20150319九年级数学下册相似三角形单元测试3页

合集下载

(完整word版)相似三角形单元测试卷(含答案)

(完整word版)相似三角形单元测试卷(含答案)

相似三角形单元测试卷(共100分)一、填空题:(每题5分,共35分)1、已知a =4,b =9,c 是a b 、的比例中项,则c = .2、一本书的长与宽之比为黄金比,若它的长为20cm ,则它的宽 是 cm (保留根号).3、如图1,在ΔABC 中,DE ∥BC ,且AD ∶BD =1∶2,则S S ADE ∆=四边形DBCE : .图1 图2 图34、如图2,要使ΔABC ∽ΔACD ,需补充的条件是 .(只要写出一种)5、如图3,点P 是RtΔABC 斜边AB 上的任意一点(A 、B 两点除外)过点作一条直线,使截得的三角形与RtΔABC 相似,这样的直线可以作 条.图4 图5 图66、如图4,四边形BDEF 是RtΔABC 的内接正方形,若AB =6,BC =4,则DE = .7、如图5,ΔABC 与ΔDEF 是位似三角形,且AC =2DF ,则OE ∶OB = . 二、选择题: (每题5分,共35分)8、若k bac a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在9、如图6,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( )A 、21 B 、31 C 、32 D 、41 图7 图8 图910、如图7,△ABC 中,DE ∥FG ∥BC ,且DE 、FG 将△ABC 的面积三等分,若BC=12cm ,则FG 的长为( )A 、8cmB 、6cmC 、64cmD 、26cm 11、下列说法中不正确的是( )A .有一个角是30°的两个等腰三角形相似;B .有一个角是60°的两个等腰三角形相似;C .有一个角是90°的两个等腰三角形相似;D .有一个角是120°的两个等腰三角形相似.12、如图9, D 、E 是AB 的三等分点, DF∥EG∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( ) A.1:2:3 B.1:2:4 C.1:3:5 D.2:3:413、两个相似多边形的面积之比为1∶3,则它们周长之比为( )A .1∶3B .1∶9C .1D .2∶314、下列3个图形中是位似图形的有( )A 、0个B 、1个C 、2个D 、3个 三、解答题(15题8分,16题10分,17题12分,共30分) 15、如图,已知AD 、BE 是△ABC 的两条高,试说明AD ·BC=BE ·AC16、如图所示,小华在晚上由路灯A 走向路灯B,当他走到点P 时, 发现他身后影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点Q 时, 发现他身前影子的顶部刚好接触到路灯B 的底部,已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB. (1)求两个路灯之间的距离;(2)当小华走到路灯B时,他在路灯A 下的影长是多少?17.如图,在矩形ABCD 中,AB=12cm ,BC=8cm .点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S (cm 2) (1)当t=1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似?请说明理由.AB C ED参考答案一、 填空题:(1)、1或4或16;(2)、±6;(3)、-94;(4)、1.6或2.5;(5)、)15(10 ; (6)、1:8;(7)、∠ACD=∠B 或∠ADC=∠ACB 或AD :AC=AC :AB ;(8)、31.5; (9)、0.2;(10)、3;(11)、2.4;(12)、1:2三、作图题: 23、(略) 四、解答题:24、证明:∵AD 、BE 是△ABC 的高 ∴∠ADC=∠BEC ∵∠C=∠C∴△ADC ∽△BEC ∴AD :BE=AC :BC ∴AD ×BC=BE ×AC25、解:由图得,AB=5,AC=25,BC=5,EF=2,ED=22,DF=10, ∴AB :EF=AC :ED=BC :DF=5:2∴△ABC ∽△DEF26、解:过点C 作C E ∥AD 交AB 于点E ,则CD=AE=2m ,△BCE ∽△B /BA / ∴A / B /:B /B=BE :BC 即,1.2:2= BE :4 ∴BE=2.4∴AB=2.4+2=4.4答:这棵树高4.4m 。

九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案1填空(本题14 分)(1 )若a=8cm, b=6cm,c=4cm,贝U a、b、c的第四比例项d= ;a、c的比例中项x=_。

(2) (2 x):x x:(1 x)。

贝U x= _______________ 。

(3) _______________________________________________________________ 在比例尺为1: 10000的地图上,距离为3cm的两地实际距离为_________________________________ 公里。

(4) _______________________________ 圆的周长与其直径的比为。

a 5 a b(5 )右,贝V = 。

b 3 b(6) 若a:b: c=1 : 2:3, 且 a b c 6,贝U a= ________ , b= ______ , c= _______ 。

AB AC BC 3 CE(7) 如图1, ——-,则(1)——(2)若BD=10cm ,则AD=cm 。

AD AE DE 2 AEABc是线段AB的黄金分割点,且AC CB ,竺BC ,AB16cm,则△ ABC的周长为(8)若点AC2•选择题 (1) 根据 A . 0 B .(2) 若线段 bA.- d d C.—c(本题 9分)ab=cd ,共可写出以a 为第四比例项的比例式的个数是(1 C .2 D . 3a 、b 、c 、d 成比例,则下列各式中一定能成立的是(d b b C .DB AB ADEC AC AEBC DB ECEC AB ACa3•已知:即3。

求(1)严3;;(2)愛。

(本题10分)4.若x: y:z=2: 7:5, x 2y 3z 6,求的值。

(本题6 分)za c e 25.已知:& d f 3,且2b d 5f 18。

求2a c 5e的值。

(本题6分)6.已知:线段AB,求作线段x,使x 2AB。

相似三角形单元测试卷(含答案)

相似三角形单元测试卷(含答案)

相似三角形单元测试卷(含答案)第四章相似三角形单元测试卷一、选择题: 1.下列各组数中,成比例的是A.-6,-8,3,4 B.-7,-5,14,5 C.3,5,9,12 D.2,3,6,12 2.如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为A.23 B.33 C.43 D.63 3.如图,F是平行四边形ABCD对角线BD上的点,BF∶FD=1∶3,则BE∶EC= A. AFBECD1121 B. C. D. 2334 ADFBEGC 4.如图,△ABC中,DE ∥FG∥BC,且DE、FG将△ABC的面积三等分,若BC=12cm,则FG的长为A、8cm B、6cm C、46cm D、62cm 5.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于A. 2:5:25:25 D. 4:216.如图, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC相似的是()7.如图,在□ABCD 中,E、F分别是AD、CD 边上的点,连接BE、AF,他们相交于点G,延长BE交CD的延长线于点H,则图中的相似三角形共有A.2对B.3对C.4对D.5对AD45°B 1 PC8.如图,在直角三角形ABC中,放置边长分别3,4,x的三个正方形,则x 的值为() A. 5 B. 6 C. 7 D. 129. 如果三条线段的长a、b、c满足5?1bc==,那么(a,b,c)叫做“黄金线段组\.黄2ab金线段组中的三条线段().A.必构成锐角三角形B.必构成直角三角形C.必构成钝角三角形D.不能构成三角形10. 如图,等腰直角△ABC的直角边长为3,P为斜边BC上一点,且BP=1,D为AC上一点,若∠APD=45°,则CD的长为A. 5 3 ?1 3C.32?1 3D. 35 二、填空题: C11.已知a=4,b=9,c是a、b的比例中项,则c =.BOD12. 如图,△ABC中,已知AB=4,AC=3。

人教版九年级数学下册第二十七章《相似三角形》测试题含答案

人教版九年级数学下册第二十七章《相似三角形》测试题含答案

第27章相似单元评估检测试题数学试题考生注意:1.考试时间90分钟.2. 全卷共三大题,满分120分.题号一二三总分21 22 23 24 25 26 27 28分数一.填空题(每小题3分,共30分)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为2.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=3. 如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为4. 如在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为5. 如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD=2,则AB的长是6.6.已知两个相似三角形相似比是3:4,那么它们的面积比是________.7. 若两个相似三角形的对应中线的比为3∶4,则它们对应角平分线的比为8.有一些乒乓球,不知其数量,先取6个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有两个做标记的,可以估计这袋乒乓球有________9.若△ABC∽△A’B’C’,且,△ABC的周长为12cm,则△A’B’C’的周长为________cm.10.在△ABC中,AB=6 cm,AC=5 cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE∶S四边形BCED=1∶8,则AD=__________ cm.一、单选题(每小题3分,共30分)11.下列条件中,一定能判断两个等腰三角形相似的是()A. 都含有一个40°的内角B. 都含有一个50°的内角C. 都含有一个60°的内角D. 都含有一个70°的内角12.下列各组图形相似的是( )A. B. C. D.13.下列各组图形必相似的是()A. 任意两个等腰三角形B. 有两边对应成比例,且有一个角对应相等的两三角形C. 两边为4和5的直角三角形与两边为8和10的直角三角形D. 两边及其中一边上的中线对应成比例的两三角形14.如图,四边形ABCD的对角线AC,BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()A. ①与②相似B. ①与③相似C. ①与④相似D. ②与④相似15.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )A.米B. 8米C. 18米D. 24米16. 如图在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A. 1:2B. 1:4C. 2:5D. 2:3第2题图第3题图第5题图第13题第15题第16题17.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是( )A. 6 B. 8 C. 9 D. 1218.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为A. 8B. 9.5C. 10D. 519.若,且3a-2b+c=3,则2a+4b-3c的值是()A. 14B. 42C. 7D.14320.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为( )三、解答题(共8题;共57分)21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(1,0)、B(3,2)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).(1)沿x轴向左平移2个单位,得到△A1B1C1,不画图直接写出发生变化后的B1点的坐标.点B1的坐标是________;(2)①以A点为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1.________.②点B2的坐标是________;(3)△A2B2C2的面积是________平方单位.22. 如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.23.五角星是我们常见的图形,如图所示,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD的长.第17题第18题第20题图24.某兴趣小组开展课外活动.如图,小明从点M出发以1.5米/秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(AB)在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他(CD)在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点F,此时点A,C,E三点共线.(1)请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长FH(不写画法);(2)求小明到达点F时的影长FH的长.25.如图,在△PAB中,∠APB=120°,M,N是AB上两点,且△PMN是等边三角形,求证:BM•PA=PN•BP.26.如图△ABC中,AB=8,AC=6,如果动点D以每秒2个单位长的速度,从点B出发沿BA方向向点A运动,同时点E以每秒1个单位的速度从点A出发沿AC方向向点C运动,设运动时间为t(单位:秒),问t为何值时△ADE与△ABC相似.27.如图,点H在平行四边形ABCD的边DC延长线上,连结AH分别交BC、BD于点E,F.求证:.28.如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=2 cm.点P从点B出发沿BC方向以1cm/s速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ.矩形PQRS与△ABC 的重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:(1)AD=________cm;(2)当点R在边AC上时,求t的值;(3)求S与t之间的函数关系式.参考答案一、填空题1.32. 63.9:254.155.1 166.9:167. 3∶48.609.1610. 2或3 5二、单选题11.C 12.B13.D 14.B 15.B 16.A 17.D 18.A 19.D 20.C三、解答题21.(1)(1,2)(2);(﹣3,﹣4)(3)822.证明(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=∠BAC=60°,在△ABD和△BCE 中,∴△ABD≌△BCE(SAS);(2)∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠EAF=∠ABE,∵∠AEF=∠BEA,∴△AEF∽△ABE.23.解:∵D为AB的黄金分割点(AD>BD),∴AD=AB=10 ﹣10,∵EC+CD=AC+CD=AD,∴EC+CD=(10 ﹣10)cm24.解:(1)如图,点O和FH为所作;(2)BM=BD=2×1.5=3m,GD=1.2m,DF=1.5×1.5×2=4.5m,设AB=CD=EF=a,作OK⊥MN于K,如图,∵AB∥OK,∴△MAB∽△MOK,∴,即①,∵CD∥OK,∴△GCD∽△GOK,∴,即②,由①②得= ,解得Dk=2,∴= ,FK=DF﹣DK=4.5﹣2=2.5,∵EF∥OK,∴△HEF∽△HOK,∴,即= ,∴HF=1.5(m).答:小明到达点F时的影长FH的长为1.5m.25.证明:∵△PMN为等边三角形,∴∠PMN=∠PNM=∠MPN=60°,∴∠BMP=∠PNA=120°.∵∠BPA=120°,∴∠BPM+∠APN=60°.在△BMP中,∠B+∠BPM=60°,∴∠B=∠NPA,∴△BMP∽△PNA,∴,∴BM•PA=PN•BP26.解:根据题意得:BD=2t,AE=t,∴AD=8-2t,∵∠A=∠A,∴分两种情况:①当时,即,解得:t= ;②当时,即,解得:t= ;综上所述:当t= 或时,△ADE与△ABC相似.27.证明:∵四边形ABCD是平行四边形,∴AB∥DC,∠ABE=∠ADH,∴∠BAE=∠H,∴△ABE∽△HDA,∴.28.(1)2(2)解:∵QR∥BC,∴△AQR∽△ABC,∴,即,解得,t= ;(3)解:①当0<t≤ 时(图1),∠B=45°,∠BPQ=90°,∴∠BQP=90°-45°=45°∴PQ=BP=t∴S=S矩形PQRS=2t•t=2t2.②当<t<2时(图2)∠BAD=90°-45°=45°BD=AD=2cmCD=6-2=4cm.SF∥AD∴△FSC∽△ADC∴,即,SF=3- t,∴FR=t-(3- t)= -3,∵ER∥SC,∴∠REF=∠C又∠REF=∠ADC=90°∴△ERF∽△CDA∴,即,ER=5t-6,∴S=S矩形PQRS-S△ERF=2t2- (5t-6)(t-3)=- t2+15t-9.③当2≤t<6时(图3)∵PQ∥AD∴△ERF∽△CDA,∴,即,∴QP=3- t∴S=S△QPC= (3- t)(6-t)= t2-3t+9.。

(完整word版)九年级数学相似三角形单元测试题及答案

(完整word版)九年级数学相似三角形单元测试题及答案

九年级数学相似单元测试(1)一.选择题(每小题3分洪30分) 1.在比例尺为 A.1250km b 3 1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( C. 12.5km D.1.25km 2•已知a 2 B.125km =c = 0,则匕空的值为 4 cA. 4 5 3. 已知/ ABC 的三边长分别为 相似,那么/ A ' B ' C '的第三边长应该是B.11 2D. 1 2 2,,6,2,/A ' B ' C '的两边长分别是 ( C.2 1 和.3,如果/ ABC 与/ A ' B ' C ' ) A. 24. 在相同时刻,物高与影长成正比 C.-6D.三 2 3 如果高为 1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) D 15米 D A 20米 B 18米 5. 如图,/ACB= Z ADC=90 ° ,BC=a,AC=b,AB=c,要使/ ABC s/CAD, 只要CD 等于 ( ) 2 2 2A. —B.—C.abD.— c a c c 6. —个钢筋三角架三长分别为20cm,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和 50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A. 一种 B.两种 C.三种 D.四种 7、 用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在 A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、 如图,口 ABCD 中,EF // AB , DE : EA = 2 : 3, EF = 4,贝U CD 的长( )A 16 A.亍 C 16米 C . 10 D . 16 窗户的高在在室地直线上影长则那的高貉为窗户的下檐到教严面勺距离 C . 2米 D . 1.5 米BC=1米(点B CABC 的边BC10、 某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ 上,△ ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二傾空题(每小题3分洪30分) 11、 已知冬=3,则= y 4 y 12、 .已知点C 是线段AB 的黄金分割点,且AC>BC,则AC : AB= _________ . 13、 .把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 ___________________ .14、 如图,/ABC 中,D,E 分别是AB,AC 上的点(DE.JBC ),当 ________ 或 ________ 或 _______ 时,/ ADE 与/ ABC 相似. 15、 在厶ABC 中,/ B = 25° , AD 是BC 边上的高,并且AD 2 = BD • DC ,则/ BCA 的度数为 _______________ 。

