的定性和定量调查分析、描述、评价和预测。

二、填空1.饮用水中的______被认为是继肝炎病毒、______之后,又一导致肝癌的主要危险因素。

【答案】微囊藻毒素;黄曲霉毒素2.人体对产热和散热的调节根据其机制可分为______体温调节和______体温调节两大类。

环境因素对水体中四环素光催化降解行为的影响

环境因素对水体中四环素光催化降解行为的影响

化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期环境因素对水体中四环素光催化降解行为的影响徐诗琪1,朱颖1,陈宁华2,陆彩妹1,江露莹1,王俊辉1,覃岳隆2,张寒冰1(1 广西大学资源环境与材料学院,广西 南宁 530004;2 广西环境科学保护研究院,广西 南宁 530022)摘要:为探索实际水体中四环素(tetracycline ,TC )的降解规律,以ZnO 作为光催化剂研究四环素在复杂的自然环境条件(曝气、重金属、光照)下反应时间、pH 、腐殖酸(humic acid ,HA )浓度及四环素浓度对光催化降解过程的影响。

结果表明,3种环境条件均促进了四环素的降解:曝气情况下大量的溶解氧会和催化剂协同促进超氧自由基和羟基自由基的生成,使TC 达到99%的光催化降解率;重金属Cu(Ⅱ)的加入使溶液中形成TC-Cu(Ⅱ)-ZnO 络合物,显著提高了ZnO 对TC 的降解效率,在30min 时达到89%的降解率;自然光拥有全光谱,相比可见光展现出更强的TC 降解作用,TC 降解率达到86%,比可见光下降解率提高了14%。

三因素协同作用可以有效降低TC 的降解时间,在75min 时达到降解平衡,降解率为99%。

通过动力学分析比较了不同环境状态下的光催化活性,结果为:曝气>重金属>光照。

关键词:水体;四环素;光催化;曝气;Cu(Ⅱ)共存;自然光中图分类号:X522 文献标志码:A 文章编号:1000-6613(2024)01-0551-09Effect of environmental factors on the photocatalytic degradationbehavior of tetracycline in waterXU Shiqi 1,ZHU Ying 1,CHEN Ninghua 2,LU Caimei 1,JIANG Luying 1,WANG Junhui 1,QIN Yuelong 2,ZHANG Hanbing 1(1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China;2Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, Guangxi, China)Abstract: To explore the degradation pattern of tetracycline (TC) in actual water, ZnO was used as a photocatalyst to investigate the effects of reaction time, pH, humic acid (HA) concentration and tetracycline concentration on the photocatalytic degradation process under complex natural environmental conditions (aeration, heavy metals and light). The results showed that all three environmental conditions promoted the degradation of tetracycline. The large amount of dissolved oxygen under aeration wouldcollaboratively promote the generation of superoxide radicals and hydroxyl radicals with the catalyst, enabling TC to reach 99% photocatalytic degradation efficiency. The addition of the heavy metal Cu(Ⅱ) caused the formation of TC-Cu(Ⅱ)-ZnO composite in solution, which significantly improved the degradation efficiency of TC by ZnO, reaching 89% degradation efficiency at 30min. Natural light possessed a full spectrum and exhibited stronger TC degradation compared to visible light, with a TC研究开发DOI :10.16085/j.issn.1000-6613.2023-0217收稿日期:2023-02-17;修改稿日期:2023-05-04。

低碳论文[精选5篇]

低碳论文[精选5篇]

低碳论文[精选5篇]第一篇:低碳论文苏州国际科技园四期坐落在苏州工业园区机场路与通园路交界路口的东南角,由两栋20多层的现代建筑组成,地理位置优越,无论是在苏嘉杭高速、独墅湖高架甚至苏州东环高架上都可以清楚的看到建筑群的身影。

20XX年初,业主委托苏州颐达照明设计有限公司对建筑群的原有灯光进行了大幅度的改造,力争打造成国内一流、动感超强且可以任意编辑程序的超大不规则显示屏。

项目设计要点及实施难点:(1)需要实现两栋独立建筑之间灯光变化的集中平面控制;(2)需要解决灯具在不规则排列状态下仍然不能变形的表现各种色彩和图文的变化;(3)东侧建筑的东立面山墙上希望表现类似“俄罗斯方块”这个电脑游戏的模拟效果,并且可以实现各种图文的任意编辑;(4)LED全彩柔光管的灯具尺寸和安装结构需要特别设计,不仅要符合现场建筑实际尺寸,灯光的均匀性和连续性也要得到较好的表现,而且不可以影响室内外推窗户的开启;(5)根据数据量的需求,12套独立控制系统之间需要实现协调的同步控制,共同表现各种程序变化;A:信号总线槽及电源总线槽,信号线采用超五类网线,电源采用交流220V供电; B:信号及电源分线槽,每一横排的窗户之间,信号线为串接方式,每个窗户提供一个供电点,6根灯具为交流220V供电,采用光联专用防水接插件;C:LED全彩柔光管,型号为:GLR-GF50-LED-SM-192-8D-1000,灯具发光直径为50mm,单根长度为1米/根,LED采用直径5mm、发光角度120度的封装光源,排列线密度为192粒/米,控制段落为8段/米;D:LED全彩柔光管,型号为:GLR-GF50-LED-SM-192-8D-1160,灯具发光直径为50mm,单根长度为1.16米/根,LED采用直径5mm、发光角度120度的封装光源,排列线密度为192粒/1.16米,控制段落为8段/1.16米,线路板为特别设计,主要目的在于交好表现灯光效果的连续性,不留明显空挡; E:可以向外开启的窗户,内部是酒店客房; F:建筑表面装饰铝板;G:LED全彩柔光管,型号为:GLR-G60-LED-SM-192-8D-1000,灯具发光直径为60mm,单根长度为1米/根,LED采用直径5mm、发光角度120度的封装光源,排列线密度为192粒/米,控制段落为8段/米;俄罗斯方块区域灯具安装完毕后,灯具和线槽白天的隐蔽性得到了很好的处理,夜晚的发光角度也很大,效果得到了业主和同行的一致肯定。

室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排放因子及影响因素

室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排放因子及影响因素

室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排放因子及影响因素一、本文概述随着工业化和城市化的快速发展,室内固体燃料燃烧已成为全球范围内普遍存在的现象,特别是在发展中国家和一些发达国家的农村地区。

这种燃烧过程不仅提供了生活所需的热能,同时也产生了大量的碳颗粒物(Particulate Matter, PM)和多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)等有害物质,对室内环境和人类健康造成了严重的影响。

因此,对室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排放特性及其影响因素进行深入研究,对于减少室内空气污染、改善居民生活环境和保护人类健康具有重要的现实意义。

本文旨在全面系统地分析室内固体燃料燃烧过程中碳颗粒物和多环芳烃的排放因子,并探讨其影响因素。

我们将对室内固体燃料燃烧排放的碳颗粒物和多环芳烃的种类、浓度及分布特性进行详细阐述。

随后,我们将从燃料类型、燃烧设备、燃烧条件、室内通风状况以及操作习惯等多个方面出发,深入探讨这些因素如何影响室内固体燃料燃烧产生的碳颗粒物和多环芳烃的排放。

我们还将对现有的减排技术和策略进行评估,并提出针对性的建议,以期为实现室内空气质量的改善和人类健康的保护提供理论支持和实践指导。

通过本文的研究,我们期望能够为室内固体燃料燃烧的污染控制和减排提供科学依据,为推动室内环境质量的改善和人类健康的保护贡献力量。

我们也期望能够引起更多学者和公众对室内空气污染问题的关注,共同推动全球范围内室内环境的持续改善。

二、文献综述室内固体燃料燃烧产生的碳颗粒物和多环芳烃(PAHs)的排放问题,近年来已逐渐成为环境科学与公共卫生领域的研究热点。

众多学者对此进行了广泛而深入的研究,旨在了解这些污染物的排放特征、影响因素以及对人体健康和环境造成的潜在风险。

早期的研究主要集中在燃烧过程中碳颗粒物和多环芳烃的生成机制上。

这些研究揭示了燃烧温度、氧气浓度、燃料种类以及燃烧方式等因素对污染物生成的影响。

基于SVAR模型的碳排放量及其影响因素分析-中南财经政法大学

基于SVAR模型的碳排放量及其影响因素分析-中南财经政法大学
[ ] 1 1-1 2
。 此理论侧重碳排放核算 , 但无法将
更多涉及社会和经济活动的影响因素引入 。 三是 碳 排 放 收 敛 性 理 论 假 说 , 认为从经济理论 上说 , 随着 经 济 规 模 的 不 断 扩 张 , 能源消费不断增 加, 由此导致的碳排放量也会呈现发散增长 , 但是微 、 企业技术 进 步 和 弹 性 收 敛 机 制 ) 中观层面 观层面 ( ( 产业结构变迁和能 源 结 构 优 化 ) 和宏观层面( 针对 环境问题的政府调 控 行 为 ) 的收敛机制使得碳排放 出现收敛 现 象 待实证分析 。 四是 能 源 市 场 调 节 机 制 假 说 , 在有效市场假说 随着能源价格的上升 , 由于能源资源的需 的前提下 , 求价格弹性效应和 替 代 能 源 资 源 的 替 代 效 应 , 能源 消耗量就会下降 , 从 而 导 致 碳 排 放 量 的 降 低。 目 前 7 4
分析 M o h a m e d 等利用计量模型研究区域低碳经济 ,
3] 。 碳排放量与其他因素之间的关系 [
国内学者也进行了大量的相关研究 。 徐玉高和 日 本、 美国 郭元利 用 1 9 9 0 年 全 球 截 面 数 据 和 中 国、 时间序 列 数 据 进 行 分 析 , 认为人均碳排放与人均
[ ] 1-2
分析了碳 1 9 9 5—2 0 0 5年 中 国 3 0 个 省 份 面 板 数 据, 排放与经济发展水平 、 产业结构 、 能源效率之间的关 系, 结果显示各地区 碳 排 放 与 经 济 发 展 水 平 存 在 倒 而与能源消耗强度呈 U 型曲线关 U 型曲线 关 系 ,
7] 。彭 系, 与第二产业产值的 比 重 呈 N 型 曲 线 关 系 [
。随 着 全 球 对 碳 排 放 量 的 重 视, 经济学家