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷(含答案)

人教版九年级下册数学《相似》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知a b c k b ca ca b===+++,则直线2y kx k =+一定经过( )A .1第,2象限B .2第,3象限C .3第,4象限D .1第,4象限A .13B .2C .5D .33.若:2:3x y =,则下列各式不成立的是( )A .53x y y += B .13y x y -= C . 123x y = D .1314x y +=+ 4.如图,在平行四边形ABCD 中,4AC =,6BD =,P 是BD 上的任一点,过点P 作EF AC ∥,与平行四边形的两条边分别交于点E 、F ,设BP x =,EF y =,则能反映y 与x 之间关系的图象是( )A .B .C .D . 5.如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFCFD+的值为( )A .52 B .1 C .32D .2 6.如图,小明站在C 处看甲、乙两楼顶上的点A 和点E C E A ,、、三点在同一直线上,点B D 、分别在点E A 、的正下方,且D B C 、、三点在同一直线上,B C 、相距20米,D C 、相距40米,乙楼BE 高15米,则甲楼AD 的高为(小明身高忽略不计)( )A .40米B . 20米C . 15米D . 30米 7.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) A .第一、二象限 B .第一、二、三象限 C .第二、三、四象限 D .第三、四象限8.若两个相似三角形的面积之比为14∶,则它们的周长之比为( )A .12∶B .14∶C .15∶ D .116∶ 9.某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团B .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变A DEFCB10.已知,AB 是⊙O 的直径,且C 是圆上一点,小聪透过平举的放大镜从正上方看到水平桌面上的三角形图案的B ∠(如图所示),那么下列关于A ∠与放大镜中的B ∠关系描述正确的是( )A.090A B ∠+∠=B.=A B ∠∠C.090A B ∠+∠>D.A B ∠+∠的值无法确定二 、填空题(本大题共5小题,每小题3分,共15分)11.如图所示,乐器上的一根弦80AB cm =,两个端点A B ,固定在乐器面板上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC = cm ,DC = cm .12.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为 .13.如图,已知梯形ABCD 中,AD BC ∥,对角线AC 、BD 分别交中位线EF 于点H 、G ,且121EG GH HF =∶∶∶∶,那么AD BC ∶等于 .14.如图,在ABC △中,CD 是高,CE 为ACB ∠的角平分线,若15,20,12AC BC CD ===,则CE 的长等于 .15.如图,点1234,,,A A A A 在射线OA 上,点123,,B B B 射线OB 上,且112233A B A B A B ∥∥,CDHGFE DCBA ABCD E21A B ∥32A B 43A B ∥.若212323,A B B A B B △△的面积分别为1,4,则图中三个阴影三角形面积之和为 .三 、解答题(本大题共7小题,共55分)16.已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC的延长线交EF 于G .求证:EG GF =.17.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒.⑴若4a =厘米,1t =秒,则PM =______厘米;⑵若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比; ⑶若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;⑷是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.4321G FECDBAP N NMQDC BAQPMDCBA18.如图所示,已知四边形BDEF 是菱形,12DC BD =,且4DC =,求AF 的长.19.如图,在ABC △中,AD 平分BAC ∠,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,求证:2FD FB FC =⋅.20.如图, Rt ABC △中,90C ∠=︒,有一内接正方形DEFC ,连接AF 交DE 于G ,15AC = ,10BC =,求GE .21.如图所示,以长为2的定线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F F ,使PF PD =,以AF 为边作正方形AMEF ,点M 在AD 上.(1)求,AM DM 的长;(2)点M 是AD 的黄金分割点吗?为什么?ABCDEF EFD C B AGABC DEP22.在ABC ∆中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,求证:AD AB AC=+.D CB A人教版九年级下册数学《相似》单元测试卷答案解析一 、选择题1.B;当0a b c ++≠时,根据比例的等比性质,得:()122a b c k a b c ++==++,此时直线为112y x =+,直线一定经过1,2,3象限. 当0a b c ++=时,即a b c +=-,则1k =-,此时直线为2y x =--,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限. 【解析】分情况讨论:3.D;根据比例的性质公式:bd b d =⇔=;b d b d=⇔=可知,,A B C 正确,只有D 错误. 4.C;设AC 交BD 于O ,∵四边形ABCD 是平行四边形, ∴132OD OB BD ===,当P 在OB 上时, ∵EF AC ∥,∴BP BF EF OB BC AC ==,∴34x y =,∴43y x =, 当P 在OD 上时,同法可得:DP DF EF OD DC AC ==,∴634x y -=,∴483y x =-+,∵两种情况都是一次函数,图象是直线.故选CPFEDCBA5.C;这类题的解法:找适当的点,作适当的平行线,构造基本图形解题,或者直接运用梅氏定理来解题. 6. D ;BC BECD AD=20BC DB == 15BE = ∴30AD = 7.A;由已知得()b c t a +=;()c a t b +=;()a b t c +=,三式相加得:()2a b c t a b c ++=++,①当0a b c ++≠时,12t =;②当0a b c ++=时,a b c +=-,1t =-. ∴一次函数2y tx t =+为1y x =-+或1124y x =+ ∵1y x =-+过第一、二、四象限;1124y x =+过第一、二、三象限; ∴一次函数2y tx t =+的图象必定经过的象限是第一、二象限.【解析】先根据等式求出t 的值,从而得到一次函数的解析式,再根据一次函数的性质分析经过的象限即可.(注意有两种情况). 8.A10.A二 、填空题11.40;点C 是靠近点B 的黄金分割点,∴:AC AB =,即8040AC AB ==,又∵点D 是靠近点A 的黄金分割点,∴160-40BD =,∴8080160DC AC BD AB =+-=-=12.8;3【解析】根据已知可证ABC DEF △∽△,且ABC △和DEF △的相似比为2,再根据相似三角形周长的比等于相似比,面积的比等于相似比的平方即可求DEF △的周长、面积.13.1∶3;∵根据平行线分线段成比例定理可得:EG 、GF 分别是ABD △和DBC △的中位线.那么2AD EG =,2BC GF =. ∴:21:[221]1:3AD BC =⨯⨯+=()()由勾股定理知9,16AD BD ==.所以,25AB AD BD =+=. 故由勾股定理的逆定理知ACB △为直角三角形,且90ACB ∠=︒. 作EF BC ⊥,垂足为F .设EF x =.由1452ECF ACB ∠=∠=︒,得CF x =.于是,20BF x =-. 因为EF AC ∥,所以,EF BF AC BC =,即206015207x x x -=⇒=.因此,7CE ==.15.10.5∵212A B B △,323A B B △的面积分别为1,4 又∵22332132,A B A B A B A B ∥∥ ∴2233212323,OB A OB A A B B A B B ∠=∠∠=∠ ∴122233B B A B B A △∽△ ∴1222233312B B A B B B A B == FE DCBA∴233412A A A A = ∵22323322323331,4A B A B A B S A B A B B S A B ==△△△的面积是4 ∴223323122A B A A B B S S ==△△(等高的三角形的面积的比等于底边的比)同理可得:3343232248A B A A B B S S ==⨯=△△,1122121110.522A B A A B B S S ==⨯=△△∴三个阴影面积之和为0.52810.5++=.【解析】由平行得到相似的三角形.已知212A B B △△A 2B 1B 2,323A B B △的面积分别为1,4,且两三角形相似,因此可得出223312A B A B =,由于223A B A △与233B A B △是等高不等底的三角形,所以面积之比即为底之边比,因此这两个三角形的面积比为1:2,根据323A B B △的面积为4,可求出223A B A △的面积,同理可求出334A B A △和112A B A △的面积.即可求出阴影部分的面积.三 、解答题16.证法一:过C 作MN EF ∥交AE 、AF 于M N ,, 则有MC EM FN CNBD EB FD BD===, ∴MC CN =, 又∵MN EF ∥, ∴MC AC CNEG AG GF==, ∴EG GF =.证法二:由塞瓦定理的充分性可得:1EG FD AB GF DA BE ⋅⋅=.又因为AB ADBE DF=,代入上式得1EG FD AD GF DA DF ⋅⋅=,即1EGGF=.所以.EG GF =NM G FECD B A17.⑴ 34PM =,⑵ 2t =,使PNB PAD △∽△,相似比为3:2⑶ ∵PM AB CB AB AMP ABC ∠=∠⊥,⊥,,AMP ABC △∽△,∴PM AM BN AB =即PM a t t a -=,∵()t a t PM a -=, ∵(1)3t a QM a-=- 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM ++= ()33(1)()22t a t t a a t t t a a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+, ∵3t ≤,∴636a a+≤,则6a ≤,∴36a <≤, ⑷ ∵36a <≤时,梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM = ∴()3ta t t a -=-,把66a t a=+代入,解之得a =±a = 所以,存在a,当a =PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.18.由平行线的性质能判定AFE △和EDC △的任意两个角相等,证明AFE EDC△∽△得到对应线段成比例21FE AF DC DE ==,4DC =,8FE DE BD BF ====,所以16AF =. 19.连接AF∵EF 垂直平分AD ,∴AF DF =,∴4DAF ∠=∠,即423∠=∠+∠,又∵41B ∠=∠+∠,∴231B ∠+∠=∠+∠,∵AD 平分BAC ∠,∴12∠=∠,∴3B ∠=∠,4321AEB DC F又∵CFA AFB ∠=∠,∴CFA AFB ∆∆∽,∴2FA FC FB =⋅.又∵AF DF =,∴2FD FB FC =⋅20.设正方形的边长为a ,则15-AD a =∵DE BC ∥ ∴AD DE AC BC = 15-1510a a = 解得6a =又在AFB △中GE BF ∥ 有GE AE DE BF AB BC==, GE AD BP AC =∴9415GE = 125GE =21.1,3AM DM =M 是AD 的黄金分割点.(1)在Rt APD △中,1,2AP AD ==,由勾股定理知:PD ==∴1AM AF PF AP PD AP ==-=-,3DM AD AM =-=故1,3AM DM ==(2)点M 是AD 的黄金分割点.由于AM DM AD AM = ∴点M 是AD 的黄金分割点.【解析】(1)要求AM 的长,只需求得AF 的长,又AF PF AP =-,PF PD ==1,3AM AF DM AD ===(2)根据(1)中的数据得:,AM DM AD AM =根据黄金分割点的概念,则点M 是AD 的黄金分割点.22.解法一:本题可根据角平分线类相似的模型首先试着作出辅助线:过点D 作AB 的平行线,由于所给120BAC ∠=︒平分之后有两个60的特殊角,可判定ADE △为等边三角形,再根据相似和平行导出线段的比例关系,最关键的一步是,将所得的两组线段整体相加,得到一个新的等式,最后发现问题得证.解法二:分别以,AB AC 为边向外作两个等边三角形,即ABM △和ACN △,由平分后的角度为60,可轻易证明AD BM CN ∥∥得到两组比例线段CD AD BC BM=和BD AD BC CN=,两者相加后又重新得到一个新的等式,再根据等边三角形的特点代换相等的线段,最后问题也得证. (本题只给出第一种解法的步骤).【解析】过点D 作AB 的平行线,交AC 于点E . ∵120BAC ∠=︒,BAD CAD ∠=∠, ∴60BAD CAD ∠=∠=︒∵DE AB ∥,∴60ADE BAD ∠=∠=︒∴AD AE DE == ∵DE CD DE AB AB BC ⇒=∥,AE BD AC BC = ∴1DE AE CD BD AB AC BC BC+=+= 等式两边同除以AD ,则有:111AB AC AD += E D C B ANM DC B A。

人教版九年级数学下册《相似》全章测试 含答案

人教版九年级数学下册《相似》全章测试  含答案

《相似》全章测试班级___________姓名____________成绩一.选择题(每题5分,共35分) 1. 下列图形一定是相似图形的是( ) A .两个菱形 B .两个矩形 C .两个等腰三角形D .两个正三角形2. 如图,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( ) A .21 B .31C .41D .323.若DEF ABC ∆∆∽,1:2:=DE AB ,且ABC ∆的周长为16,则DEF ∆的周长为( ) A. 4B. 16C. 8D. 324. 如图,△ABC 中,若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( ) A .BC DEDB AD =B .ADEFBC BF =C .FCBFEC AE =D .BCDEAB EF =5. 如图,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )A .1B .23 C .2 D .25 6. 如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )7. 如图所示,不能判定△ABC ∽△DAC 的条件是( ) A .∠B =∠DAC B .∠BAC =∠ADC C .AC 2=DC ·BC D .AD 2=BD ·BC二.填空题:(每题4分,共32分)8. 若532zy x ==,则=-++z x z y x 2______. 9. 如图,□ABCD 中,G 是BC 延长线上的一点,AG 与BD 交AB于点E ,与DC 交于点F ,此图中的相似三角形共有______对.10. 如图,为了测量某棵树的高度,小明用长为2m 的竹竿作测量工具,移动竹竿,使竹竿顶 端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m ,与树相距15m , 则树的高度为__________.11. 如图,DE 是ABC ∆的中位线,M 是DE的中点,那么NDMNBCS S ∆∆= .10题图 11题图 12题图 12. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =5,BC =12,则AD=________.13. 如图,四边形PQMN 是△ABC 内接正方形,BC =20cm ,高AD =12cm ,则内接正方形边长QM 为__________.14. 如图,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点, 且41=EB AE ,射线CF 交AB 于E 点,则AD AF 等于_________.15. 如图,正方形ABCD 的边长为2,AE=EB ,MN =1,线段MN 的两端在BC 、DC 上滑动,当MC=____________时,△AED与以N 、M 、C 为顶点的三角形相似.三.解答题:(16、17、18题每题8分,19题9分,共33分) 16. 如图, 在正方形网格中,△ABC 的顶点和O 点都在格点上. (1)在图1中画出与△ABC 关于点O 对称的△A ′B ′C ′;(2)在图2中以点O 为位似中心,将△ABC 放大为原来的2倍(只需画出一种即可). 解:15m 6m2m O A BCO ABCE N MAB D C图1 图2结论:____________________________为所求.17. 如图,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作 MC 的平行线交AP 于D .求证:P A ∶PB =PC ∶PD . 证明:18. 如图,在□ABCD 中,点E 在BC 边上,点F 在DC 的延长线上,且∠DAE =∠F . (1)求证:△ABE ∽△ECF ;(2)若AB =5,AD =8,BE =2,求FC 的长. (1)证明:(2)解:19. 已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B , C 点重合),∠ADE =45°. (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,请直接写出AE 的长. (1)证明:FEADCB(2)解:(3)解:AE =_________________________.答案与提示1. D2. B3. C4. D5. C6. B7. D8. -109. 6 10. 7m 11. 16112. 1325 13. 7.5cm 14. 3115. 55255或16. 略17. 提示:P A ∶PB =PM ∶PN ,PC ∶PD =PM ∶PN .18. (1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F ,∴∠AEB =∠F . ∴△ABE ∽△ECF . (2)解:∵△ABE ∽△ECF , ∴AB BE EC CF=.∵四边形ABCD 是平行四边形,∴BC =AD =8. ∴EC =BC -BE =8-2=6. ∴526CF=.∴125CF =.19.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC . (2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE(提示:当△ADE 是等腰三角形时,△ABD ≌△DCE .可得.12-=x )当∠ADE 为底角时:⋅=21AE。

人教版九年级下册《第二十七章 相似三角形》单元测试卷及答案

人教版九年级下册《第二十七章 相似三角形》单元测试卷及答案

人教版九年级下册《第27章相似三角形》单元测试卷(1)一、选择题(共10小题,3*10=30)1.(3分)下列各组图形相似的是()A.B.C.D.2.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=3.(3分)如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD4.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)5.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.56.(3分)下列说法:①有一个角等于30°的两个等腰三角形相似;②有一个角等于120°的两个等腰三角形相似;③相似三角形一定不是全等三角形;④相似三角形对应角平分线的长度比等于面积比.其中正确的个数是()A.1B.2C.3D.47.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:18.(3分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为()A.B.C.D.9.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个10.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m二.填空题(共8小题,3*8=24)11.(3分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是.12.(3分)如图,点A是△ABC的边BC上一点,∠B=∠ACD,如果AC=6,AD=4,则AB的长为.13.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.14.(3分)如图,已知两点A(2,0),B(0,4),且∠CAO=∠ABO,则点C的坐标是.15.(3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC =8,则AB的长为.16.(3分)如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=.17.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为.18.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三.解答题(7小题,共66分)19.(8分)已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.20.(8分)如图,小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的周长比与面积比.21.(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?22.(10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.23.(10分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.24.(10分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q 分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.25.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.人教版九年级下册《第27章相似三角形》单元测试卷(1)参考答案与试题解析一、选择题(共10小题,3*10=30)1.(3分)下列各组图形相似的是()A.B.C.D.【考点】相似图形.【分析】根据相似图形的定义,结合图形,以选项一一分析,排除错误答案.【解答】解:A、形状不同,大小不同,不符合相似定义,故错误;B、形状相同,但大小不同,符合相似定义,故正确;C、形状不同,不符合相似定义,故错误;D、形状不同,不符合相似定义,故错误.故选:B.2.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D)∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选:C.3.(3分)如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与点A、C重合),DE与AB相交于点F,那么与△BFD相似的三角形是()A.△BFE B.△BDC C.△BDA D.△AFD【考点】相似三角形的判定.【分析】根据等边三角形的性质和相似三角形的判定定理即可得到结论.【解答】解:∵△ABC与△BDE都是等边三角形,∴∠A=∠BDF=60°,∵∠ABD=∠DBF,∴△BFD∽△BDA,∴与△BFD相似的三角形是△BDA,故选:C.4.(3分)如图,在平面直角坐标系中,有点A(6,3),B(6,0),以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【考点】位似变换;坐标与图形性质.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又∵OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.5.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【考点】相似三角形的性质.【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.6.(3分)下列说法:①有一个角等于30°的两个等腰三角形相似;②有一个角等于120°的两个等腰三角形相似;③相似三角形一定不是全等三角形;④相似三角形对应角平分线的长度比等于面积比.其中正确的个数是()A.1B.2C.3D.4【考点】相似三角形的判定与性质;全等三角形的判定;等腰三角形的性质.【分析】由相似三角形的判定和性质,以及等腰三角形的性质依次判断可求解.【解答】解:顶角为30°的等腰三角形与底角为30°的等腰三角形不相似,故①错误;有一个角等于120°的两个等腰三角形相似,故②正确;当相似比为1时,相似三角形是全等三角形,故③错误;相似三角形的面积比等于对应角平分线的长度比的平方,故④错误;故选:A.7.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,:S△BF A=9:16.∴S△DFE故选:B.8.(3分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为()A.B.C.D.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;一次函数的性质;一次函数图象上点的坐标特征.【分析】根据直线y=﹣x+3可求出与x轴、y轴交点A和点B的坐标,即求出OA、OB的长,再根据相似三角形可得对应边的比为1:2,设未知数,表示出长方形ODCE 的面积,即求出k的值.【解答】解:∵直线y=﹣x+3与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,3),即:OA=2,OB=3;:S△CDA=4:1,又△BEC∽△CDA,∵S△BEC∴==,设EC=a=OD,CD=b=OE,则AD=a,BE=2b,有,OA=2=a+a,解得,a=,OB=3=3b,解得,b=1,∴k=ab=,故选:A.9.(3分)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个【考点】相似三角形的判定与性质;圆周角定理;切线的判定与性质.【分析】由切线的性质得∠CBO=90°,首先连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线,根据全等三角形的性质得到CD=CB,根据线段垂直平分线的判定定理得到即CO⊥DB,故②正确;根据余角的性质得到∠ADE=∠BDO,等量代换得到∠EDA=∠DBE,根据相似三角形的判定定理得到△EDA∽△EBD,故③正确;根据相似三角形的性质得到,于是得到ED•BC=BO•BE,故④正确.【解答】解:连接DO.∵AB为⊙O的直径,BC为⊙O的切线,∴∠CBO=90°,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;故①正确,∵△COD≌△COB,∴CD=CB,∵OD=OB,∴CO垂直平分DB,即CO⊥DB,故②正确;∵AB为⊙O的直径,DC为⊙O的切线,∴∠EDO=∠ADB=90°,∴∠EDA+∠ADO=∠BDO+∠ADO=90°,∴∠ADE=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠EDA=∠DBE,∵∠E=∠E,∴△EDA∽△EBD,故③正确;∵∠EDO=∠EBC=90°,∠E=∠E,∴△EOD∽△ECB,∴,∵OD=OB,∴ED•BC=BO•BE,故④正确;故选:A.10.(3分)如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5m,两个路灯的高度都是9m,则两路灯之间的距离是()A.24m B.25m C.28m D.30m【考点】相似三角形的应用;中心投影.【分析】由于人和地面是垂直的,即和路灯平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:由题意得出:EP∥BD,∴△AEP∽△ADB,∴=,∵EP=1.5,BD=9,∴=解得:AP=5(m)∵AP=BQ,PQ=20m.∴AB=AP+BQ+PQ=5+5+20=30(m).故选:D.二.填空题(共8小题,3*8=24)11.(3分)如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是(9,0).【考点】位似变换.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).12.(3分)如图,点A是△ABC的边BC上一点,∠B=∠ACD,如果AC=6,AD=4,则AB的长为9.【考点】相似三角形的判定与性质.【分析】通过证明△ACD∽△ABC,可得,即可求解.【解答】解:∵∠A=∠A,∠B=∠ACD,∴△ACD∽△ABC,∴,又∵AC=6,AD=4,∴,∴AB=9,故答案为:9.13.(3分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB ⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.14.(3分)如图,已知两点A(2,0),B(0,4),且∠CAO=∠ABO,则点C的坐标是(0,1).【考点】相似三角形的判定与性质;坐标与图形性质.【分析】由∠1=∠2,∠AOC是公共角,可证得△AOB∽△COA,然后利用相似三角形的对应边成比例,即可求得答案.【解答】解:∵∠CAO=∠ABO,∠AOC=∠BOA,∴△AOB∽△COA,∴,∵A(2,0),B(0,4),即OA=2,OB=4,∴,解得:OC=1,∴点C的坐标为:(0,1).故答案为:(0,1).15.(3分)如图,点D、E分别在AB、AC上,且∠ABC=∠AED,若DE=4,AE=5,BC =8,则AB的长为10.【考点】相似三角形的判定与性质.【分析】根据已知条件可知△ABC∽△AED,再通过两三角形的相似比可求出AB的长.【解答】解:在△ABC和△AED中,∵∠ABC=∠AED,∠BAC=∠EAD,∴△AED∽△ABC,∴=,又∵DE=4,AE=5,BC=8,∴AB=10.故答案为:10.16.(3分)如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S△AFD=9,则S△EFC=4.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE:BC=2:3,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE:BC=2:3,∴△AFD∽△CFE,且它们的相似比为3:2,:S△EFC=()2,∴S△AFD=9,而S△AFD=4.∴S△EFC故答案为:4.17.(3分)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(﹣2,﹣1),B(﹣2,﹣3),O(0,0),△A1B1O1的顶点坐标分别为A1(1,﹣1),B1(1,﹣5),O1(5,1),△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为(﹣5,﹣1).【考点】位似变换;坐标与图形性质.【分析】分别延长B1B、O1O、A1A,它们相交于点P,然后写出P点坐标即可.【解答】解:如图,P点坐标为(﹣5,﹣1).故答案为(﹣5,﹣1).18.(3分)如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)【考点】相似三角形的判定与性质;二次函数的最值;全等三角形的判定与性质;正方形的性质.【分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME =135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME ≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,利用三角形面积公式得到S△AME=•x的最大值,便可对④进行判断.•(2﹣x),则根据二次函数的性质可得S△AME【解答】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF(ASA),∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=2﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,有最大值,当x=1时,S△ECF故④错误.故答案为:①②③.三.解答题(7小题,共66分)19.(8分)已知△ABC∽△DEF,△ABC和△DEF的周长分别为20cm和25cm,且BC=5cm,DF=4cm,求EF和AC的长.【考点】相似三角形的性质.【分析】根据相似三角形的周长比等于相似比可得到答案.【解答】解:∵△ABC∽△DEF,∴==,∴==,∴AC=cm,EF=cm.20.(8分)如图,小方格都是边长为1的正方形,△ABC与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)求出△ABC与△A′B′C′的周长比与面积比.【考点】作图﹣位似变换.【分析】(1)连接B′B,A'A并延长相交于一点,此点即为位似中心点O,(2)根据相似三角形的性质即可解答.【解答】解:(1)连接B′B,A'A并延长相交于一点,此点即为位似中心点O,(2)由图形得AB==,A′B′==2,∴△ABC与△A′B′C′的周长比为1:2,面积比为1:4.21.(8分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB是多少?【考点】中心投影.【分析】通过相似三角形的性质可得=,==,可得=,即可求解.【解答】解:∵,当王华在CG处时,Rt△DCG∽Rt△DBA,即=,当王华在EH处时,Rt△FEH∽Rt△FBA,即==,∴=,∵CG=EH=1.5米,CD=1米,CE=3米,EF=2米,设AB=x,BC=y,∴=,解得:y=3,经检验y=3是原方程的根.∵=,即=,解得x=6米.即路灯A的高度AB=6米.22.(10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】(1)由三角形ABC与三角形CDE都为等边三角形,利用等边三角形的性质得到两对边相等,一对角相等,利用等式的性质得到夹角相等,利用SAS即可得证;(2)由(1)得出的三角形全等得到对应角相等,再由一对角相等,且夹边相等,利用ASA得到三角形GCD与三角形FCE全等,利用全等三角形对应边相等得到CG=CF,进而确定出三角形CFG为等边三角形,确定出一对内错角相等,进而得到GF与CE平行,利用平行线等分线段成比例即可得证.【解答】证明:(1)∵△ABC与△CDE都为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),(2)∵△ACE≌△BCD,∴∠BDC=∠AEC,在△GCD和△FCE中,,∴△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴=.23.(10分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【考点】切线的性质;等腰三角形的判定与性质;勾股定理.【分析】(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B =90°,得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.24.(10分)如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q 分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.【考点】相似三角形的判定;一元一次方程的应用.【分析】设经过t秒后,△PBQ与△ABC相似,根据路程公式可得AP=2t,BQ=4t,BP =10﹣2t,然后利用相似三角形的性质对应边的比相等列出方程求解即可.【解答】解:设经过t秒后,△PBQ与△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ与△ABC相似(10分).解法二:设ts后,△PBQ与△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与△ABC相似.25.(12分)如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.【考点】相似三角形的判定与性质;勾股定理;垂径定理;圆周角定理;切线的判定与性质.【分析】(1)连接OC,△PBC∽△PCA,得出∠PCB=∠PAC,由圆周角定理得出∠ACB =90°,证出∠PCB+∠OCB=90°,即OC⊥PC,即可得出结论;(2)连接OD,由相似三角形的性质得出==2,设BC=x,则AC=2x,在Rt△ABC中,由勾股定理得出方程,得出BC=6,证出DE∥BC,得出△DOF∽△ACB,得出==,得出OF=OD=,即AF=,再由平行线得出==,即可得出结果.【解答】(1)证明:连接OC,如图1所示:∵PC2=PB•PA,即=,∵∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠PAC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•PA,∴PA===40,∴AB=PA﹣PB=30,∵△PBC∽△PCA,∴==2,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=6,即BC=6,∵点D是的中点,AB为⊙O的直径,∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB=90°,∴DE∥BC,∴∠DFO=∠ABC,∴△DOF∽△ACB,∴==,∴OF=OD=,即AF=,∵EF∥BC,∴==,∴EF=BC=.。