基于中国环境污染影响因素的因子分析

基于中国环境污染影响因素的因子分析

基于中国环境污染影响因素的因子分析作者:谢松来源:《文存阅刊》2018年第19期摘要:随着环境污染问题的日渐恶化,其对我国的经济发展、社会稳定、人们生活带来了十分严重的影响,在目前污染问题的严峻环境下,我国政府对环境污染影响因素的关注度不断提高。

本文章就围绕着目前我国环境污染影响因子对目前我国的环境污染问题进行分析,结合目前我国环境污染的主要影响因素,提出基于因子分析方法的环境治理建议。

关键词:环境污染;因子分析;影响因素一、我国环境污染发展现状随着我国经济的不断发展,工业发展下的负面影响使得环境污染问题日趋严重。

在工业负面影响的作用下,目前国内外面临着三大重要危机,即资源短缺、环境污染、生态破坏。

环境污染给我国生态系统带来了十分严重的影响,同时也给我国公众带来十分严重的身体健康问题。

据我国目前相关数据调查统计,我国2017年度投资环境污染治理的总额高达3157亿元,由此可见环境保护工作刻不容缓。

为了更好的开展环境污染保护工作,首先要对环境污染程度和污染类型进行明确,并将其作为环境保护和科学决策的重要数据支撑。

截止到目前为止,我国统计局在对目前我国环境污染统计数据中有超过二十三个大类,各类别之间还有大量的信息交叉和冗余,很难通过直接数据进行表达。

在本文章的研究中,笔者将围绕着因子分析模型引入环境污染处理机制,并通过降维技术来讲相关数据转换为少数主因子,以此来实现对数据的简化,并实现数据结构的完善。

其次,通过因子旋转使得主因子之间的相关性得到较好的建设。

最后将因子荷载矩阵作为环境污染因子的分析方法,通过利用SPSS软件来对因子的方差贡献率及因子总得分进行计算,以此来获取环境污染的主要影响因素。

二、本文章的研究内容及研究意义在本文章的研究中,笔者基于环境主要因素来作为出发点来进行研究,并对目前我国环境污染问题进行结合,对环境污染问题的因子关系和防治措施进行结合,并将我国的环境主要影响因素进行定性的分析。

毕业论文不同生态系统温室气体排放通量的特征及其影响因素

毕业论文不同生态系统温室气体排放通量的特征及其影响因素

毕业论文不同生态系统温室气体排放通量的特征及其影响因素摘要:本文主要讨论了不同生态系统温室气体排放通量的特征以及其影响因素。

首先,生态系统温室气体排放通量的特征具有时空变异性、生态系统类型差异性和环境条件限制性等特点。

其次,影响生态系统温室气体排放通量的主要因素包括温度、湿度、土壤类型、植被类型、土壤养分和人类活动等因素。

最后,本文提出了对生态系统温室气体排放通量进行监测和研究的方法和措施,为温室气体减排和生态环境保护提供了理论和实践基础。

1.引言温室气体的排放是当前全球气候变化的主要原因之一、而生态系统作为地球生物圈与大气圈的相互作用和交换介质,其温室气体排放通量的特征及其影响因素的研究对于全球气候变化的深入了解和温室气体减排具有重要意义。

2.温室气体排放通量的特征2.1时空变异性生态系统温室气体排放通量具有明显的时空变异性。

不同季节、不同地理区域和不同生态系统类型的生态系统温室气体排放通量差异较大。

同时,随着气候变化和人类活动的影响,生态系统温室气体的排放通量也会发生相应的变化。

2.2生态系统类型差异性不同类型的生态系统对温室气体的生产和排放具有差异性。

例如,湿地类型的生态系统通常是大气中甲烷的重要源;森林类型的生态系统则是二氧化碳的重要吸收者。

2.3环境条件限制性生态系统的温室气体排放通量受到环境条件的限制。

例如,温度、湿度、土壤类型、植被类型等因素对生态系统温室气体排放通量的影响具有显著性差异。

3.影响因素分析3.1温度和湿度温度和湿度是影响生态系统温室气体排放的重要因素。

温度的升高可以促进温室气体的生产和排放过程,湿度的增加则可影响地表的水文循环,进而影响温室气体的排放通量。

3.2土壤类型和植被类型土壤类型和植被类型对生态系统温室气体排放通量具有重要影响。

不同土壤类型和植被类型的生态系统在温室气体排放过程中具有差异性,例如,湿地类型的土壤通常是甲烷的重要源。

3.3土壤养分和人类活动土壤养分和人类活动也是影响生态系统温室气体排放通量的重要因素。

环境因子对动物生产之影响

环境因子对动物生产之影响

Wet bulb globe temperature (WBGT)
WBGT_indoor = 0.7 * Tnv,wb + 0.3 * BGT WBGT_outdoor = 0.7 * Tnv,wb + 0.2 * BGT + 0.1 * Tdb
Tdb
Tnv,wb Determined by Heat Stress Division of U.S. Navy at the Naval Medical research Index combining Temperature, institute in the study of Radiation, Wind and suggested length of “stay-time” Humidity. for an individual performing various tasks, under various physiological heat exposure Heat Stress Monitor limits (PHEL)
2.44 m/s
4.02 m/s
Wind Chill Index = (10.45+10*V0.5 – V) * (33 – Ta)
Teq,wc= - 0.04544*WCI+ 33
Teq,wc = Ta
for 19.4 m/s > V > 1.8 m/s
for V <= 1.8 m/s
Equilibrium Wind Chilled Temperature
Adapted from ASHRAE Fundamentals, 1999
Milk Production=f(HD74, HA80S)

毕业论文不同生态系统温室气体排放通量的特征及其影响因素

毕业论文不同生态系统温室气体排放通量的特征及其影响因素

目录前言 -------------------------------------------------------------------------------------------------------------- 1 1几种主要温室气体的认识 ------------------------------------------------------------------------- 21.1CO2的循环机制 --------------------------------------------------------------------------------------------- 2 1.2CH4概述--------------------------------------------------------------------------------------------------------- 2 1.3N2O的变化趋势 --------------------------------------------------------------------------------------------- 3 2不同生态系统类型温室气体排放通量特征及其影响因素 ------------------- 32.1湿地生态系统温室气体排放通量特征及其影响因素 ------------------------------------- 3 2.2草原生态系统温室气体排放通量特征及其影响因素 ------------------------------------- 6 2.3农田生态系统温室气体排放通量特征及其影响因素 ------------------------------------- 8 2.4水库生态系统温室气体排放通量特征及其影响因素 ----------------------------------- 10 3不同生态系统温室气体排放通量的概括比较及减排对策 ----------------- 123.1影响温室气体排放的因素 ---------------------------------------------------------------------------- 12 3.2减少温室气体排放的措施(生态角度) ----------------------------------------------------- 13结语 ------------------------------------------------------------------------------------------------------------ 13参考文献 -------------------------------------------------------------------------------------------------------- 14致谢 ------------------------------------------------------------------------------------------------------------ 16摘要据相关资料显示,近百年来, 随着人类活动的日益增强,大气中O2、CH4和N 2O 等主要温室气体的浓度比工业革命以前分别增加了约28%、118%和8%。