(完整word)九年级下数学相似三角形经典习题(含答案),推荐文档

(完整word)九年级下数学相似三角形经典习题(含答案),推荐文档

九年级下数学相似三角形经典习题例1从下面这些三角形中,选出相似的三角形.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似.(2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似.(4)所有的等边三角形都相似.例5如图,D 点是 ABC 的边AC 上的一点,过D 点画线段DE ,使点E 在 ABC 的边上,并且点D 、点E 和 ABC 的一个顶点组成的小三角形与ABC 相似•尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约 30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.已知:如图, 匸ABCD 中,如图,已知 ABD s AE: EB 1:2,求 AEF 与 CDF 的周长的比,如果 S AEF2 、6cm ,求 S CDF •ACE ,求证: ABC s ADE •B初三(下)相似三角形例7如图,小明为了测量一高楼MN的高,在离N点20m的A处放了一个平面镜,小明沿NA后退到C点,正好从镜中看到楼顶M点,若AC 1.5m,小明的眼睛离地面的高度为 1.6m,请你帮助小明计算一下楼房的高度(精确到0.1m).例8格点图中的两个三角形是否是相似三角形,说明理由.例9根据下列各组条件,判定ABC和ABC是否相似,并说明理由:(1)AB 3.5cm, BC 2.5cm, CA 4cm, A B 24.5cm, B C 17.5cm,C A 28cm .(2) A 35 , B 104 , C 44 , A 35 .(3)AB 3, BC 2.6, B 48 , A B 1.5,BC 1.3, B 48 .例10如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11已知:如图,在ABC中,AB AC, A 36 ,BD是角平分线,试利用三角形相似的关系说明AD2 DC AC .初三(下)相似三角形例12已知ABC的三边长分别为5、12、13,与其相似的ABC的最大边长为26,求ABC的面积S.例13在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法•小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E 恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.AGEHB C D例14•如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB BC , 然后再选点E,使EC BC,确定BC与AE的交点为D,测得BD 120米,DC 60米,EC 50米,你能求出两岸之间AB的大致距离吗?例15.如图,为了求出海岛上的山峰AB的高度,在D和F处树立标杆DC和FE,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB、CD和EF在同一平面内,从标杆DC退后123步的G处,可看到山峰A和标杆顶端C在一直线上,从标杆FE退后127步的H处,可看到山峰A和标杆顶端E在一直线上.求山峰的高度AB及它和标杆CD 的水平距离BD各是多少?(古代问题)例16 如图,已知△ ABC的边AB = 2.3 , AC= 2, BC边上的高AD = .3 .(1)求BC的长;(2)如果有一个正方形的边在AB上,另外两个顶点分别在AC , BC上,求这个正方形的面积.初三(下)相似三角形AC第4页共6页因此ABC s ABC本题所叙述的内容可以画出如下图那样的几何图形, CE 30 米,求 BC .由于 ADF s AEC ,-DF J AF,又 EC ACACFDF 60厘米DFs ABC,•——EC0.6米,GF 12厘米 ,从而可以求出 解 AE EC, DF // EC ,• ADF AEC,DAF ADF sBCAEC . •匹 jAFEC AC又GFEC,BC EC , • GF // BC, AFGACB, AGFABC ,0.12米,BC 的长.AF• AGF s ABC ,• jAFGF BC ,DF EC GF BC 相似三角形经典习题答案例1. 解①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例 2. 解 ABCD 是平行四边形,••• AB//CD, AB CD ,二 AEF s CDF ,又 AE: EB 1:2 ,• AE:CD 1:3 ,AEF 与 CDF 的周长的比是1: 3.S1又(—)2,S AEF 6(cm 2) ,••• S CDF 54(cm 2).S CDF 3BA CA例3分析 由于 ABD s ACE ,贝U BAD CAE ,因此 BAC DAE ,如果再进一步证明,则AD AE问题得证.证明■/ ABD s ACE , • BAD CAE . 又BA BADDAC ,•DAEDACCAE ,• BACDAE.AB ACABD s ACEAD AE在ABC 和ADE中,BACABADE,- AC • ABC s ADEAD AE例4 .分析 (1) 不正确,因 困为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同 (2 )也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同.(3)正确.设有等腰直角三角形 ABC 和ABC ,其中 C C 90 ,则 A A 45 , B B 45 ,设 ABC 的三边为a 、b 、c , ABC 的边为a 、b 、c , 贝y a b, c , 2a, a b , c , 2a ,ABC s ABC .(4)也正确,如 ABC 与 ABC 都是等边三角形,对应角相等,对应边都成比例,答:(1)、(2)不正确.(3)、(4)正确.画法略. 例6 .分析初三(下)相似三角形 121121初三(下)相似三角形又DF 60厘米 0.6米,GF 12厘米 0.12米,EC 30米,二BC 6米•即电线杆的高为 6米. 例7•分析 根据物理学定律:光线的入射角等于反射角,这样,BCA 与 MNA 的相似关系就明确了.解因为 BC CA,MN AN, BACMAN ,所以 BCA s MNA •所以 MN:BC AN: AC ,即 MN :1.6 20:1.5 •所以 MN 1.6 20 1.5 21.3 (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例&分析 这两个图如果不是画在格点中,那是无法判断的•实际上格点无形中给图形增添了条件一一长度和角度.解 在格点中DE EF, AB BC ,所以 E B 90 , 又EF 1,DE 2, BC 2, AB 4 •所以 史 兰 -•所以AB BC 2说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.ABC 不相似;(3)因为B B , AB BC 2,所以 AB BC 1ABC 相似于ABC例 10.解(1) ADE s ABC 两角相等;(2)ADE s ACB 两角相等;(3)CDE s CAB 两角相等;(4) EAB s ECD 两边成比例夹角相等;(5) ABD s ACB 两边成比例夹角相等;(6)ABD s ACB 两边成比例夹角相等. 例 11 .分析有一个角是65°的等腰三角形,它的底角是72°, 而BD 是底角的平分线,••• CBD 36,则可推出ABC s BCD ,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 A 36 , AB AC , • ABC C 72 .又 BD 平分ABC ,•• ABD CBD 36 .•- AD BDBC ,且 ABC s BCD ,• B C:AB CD:BC , •• BC 2 AB CD , •• AD 2 AC CD说明(1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等 的角的位置,可以确定哪些边是对应边.adha(2)要说明线段的乘积式 ab cd ,或平方式a 2 be ,—般都是证明比例式,,或 ,再根据c b a c比例的基本性质推出乘积式或平方式.例12分析 由 ABC 的三边长可以判断出 ABC 为直角三角形,又因为 ABC s ABC ,所以 ABC 也是直角 三角形,那么由 ABC 的最大边长为26,可以求出相似比,从而求出 AB C 的两条直角边长,再求得 ABC 的 面积. 解设ABC 的三边依次为,BC 5, AC 12, AB13,则 AB 2 BC 2 AC 2, •• C 90BCACAB 13 1又ABC s ABC , •CC 90 .BCACA B 26 2又BC5, AC 12 ,• BC10, AC 24.•- S 1 AC1B C 24 10120 .22例13•分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高•按这种测量方法,过 F作FG AB 于G ,交CE 于H ,可知 AGF s EHF ,且GF 、HF 、EH 可求,这样可求得 AG ,故旗杆AB 可求.解 这种测量方法可行•理由如下:DEF s ABC •例9 .解(1)因为AB AB(2)因为 C 1803.5cm 1 BC 2.5cm 1 CA 24.5cm 7 , BC17.5cmT CAA B 41,两个三角形中只有A 4cm 1,所以 ABC s ABC ;28cm 7A ,另外两个角都不相等,所以ABC 与设旗杆高AB x •过F作FG AB于G,交CE于H (如图)•所以AGF s EHF •因为FD 1.5,GF 27 3 30,HF 3,所以EH 3.5 1.5 2,AG x 1.5 •初三(下)相似三角形121121AG GF x 1.5 由 AGF s EHF ,得,即-EH HF所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行.以厶ABC 是直角三角形.由AEGF 是正方形,设 GF = x ,贝U FC = 2 — x .AC = 2,^ ABC 是等腰三角形,作 CP 丄AB 于P ,「. AP = 1AB 、3 ,2x•/ GH // AB ,「.A CGH CBA , v ——2』3 2 32 3、2―…SiE 方形 GFEH ( _) 1 2,3 1 2、3- 156因此,正方形的面积为 126-.3或15614.解:ADB EDC,ABC ECD 90 ABD sECD, AB翌AB CD BD CDEC15.答案:AB1506米,BD 30750步,(注意:120 5060KC 匹 CD100 (米),答:两岸间AB大致相距100米.AK,KE 岸 AK.) 那么有两种情况存在,即点16.分析:要求 BC 的延长线上,所以求 BC 的长时要分两种情况讨论•求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由 AD 丄BC ,由勾股定理得 BD = 3, DC = 1,所以 如下图,同理可求 BD = 3, DC = 1,所以BC = BD — CD = 3— 1 = 2.BC 的长,需画图来解,因 AB 、AC 都大于高AD ,D 在BC 上或点D 在BC = BD + DC = 3 + 1 = 4.(2)如下图,由题目中的图知 16 , BC 2 16 , ••• AB 2 AC 2 BC 2 •所GF •/ GF // AB ,「.-AB AC ,即 ^3 宁S正方形AEGF12 63 .在Rt △ APC 中,由勾股定理得30,所以 x 1.520,解得 x 21.53(米) 如下图,当BC = 2, 156 48 348. 3。

九年级数学下册 相似三角形 单元测试

九年级数学下册 相似三角形 单元测试

相似三角形单元测试一、选择题:1.若四边形ABCD∽四边形A/B/C/D/,且AB:A/B/=1:2,已知BC=8,则B/C/的长是()A.4B.16C.24D.642.Rt△ABC的两条直角边分别为3cm、4cm,与它相似的Rt△A/B/C/的斜边为20cm,那么Rt△A/B/C/的周长为()A.48cmB.28cmC.12cmD.10cm3.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米4.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是().A.∠ABD=∠C B.∠ADB=∠ABC C. D.5.如图所示,已知E(-4,2)和F(-1,1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E/的坐标为()A.(2,1)B.(,)C.(2,-1)D.(2,-)6.在平面直角坐标系中,已知点A(4,2),B(1,3),以原点O为位似中心,相似比为0.5,把△ABO 缩小,则点A的对应点A′的坐标是()A.(2,1)B.(8,4)C.(8,4)或(﹣8,﹣4)D.(2,1)或(﹣2,﹣1)7.如图,在正方形网格上有两个相似三角形△ABC和△EDF,则∠BAC的度数为( )A.135°B.125°C.115°D. 105°8.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m9.如图,三个正六边形全等,其中成位似图形关系的有()A.4对B.1对C.2对D.3对10.如图,△ABC中,D、E两点分别在BC、AD上,且AD平分∠BAC,若∠ABE=∠C,AD:ED=3:1,则△BDE与△ADC的面积比为()A.16:45B.2:9C.1:9D.1:311.如图,在平行四边形ABCD中,AB=9,AD=6,∠ADC的平分线交AB于点E,交CB的延长线于点F,AG⊥DE,垂足为G.若AG=4,则△BEF的面积是( )A. B.2 C.3 D.412.如图,AD为等边△ABC边BC上的高,AB=4,AE=1,P为高AD上任意一点,则EP+BP的最小值为()A. B. C. D.二、填空题:13.如图,l1∥l2∥l3,直线a分别交l1、l2、l3于点A、B、C,直线b分别交l1、l2、l3于点D、E、F.若AB:BC=3:2,DF=20,则EF= .14.如图,在□ABCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD于点Q. 则的值为________.15.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,位似比为2:1将△EFO 缩小,则点E的对应点E′的坐标是.16.如图在□ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,若△DEF的面积为18,则□ABCD的面积为.17.如图,点P是RtΔABC斜边AB上的任意一点(A、B两点除外)过点P作一条直线,使截得的三角形与RtΔABC相似,这样的直线可以作条.18.如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=0.75,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或3.5;④0<BE≤5.其中正确的结论是(填入正确结论的序号)三、作图题:19.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.四、解答题:20.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.21.小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B,他请同学协助量了镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。

九年级数学下册初三数学相似单元测试题及答案

九年级数学下册初三数学相似单元测试题及答案

相似单元测评(时间:90分钟,满分:100分)一、选择题(每题3分,共36分)1.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形. 其中一定相似的有( )A.2组B.3组C.4组D.5组2.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④B.③④⑤C.④⑤⑥D.②③⑥3.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m2,若按比例尺1:2000缩小后,其面积大约相当于( )A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积4.如图,小明设计两个直角,来测量河宽BC,他量得AB=2米,BD=3米,CE=9米,•则河宽BC为( )A.5米B.4米C.6米D.8米5.如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则的值等于( )A. B. C.1 D.6.如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )A.2:1B.C.4:1D.7.△ABC的面积被平行于BC的两条线段三等分,如果BC=12cm,•那么这两条线段中较短的一条的长是( )A.8cmB.6cmC.D.8.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE ×BC.A.2个B.3个C.4个D.5个9.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( )A.1个B.2个C.3个D.4个10.如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是( )A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA11.在直角坐标系中,已知点A(-2,0),B(0,4),C(0,3),过C作直线交x轴于D,使以D、O、C为顶点的三角形与△AOB相似.这样的直线最多可以作( )A.2条B.3条C.4条D.6条12.(淄博)如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A 处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米二、填空题(每题3分,共24分)13.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为________.14.(江苏常州)如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的周长之比为_______,•△CFG与△BFD的面积之比为________.15.已知D、E两点分别在△ABC的边AB、AC上,DE∥BC,且△ADE的周长与△ABC•的周长之比为3:7,则AD:DB=________.16.△ABC三边的长分别是2cm、3cm、4cm,与其相似的△DEF的最短边是8cm,那么它的最长边的边长是________.17.(湖南岳阳)如图,要使△ACD∽△ABC,只需添加条件_______(•只要写出一种合适的条件即可).18.如图是幻灯机的工作情况,幻灯片与屏幕平行,光源距幻灯片30cm,•幻灯片距屏幕1.5m,幻灯片中的小树高8cm,则屏幕上的小树高是______.19.如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=______.20.如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S=_______.△BOC三、解答题(第21题~24题每题6分,第25、26题每题8分,共40分)21.(湖北荆州)如图,梯形ABCD中,∠A=∠B=90°,且AD=AB,∠C=45°,将它分割成4个大小一样,都与原梯形相似的梯形(在图形中直接画分割线,不需要说明)22.(苏州)如图,梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.23.如图,在离树AB的3米远处竖一长2米的杆子CD,站在离杆子1米远EF处的人刚好越过杆顶C看到树顶A,这个人高EF=1.5米,求树高.24.在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),求小城的边长.25.一块直角三角形木板,一直角边是1.5米,另一直角边长是2米,要把它加工成面积最大的正方形桌面,甲、乙二人的加式方法分别如左图和右图所示,请运用所学知识说明谁的加工方法符合要求.26.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B 以2cm/s的速度移动,点Q沿DA边从点D开始向A以1cm/s的速度移动.如果P、Q同时出发,用t秒表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?答案与解析一、选择题1.A 提示:③⑥;2.B3.C 提示:面积比相似比的平方;4.B 提示:由题意知△ABD∽△ACE,;5.B 提示:AD=BD=BC,△ABC∽△BCD;6.B 提示:根据题意设报纸的长为x,宽为y,有;7.C 提示:面积比相似比的平方;8.B 提示:②③④成立;9.B 提示:①③正确;10.B 提示:由CM=CN,∴∠CMN=∠CNM,∴∠AMB=∠ANC,又,∴△ANC∽△AMB;11.C 提示:如图:12.D 提示:设AM=x,BN=y,.二、填空题13.30米提示:设古塔高为h,;14.2,1:2,1:615.3:416.16cm17.∠1=∠ABC或∠2=∠ACB或AC2=AD·AB(答案不唯一)18.48cm19.420.1:3 提示:∵S△AOD:S△COB=1:9,,∵△AOD与△DOC等高,∴S△AOD:S△=1:3,DOC∴S△DOC:S△BOC=1:3.三、解答题21.如图22.(1)证:∵E是AB的中点,∴AB=2EB,∵AB=2CD,∴CD=EB.又AB∥CD,•∴四边形CBED是平行四边形.∴CB∥DE,∴∴△EDM∽△FBM.(2)解:∵△EDM∽△FBM,∴.∵F是BC的中点,∴DE=2BF.∴DM=2BM.∴BM=DB=3.23.3.5米提示:延长AE、BF交于点P,由由.24.解:设小城的边长为x步,根据题意,Rt△AHD∽Rt△ACB,因为有,即,去分母并整理,得x2+34x-71000=0,解得x1=250,x2=-284(不合题意,舍去),所以小城的边长为250步.25.乙加工的方法合理.提示:设甲加工桌面长xm,过点C作CM⊥AB,垂足是M,与GF相交于点N,由GF∥DE,可得三角形相似,而后由相似三角形性质可以得到CN:CM=•GF:AB,即(CM-x):CM=x:AB.由勾股定理可得AB=2.5,由面积相等可求得CM=1.2,•故此可求得x=;设乙加工桌面长ym,由FD∥BC,得到Rt△AFD∽Rt△ACB,所以AF:AC=FD:BC,即(2-y):2=y:1.5,解得y=,很明显x<y,故x2<y2,所以乙加工的方法符合要求.26.(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t,当QA=AP时,△QAP•是等腰直角三角形,即6-t=2t,t=2秒.(2)S△QPC=S△QAC+S△APC =(36-6t)+6t=36cm2,在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变(或P、Q两点到对角线AC的距离之和保持不变)(3)分两种情况:①当时△QAP∽△ABC,则从而t=1.2,②当时△PAQ∽△ABC,则从而t=3.。

人教版九年级数学下册 第二十七章 《相似三角形》测试题(含答案)

人教版九年级数学下册  第二十七章  《相似三角形》测试题(含答案)

相似三角形测试题一填空题:1.下面各组中的两个图形,是形状相同的图形,是形状不同的图形.2.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF 交AC于点H,则AH:CH的值为.3.如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD,若CD=2,则端点C的坐标为.4.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为.5.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD的周长为6.如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=0.75,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或3.5;④0<BE≤5.其中正确的结论是(填入正确结论的序号)二选择题:7.下列说法中正确的是()A.两个平行四边形一定相似B.两个菱形一定相似C.两个矩形一定相似D.两个等腰直角三角形一定相似8.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米9.如图,DE∥BC,分别交△ABC的边AB,AC于点D,E,=,若AE=5,则EC长度为()A.10 B.15 C.20 D.2510.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)11.△ABC的三边长分别为2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()12.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.113.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个14.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A. B. C. D.15.如图,△ABC中,D、E两点分别在BC、AD上,且AD平分∠BAC,若∠ABE=∠C,AD:ED=3:1,则△BDE与△ADC的面积比为()A.16:45B.2:9C.1:9D.1:316..如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴,y轴的正半轴上,正方形A/B/C/D/与正方形ABCD是以AC的中点O/为中心的位似图形,已知AC=3,若点A/的坐标为(1,2),则正方形A/B/C/D/与正方形ABCD的相似比是( )A. B. C. D.17.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,B上的两个动点,则BM+MN最小值为()A.10 B.8 C.5D.618.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A. B. C. D.三解答题:19.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4)C(-2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.20.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BCD∽△ACB;(2)如果BC=,AC=3,求CD的长.21.已知在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD 垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.22.如图,已知△ABC中,AB>AC,BC=6,BC边上的高AN=4.直角梯形DEFG的底EF在BC 边上,EF=4,点D、G分别在边AB、AC上,且DG∥EF,GF⊥EF,垂足为F.设GF的长为x,直角梯形DEFG的面积为y,求y关于x的函数关系式,并写出x的取值范围.23.如图F为平行四边形ABCD的AD延长线上一点,BF分别交CD、AC于G、E,若EF=32,GE=8,求BE.24.(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.参考答案1.略2.答案为:.4.(2,1)5.答案为:3.6.答案为:36;7.D8.B9.A10.B11.C12.B13.C14.B15.B16.B17.B【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴=,即=,EF=8.故选B.18.C18.解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADC=180°﹣α﹣∠BDE,∵∠BED=180°﹣α﹣∠BDE,∴∠BED=∠ADC∴△DBE∽△ACD,故①正确;②∵∠B=∠C,∴∠C=∠ADE,不能得到△ADE∽△ACD;故②错误,③当∠AED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠AED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=0.8,AB=10,BD=8.当∠BDE=90°时,易△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠B=α且cosα=0.8.AB=10,∴cosC=0.8,∴CD=12.5,∴BD=BC﹣CD=3.5;故③正确.④过A作AG⊥BC于G,∵cosα=0.8,∴BG=8,∴BC=16,易证得△BDE∽△CAD,设BD=y,BE=x,∴=,∴=,整理得:y2﹣16y+64=64﹣10x,即(y﹣8)2=64﹣10x,∴0<x≤6.4.故④错误.故答案为:①③.19.【解答】解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.20.【解答】(1)证明:∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB;(2)解:∵△BCD∽△ACB,∴=,∴=,∴CD=2.21.【解答】(1)证明:∵AB=AD=25,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵AE⊥BD,∴∠AEB=∠C=90°,∴△ABE∽△DBC;(2)解:∵AB=AD,又AE⊥BD,∴BE=DE,∴BD=2BE,由△ABE∽△DBC,得,∵AB=AD=25,BC=32,∴,∴BE=20,∴AE=25.22.y关于x的函数关系式为:y═﹣3/4x2+5x(0<x<4).23.24.。