城市生态系统-大气间的碳通量研究进展

城市生态系统-大气间的碳通量研究进展

城 市生态 系统一 大气 间的碳通量研究进展
贾庆 宇 ,王宇 ,李 丽光
1 国气 象局 沈 阳大气 环境 研究 所 ,辽 宁 沈 阳 10 1 ;2 中 国科 学 院植物 研究 所植 被数 量生 态学 重点 实验 室 ,北京 109 .中 10 6 0 03
摘要 :城市生态 系统对全球碳收支具有显著 的贡献 ,城市化进程促进城市 向大气排放碳 。随着观测手段和仪器的发展 ,涡动 相关法 已成 为陆地生态 系统碳通量 观测 的主要手段 ,并广泛应用 于中心城市碳通量观测 ;城市C 浓度和通量 变化具有 日、 O2
涡度协方差技术要求满足下垫面相对平坦( 坡
降不超 过 1%) 向相对 稳定 、大气 边界 层 内湍流 0 、风 剧 烈 且 湍 流 间 歇 期 短 、植 被在 上 风 向有 足 够 的延 展 、研究 对象处于水平 均匀 的大气边界 内等条件 , 城市 生 态 系统 地形 复 杂 、下垫 面 非均 质 ,不 J但
遮挡 。
2 城 市 生 态 系 统 碳 通 量 的 变 化 特 征 及 其 影 响 因子
21 城 市生 态 系统 碳 通量 的变化 特征 . 城 市生 态 系统基 本 表 现为 碳 源 } 其 排放 强 度 l J 且
远 大于其 他生 态 系统 。作 为全 球变 化 的驱动 者和 响 应 者 ,随 着全 球城 市化进 程 的不 断加剧 ,城 市生 态 系统 在局 地对 全球 的生 化循 环 、气候 变 化起 着越 来 越 重要 的作用 。
涡动 相关法 经过 长期 的理 论 发展 和技术 改进 , 已经 实现 了对 森林 、草地 、湿地 和农 田等 生态 系统 C 和 水 热通 量 的 非 干扰 性 直 接测 定 [1虽然 在 非 O2 90 -]

基于涡度相关法的农田生态系统碳通量研究进展

基于涡度相关法的农田生态系统碳通量研究进展
型种植模式的长期定位监测、多因子协同分析、数据质量监控等方面具有较大研究空间ꎮ
关键词: 碳通量ꎻ 涡度相关法ꎻ 农田生态系统
中图分类号: S163
文献标志码: A
DOI:10. 3969 / j. issn. 1007 ̄7146. 2019. 05. 005
Research Progress on Carbon Flux in Agro ̄ecosystem
carbon flux based on eddy covariance method. This paper reviews the research status of carbon flux over agro ̄ecosystem
based on the eddy covariance method at home and abroadꎬ and also put emphasis on the latest research results on the
Based on Eddy Covariance System
TIAN Rongcaiꎬ WEN Shuangyaꎬ YANG Huibing ∗
( Agronomy College of Hunan Agricultural Universityꎬ Changsha 410128ꎬ China)
Abstract: As an internationally recognized standard method for carbon flux determinationꎬ the eddy covariance method
显著单峰“ U” 型趋势ꎬ在多熟种植模式下季变化呈“ W” 型ꎬ但对种植模式的碳通量研究缺乏区域代表性ꎻ同时驱

低碳环保论文英语作文

低碳环保论文英语作文

低碳环保论文英语作文Title: The Urgency of Low-Carbon Environmental Protection。

In recent years, the issue of environmental protection has become increasingly prominent on the global agenda. With the rise of industrialization and urbanization, the Earth's fragile ecosystems are under severe strain. Among the numerous challenges facing our planet, the issue of carbon emissions stands out as one of the most pressing concerns. In this essay, we will delve into the urgent need for low-carbon environmental protection and explore potential solutions to mitigate its adverse effects.First and foremost, it is essential to understand the detrimental impacts of excessive carbon emissions on our environment. Carbon dioxide (CO2) is a major greenhouse gas that contributes significantly to global warming and climate change. The burning of fossil fuels such as coal, oil, and natural gas releases large amounts of CO2 into theatmosphere, trapping heat and leading to risingtemperatures worldwide. This phenomenon has resulted inmore frequent and severe weather events, melting polar ice caps, rising sea levels, and disruptions to ecosystems and biodiversity.Moreover, carbon emissions are closely linked to air pollution, which poses serious health risks to human populations. Particulate matter and other pollutantsemitted from industrial activities and vehicle exhausts contribute to respiratory diseases, cardiovascular problems, and premature deaths. In densely populated urban areas,poor air quality has become a major public health crisis, affecting millions of people and imposing significant economic costs on healthcare systems.Given the gravity of the situation, urgent action is required to address the challenge of carbon emissions and promote low-carbon environmental protection. One keystrategy is to transition to renewable energy sources such as solar, wind, and hydroelectric power. Unlike fossil fuels, renewable energy technologies generate electricitywithout emitting greenhouse gases, offering a cleaner and more sustainable alternative. Governments, businesses, and individuals should invest in renewable energyinfrastructure and incentivize its adoption through subsidies, tax incentives, and regulatory measures.Additionally, improving energy efficiency across various sectors is crucial for reducing carbon emissions and mitigating climate change. By implementing energy-saving technologies and practices in industries, buildings, transportation, and agriculture, we can significantly decrease our carbon footprint while also lowering costs and enhancing productivity. Measures such as energy-efficient appliances, building insulation, public transportation systems, and sustainable farming techniques can all contribute to a more sustainable and low-carbon future.Furthermore, fostering international cooperation and coordination is essential for addressing the global challenge of carbon emissions. Climate change is a transnational issue that requires collective action and shared responsibility from all countries, regardless oftheir level of development or economic status. Through international agreements such as the Paris Agreement, countries commit to reducing their greenhouse gas emissions and transitioning to low-carbon economies. By working together to share knowledge, technologies, and resources, we can accelerate the transition to a sustainable energy future and safeguard the health of our planet for future generations.In conclusion, the urgency of low-carbon environmental protection cannot be overstated. Carbon emissions pose a grave threat to our planet's ecosystems, climate, and public health, necessitating immediate and concerted action from governments, businesses, and individuals alike. By transitioning to renewable energy, improving energy efficiency, and fostering international cooperation, we can mitigate the impacts of climate change and build a more sustainable and resilient world for ourselves and future generations. It is imperative that we act decisively now to safeguard the health and well-being of our planet and all its inhabitants.。

气候变化背景下干旱区碳通量的特征分析

气候变化背景下干旱区碳通量的特征分析

气候变化背景下干旱区碳通量的特征分析气候变化背景下干旱区碳通量的特征分析引言全球气候变化已成为当今社会面临的重要挑战之一,其中干旱区是最容易受到气候变化影响的地区之一。

为了深入了解干旱区对气候变化的响应,了解干旱区生态系统的碳通量特征显得尤为重要。

本文将从干旱区碳通量的概念、影响因素、测量方法等方面展开讨论,以期能更好地理解干旱区碳通量的特征及其对气候变化的响应。

一、干旱区碳通量的概念和类型碳通量是指碳从一个地方到另一个地方的净流动,一般包括净初级生产力(NPP)、呼吸作用和净矿化作用等。

干旱区碳通量主要表现为土壤有机质的分解和碳的释放,以及植物吸收和储存碳的过程。

根据环境条件和作用过程不同,干旱区碳通量可分为以下几种类型:1. 土壤呼吸:土壤呼吸通常是指在土壤中有机质分解释放出的CO2,是土壤碳通量的主要组成部分。

在干旱区,由于水分限制,土壤呼吸受到抑制,导致碳的释放减少。

2. 植物凋落物分解:植物凋落物是干旱区碳循环的重要组成部分,其分解过程中释放的碳气体对干旱区的碳通量有重要影响。

然而,由于干旱区植物生长缓慢,凋落物分解速度也相对较慢。

3. 植物净初级生产力(NPP):干旱区的NPP主要受到气候和土壤水分的限制,其水分利用效率较低。

干旱区植物NPP 的减少导致碳吸收减少,从而影响碳通量。

二、干旱区碳通量的影响因素1. 气候因素:气候是干旱区碳通量的主要影响因素之一。

干旱区气候干燥,水分供应不足,导致碳通量减少。

2. 土壤条件:土壤的质地、质量和水分状况对碳通量有很大影响。

干旱区土壤一般贫瘠,水分含量较低,限制了碳通量的释放和吸收。

3. 植被结构:植被的状况对碳通量具有重要影响。

干旱区植被多为草原和灌丛,其碳吸收和释放能力较低。

4. 人类活动:人类活动对干旱区碳通量也有一定影响。

例如,过度放牧、过度开发和火灾等都会导致碳通量的改变。

三、干旱区碳通量的测量方法干旱区碳通量的测量方法多样,常用的方法包括:1. 土壤呼吸测量:通过测量土壤呼吸速率来间接估算土壤有机质的分解和碳释放情况。

《干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响》范文

《干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响》范文

《干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响》篇一一、引言随着全球气候变化,干旱和氮沉降等环境问题对草地生态系统的影响越来越显著。