北师大版初三数学相似三角形单元测试题

北师大版初三数学相似三角形单元测试题

北师大版初三数学相似三角形单元测试题相似三角形专题一.选择题〔共10小题〕1.5x=6y〔y≠0〕,那么以下比例式中正确的选项是〔〕A.B.C.D.2.= = =,那么a+c+e=6,那么b+d+f=〔〕A.12 B.9C.6D.43.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,那么DF:FC=〔〕A.1:4B.1:3C.1:2D.1:14.如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE并延长交AC于点F,那么线段AF长为〔〕A.4B.3C.D.25.如图.△ABC中,DE∥BC,AC=9,CE=6,AD=4,那么BD的值为〔〕A.4B.6C.8D.126.如图,AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于〔〕A.B.C.D.7.如图,AB∥CD,AD与BC相交于点O,假设AO=2,DO=4,BO=3,那么BC的长为〔〕A.6B.9C.12D.158.△ABC∽△DEF,S△ABC:S△DEF=1:4.假设BC=1,那么EF的长为〔〕第2页〔共32页〕A.1B.2C.3D.49.如果△ABC与△DEF的相似比为1:5,那么△ABC与△DEF的面积比为〔〕A.1:25 B.1:5C.1:D.1:10.如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,假设△ABE与以D、M、N为顶点的三角形相似,那么DM为〔〕A.B.C.或D.或二.填空题〔共10小题〕11.假设,那么=.12.三个数1,,2,请再添上一个数,使它们构成一个比例式,满足这样条件的数是.13.线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.14.线段a=9,c=4,如果线段b是a、c 的比例中项,那么b=.15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=4,那么GH的长为.16.如图,AB∥CD∥EF,如果AC=2,AE=6,DF=3,那么BD=.17.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是.18.假设两个相似三角形的周长之比为2:3,较小三角形的面积为8cm2,那么较大三角形面积是cm2.19.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有条.第3页〔共32页〕(20.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,假设点P、Q分别从点B、C同时出发,设运动时间为ts,当t=时,△CPQ与△CBA相似.三.解答题〔共10小题〕21.如下图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC=,BC=;〔2〕判断△ABC与△DEF是否相似?并证明你的结论.22.如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E,连接BD.求证:△ABC∽△BDC.23.如图,正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.1〕求证:GF=BF.2〕在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO?ED=OD?EF.第4页〔共32页〕24.如图,AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.1〕求EF 的长;2〕如果△BEF的面积为4,求△ABC的面积.25.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?26.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF与地面保持平行并使直角边DE与旗杆顶点A在同一直线上,米,米,且测点D到地面的距离米,到旗杆的水平距离DC=25米,求旗杆AB的高度.第5页〔共32页〕27.小亮和小颖想用下面的方法测量学校教学楼的高度:如图,小亮蹲在地上,小颖站在小亮和教学楼之间,两人适当调整自己的位置,当楼的顶部M、小颖的头部B及小亮的眼睛A恰好在一条直线上时,两人分别标定自己的位置C、D,然后测出两人之间的距离CD=2m,小颖与教学楼之间的距离DN=38m,〔C、D、M在同一直线上〕,小颖的身高,小亮蹲地观测时眼睛到底面的距离AC=1m.请你根据以上测量数据帮助他们求出教学楼的高度.(28.△ABC是一块锐角三角形余料,边BC=180mm,高AD=120mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.1〕假设这个矩形是正方形,那么边长是多少?2〕假设这个矩形的长是宽的2倍,那么边长是多少?第6页〔共32页〕29.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s 的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P、Q分别从A、B两点同时出发.2〔1〕几秒后△PBQ的面积等于8cm?〔2〕几秒后以P、B、Q为顶点的三角形与△ABC相似?30.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.2〔1〕通过计算,判断AD与AC?CD的大小关系;〔2〕求∠ABD的度数.第7页〔共32页〕第8页〔共32页〕2021年05月15日的初中数学组卷参考答案与试题解析一.选择题〔共10小题〕1.〔2021?繁昌县模拟〕5x=6y〔y≠0〕,那么以下比例式中正确的选项是〔〕A.B.C.D.【分析】比例的根本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A、=,那么5y=6x,故此选项错误;B、=,那么5x=6y,故此选项正确;C、=,那么5y=6x,故此选项错误;D、=,那么xy=30,故此选项错误;应选:B.【点评】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.2.〔2021?兰州模拟〕= = =,那么a+c+e=6,那么b+d+f=〔〕A.12 B.9C.6D.4【分析】由 = = =得a=b、c= d、e= f,代入到a+c+e=6可得答案.【解答】解:由== =得a=b、c= d、e=f,那么b+d+f=6,即〔b+d+f〕=6,第9页〔共32页〕b+d+f=6×=9,应选:B.【点评】此题主要考查比例的根本性质,熟练掌握比例的根本性质和等式的性质是解题的关键.3.〔2021?东平县一模〕如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,那么DF:FC=〔〕A.1:4B.1:3C.1:2D.1:1【分析】首先证明△DFE∽△BAE,然后利用对应边成比例,E为OD的中点,求出DF:AB的值,又知AB=DC,即可得出DF:FC的值.【解答】解:在平行四边形ABCD中,AB∥DC,那么△DFE∽△BAE,∴,∵O为对角线的交点,DO=BO,又∵E为OD的中点,DE=DB,那么DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2;应选:C.第10页〔共32页〕【点评】此题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答此题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.4.〔2021?太原一模〕如图,△ABC中,AB=AC=12,AD⊥BC于点D,点E在AD上且DE=2AE,连接BE并延长交AC于点F,那么线段AF长为〔〕A.4B.3C.D.2【分析】作DH∥BF交AC于H,根据等腰三角形的性质得到BD=DC,得到FH=HC,根据平行线分线段成比例定理得到==2,计算即可.【解答】解:作DH∥BF交AC于H,AB=AC,AD⊥BC,∴BD=DC,∴FH=HC,DH∥BF,==2,AF=,应选:C.第11页〔共32页〕【点评】此题考查的是等腰三角形的性质、平行线分线段成比例定理,掌握等腰三角形的三线合一、平行线分线段成比例定理是解题的关键.5.〔2021?河南模拟〕如下图,△ABC中,DE∥BC,AC=9,CE=6,AD=4,那么BD的值为〔〕A.4B.6C.8D.12【分析】根据平行线分线段成比例定理列出比例式,代入计算即可.【解答】解:∵DE∥BC,∴=,即=,解得,BD=8,应选:C.【点评】此题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.6.〔2021?河北一模〕如图,AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于〔〕第12页〔共32页〕A.B.C.D.【分析】由平行线分线段成比例定理得出=,再由角平分线性质即可得出结论.【解答】解:∵DE∥AB,∴=,∵AD为△ABC的角平分线,∴=;应选:B.【点评】此题主要考查了平行线分线段成比例定理、角平分线的性质;熟练掌握平行线分线段成比例定理和角平分线的性质是解决问题的关键.7.〔2021?西华县二模〕如图,AB∥CD,AD与BC相交于点O,假设AO=2,DO=4,BO=3,那么BC的长为〔〕A.6B.9C.12D.15【分析】由平行线分线段成比例定理,得到=;利用AO、BO、DO的长度,求出CO的长度,再根据BC=BO+CO即可解决问题.【解答】解:∵AB∥CD,∴=;∵AO=2,DO=4,BO=3,∴=,解得:CO=6,BC=BO+CO=3+6=9.应选B.【点评】该题主要考查了平行线分线段成比例定理及其应用问题.掌握平行于第13页〔共32页〕三角形一边的直线截其他两边〔或两边的延长线〕,所得的对应线段成比例是解题的关键.8.〔2021?徐州一模〕△ABC∽△DEF,S△ABC:S△DEF=1:4.假设BC=1,那么EF的长为〔〕A.1B.2C.3D.4【分析】根据相似三角形的面积的比等于相似比的平方求得相似比后即可求得线段EF的长.【解答】解:∵△ABC∽△DEF,S△ABC:S△DEF=1:4,BC:EF=1:2,∵BC=1,EF=2,应选B.【点评】此题考查了相似三角形的性质,解题的关键是了解相似三角形的面积的比等于相似比的平方,难度不大.9.〔2021?沙坪坝区一模〕如果△ABC与△DEF的相似比为1:5,那么△ABC与△DEF的面积比为〔〕A.1:25B.1:5C.1:D.1:【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC与△DEF的相似比为1:5,∴△ABC与△DEF的面积比为1:25.应选A.【点评】此题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的一半是解答此题的关键.10.〔2021?长清区一模〕如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,假设△ABE与以D、M、N为顶点的三第14页〔共32页〕角形相似,那么DM为〔〕A.B.C.或D.或【分析】根据勾股定理求出AE,分△ABE∽△MDN和△ABE∽△NDM两种情况,根据相似三角形的性质计算即可.【解答】解:∵E为BC中点,∴BE=1,由勾股定理得,AE==,当△ABE∽△MDN时,=,即=,解得,DM=,同理,当△ABE∽△NDM时,DM=,∴DM为或,应选:D.【点评】此题考查的是相似三角形的性质、正方形的性质,掌握相似三角形的性质、灵活运用分情况讨论思想是解题的关键.二.填空题〔共10小题〕11.〔2021?高台县模拟〕假设,那么=.【分析】设a=3k,b=4k,那么代入计算即可.【解答】解:∵,∴设a=3k,b=4k,∴==.第15页〔共32页〕故答案为:.【点评】此题是根底题,考查了比例的性质,比拟简单.设出a=3k,b=4k是解此题的关键.12.〔2021?杭州一模〕三个数1,,2,请再添上一个数,使它们构成一个比例式,满足这样条件的数是,,2.【分析】根据比例的性质,可得答案.【解答】解::1=2:;:2=:1,:1=2:2,故答案为:,,2.【点评】此题考查了比例的性质,利用内项的积等于外项的积是解题关键.13.〔2021?浦东新区一模〕线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【分析】根据线段的比例中项的定义列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】此题考查了比例线段,熟记线段比例中项的求解方法是解题的关键,要注意线段的比例中项是正数.14.〔2021?徐汇区一模〕线段a=9,c=4,如果线段b是a、c的比例中项,那么b= 6.【分析】根据比例中项的定义,假设b是a,c的比例中项,即b2=ac.即可求解.【解答】解:假设b是a、c的比例中项,即b2=ac.那么b===6.故答案为:6.【点评】此题主要考查了线段的比例中项的定义,注意线段不能为负.第16页〔共32页〕15.〔2021?历城区模拟〕如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=4,那么GH的长为.【分析】根据平行线分线段成比例定理得出,,将两个式子相加,即可求出GH的长.【解答】解:∵AB∥CH∥CD,∴,,∴+=+=1,AB=2,CD=4,∴+=1,解得:GH=;故答案为:.【点评】此题考查了平行线分线段成比例定理;由平行线分线段成比例定理得出比例式是解决问题的关键.16.〔2021?泰州一模〕如图,AB∥CD∥EF,如果AC=2,AE=6,DF=3,那么BD=.【分析】根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:∵AB∥CD∥EF,第17页〔共32页〕∴=,即=,解得,,故答案为:.【点评】此题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17.〔2021?奉贤区一模〕如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是4:9.【分析】由两个相似三角形对应角平分线的比是4:9,根据相似三角形的对应线段〔对应中线、对应角平分线、对应边上的高〕的比也等于相似比,周长的比等于相似比,即可求得答案.【解答】解:∵两个相似三角形对应角平分线的比是4:9,∴它们的相似比为4:9,∴它们的周长比为4:9.故答案为:4:9.【点评】此题考查了相似三角形的性质.注意熟记定理是解此题的关键.18.〔2021?东莞市一模〕假设两个相似三角形的周长之比为2:3,较小三角形的22面积为8cm,那么较大三角形面积是18cm.【分析】根据相似三角形周长的比等于相似比,面积的比等于相似比的平方求出面积比,根据题意计算即可.【解答】解:∵两个相似三角形的周长之比为2:3,∴两个相似三角形的相似比是2:3,∴两个相似三角形的面积比是4:9,2又较小三角形的面积为8cm,2∴较大三角形的面积为18cm,故答案为:18.【点评】此题考查的是相似三角形的性质,相似三角形周长的比等于相似比、第18页〔共32页〕相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.19.〔2021?平南县一模〕如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有3条.【分析】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【解答】解:由于△ABC是直角三角形,过P点作直线截△ABC,那么截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故答案为:3.【点评】此题主要考查三角形相似判定定理及其运用.解题时运用了两角法〔有两组角对应相等的两个三角形相似〕来判定两个三角形相似.20.〔2021?南开区校级模拟〕如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,假设点P、Q分别从点B、C同时出发,设运动时间为ts,当或时,△CPQ与△CBA相似.第19页〔共32页〕【分析】分CP和CB是对应边,CP和CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP和CB是对应边时,△CPQ∽△CBA,所以,=,即=,解得;CP和CA是对应边时,△CPQ∽△CAB,所以,=,即=,解得t=.综上所述,当或时,△CPQ与△CBA相似.故答案为或.【点评】此题考查了相似三角形的判定,主要利用了相似三角形对应边成比例,难点在于分情况讨论.三.解答题〔共10小题〕21.〔2021?无锡一模〕如下图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.〔1〕填空:∠ABC=135°,BC=2;〔2〕判断△ABC与△DEF是否相似?并证明你的结论.第20页〔共32页〕【分析】〔1〕根据条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;2〕根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【解答】〔1〕解:∠ABC=90°+45°=135°,BC== =2;故答案为:135°;2.2〕△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°,∴∠ABC=∠DEF.∵AB=2,BC=2,FE=2,DE=∴==,==.∴△ABC∽△DEF.【点评】此题主要考查学生对勾股定理和相似三角形的判定的理解和掌握,解答此题的关键是认真观察图形,得出两个三角形角和角,边和边的关系.22.〔2021?益阳模拟〕如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E,连接BD.求证:△ABC∽△BDC.第21页〔共32页〕【分析】由线段垂直平分线的性质,得DA=DB,那么∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出△ABC∽△BDC.【解答】证明:DE是AB的垂直平分线,∴AD=BD.∵∠BAC=40°,∴∠ABD=40°,∵∠ABC=80°,∴∠DBC=40°,∴∠DBC=∠BAC,∵∠C=∠C,∴△ABC∽△BDC.【点评】此题考查了相似三角形的判定和性质、线段的垂直平分线的性质,题目难度不大.23.〔2021?金山区一模〕如图,正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.〔1〕求证:GF=BF.〔2〕在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO?ED=OD?EF.【分析】〔1〕根据条件可得到GF∥AD,那么有=,由BF∥CD可得到第22页〔共32页〕,又因为AD=CD,可得到GF=FB;〔2〕延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.【解答】证明:〔1〕∵四边形ABCD是正方形,AD∥BC,AB∥CD,AD=CD,∵GF∥BE,GF∥BC,GF∥AD,∴,AB∥CD,∴,AD=CD,∴GF=BF;2〕延长GF交AM于H,GF∥BC,∴FH∥BC,∴,∴,BM=BE,∴GF=FH,GF∥AD,∴,∴,第23页〔共32页〕∴,∴FO?ED=OD?EF.【点评】此题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.24.〔2021?松江区一模〕如图,AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.1〕求EF的长;2〕如果△BEF的面积为4,求△ABC的面积.【分析】〔1〕先根据S△BEF:S△EFC=2:3得出CF:BF的值,再由平行线分线段成比例定理即可得出结论;2〕先根据AC∥BD,EF∥BD得出EF∥AC,故△BEF∽△ABC,再由相似三角形的性质即可得出结论.【解答】解:〔1〕∵AC∥BD,∴AC=6,BD=4,∴∵△BEF和△CEF同高,且S△BEF:S△CEF=2:3,∴,∴.EF∥BD,∴,第24页〔共32页〕∴,∴2〕∵AC∥BD,EF∥BD,EF∥AC,∴△BEF∽△ABC,∴.∵,∴.S△BEF=4,∴,S△ABC=25.【点评】此题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.25.〔2021秋?建湖县期末〕如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?【分析】根据AH∥CB∥DE,可得△AHF∽△CBF,△AHG∽△EDG,可得=,=,即可求得AH的值,即可解题.第25页〔共32页〕【解答】解:解:由题意知,设AH=x,BH=y,AHF∽△CBF,△AHG∽△EDG,=,=,×〔y+3〕,×〔y+30+5〕解得x=24m.答:旗杆AH的高度为24m.【点评】此题考查了相似三角形的应用,平行线的性质等知识,此题中列出关于AH、BH的关系式是解题的关键.26.〔2021秋?盐都区期末〕如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行并使直角边DE与旗杆顶点A在同一直线上,米,米,且测点D到地面的距离米,到旗杆的水平距离DC=25米,求旗杆AB的高度.【分析】求出△ACD和△FED相似,根据相似三角形对应边成比例列式求出AC,再求出BC=DG,然后根据旗杆的高度AB=AC+BC代入数据计算即可得解.【解答】解:∵∠ADC=∠FDE,∠ACD=∠FED=90°,∴△ACD∽△FED,=,即=,解得,AB⊥BG,DG⊥BG,DC⊥AB,∴∠ABG=∠BGD=∠DCB=90°,∴四边形BGDC是矩形,第26页〔共32页〕BC=DG=1.,5AB=AC+BC=12.5+1.5=14米.答:旗杆AB的高度是14米.【点评】此题考查了相似三角形的应用,矩形的判定与性质,主要利用了相似三角形对应边成比例.27.〔2021秋?兴宁区校级月考〕小亮和小颖想用下面的方法测量学校教学楼的高度:如图,小亮蹲在地上,小颖站在小亮和教学楼之间,两人适当调整自己的位置,当楼的顶部M、小颖的头部B及小亮的眼睛A恰好在一条直线上时,两人分别标定自己的位置C、D,然后测出两人之间的距离CD=2m,小颖与教学楼之间的距离DN=38m,〔C、D、M在同一直线上〕,小颖的身高,小亮蹲地观测时眼睛到底面的距离AC=1m.请你根据以上测量数据帮助他们求出教学楼的高度.【分析】过A 作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.【解答】解:过A作CN的平行线交BD于E,交MN于F.由可得,,EF=DN=30m,AEB=∠AFM=90°.又∵∠BAE=∠MAF,∴△ABE∽△AMF.∴=,即=,解得MF=12m.第27页〔共32页〕MN=MF+FN=12+1=13〔m〕.∴教学楼的高度为13m.【点评】此题考查的是相似三角形的应用,解答此题的关键是将实际问题转化为数学问题进行解答;此题需要转化为相似三角形的问题,利用相似三角形的判定与性质求解.28.〔2021秋?长沙校级月考〕△ABC是一块锐角三角形余料,边BC=180mm,高AD=120mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.1〕假设这个矩形是正方形,那么边长是多少?2〕假设这个矩形的长是宽的2倍,那么边长是多少?【分析】〔1〕设出边长为xmm,由正方形的性质得出PN∥BC,PQ∥AD,根据平行线的性质,可以得出比例关系式,=、=,代入数据求解即可.2〕设宽为xmm,那么长为2xmm,同〔1〕列出比例关系求解,但是要注意有两种情况,PQ可以为长也可以为宽,分两种情况分别求解即可.【解答】解:〔1〕设边长为xmm,∵矩形为正方形,∴PN∥BC,PQ∥AD,第28页〔共32页〕根据平行线的性质可以得出:=、=,由题意知PQ=x,BC=180mm,AD=120mm,PN=x,即=,=,AP+BP=AB,∴+= +=1,解得x=72.答:假设这个矩形是正方形,那么边长是72mm.2〕设边宽为xmm,那么长为2xmm,∵四边形PNMQ为矩形,∴PN∥BC,PQ∥AD,根据平行线的性质可以得出:=、=,①PQ为长,PN为宽:由题意知PQ=2xmm,AD=120mm,BC=180mm,AN=xmm,即=,=,AP+BP=AB,∴+= +=1,解得x=45,2x=90.即长为90mm,宽为45mm.②PQ为宽,PN为长:由题意知PQ=xmm,AD=120mm,BC=180mm,PN=2xmm,即=,=,AP+BP=AB,∴+= +=1,解得x=,2x=.即长为mm,宽为mm.第29页〔共32页〕答:矩形的长为90mm,宽是45mm或者长为mm,宽为mm.【点评】此题考查了相似三角形的应用,主要利用了相似三角形对应高的比等于相似比,熟记性质并列出比例式是解题的关键.29.〔2021秋?青龙县期末〕如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,点P从点A开始,沿AB边以1cm/s的速度向点B运动:点Q从点B开始,沿BC边以2cm/s的速度向点C运动,当点P运动到点B时,运动停止,如果P、Q分别从A、B两点同时出发.2〔1〕几秒后△PBQ的面积等于8cm?〔2〕几秒后以P、B、Q为顶点的三角形与△ABC相似?【分析】〔1〕设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,再由三角形的面积公式即可得出结论;〔2〕设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,再分△BPQ∽△BAC与△BPQ∽△BCA两种情况进行讨论即可.【解答】解:〔1〕设t秒后△PBQ的面积等于8cm,此时,AP=t,BP=6﹣t,BQ=2t,∵S△PBQ= BP?BQ,即〔6﹣t〕×2t=8,即t2+6t+8=0,解得t1=2,t2=4.2∴2秒或4秒后,△PBQ的面积等于8cm;第30页〔共32页〕〔2〕设x秒后以P、B、Q为顶点的三角形与△ABC相似,此时,AP=x,BP=6﹣x,BQ=2x,①假设△BPQ∽△BAC,那么=,即=,解得x=3;②假设△BPQ∽△BCA,那么=,即=,解得.综上所述,秒或3秒后,以P、B、Q为顶点的三角形与△ABC相似.【点评】此题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.30.〔2021?福州〕如图,在△ ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.2〔1〕通过计算,判断AD与AC?CD的大小关系;〔2〕求∠ABD的度数.2【分析】〔1〕先求得AD、CD的长,然后再计算出AD与AC?CD的值,从而可得2到AD与AC?CD的关系;〔2〕由〔1〕可得到2BD=AC?CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:〔1〕∵AD=BC,BC=,∴AD=,DC=1﹣=.2=,AC?CD=1×=.∴AD=2∴AD=AC?CD.2〔2〕∵AD=BC,AD=AC?CD,第31页〔共32页〕2∴BC=AC?CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,那么∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】此题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.第32页〔共32页〕。

人教版九年级下册数学《相似》单元测试(Word版有答案)

人教版九年级下册数学《相似》单元测试(Word版有答案)

人教版九年级下册数学《相似》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AO CO 的值为( )A.12B.13C.14D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB 和△DOC 相似的条件是( )A .AO ·CO =BO ·DO B.AO DO =ABCD C .∠A =∠D D .∠B =∠C6.如图,矩形ABCD ∽矩形ADFE ,AE =1,AB =4,则AD =( )A .2B .2.4C .2.5D .37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A .只有①相似B .只有②相似C .都不相似D .都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC 的三个顶点在图中相应的格点上,图中点D ,E ,F 也都在格点上,则下列与△ABC 相似的三角形是( )A .△ACDB .△ADFC .△BDFD .△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A .1B .2C .3D .411.阳光通过窗口AB 照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC =8.7米,窗口高AB =1.8米,则窗口底边离地面的高BC 为( )A .4米B .3.8米C .3.6米D .3.4米12.在Rt △ABC 和Rt △DEF 中,已知∠C =∠F =90°,在下列条件中:①∠A =30°,∠E =60°;②AC =5,BC =4,DF =15,EF =12;③AB =5,AC =3,DE =10,DF =6;④AC ∶AB =1∶3,DF =a ,DE =3a.能够判断Rt △ABC ∽Rt △DEF 的有( )A .1个B .2个C .3个D .4个13.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合.若AB =2,BC =3,则△FCB ′与△DGB ′的面积之比为( )A .9∶4B .16∶9C .4∶3D .3∶214.如图,将△ABC 的高AD 四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S 1,S 2,S 3,S 4,则S 1∶S 2∶S 3∶S 4等于( )A .1∶2∶3∶4B .2∶3∶4∶5C .1∶3∶5∶7D .3∶5∶7∶915.如图,在△ABC 中,AC =BC ,CD 是边AB 上的高线,且有2CD =3AB =6,CE =EF =DF ,则下列判断中不正确的是( )A .∠AFB =90° B .BE = 5C .△EFB ∽△BFCD .∠ACB +∠AEB =45°16.如图1,在Rt △ABC 中,∠ACB =90°,点P 以每秒1 cm 的速度从点A 出发,沿折线AC —CB 运动,到点B 停止,过点P 作PD ⊥AB ,垂足为D ,PD 的长y(cm)与点P 的运动时间x(秒)的函数图像如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5 cmB .1.2 cmC .1.8 cmD .2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD ∥BE ∥CF ,且AB =4,BC =5 ,EF =4,则DE = .18.如图,已知△OAB 与△OA ′B ′是位似比为1∶2的位似图形,点O 为位似中心.若△OAB 内一点P(x ,y)与△OA ′B ′内一点P ′是一对对应点,则点P ′的坐标是 .19.如图,在△ABC 中,AB =AC =10,BC =16,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E.则当BD =4时,CE = ;当∠AED =90°时,BD = . 三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,求CFCD的值.21.(本小题满分9分)如图,△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且位似比为2;(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M对应的点M′的坐标为.22.(本小题满分9分)已知:如图,在△ABC中,BC=10,BC边上的高h=5,点E在边AB 上,过点E作EF∥BC,交AC边于点F,点D为BC上一点,连接DE,DF,△DEF的面积为4,求点E到BC的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE =0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC中,BC=8 cm,AC=6 cm,点P从B出发,沿BC方向以2 cm/s的速度移动,点Q从C出发,沿CA方向以1 cm/s的速度移动,若P,Q分别从B,C同时出发,设运动的时间为t s,则△CPQ能否与△CBA相似?若能,求出t的值;若不能,请说明理由.26.(本小题满分11分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.答案一、选择题二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上) 17.165.18.(-2x ,-2y).19.CE =4.8;当∠AED =90°时,BD =8. 三、解答题20.解:∵四边形ABCD 是矩形,∴∠BAD =90°.又∵AB =3,AD =BC =6,∴BD =AB 2+AD 2=3. ∵BE =1.8,∴DE =3-1.8=1.2.∵AB ∥CD ,∴DF AB =DE BE ,即DF 3=1.21.8.解得DF =233.∴CF =CD -DF =33.∴CF CD =333=13.21.点M ′的坐标为(2a ,2b)或(-2a ,-2b).解:如图,△DEF 和△D ′E ′F ′为所作. 22.解:设点E 到BC 的距离为x.∵EF ∥BC ,∴△AEF ∽△ABC. ∴EF BC =5-x 5.∴EF =10-2x. ∴S △DEF =12(10-2x)·x =4.解得x 1=4,x 2=1.∴点E 到BC 的距离为4或1.23.证明:(1)在Rt △ABC 中,∠B +∠A =90°. ∵DF ⊥AB ,∴∠BDE =∠ADF =90°. ∴∠A +∠F =90°.∴∠B =∠F. ∴△ADF ∽△EDB.(2)由(1)可知∠B =∠F ,∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD =DB. ∴∠DCE =∠B.∴∠DCE =∠F.又∵∠CDE =∠FDC ,∴△CDE ∽△FDC. ∴CD DF =DE CD ,即CD 2=DE ·DF. 24.解:过点D 作DG ⊥AB ,分别交AB ,EF 于点G ,H ,则EH =AG =CD =1.2 m ,DH =CE =0.8 m ,DG =CA =30 m. ∵EF ∥AB ,∴FH BG =DHDG.由题意,知FH =EF -EH =1.7-1.2=0.5(m). ∴0.5BG =0.830,解得BG =18.75. ∴AB =BG +AG =18.75+1.2=19.95(m)≈20.0 m. 答:楼高AB 约为20.0 m. 25.解:设经过t s 时△CPQ 与△CBA 相似,此时BP =2t ,CQ =t ,CP =8-2t ,①当△CPQ ∽△CBA 时,CP CB =CQ CA ,即8-2t 8=t6,解得t =2.4;②当△CPQ ∽△CAB 时,CP CA =CQ CB ,即8-2t 6=t 8,解得t =3211.综上可知,经过2.4 s 或3211s 时,△CPQ 与△CBA 相似.26.解:(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB. 又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB.∴AD AC =AC AB,即AC 2=AB ·AD. (2)证明:∵E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA.由(1)知∠DAC =∠CAB. ∴∠DAC =∠ECA.∴CE ∥AD. (3)∵CE ∥AD ,∴△AFD ∽△CFE.∴AD CE =AFCF .∵CE =12AB ,∴CE =12×6=3.∴43=AF CF. ∴AF AC =47,即AC AF =74.人教版九年级数学下第二十七章《相似》单元练习题(含答案)一、选择题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方2.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为()A.1∶3B.1∶4C.1∶8D.1∶93.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是()A.5 cmB.10 cmC.15 cmD.30 cm4.若矩形ABCD∽矩形EFGH,相似比为2∶3,已知AB=3 cm,BC=5 cm,则矩形EFGH的周长是()A.16 cmB.12 cmC.24 cmD.36 cm5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于()A.B.C.D.6.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点AB.点BC.点CD.点D7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺8.已知A、B两地的实际距离AB=5 km,画在图上的距离A′B′=2 cm,则图上的距离与实际距离的比是()A.2∶5B.1∶2 500C.250 000∶1D.1∶250 000二、填空题9.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2 cm,则线段BC=________ cm.10.已知:如图,A′B′∥AB,A′C′∥AC,AA′的延长线交于BC于点D,△ABC与△A′B′C′是__________图形,其中____________点是位似中心.11.已知△ABC∽△A′B′C′,且S△ABC∶S△A′B′C′=16∶9,若AB=4,则A′B′=__________.12.已知△ABC∽△DEF,=,且AD为BC边上的中线,DG为EF边上的中线,则AD∶DG =__________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.14.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.15.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.16.如图,用放大镜将图形放大,应属于哪一种变换:______________(请选填:对称变换、平移变换、旋转变换、相似变换).三、解答题17.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.(1)设CE=x(厘米),EF=a(厘米),求出由x和a表示y的计算公式;(2)现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学弹跳时站的位置为x =150厘米,且a=205厘米.若规定y≥50,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格,那么该生弹跳成绩处于什么水平?18.已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b,AE∶ED=m∶n;(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)图1图2图3②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB 与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.20.如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问:(1)∠PDC与∠HDC是否相等,为什么?(2)图中有哪几组相等的线段?(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?21.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.第二十七章《相似》单元练习题答案解析1.【答案】C【解析】∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.【答案】D【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A′B′C′与△ABC的相似比为1∶3,∴△A′B′C′与△ABC的面积的比1∶9,故选D.3.【答案】C【解析】∵△ABC和△DEF相似,∴△DEF的三边之比为3∶4∶5,∴△DEF的最短边和最长边的比为3∶5,设最长边为x,则3∶5=9∶x,解得x=15,∴△DEF的最长边为15 cm,故选C.4.【答案】C【解析】∵AB=3 cm,BC=5 cm,∴矩形ABCD的周长=2×(3+5)=16 cm,∵矩形ABCD∽矩形EFGH,相似比为2∶3,∴矩形ABCD与矩形EFGH的周长比2∶3,∴矩形EFGH的周长为24 cm,故选C.5.【答案】A【解析】假设△ABC∽△CAD,∴=,即CD==,∴要使△ABC∽△CAD,只要CD等于,故选A.6.【答案】A【解析】如图,位似中心为点A.故选A.7.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.8.【答案】D【解析】∵5千米=500 000厘米,∴比例尺=2∶500 000=1∶250 000;故选D.9.【答案】6【解析】如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴BC=6 cm.10.【答案】位似O【解析】∵A′B′∥AB,A′C′∥AC,∴∠A′B′C′=∠B,∠A′C′B′=∠C,∴△A′B′C′∽△ABC,∵AA′的延长线交于BC于点D,∴△ABC与△A′B′C′是位似图形,其中O点是位似中心.11.【答案】3【解析】∵△ABC∽△A′B′C′,且S△ABC∶S△A′B″C′=16∶9,∴AB∶A′B′=4∶3,∵AB=4,∴A′B′=3.12.【答案】【解析】∵△ABC∽△DEF,∴BC∶EF=AD∶DG,∵=,∴BC∶EF=3∶2,∴AD∶DG=3∶2.13.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.14.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.15.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.16.【答案】相似变换【解析】由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.17.【答案】解(1)过A作AM⊥BD于点M,交GE于N.∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形,∴NE=AC,又∵AC=200,EF=a,FG=y,∴GN=GE-NE=a+y-200,∵DM=AC=200,∴BM=BD-DM=300-200=100,又∵GN∥BD,∴△ANG∽△AMB,∴=,即=,∴y=x-a+200;(2)当x=150 cm,a=205 cm时,y=×150-205+200=45( cm),y=45>40.故该生弹跳成绩处于良好水平.【解析】(1)利用相似三角形的判定与性质得出△ANG∽△AMB,进而得出=,即可得出答案;(2)当x=150 cm,a=205 cm时,直接代入(1)中所求得出即可.18.【答案】解(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∵=,∴=,又BC=b,∴=,∴EF=;(2)①如图2,连接BD,与EF交于点H,由(1)知,HF=,EH=,∵EF=EH+HF,∴EF=;②猜想:EF=,证明:连接DE,并延长DE交BC于G,由已知,得BG=,EF=,∵GC=BC-BG,∴EF=(BC-BG)==.【解析】(1)由EF∥BC,即可证得△AEF∽△ABC,根据相似三角形的对应边成比例,即可证得=,根据比例变形,即可求得EF的值;(2)①连接BD,与EF交于点H,由(1)知,HF=,EH=,又由EF=EH+HF,即可求得EF的值;②连接DE,并延长DE交BC于G,根据平行线分线段成比例定理,即可求得BG的长,又由EF=与GC=BC-BG,即可求得EF的值.19.【答案】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵==2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要=,即=,即=,即2AB-2(b+d)=2AB-(a+c),∴a+c=2(b+d),即=2.【解析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由,所以应设矩形蔬菜种植区域的宽为x m,则长为2x m,然后由题意得==2,矩形蔬菜种植区域的长与宽之比为2∶1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得=,即=,然后利用比例的性质,即可求得答案.20.【答案】解(1)相等.理由如下:∵CD为∠ACF的角平分线(已知),∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.∴∠DPC=∠DHC=90°.∴∠PDC=∠HDC.(2)PC=HC,DP=DH,AP=BH,AD=BD.(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.∵∠CPD=90°,∴∠ABC=90°.∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,∴∠ACB=60°.∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.【解析】(1)根据角平分线与垂线的性质证明角相等;(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.21.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.九年级数学第27章《相似》同步测试(有答案)一、选择题:1、已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2 B.2 C.3 D.﹣32、(2018•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元3、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.164、已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( )A.36° B.54° C.72° D.144°5、(2018•临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.6、下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似7、(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:98、如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为( )A .8B .12C .14D .169、如图,△ABC 与△ADB 中,∠ABC =∠ADB =90°,∠C =∠ABD ,AC =5cm ,AB =4cm ,AD 的长为( )A .16/5B .2C .3D .24/510、学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO=4m ,AB=1.6m ,CO=1m ,则栏杆C 端应下降的垂直距离CD 为( )A .0.2mB .0.3mC .0.4mD .0.5m11、如图,点D 在△ABC 的边AC 上,要判断△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD =∠CB .∠ADB =∠ABC C.AB BD =CB CD D .AD AB =AB AC12、如图,点A 在线段BD 上,在BD 的同侧作等腰Rt △ABC 和等腰Rt △ADE ,CD 与BE 、AE 分别交于点P ,M .对于下列结论:①△BAE ∽△CAD ;②MP•MD=MA•ME;③2CB 2=CP•C M .其中正确的是( )A.①②③B.①C.①② D.②③二、填空题:13、(2018•邵阳)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.14、已知△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF的面积比为 .15、在比例尺为1:100的地图上,量得甲、乙两点的距离为25cm,甲、乙两点的实际距离为m.16、如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为 .17、如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l 的两端上,若CD=2,则AB的长是.18、已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.19、如图,在平面直角坐标系中,以原点为位似中心,将△AOB扩大到原来的2倍,得到△A′OB′,若点A的坐标是(1,2),则点A′的坐标是 .20、如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为 .21、(2018•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m.22、如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则AG:GF的值是 .三、解答题:23、已知四边形ABCD 和A 1B 1C 1D 1中,AB A 1B 1=BC B 1C 1=CD C 1D 1=AD A 1D 1=35,且周长之差为12cm ,两个四边形的周长分别是多少?24、如图,△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B 、C 重合),满足∠DEF =∠B ,且点D 、F 分别在边AB 、AC 上.(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.25、(2018•江西)如图,在△ABC 中,AB=8,BC=4,CA=6,CD ∥AB ,BD 是∠ABC 的平分线,BD 交AC 于点E ,求AE 的长.26、如图,在△ABC 中,AB=AC ,AD 为BC 边上的中线,DE ⊥AB 于点E .(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.27、如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.一、选择题:1、C2、C3、C4、C5、B6、C7、D8、D9、A10、C11、C12、A二、填空题:13、△ADF∽△ECF14、1 : 415、2516、417、618、919、(-2,-4)20、9:2521、10022、6:5三、解答题:23、略24、略25、AE=426、略27、略。