作为中国草原的主要组成部分,内蒙古典型草原生态系统的健康状况直接影响着我国的生态安全。

在这个背景下,探讨干旱和氮沉降对内蒙古典型草原生态系统碳通量的影响具有重要的理论和实践价值。

二、研究区域及背景内蒙古典型草原位于中国北方,气候属于典型的温带半干旱气候,草原类型以典型温带草原为主。

该区域作为碳的净吸收源,对缓解全球气候变化具有重要作用。

然而,近年来,由于气候变化和人类活动的双重影响,该区域的干旱和氮沉降问题日益严重。

三、干旱对碳通量的影响(一)干旱对植物生长的影响干旱会严重影响植物的生长和发育,导致叶片气孔关闭,光合作用减弱,进而影响植物的生长速度和生物量。

此外,干旱还会导致植物叶片的脱落和死亡,进一步影响生态系统的碳吸收能力。

(二)干旱对土壤呼吸的影响土壤呼吸是生态系统碳通量的重要组成部分。

干旱会降低土壤的含水量,从而影响微生物的活性,进而影响土壤呼吸。

此外,干旱还会导致土壤有机质的分解速度降低,进一步影响土壤呼吸。

四、氮沉降对碳通量的影响(一)氮沉降对植物生长的影响适量的氮沉降可以促进植物的生长和提高植物的碳吸收能力。

然而,过量的氮沉降会导致土壤氮的富集,引发“氮饱和”现象,降低植物的碳吸收能力。

(二)氮沉降对土壤的影响过量的氮沉降会改变土壤的pH值和微生物的活性,进而影响土壤的碳平衡和稳定性。

同时,过量的氮还会通过硝化-反硝化等过程释放出N2O等温室气体,增加生态系统的碳排放量。

五、综合影响与调控策略综合考虑干旱和氮沉降的综合影响,内蒙古典型草原生态系统的碳通量受到双重压力的挑战。

因此,需要采取有效的调控策略来应对这些挑战。

首先,需要加强生态保护和恢复工作,提高生态系统的抗旱能力和碳吸收能力。

其次,需要合理控制氮肥的使用量和使用方式,避免过量的氮沉降对生态系统造成负面影响。

《2024年长期氮、水添加对内蒙古典型草原生态系统碳通量的影响》范文

《2024年长期氮、水添加对内蒙古典型草原生态系统碳通量的影响》范文

《长期氮、水添加对内蒙古典型草原生态系统碳通量的影响》篇一一、引言在全球气候变化背景下,草原生态系统作为陆地生态系统的重要组成部分,其碳循环和碳通量的变化对全球碳平衡具有重要影响。

内蒙古作为我国典型的草原区,其生态系统的碳通量变化受到多种环境因素的影响。

近年来,氮、水添加作为人为干预的重要手段,在草原生态系统中得到了广泛的应用。

本文旨在探讨长期氮、水添加对内蒙古典型草原生态系统碳通量的影响。

二、研究区域与方法(一)研究区域本研究选取内蒙古典型草原区作为研究对象,该区域具有代表性的草原生态系统,能够较好地反映氮、水添加对草原生态系统碳通量的影响。

(二)研究方法本研究采用长期氮、水添加实验,通过测定草原生态系统的碳通量,分析氮、水添加对碳通量的影响。

具体方法包括野外采样、实验室分析、数学模型模拟等。

三、氮、水添加对内蒙古典型草原生态系统碳通量的影响(一)氮添加的影响长期氮添加可以显著提高内蒙古典型草原生态系统的生产力,增加植物生物量和土壤有机碳含量。

这主要是由于氮是植物生长的重要营养元素,氮添加可以促进植物的生长和繁殖,从而增加生态系统的碳储量和碳通量。

然而,过量的氮添加可能导致土壤酸化、水质恶化等问题,对生态系统产生负面影响。

(二)水添加的影响水是植物生长的关键因素之一,长期水添加可以显著提高内蒙古典型草原生态系统的水分利用效率,促进植物的生长和繁殖。

水添加可以增加土壤水分含量,改善土壤环境,有利于植物吸收养分和进行光合作用,从而提高生态系统的碳通量。

然而,过量的水添加可能导致土壤过湿、氧气不足等问题,对植物生长和生态系统稳定产生不利影响。

(三)氮、水添加的综合影响氮、水添加的综合作用对内蒙古典型草原生态系统碳通量的影响更为显著。

适量的氮、水添加可以协同促进植物生长和土壤有机碳的积累,提高生态系统的碳储量和碳通量。

然而,过量的氮、水添加可能产生负面的环境效应,对生态系统产生不利影响。

四、结论与建议本研究表明,长期氮、水添加对内蒙古典型草原生态系统碳通量具有显著影响。

《2024年干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响》范文

《2024年干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响》范文

《干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响》篇一一、引言在全球气候变化的大背景下,干旱和氮沉降作为两个重要的环境因素,对生态系统的影响日益显著。

内蒙古作为我国典型的草原生态系统,其碳通量的变化不仅关系到区域生态安全,也与全球气候变化密切相关。

本文旨在探讨干旱与氮沉降对内蒙古典型草原生态系统碳通量的影响,以期为草原生态系统的保护与管理提供科学依据。

二、研究区域与方法(一)研究区域本研究选取内蒙古典型草原为研究对象,该地区具有丰富的草原资源,是草原生态系统的重要代表。

(二)研究方法本研究采用野外实地观测与室内实验分析相结合的方法,通过收集历史气象数据、土壤样品、植被样品等,运用生态学、植物学、土壤学等多学科交叉的理论和方法,分析干旱与氮沉降对碳通量的影响。

三、干旱对碳通量的影响干旱是内蒙古典型草原生态系统面临的主要环境问题之一。

研究显示,干旱会导致植物生长受阻,光合作用减弱,进而影响碳的固定和释放。

具体表现为:1. 植物生长受阻:干旱条件下,植物叶片气孔关闭,光合作用原料(如二氧化碳)的吸收减少,导致植物生长受阻。

2. 碳固定减少:干旱导致植物生物量减少,土壤有机质分解速度加快,从而使得碳固定能力下降。

3. 碳释放增加:干旱条件下,植物死亡和土壤有机质分解产生的碳释放增加,进一步加剧了生态系统的碳损失。

四、氮沉降对碳通量的影响氮沉降是指大气中的氮以气体或颗粒物的形式降落到地面。

在内蒙古典型草原生态系统中,氮沉降对碳通量的影响表现为:1. 促进植物生长:适量的氮沉降可以提供植物生长所需的营养元素,促进植物的生长和光合作用。

2. 改变土壤碳库:氮沉降可以影响土壤微生物的活动和土壤有机质的分解,从而改变土壤碳库的大小和组成。

3. 增强碳固定能力:适量的氮沉降可以增强生态系统的碳固定能力,有助于减缓全球气候变化的进程。

五、干旱与氮沉降的交互影响在实际的生态环境中,干旱和氮沉降往往同时存在并相互影响。

探讨湿地生态系统CO2排放通量影响因素研究进展的论文(汇编)

探讨湿地生态系统CO2排放通量影响因素研究进展的论文(汇编)

探讨湿地生态系统CO2排放通量影响因素研究进展的论文(汇编)第一篇:探讨湿地生态系统CO2排放通量影响因素研究进展的论文在天然湿地生态系统中,湿地植物吸收大气中的CO2 并在光合作用参与下将其固定在植物体中。

植物死亡后所形成的地表枯落物中的碳去向有两种:一部分经微生物分解和转化以CO2 和CH4 的形式释放到大气中,另一部分以微生物量和其他形式被固定在土壤中。

根据湿地生态系统的组成结构特征可将湿地生态系统CO2 排放分为湿地地上植被CO2排放和湿地土壤CO2排放。

湿地地上植被CO2 排放是绿色植物光合作用和呼吸作用的结果,湿地土壤CO2 主要来自土壤呼吸,即土壤微生物呼吸、根呼吸以及土壤动物呼吸三个生物过程。

本文对迄今为止国内外关于湿地生态系统CO2 排放通量影响因素的一些研究进行综述,将影响因素总结为生物因素、非生物因素以及人类活动三个方面,从以上三个方面分别分析了各影响因素对湿地生态系统CO2 排放通量的影响及作用机理。

非生物因素1.1 水文条件水文条件影响着湿地的理化性质,是选择生物群落的主要因素之一,湿地生物群落进一步影响湿地中微生物种类及分布,导致土壤中不同深度和不同区域有机质的分解程度不同。

湿地中水位和土壤含水量决定着湿地生态系统中土壤的氧化还原环境,同时也影响着植物的生产力和微生物对凋落物的分解以及湿地土层通透性,从而通过影响O2 的扩散速率与CO2 的传输速率制约着湿地土壤呼吸。

目前国内外大多数研究得出,湿地生态系统CO2 排放通量与湿地水位存在明显负相关关系,但也有个别学者认为CO2排放通量与湿地水位呈正相关关系。

1.2 温度温度是植物生长过程的主要影响因子,直接决定着区域内的植被类型及植被覆盖率,其还通过影响暗反应的酶促反应来影响植物的光合作用,这使其成为湿地CO2 排放通量的又一重要影响因素。

已有研究表明一定温度范围内,湿地土壤温度升高会促进土壤中微生物或根系的代谢活性,使根的呼吸增强,加速微生物对有机质的分解,湿地生态系统CO2 排放通量增高;超过一定的温度范围,随着土壤温度的升高,土壤中微生物及酶的活性降低,土壤中有机质的矿化作用和根系呼吸作用减弱,湿地CO2排放通量随温度的升高又呈减小趋势。

碳循环与全球气候变暖研究综述---精品管理资料

碳循环与全球气候变暖研究综述---精品管理资料

碳循环与全球气候变暖研究综述李镜尧*(华东师范大学资源与环境科学学院地理系,上海200062)摘要:九十年代以来,大量观测和研究表明全球气候逐渐变暖,并同时导致其他一系列的全球变化问题。

CO2作为主要的温室气体之一,越来越受到人们的重视,碳循环也成为了国际全球变化研究的重要主题.笔者总结了当前国际上有关碳循环与全球气候变暖研究的主要内容和研究方法。

主要包括:(1)人类活动对碳排放的影响;(2)森林生态系统的碳循环与管理;(3)河流碳循环对全球变化的影响;(4)土壤呼吸作用和全球碳循环。

在总结了碳循环与全球气候变化研究动态的同时,提出了今后研究中应该重视的问题。

关键词:碳循环;全球变化;人类活动0 引言气候变暖近年来一直是全球变化领域研究热点和国际环境谈判的焦点[1]。

IPCC第四次评估报告表明:1906~2005年,地表平均温度已经上升了0.74℃[2];世界气象组织评估认为,2010年为全球有记录以来最热年份,比1961~1990年间平均气温高了0。

53℃,中国2010年平均气温较常年偏高0。

7℃,是1961年以来第十个最暖年,也是第十四个连续气温偏高年[3].全球气候变暖的主要原因有人为因素也有自然因素,虽然究竟哪类因素起主导作用任然存在争议,但这不属于本文讨论范围,笔者认为人类活动与温室效应的影响是导致气候变暖的主要原因。

地球温室效应是由于人类在长期生产和生活叶,不断向大气层大量排放各种各样有害气体而造成的。

在这些有害气体中,最主要的是二氧化碳。

此外,还有氟、氯化碳、臭氧、甲烷、氢氧化物、氯化物等40多种微量气体。

二氧化碳等有害气体不能吸收太阳短波辐射,而让太阳热辐射顺利通过大气层到达地而,而且它们能够吸收大部分地面长波辐射,而使地面辐射热无法散发到外层间去,像温室的作用一样,从而导致地面和低层大气温度逐渐升高[4]。

这就是地球温室效应。

因气温效应的气体称为温室效应气体。

人类活动通过化石燃料的燃烧以及将森林、草原转换成农业或其它低生物量的生态系统,将岩石、有机体以及土壤中的有机碳以CO2的形式释放到大气中从而增加大气中CO2的含量.从上世纪70年代后期开始全球碳循环研究受到人类的普遍关注,特别是几十年到几百年尺度上的人类活动如化石燃料(煤、石油和天然气等) 的燃烧和非持续土地利用(砍伐森林、开垦草地、改造沼泽等) 对碳排放的影响。

人类活动对若尔盖高原泥炭地碳通量和碳储量的影响的开题报告

人类活动对若尔盖高原泥炭地碳通量和碳储量的影响的开题报告

人类活动对若尔盖高原泥炭地碳通量和碳储量的影响的开题报告题目:人类活动对若尔盖高原泥炭地碳通量和碳储量的影响一、研究背景若尔盖高原是青藏高原北部的一个高原盆地,面积约100,000平方公里,其中泥炭地面积大约为10,000平方公里,是中国重要的高原湿地和天然牧场。

若尔盖高原的泥炭地是全球最大的季节性冻融泥炭沼泽之一,属于碳储量和碳通量非常活跃的湿地类型,是非常重要的碳汇。

但是,随着人类活动的不断扩大和强化,对若尔盖高原泥炭地的影响也越来越严重,尤其是近期一些开发项目的开工,将进一步加剧人类对该区域的干扰和破坏。

因此,研究若尔盖高原泥炭地的碳通量和碳储量以及人类活动对其影响的程度有着重要的现实意义。

二、研究目的和意义本研究旨在通过对若尔盖高原泥炭地进行系统的观测和实验研究,探索人类活动对该区域碳通量和碳储量的影响,以期为制定科学合理的保护策略和管理方案提供科学依据。

具体的研究目标包括以下几个方面:1. 探究若尔盖高原泥炭地的碳通量和碳储量特征,分析其与环境因素和气候变化的关系。

2. 系统评估人类活动(如采矿、养殖、旅游等)对若尔盖高原泥炭地碳通量和碳储量的影响,分析其影响机制。

3. 探索如何科学合理地利用和管理若尔盖高原泥炭地,尽可能减少因人类活动带来的负面影响。

三、研究内容和方法(一)研究内容1. 碳通量观测和数据分析:利用测量设备对若尔盖高原泥炭地的碳通量进行连续和定量观测,建立和完善碳通量观测系统,分析碳通量的季节变化和气候变化的影响。

2. 碳储量测量和数据分析:利用样地调查和遥感技术,对若尔盖高原泥炭地的碳储量进行测量和估算,建立碳储量评估模型,分析影响碳储量大小的因素。

3. 人类活动影响实验和分析:通过野外调查、实验模拟和数据分析等方法,系统评估人类活动对若尔盖高原泥炭地碳通量和碳储量的影响,分析其影响机制。

(二)研究方法1. 野外样地调查和实验:在若尔盖高原泥炭地建立样地,对其进行系统的观测和调查,收集数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Environmental Factors Determining Carbon Isotope Discrimination and Yieldin Durum Wheat under Mediterranean ConditionsJ.L.Araus,*D.Villegas,N.Aparicio,L.F.Garcı´a del Moral,S.El Hani,Y.Rharrabti,J.P.Ferrio,and C.RoyoABSTRACT conditions.Although water status during growth dra-matically affects yield and⌬,a specific environmental The effect of environment on the relationship between grain carbonvariable responsible for the positive relationship usually isotope discrimination(⌬)and yield was studied for durum wheatfound between⌬and yield across growing conditions (Triticum turgidum L.var.durum)under Mediterranean conditions.A group of25genotypes was grown under contrasting water regimes(i.e.,trials)has not been unequivocally identified(Far-in two regions of Spain during three years.The first objective was to quhar and Richards,1984;Craufurd et al.,1991;Ace-determine the environmental factors responsible for the strong posi-vedo,1993;Stewart et al.,1995;Araus et al.,1999a,b). tive relationship previously observed between⌬and yield across trials.For breeding purposes,it is crucial to assess how the Environmental factors tested were total water input(W i),mean tem-growing environment affects the relationship between perature,accumulated reference evapotranspiration(ET0),and the⌬and yield across genotypes(Acevedo,1993;Condonratio W i/ET0during different periods of the crop cycle.Water inputand Richards,1993;Richards,1996;Araus et al.,1999b). during grain filling was the variable most strongly correlated withPatterns in this relationship may be masked by pheno-grain⌬and yield across all the trials,as well as across the subset oflogical differences among genotypes that may affect trials in northeastern Spain.In southeastern Spain,the most droughtyield and also⌬,especially in drought-prone environ-prone of the two regions,W i from sowing to heading explained themost variation in grain⌬and yield.The second objective was to study ments.For example,under Mediterranean conditions the effect of environment on the relationship between⌬and yield those genotypes with fewer days from sowing to heading across genotypes.No significant correlation was found for trials with or to anthesis show higher⌬values(Craufurd et al., a mean yield up to about2000kg haϪ1,but the strength of the relation-1991;Richards and Condon,1993;Richards,1996;Araus ship increased sharply and attained significance in trials yielding2500et al.,1998)probably because they attain grain filling kg haϪ1.When yield above2500kg haϪ1the correlation between⌬with more water in the soil,whereas the evapotranspira-and yield remained relatively steady and positive,with an r valuetive demand is lower.Nevertheless,in bread wheat(Trit-around0.5.It is concluded that breeding to raise durum wheat yieldicum aestivum L.,Sayre et al.,1995)and durum wheat in Mediterranean conditions could take advantage of selecting for(Araus et al.,1998)large genotypic variability in⌬, higher⌬only in relatively wet years or under supplementary irrigation.independent of phenology,has been reported.This study was performed on a large collection of D rought,defined as water deficit,and often com-Spain that differ in drought severity.The objective wasdurum wheat genotypes cultivated in a wide range of bined with high temperature stress,is one of theto determine whether there is a common specific envi-greatest constraints to cereal grain yield in Mediterra-ronmental variable which simultaneously affects the⌬nean areas.For crops such as durum wheat,grown underof mature kernels and yield.That information may indi-rainfed conditions,agricultural practices are not suffi-cate the basis of the widely reported strong positive cient to mitigate the effect of drought,and plant breed-relationship between yield and⌬across trials.An addi-ing has become the best tool for yield increases(Sriva-tional objective was to assess how growing conditions stava,1991;Acevedo,1991;Slafer et al.,1994;Ceccarelliaffect the strength and sign(positive or negative)of the and Grando,1996;Royo et al.,1998).relationship between⌬and yield across genotypes. Carbon isotope discrimination(⌬),when measuredin plant dry matter,integrates transpiration efficiency,the ratio of net photosynthesis to water transpired,over MATERIALS AND METHODSthe period during which the dry matter is assimilated,Plant Materials and Experimental Design⌬and transpiration efficiency being negatively related(Farquhar and Richards,1984;Condon et al.,1990).On A total of12field trials were performed from1997to1999in two Mediterranean regions,northeastern(NE)and dry matter basis,⌬has been proposed as a breedingsoutheastern(SE)Spain,and under two contrasting water criterion for increasing yield in temperate cereals andregimes(rainfed and irrigated)within each region.The trial other crops,under either favorable or drought stresslocations and soil characteristics are summarized in Table1,and environmental conditions are detailed in Table2.Appro-priate fertilization was provided to the seed bed,and trials J.L.Araus and J.P.Ferrio,Unitat de Fisiologia Vegetal,Facultat dewere top-dressed at the onset of jointing depending on the Biologia,Universitat de Barcelona,Diagonal645,08028Barcelona,Spain;D.Villegas,N.Aparicio and C.Royo,Area de Conreus Exten-sius,Centre UdL-IRTA,Alcalde Rovira Roure191,25198Lleida,Abbreviations:⌬,grain carbon isotope discrimination;CIMMYT, Spain;L.F.Garcı´a del Moral,S.El Hani and Y.Rharrabti,Departa-Centro Internacional de Mejoramiento de Maı´z y Trigo;DA,days mento de Biologı´a Vegetal,Facultad de Ciencias,Universidad defrom sowing to anthesis;DH,days from sowing to heading;ET0,ac-Granada,18071Granada,Spain.Received5Feb.2002.*Correspond-cumulated reference evapotranspiration;ICARDA,International ing author(josel@porthos.bio.ub.es).Center for Agricultural Research in the Dry Areas;NE-,northeastern; Published in Crop Sci.43:170–180(2003).SE-,southeastern;W i,total water input.170ARAUS ET AL.:ENVIRONMENT,GRAIN⌬,AND YIELD IN DURUM WHEAT171 Table1.Description and location of the sites used in the study.Cultivation was performed in two sites from NE Spain(Lleida province, Catalonia)and SE Spain(Granada province,East-Andalusia).Soil texture Site Region Water Regime Coordinates Altitude Soil type(USDA)Soil texture Soil pH Sand Silt Claym above sea level% Gimenells NE Spain Irrigated41؇40؅N;200Calcixerolic-Xerochrept fine-loamy8.131.039.030.00؇20؅EEl Cano´s NE Spain Rainfed41؇41؅N;440Fluventic-Xerochrept loamy-fine8.234.147.118.81؇13؅EGranada SE Spain Irrigated37؇21؅N;650Typic Xerofluvent silty clay8.040.049.610.43؇35؅WVentas de Huelma SE Spain Rainfed37؇10؅N;720Loamy Carcixerolic silty clay8.217.854.927.33؇50؅W Xerochreptwater status of the crop.When applied,supplementary irri-the grain was ripe,yield(kg haϪ1)expressed at a100g kgϪ1moisture content(Table2).gation was given during late winter and spring(Table2).Presowing subsoil moisture was not relevant for any of thetrials assayed.Environmental Parameters Trials consisted of25durum wheat genotypes grown inFor each trial,W i was calculated as the sum of rainfall and randomized complete blocks with four replicates in plots ofirrigation(when applicable)for the following periods:sowing 12m2(six rows,0.20m apart).These genotypes included fourto heading,sowing to anthesis,sowing to maturity,heading commercial Spanish cultivars(Altar-aos,Jabato,Mexa,andto anthesis,heading to one week after anthesis,heading to Vitro´n),and21genotypes from the eastern Mediterraneanmaturity,anthesis to maturity(grain filling),and from one basin,including commercial cultivars and advanced lines ofweek after anthesis to maturity.Mean temperature and refer-the CIMMYT/ICARDA durum wheat breeding programence ET0for the same periods were also assessed.ET0was (Awalbit,Bicrecham-1,Chacan,Chahra-1,Haurani,Korifla,Krs/calculated from the mean maximal and minimal average tem-Haucan,Lagost-3,Lahn/Haucan,Massara-1,Moulchahba-1,peratures of each period using the PC-program ETO(Sub-Mousabil-2,Omlahn-3,Omrabi-3,Omruf-3,Quadalete//Erp/zero Evapotranspiration)(Snyder and Pruitt,1991)version Mal,Sebah,Stojocri-3,Waha,Zeina-1,and Zeina-2).The ge-1.04(revised in February,1994).notypes were chosen to represent a wide range of geneticvariability in terms of agronomical characteristics.Moreover,Carbon Isotope Discriminationto minimize the potential interference of phenology on yieldand⌬,these genotypes were selected with a relatively narrow For each plot,a sample of about2g of mature kernels was range of variability in the number of days from planting to oven dried and finely ground(mesh diameter of0.5mm).The heading,days to anthesis,and days to physiological maturity13C/12C ratio of samples was subsequently determined by mass (a mean range of7and6d for heading and anthesis dates,spectrometry at the Serveis Cientı´fico-Te`cnics de la Universi-respectively).The times from sowing to heading(DH)and tat de Barcelona,Spain.Samples of0.7to0.9mg were com-anthesis(DA)were recorded when more than half the plants busted in an elemental analyzer(EA1108,Series1,Carlo Erba in a plot reached the stages55and65of Zadoks’scale(Zadoks Instrumentazione,Milan,Italy)and the13C/12C ratio was mea-et al.,1974),respectively.Thermal time was calculated in sured with an isotope ratio mass spectrometer(Delta C,Finni-growing degree-days(GDD)by summing the daily values of gan Mat,Bremen,Germany)operated in continuous flow mode. mean temperature,with a base temperature of0ЊC(Gallagher,A system check for elemental analyses was achieved with an 1979).Physiological maturity was recorded when most of the interspersed working standard of atropine.Stable carbon iso-plants had reached Zadoks’stage87,representing kernels in tope composition was expressed as␦13C values(Farquhar et hard dough stage.Plots were harvested mechanically whenal.,1989),where␦13C(‰)ϭ[(R sample/R standard)-1]ϫ1000,Table2.Growing conditions and main agronomical characteristics of the trials performed during this study.Days from sowing to either heading(DH)or anthesis(DA),total water input(Wi),reference evapotranspiration(ET0),carbon isotope discrimination of kernels(⌬).W iThermal Thermal Thousand Sowing time to time to Irrigation Mean Seasonal kernel Environment Year date DH DA heading anthesis Rainfall(times)Temperature ET0Wi/ET0⌬Yield weightd gdd Mm؇C mm‰kg haϪ1gNE Spainirrigated19973Dec.9613514312001300258150(3)11.54970.8218.36b4964c45.1e 199823Nov.9715015713101411285100(2)10.34140.9316.74e5192b46.7d199910Nov.9816217212311369255150(3)9.64820.8418.72a7009a54.0a NE Spainrainfed19973Dec.9613814412601334230010.84010.5714.59i2062g42.5f 199817Nov.971551631294140218309.83900.4714.63hi2531f47.8c19993Nov.9817518413511496256010.04730.5417.10d3820e51.7b SE Spainirrigated19975Feb.97869211491242173200(2)15.54870.7717.00d2624f37.7h 199811Dec.9712913612961406311100(1)13.35740.7217.48c4312d46.4d199915Dec.9812413811571356128300(3)13.15590.7716.34f3628e31.3i SE Spainrainfed199713Dec.96849311821326134016.04900.2715.51g1853h42.3f 199821Jan.9811612214341538180014.65080.3515.62g2053gh40.1g199925Nov.9814716613941702193012.35370.3614.74h2547f42.4f172CROP SCIENCE,VOL.43,JANUARY–FEBRUARY 2003Table 3.Percentages of the sum of squares obtained in the analy-and R is the 13C/12C ratio.Secondary standards of graphite,sis of variance for grain yield and carbon isotope discrimination sucrose,and polyethylene foil (IAEA,Vienna,Austria)cali-of mature grains (⌬)of 25durum wheat genotypes grown in brated against Peedee belemnite (PDB)carbonate were used two regions (NE and SE Spain)under two water regimes for comparison.The accuracy of the ␦13C measurements was (rainfed and irrigated)during three years (1997to 1999sea-Ϯ0.1‰.Following Farquhar et al.(1989),⌬was further calcu-sons).For the analysis days from sowing to heading has been lated from ␦13C as ⌬ϭ(␦a Ϫ␦p )/(1ϩ␦p ),where ␦a and ␦p considered as a covariant.refer to air and plant,respectively.On the PDB scale,free Source of variationdf Yield ⌬atmospheric CO 2,␦a ,has a current composition of approxi-mately Ϫ8‰(Farquhar et al.,1989).Days to heading 123.4*** 2.3***Year 20.4ns 1.6***Region113.0***9.0***Statistical AnalysisYear ϫRegion 2 5.0***22.7***WR†(Region)242.8***51.2***Analyses were done with the SAS-STAT package (SAS Year ϫWR (Region)4 1.8** 5.4***Institute Inc.,1996).An analysis of variance was performed Block (Year ϫWR ϫRegion)36 3.3*** 1.7***Genotype24 2.5*** 1.9***for grain yield and ⌬,considering days from sowing to heading Genotype ϫYear 48 1.5*** 1.0***or from sowing to anthesis as the covariant.Means of trials Genotype ϫRegion240.8**0.4*for yield and ⌬were compared by the LSD test at P ϭ0.05.Genotype ϫYear ϫRegion 48 1.6***0.7**Stepwise discriminant analysis was used to ascertain the re-Genotype ϫWR (Region)48 1.3**0.8***Genotype ϫYear ϫWR (Region)96 2.6*** 1.3**lationship between either ⌬or grain yield as the dependent Residual86412.57.2variable and three different periods of the crop cycle (sowing to heading,heading to anthesis and anthesis to maturity)for *,Significant at 0.05probability level.**,Significant at 0.01probability level.each environmental parameter as the independent variables.***,Significant at 0.001probability level.The relationship between Pearson’s correlation coefficients ns,Nonsignificant.of individual trials and mean grain yield was fitted by Table †WR,water regime.Curve (Jandel Co.,1994).Although variation in phenology was limited within tri-als,DH probably also reflects an environmental effect RESULTSas the trials differed dramatically in DH (Table 2).The two regions differed in rainfall,temperature,and Therefore,environmental conditions were responsible evaporative demand,SE Spain being markedly more by far for most of the variability observed in yield and arid,as inferred from the ratio W i /ET 0of the rainfed ⌬.The main environmental factor affecting yield and ⌬sites.Differences between irrigated and rainfed sites in was water regime,rainfed or irrigated,but the interac-this ratio were also evident (Table 2).The number of tion between year and region also had a strong affect days from sowing to either heading (DH)or anthesis on ⌬.Grain yield was doubled and ⌬was 2.5‰higher in (DA)was higher in NE than in SE Spain (Table 2).irrigated than in rainfed trials in NE Spain and 64%and Heading was at approximately 1235growing-degree 1.6‰higher,respectively,in SE-Spain trials (Table 2).days and anthesis at approximately 1340in all trials ex-cept two.The exceptions were both in one of the sites Effect of Environment on the Relationshipin SE Spain,and had a higher number of growing-degree between ⌬and Yield across Trialsdays than the other sites (Table 2).The effect of environment,understood as the combi-The ⌬values of mature kernels and grain yield were strongly (P Ͻ0.001)and positively correlated across nation of region and water regime,on grain yield and ⌬of grain was much higher than that of genotypic vari-all the trials (Fig.1).Correlations between these traits in trials across either NE or SE Spain were similar inability (Table 3).Also,DH had a strong effect on yield.Fig.1.Relationship across the whole set of trials between the carbon isotope discrimination of mature grains and grain yield.Each point represents a rainfed or irrigated trial (composed by 25genotypes and four replicates per genotype)grown in NE Spain or SE Spain.ARAUS ET AL.:ENVIRONMENT,GRAIN⌬,AND YIELD IN DURUM WHEAT173 Table4.Pearson’s correlation coefficients of the relationship across trials between both grain yield and carbon isotope discrimination of mature grains(⌬),and some environmental variables recorded for different periods of the crop cycle.Correlations have been calculated with the whole set of trials(nϭ12)used in this study and presented in Table2.W i†Mean temperature ET0†W i/ET0 Growing period Yield⌬Yield⌬Yield⌬Yield⌬Sowing to maturity0.75**0.78**Ϫ0.54Ϫ0.150.080.320.78**0.72** Sowing to heading0.370.47Ϫ0.65*Ϫ0.28Ϫ0.52Ϫ0.490.440.54 Heading to anthesis0.570.27Ϫ0.110.21Ϫ0.19Ϫ0.280.59*0.24 Heading to one week after anthesis0.460.18Ϫ0.36Ϫ0.15Ϫ0.17Ϫ0.280.510.16 One week after anthesis to maturity0.500.72**Ϫ0.16Ϫ0.020.330.60*0.440.55 Heading to maturity0.80**0.75**Ϫ0.180.050.240.460.81**0.65* Sowing to anthesis0.60*0.57Ϫ0.66*Ϫ0.30Ϫ0.51Ϫ0.540.64*0.63* Anthesis to maturity0.69*0.82**Ϫ0.140.010.330.59*0.69*0.73** *,Significant at0.05probability level.**,Significant at0.01probability level.†Wi,water input(rainfall plus irrigation);ET0,accumulated reference evapotranspiration.slope.To ascertain the basis of these relationships,Pear-in NE and SE Spain separately(Table5).Water input or son’s correlation coefficients were calculated across theW i/ET0from anthesis to maturity were the independent 12trials between these traits and several environmental variables selected first in the stepwise analysis for the parameters evaluated during the crop cycle(Table4)whole set of trials and the subset of NE Spain.In the plus DH and DA,these last being nonsignificant at the case of SE Spain,however,W i or W i/ET0from sowingto heading were the first choices in the analysis(Ta-Pϭ0.05level(DH,rϭ0.51and rϭ0.14;DA,rϭ0.49and rϭ0.11for yield and⌬,respectively).The ble5),and were also linearly related with yield and⌬(Fig.3).Moreover,W i and W i/ET0,either from heading strongest relationships observed with either yield or⌬were those that involved W i,for the whole crop cycle to maturity(Fig.3),or anthesis to maturity,were corre-or just from the last part of the cycle.The W i/ET0ratio lated with yield and⌬only for NE Spain.The slope of for the complete crop cycle,between heading and matu-all these relationships tended to be steeper in NE than rity,or only during grain filling,was also significantly in SE Spain.correlated with yield and⌬.For the interval from sowingto heading,W i and W i/ET0showed much weaker rela-Effect of Environment on the Relationship tionships with yield and⌬.In general,mean temperature between⌬and Yield within Trialsand accumulated evapotranspiration correlated lessTo minimize the potential interference of phenology strongly with yield and⌬regardless of the stage of theon the phenotypic relationship between grain⌬and yield, crop cycle.Significant relationships of either W i or W i/the set of genotypes chosen in this study had a relatively ET0with yield and⌬were linear(Fig.2and Fig.3).small variability in DH and DA within each trial.Analy-Stepwise analysis showed W i and W i/ET0were againsis of variance for⌬and yield using DH or DA as co-the parameters best correlated with yield and⌬.The com-variables confirmed that the effect of genotype on these bination of W i or W i/ET0for the three crop cycle periodstraits remained highly significant after subtracting the explained about70%of the total variability in yield and⌬across the12trials and about90%across the six trials effect of phenology expressed as DH or DA(Table3).Fig.2.Relationship across the whole set of trials between water input(including irrigation if applied)from sowing to maturity and either grain yield or carbon isotope discrimination.Each point represents either a rainfed or irrigated trial(composed by25genotypes and four replicates per genotype).174CROP SCIENCE,VOL.43,JANUARY–FEBRUARY2003Table5.Stepwise analysis taking yield and⌬as dependent variables,and three different periods of the crop cycle(sowing to heading, heading to anthesis and anthesis to maturity)for each environmental parameter as independent variables.Values are proportions (per one)of the total variability in grain yield and carbon isotope discrimination across the12trials attributable to either a given environmental variable or explained by the progressive combination of these variables.Period Yield Yield accumulated Period⌬⌬accumulatedWater input(W i)NE-and SE-Spain trials combinedAnthesis–maturity0.48*0.48Anthesis–maturity0.67**0.67 Heading–anthesis0.130.61Sowing–heading0.100.77 Sowing–heading0.060.67Heading–anthesis0.000.77W i/ET0ratio NE-and SE-Spain trials combinedAnthesis–maturity0.47*0.47Anthesis–maturity0.53**0.53 Heading–anthesis0.130.60Sowing–heading0.20*0.73 Sowing–heading0.110.71Heading–anthesis0.010.74Water input(W i)NE-Spain trialsAnthesis–maturity0.85**0.85Anthesis–maturity0.83*0.83 Heading–anthesis0.12*0.97Sowing–heading0.010.84 Sowing–heading0.010.98Heading–anthesis0.010.85Water input(W i)SE-Spain trialsSowing–heading0.600.60Sowing–heading0.560.56 Heading–anthesis0.100.70Anthesis–maturity0.330.89 Anthesis–maturity0.050.75Heading–anthesis0.050.94W i/ET0ratio NE-Spain trialsAnthesis–maturity0.90**0.90Anthesis–maturity0.69*0.69 Heading–anthesis0.020.92Sowing–heading0.050.74 Sowing–heading0.000.92Heading–anthesis0.010.75W i/ET0ratio SE–Spain trialsSowing–heading0.66*0.66Sowing–heading0.600.60 Heading–anthesis0.060.72Anthesis–maturity0.260.86 Anthesis–maturity0.010.73Heading–anthesis0.030.89*,Significant at0.05probability level.**,Significant at0.01probability level.Fig.3.Relationship across the subset of trials,from NE Spain or SE Spain,between water input from sowing to heading and(a)grain yield or(b)carbon isotope discrimination of mature grains(⌬),and between water input from heading to maturity and(c)grain yield or(d)carbonisotope discrimination.Each point represents either a rainfed or irrigated trial(composed by25genotypes and four replicates per genotype) grown in NE Spain or SE Spain.ARAUS ET AL.:ENVIRONMENT,GRAIN⌬,AND YIELD IN DURUM WHEAT175Fig.4.Relationship between mean trial grain yield and the Pearson’s correlation coefficient(r)of the relationship between grain yield and carbon isotope discrimination of mature kernels within the same trial(a).The correlation coefficients of the same relationships after subtracting the effect of DH are also shown(b).Each point represents a trial composed by25genotypes and four blocks per genotype.Trials were performed in NE Spain and SE Spain under two moisture regimes(irrigated and rainfed)and over3yr(1997–1999).Genotype effects,although only accounted for about no significant(PϽ0.05)relationships,but coefficientsof correlation increased sharply to attain significance 2%of total variability in both yield and⌬,were highlysignificant.On the other hand,these phenological traits for trials yielding about2500kg haϪ1.Above this yield, also had a highly significant effect,particularly on yieldthey remained steady at around0.5,except for a trial (Table3).However,the effect of phenology in the analy-under irrigation in SE Spain with rϭ0.69.Many of sis of variance may have incorporated an environmentalthese relationships remained almost unchanged after bias.Moreover,no significant correlation across geno-subtracting the effect of DH(Fig.4b),although the types was observed between DH or DA and either⌬correlation coefficient in the highest yielding trial was or grain yield in any of the trials.greatly decreased when the effect of DH was removed. For the12trials,mean trial yield was plotted againstThe slope of the linear regression between yield and⌬the Pearson’s correlation coefficient of the phenotypic showed the same pattern of changes as the growing relationship between⌬and yield within the same trialconditions of the trials improved.It increased from val-(Fig.4a).This coefficient was positive in all the trials.ues near zero in the lowest yielding trial(SE Spainrainfed1997)(Table2)to around1000kg haϪ1per1‰The relationship fitted an asymptotic function(PϽ0.01).Thus,trials yielding around2000kg haϪ1showed increase in⌬,for trials that yielded about2500kg haϪ1.176CROP SCIENCE,VOL.43,JANUARY–FEBRUARY2003Fig.5.Relationship between mean trial grain yield and the slope of the regression of the relationship between grain yield and carbon isotope discrimination of mature kernels within the same trial(a).Slopes of the same relationship after subtracting the effect of DH are also shown(b).Each point represents a trial composed by25genotypes and four blocks per genotype.Trials were performed in NE Spain and SE Spainunder two moisture regimes(irrigated and rainfed)and over3yr(1997–1999).Above these yields,slope values remained steady(Fig.(PϽ0.1)with yield and not correlated with⌬across5a).Moreover,the slopes of these relationships were trials.The lack of a stronger correlation between cropunaffected when the effect of DH was subtracted(Fig.phenology and yield and its absence for⌬could be due5b).From the set of25genotypes two groups of five to the dependence of DH and DA on temperature(Hay,genotypes each,having the extreme values of⌬at the1999and references herein).Indeed,mean temperaturetwo most productive trials were selected.Further,for from sowing to heading and from sowing to anthesiseach trial the percentage in yield as a result of picking was negatively correlated(PϽ0.05)with yield but notbased on these two groups was calculated as[mean yield with⌬.In our study,differences in DH and DA betweenhigh⌬group–mean yield low⌬group/mean yield low trials were mainly caused by regional differences in tem-⌬group]ϫ100.The average yield differential showed perature.Thus,the higher temperatures in the trials in a similar pattern to that on Fig.4(but PϽ0.10).Thus,SE Spain caused an accelerated accumulation of grow-the high⌬group consistently showed a higher yield ing-degree days and therefore a shorter DH and DA(about10%)for trials yielding about2500kg haϪ1than in those in NE Spain.and above.Role of Environmental Variables in the DISCUSSION Relationships between⌬and Yield across TrialsRole of Phenology in the RelationshipsOur results show that W i for the whole crop cycle between⌬and Yield across Trials and specifically that comprising the part from headingonwards was the main environmental variable affecting In spite of the large differences between trials in DHand DA,both parameters were only weakly correlated grain yield and⌬.Sharing a common environmentalARAUS ET AL.:ENVIRONMENT,GRAIN ⌬,AND YIELD IN DURUM WHEAT177Table 6.Environmental conditions (means over three years)dur-variable would explain the strong positive relationship ing the last part of the of crop culture (from heading to physio-between grain yield and ⌬across trials (Fig.1).Similar logical maturity).results have been reported in durum wheat (Araus et Wi/ET 0†TemperatureVPD‡al.,1999b)and other cereals (Condon et al.,1987;Roma-؇C mbar gosa and Araus,1991;Acevedo,1993).NE–Spain irrigated 0.7717.610.4Previous reports on barley (Hordeum vulgare L.)and NE–Spain rainfed 0.3116.912.4durum wheat under Mediterranean conditions have SE–Spain irrigated 0.4219.319.6found a strong dependence of grain ⌬on W i during the SE–Spain rainfed0.2119.921.2later stages (from heading and anthesis to maturity)of †Wi/ET 0,ratio of water input versus reference evapotranspiration.the crop cycle (Araus et al.,1999a).In the present study,‡VPD,vapor-pressure deficit at anthesis.W i explained the differences in ⌬across growing envi-ronments better than ET 0or even the ratio W i /ET 0(Ta-The pattern of the relationships between W i and yield ble 4)as well as other related variables such as ET 0–W i and ⌬suggest that for the same amount of water input,(data not shown).The strength of the relationships of a higher grain yield and ⌬were attained in NE Spain.W i /ET 0with yield and ⌬was almost comparable to that These regional differences could initially be explained obtained with W i .However,because ET 0alone related in terms of a higher ET 0or vapor-pressure deficit in the poorly to yield and ⌬,the good performance of W i /ET 0trials done in the south (Table 6)or by differences in soil seemed to be due only to the weight of W i in this ratio.In water-holding capacity and distinct seasonal patterns fact,the range of variability in accumulated ET 0across of rainfall.Canopy temperature depression at anthesis environments was smaller than that for W i .Stewart et measured by infrared thermometry was about 5ЊC higher al.(1995),working with wild plant communities along in SE than in NE Spain regardless of the water regime a natural rainfall gradient,also concluded that W i was assayed (Royo et al .,2002).This observation suggests the environmental variable best related to carbon iso-higher transpiration rates in the southern trials,irrespec-tope composition.Most of the studies on this topic,how-tive of whether stomatal conductance was lower than ever,deal with tree species and not annual plants (see in the northern trials as can be inferred from the lower references below).In general,these studies are not con-⌬values of SE Spain (Table 2).Thus,Condon et al.clusive in terms of agreement on a common,single envi-(1992)reported a decrease in ⌬in wheat which was at-ronmental variable.They relate ⌬to rainfall amounts,tributed to stomatal closure in response to increasing evapotranspiration,the W i /ET 0ratio,soil water status,VPD.However,complementary explanations may be or different drought stress indices either at the seasonal sought because the relationships between the W i /ET 0level or during a particular period of the growing season ratio and grain yield or ⌬in NE and SE Spain showed (Francey and Farquhar,1982;Freyer and Belacy,1983;the same pattern as those with W i illustrated in Fig.3.Leavitt and Long,1989;Dupouey et al.,1993;Guehl et A possible explanation could be a lower water holding al.,1995;Korol et al.,1999;Moore-Darrin et al.,1999).capacity of the sandy soils in SE Spain (Table 1).De-Water input during grain filling was not only the variable creased soil water availability results in lower values of best correlated with yield and ⌬for the whole set of ⌬in cereals (Farquhar and Richards,1984;Hubick and trials (Table 4),but also for the subset of NE Spain (Fig.Farquhar,1989;Condon et al.,1992)primarily because 3).However,whereas no significant correlations were of the decrease in stomatal conductance.Other soil char-attained,in SE Spain,W i from the first part of the crop acteristics,such as soil compaction,may also affect ⌬cycle (sowing to heading)tended to be the variable best in wheat (Masle and Farquhar,1988).related to yield and ⌬(Fig.3).On the other hand,no significant correlation was attained between W i from Role of Environment on the Relationshipssowing to heading and yield or ⌬in NE-Spain trials (Fig.between ⌬and Yield within Trials3).These differences between regions may have an envi-ronmental basis.The Mediterranean environment of SE For all the trials,the slope of the regression between Spain is characterized by more severe drought stress ⌬and grain yield remained positive.In fact,for wheat during the last part of the crop cycle than is that of and other cereals,⌬is frequently positively correlated NE Spain (Table 6).The presence of a higher level of with grain yield and/or total biomass not only under drought stress during grain filling in SE-Spain trials is well-irrigated but also under rainfed conditions (Con-further supported by the generally lower 1000-kernel don et al.,1987;Romagosa and Araus,1991;Kirda et weight in SE than in NE Spain (Table 2).Under the al.,1992;Araus et al.,1993,1998;Merah et al.,2002;growing conditions of SE Spain,grain yield and ⌬are Morgan et al.,1993;Sayre et al.,1995).Most of these defined earlier in the crop cycle because photoassimi-(and other studies reporting positive relationships)were lates produced before anthesis may play a major role conducted in Mediterranean or similar environments not only in defining the total number of grains per unit where there is strong reliance on “within-season”rain-land,but also in the filling of these grains (Slafer and fall (Condon et al.,2002).However,unlike the results Araus,1998;Royo et al.,1999).Interestingly,for two of Araus et al.(1998)in durum wheat,in the poor-of the three years studied,the ⌬for the rainfed site in yielding environments of our study (about 2000kg ha Ϫ1),SE Spain was higher than in that in the north in spite the correlation between grain ⌬and yield across geno-of the lower yield and greater drought in the former types was not significant,with correlation coefficients for two rainfed trials from SE Spain close to zero.Suchlocation (Table 2).。

相关文档
最新文档