人教版九年级下学期相似三角形单元过关测试卷与参考答案

人教版九年级下学期相似三角形单元过关测试卷与参考答案

人教版九年级下学期相似三角形单元过关测试卷与参考答案一、选择题(每小题5分,共25分)1.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( ) A .12DE BC =B .AD AEAB AC=C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2 2.在△ABC ∽△'''A B C 中,有下列条件:①.''''AB BC A B B C =;②. ''''BC ACB C A C =;③.'A A ∠=∠;④.'C C ∠=∠.如果从中任取两个条件组成一组,那么能判断△ABC ∽△'''A B C 共有( ) A.1组 B.2组 C.3组 D.4组 3.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9,BD=3,则CF 等于( ) A .1 B .2C .3D .4(第1题) (第3题) (第4题 ) (第5题 ) 4.在四边形ABCD 中,∠B=90°,AC=4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )A .B .C .D .5.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B 的方向运动,设E 点的运动时间为t 秒(0≤t <4),连接DE ,当以B 、D 、E 为顶点的三角形与△ABC 相似时,t 的值为( )A .2B .2.5或3.5C .2或3.5D .2或2.5 二、填空题(每小题5分,共15分)6.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为12cm ,则这两个三角形的周长分别是________.7.如图,一束光线从点A (3,3)出发,经过y 轴上点C 反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为 .第8题图第7题图8. 如图,在已建立直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,ABO 90∠=,OA 与反比例函数()ky x 0x=<的图象交于点D ,且OD 2AD =,过点D 作x 轴的垂线交x 轴于点C . 若S 四边形ABCD 10=,则k 的值为 .三、解答题(共60分 第9、10题各10分,第11题12分,第12题13分,第13题15分) 9.如图,已知,AB 3AC BD 3AE ==,且BD ∥AC ,点B A E 、、在同一直线上. 求证:△ABD ∽△CAE ;10 .如图,在□ABCD 中,点E 在BC 边上,点F 在DC 的延长线上,且∠DAE =∠F . 若AB =5,AD =8,BE =2,求FC 的长.FEADCBB11.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,试判断∠1与∠2的大小关系,并说明理由12.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.13.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.单元测试卷与参考答案一、选择题1.D 2.C 3.B 4.D 5.C 二、填空题6.48cm 和60cm 7.5 8.-16 三、解答题 9.证明:∵ BD ∥AC,点B,A,E 在同一条直线上, ∴ ∠DBA=∠CAE,又∵,AB 3AC BD 3AE ==.3BDAE==.∴ABD CAE ∆∆∽.10.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F ,∴∠AEB =∠F .∴△ABE ∽△ECF . ∵△ABE ∽△ECF ,∴AB BE EC CF=. ∵四边形ABCD 是平行四边形,∴BC =AD =8.∴EC =BC -BE =8-2=6.∴526CF =.∴125CF =.11.解:∵∠AED +∠CEF=90°,∠DAE +∠ADE=90°,∴∠DAE=∠CEF ,∵∠ADE=∠ECF=90°, ∴△ADE ∽△ECF ,且相似比为2,∴AE=2EF ,AD=2DE ,又∵∠ADE=∠AEF ,∴△ADE ∽△AEF , ∴∠1=∠2.12.(1)证明:∵AD 平分∠CAE ,∴∠DAG=12∠CAG ,∵AB=AC ,∴∠B=∠ACB , ∵∠CAG=∠B +∠ACB ,∴∠B=12∠CAG ,∴∠B=∠CAG ,∴AD ∥BC ; (2)解:∵CG ⊥AD ,∴∠AFC=∠AFG=90°, 在△AFC 和△AFG 中,CAF GAF AF AFAFC AFG ∠=∠=∠=∠⎧⎪⎨⎪⎩, ∴△AFC ≌△AFG (ASA ),∴CF=GF ,∵AD ∥BC ,∴△AGF ∽△BGC ,∴GF :GC=AF :BC=1:2,∴BC=2AF=2×4=8. 13.(1)证明:∵将△BCE 绕点C 顺时针旋转到△DCF 的位置,∴△BCE ≌△DCF ,∴∠FDC=∠EBC ,∵BE 平分∠DBC ,∴∠DBE=∠EBC ,∴∠FDC=∠EBD ,∵∠DGE=∠DGE ,∴△BDG ∽△DEG .(2)解:∵△BCE ≌△DCF ,∴∠F=∠BEC ,∠EBC=∠FDC ,∵四边形ABCD 是正方形, ∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE 平分∠DBC ,∴∠DBE=∠EBC=22.5°=∠FDC , ∴∠BEC=67.5°=∠DEG ,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG ⊥DF ,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴DG BGEG DG,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4人教版九年级下册数学第27章相似单元测试题(解析版)一.选择题(共10小题)1.已知,则的值是()A.B.C.D.2.比例尺为1:800的学校地图上,某条路的长度约为5cm,它的实际长度约为()A.400 cm B.40m C.200 cm D.20 m3.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC5.下列图形中,形状一定相同的两个图形是()A.两个直角三角形B.两个正三角形C.两个矩形D.两个梯形6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.已知△ABC∽△A'B'C',如果它们的相似比为2:3,那么它们的面积比是()A.3:2B.2:3C.4:9D.9:48.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,那么EF与CF的比是()A.1:2B.1:3C.2:1D.3:110.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12 m B.13.5 m C.15 m D.16.5 m二.填空题(共8小题)11.已知=,则的值为.12.如图,直线l1、l2、…、l6是一组等距离的平行线,过直线l1上的点A作两条射线m、n,射线m与直线l3、l6分别相交于B、C,射线n与直线l3、l6分别相交于点D、E.若BD=1,则CE的长为.13.已知5a =2b ,则a :b = .14.如图,线段AE 、BD 交于点C ,如果AC =9,CE =4,BC =CD =6,DE =3,那么AB = .15.如图,△ABC 中,EF ∥BC ,S △AEF :S 四边形BEFC =1:2,则EF :BC = .16.如图,∠A =∠B =90°,AB =7,AD =2,BC =3,在边AB 上取点P ,使得△PAD 与△PBC 相似,则满足条件的AP 长 .17.如图,在平面直角坐标系中,已知A (1.5,0),D (4.5,0),△ABC 与△DEF 位似,原点O 是位似中心.若DE =7.5,则AB = .18.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF 的斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.测得DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米.按此方法,请计算旗杆的高度为 米.三.解答题(共8小题)19.已知,且2x+3y﹣z=18,求4x+y﹣3z的值.20.如图所示,在线段AB上有C、D两点,已知AB=7,AC=1,且线段CD是线段AC 和BD的比例中项,求线段CD的长.21.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)若BC=4,AC=8,求CD的长.22.已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF•CE=AB2.23.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H,求CH的长.24.如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.(1)在图中画出△DEF;(2)点E是否在直线OA上?为什么?(3)△OAB与△DEF位似图形(填“是”或“不是”)25.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)如果E是AC的中点,AD=8,AB=10,求AE的长.26.如图,在正方形ABCD中,AB=4,P是BC边上一动点(不与B,C重合),DE⊥AP 于E.(1)试说明△ADE∽△PAB;(2)若PA=x,DE=y,请写出y与x之间的函数关系式.2019年春人教版九年级下册数学《第27章相似》单元测试题参考答案与试题解析一.选择题(共10小题)1.已知,则的值是()A.B.C.D.【分析】依据,可设a=13k,b=5k,代入分式计算化简即可.【解答】解:∵,∴可设a=13k,b=5k,∴===,故选:D.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积,解决问题的关键是利用设k法.2.比例尺为1:800的学校地图上,某条路的长度约为5cm,它的实际长度约为()A.400 cm B.40m C.200 cm D.20 m【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设实际长度为xcm,则:=,解得:x=4000cm=40m.则它的实际长度为40m.故选:B.【点评】本题考查比例线段问题,解题的关键是能够根据比例尺的定义构建方程,注意单位的转换.3.下列说法正确的是()A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB•BCD.以上说法都不对【分析】根据黄金分割的定义分别进行解答即可.【解答】解:A、每条线段有两个黄金分割点,故本选项错误;B、黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍,正确;C、若点C把线段AB黄金分割,则AC2=AB•BC,不正确,有可能BC2=AB•AC;故选:B.【点评】此题考查黄金分割,熟练掌握黄金分割的定义是解题的关键.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC【分析】根据平行线分线段成比例定理即可得到答案.【解答】解:∵DE∥FG∥BC,DB=4FB,∴.故选:B.【点评】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.下列图形中,形状一定相同的两个图形是()A.两个直角三角形B.两个正三角形C.两个矩形D.两个梯形【分析】根据相似图形的定义,对应边成比例,对应角相等,然后对各选项分析判断后利用排除法求解.【解答】解:A、两个直角三角形,对应角不一定相等,对应边不一定成比例,所以不一定相似,故本选项错误;B、两个正三角形,对应角都是60°,相等,对应边一定成比例,所以一定相似,故本选项正确;C、两个矩形,对应角对应相等,对应边不一定相等,所以不一定相似,故本选项错误;D、两个梯形,对应角不一定对应相等,对应边也不一定成比例,所以不一定相似,故本选项错误.故选:B.【点评】本题考查了相似图形的定义,注意从对应角与对应边两方面考虑.6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.已知△ABC∽△A'B'C',如果它们的相似比为2:3,那么它们的面积比是()A.3:2B.2:3C.4:9D.9:4【分析】直接利用相似三角形的性质求解.【解答】解:∵△ABC∽△A'B'C',∴S△ABC :S△A'B'C'=22:32=4:9.故选:C.【点评】本题考查了相似三角形的性质:相似三角形的面积的比等于相似比的平方.8.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解答】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点评】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.9.如图,在▱ABCD中,E是AB的中点,EC交BD于点F,那么EF与CF的比是()A.1:2B.1:3C.2:1D.3:1【分析】根据平行四边形的性质可以证明△BEF∽△DCF,然后利用相似三角形的性质即可求出答案.【解答】解:由平行四边形的性质可知:AB∥CD,∴△BEF∽△DCF,∵点E是AB的中点,∴∴=,故选:A.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.10.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12 m B.13.5 m C.15 m D.16.5 m【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴=∴BC=15米,∴AB=AC+BC=1.5+15=16.5米,故选:D.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.二.填空题(共8小题)11.已知=,则的值为.【分析】依据=,即可得到﹣1=,进而得出的值.【解答】解:∵=,∴﹣1=,∴=,故答案为:.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.12.如图,直线l1、l2、…、l6是一组等距离的平行线,过直线l1上的点A作两条射线m、n,射线m与直线l3、l6分别相交于B、C,射线n与直线l3、l6分别相交于点D、E.若BD=1,则CE的长为.【分析】由直线l1、l2、…l6是一组等距的平行线,得到△ABD∽△ACE,推出比例式求得结果.【解答】解:∵l3∥l6,∴BD∥CE,∴△ABD∽△ACE,∴==,∵BD=1,∴CE=.故答案为:.【点评】本题考查了相似三角形的判定和性质,平行线等分线段定理,熟记定理是解题的关键.13.已知5a=2b,则a:b=2:5.【分析】依据比例的性质进行变形即可.【解答】解:∵5a=2b,∴a:b=2:5.故答案为:2:5.【点评】本题主要考查的是比例的性质,熟练掌握比例的性质是解题的关键.14.如图,线段AE 、BD 交于点C ,如果AC =9,CE =4,BC =CD =6,DE =3,那么AB= .【分析】根据相似三角形的性质与判定即可求出答案.【解答】解:∵AC =9,CE =4,BC =CD =6,∴,∵∠ACB =∠DCE ,∴△ACB ∽△DCE ,∴,∴DE =,故答案为:【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,△ABC 中,EF ∥BC ,S △AEF :S 四边形BEFC =1:2,则EF :BC = .【分析】由题意可得S △AEF :S △ABC =1:3,根据相似三角形面积比等于相似比的平方,可求EF :BC 的比值.【解答】解:∵S △AEF :S 四边形BEFC =1:2,∴S △AEF :S △ABC =1:3,∵EF ∥CB∴△AEF ∽△ABC∴=∴【点评】本题主要考查了相似三角形的判定以及三角形的面积与边长之间的关系,能够掌握并求解一些简单的计算问题.16.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则满足条件的AP长 2.8或1或6.【分析】根据相似三角形的性质分情况讨论得出AP的长.【解答】解:分两种情况:①如果△PAD∽△PBC,则PA:PB=AD:BC=2:3,又PA+PB=AB=7,∴AP=7×2÷5=2.8;②如果△PAD∽△CBP,则PA:BC=AD:BP,即PA•PB=2×3=6,又∵PA+PB=AB=7,∴PA、PB是一元二次方程x2﹣7x+6=0的两根,解得x1=1,x2=6,∴AP=1或6.综上,可知AP=2.8或1或6.故答案为2.8或1或6.【点评】本题考查相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB= 2.5.【分析】利用以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 得到位似比为,然后根据相似的性质计算AB 的长.【解答】解:∵A (1.5,0),D (4.5,0),∴==,∵△ABC 与△DEF 位似,原点O 是位似中心,∴==∴AB =DE =×7.5=2.5.故答案为2.5.【点评】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k .18.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF 的斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上.测得DE =0.5米,EF =0.25米,目测点D 到地面的距离DG =1.5米,到旗杆的水平距离DC =20米.按此方法,请计算旗杆的高度为 11.5 米.【分析】根据题意证出△DEF ∽△DCA ,进而利用相似三角形的性质得出AC 的长,即可得出答案.【解答】解:由题意得:∠DEF =∠DCA =90°,∠EDF =∠CDA ,∴△DEF ∽△DCA ,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.【点评】此题主要考查了相似三角形的应用;由三角形相似得出对应边成比例是解题关键.三.解答题(共8小题)19.已知,且2x+3y﹣z=18,求4x+y﹣3z的值.【分析】设=k,进而解答即可.【解答】解:设=k,可得:x=2k,y=3k,z=4k,把x=2k,y=3k,z=4k代入2x+3y﹣z=18中,可得:4k+9k﹣4k=18,解得:k=2,所以x=4,y=6,z=8,把x=4,y=6,z=8代入4x+y﹣3z=16+6﹣24=﹣2.【点评】此题考查比例的性质,关键是设=k得出k的值.20.如图所示,在线段AB上有C、D两点,已知AB=7,AC=1,且线段CD是线段AC 和BD的比例中项,求线段CD的长.【分析】根据题意列方程即可得到结论.【解答】解:∵AB=7,AC=1,∴BD=AB﹣AC﹣CD=6﹣CD,∵线段CD是线段AC和BD的比例中项,∴CD2=AC•BD,即CD2=1×(6﹣CD),解得:CD=2.【点评】本题考查了比例线段,一元二次方程的解法,正确的理解题意是解题的关键.21.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)若BC=4,AC=8,求CD的长.【分析】(1)根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质即可求出CD的长度.【解答】解:(1)∵∠DBC=∠A,∠BCD=∠ACB,∴△BDC∽△ABC;(2)∵△BDC∽△ABC,∴,∵BC=4,AC=8,∴CD=2.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.22.已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF•CE=AB2.【分析】利用两角对应成比例可得△ABF∽△ECA,对应边成比例可得相应的比例式,整理可得所求的乘积式.【解答】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点评】此题考查了相似三角形的判定与性质.注意证得△ABF∽△ECA是解此题的关键.23.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H,求CH的长.【分析】根据相似三角形的判定得出两三角形相似,得出比例式,代入求出即可;【解答】解:∵DH∥AB,∴△ABC∽△DHC,∴=,∵BC=3,AC=3CD,∴CH=1.【点评】本题考查了平行线的性质,相似三角形的性质和判定,解直角三角形的应用,能求出△ABC∽△DHC是解此题的关键.24.如图,△OAB的顶点坐标分别为O(0,0)、A(3,2)、B(2,0),将这三个顶点的坐标同时扩大到原来的2倍,得到对应点D、E、F.(1)在图中画出△DEF;(2)点E是否在直线OA上?为什么?(3)△OAB与△DEF是位似图形(填“是”或“不是”)【分析】(1)根据题意将各点坐标扩大2倍得出答案;(2)求出直线OA的解析式,进而判断E点是否在直线上;(3)利用位似图形的定义得出△OAB与△DEF的关系.【解答】解:(1)如图所示:△DEF,即为所求;(2)点E在直线OA上,理由:设直线OA的解析式为:y=kx,将A(3,2)代入得:2=3k,解得:k=,故直线OA的解析式为:y=x,当x=6时,y=×6=4,故点E在直线OA上;(3))△OAB与△DEF是位似图形.故答案为:是.【点评】此题主要考查了位似变换以及待定系数法求正比例函数解析式,正确把握位似图形的定义是解题关键.25.如图,在△ABC中,D,E分别是边AB,AC上的点,连接DE,且∠ADE=∠ACB.(1)求证:△ADE∽△ACB;(2)如果E是AC的中点,AD=8,AB=10,求AE的长.【分析】(1)根据相似三角形的判定即可求出证.(2)由于点E是AC的中点,设AE=x,根据相似三角形的性质可知=,从而列出方程解出x的值.【解答】解:(1)∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB;(2)由(1)可知::△ADE∽△ACB,∴=,∵点E是AC的中点,设AE=x,∴AC=2AE=2x,∵AD=8,AB=10,∴=,解得:x=2,∴AE=2.【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.26.如图,在正方形ABCD中,AB=4,P是BC边上一动点(不与B,C重合),DE⊥AP 于E.(1)试说明△ADE∽△PAB;(2)若PA=x,DE=y,请写出y与x之间的函数关系式.【分析】(1)根据正方形的性质以及DE⊥AP即可判定△ADE∽△PAB.(2)根据相似三角形的性质即可列出y与x之间的关系式,需要注意的是x的范围.【解答】解:(1)∵四边形ABCD为正方形,∴∠BAD=∠ABC=90°,∴∠EAD+∠BAP=90°,∠BAP+∠APB=90°,∴∠EAD=∠APB,又∵DE⊥AP,∠AED=∠B=90°,∴△ADE∽△PAB.(2)由(1)知△PAB∽△ADE,∴,∴∴y=(4<x<4).【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的判定与性质,本题属于中等题型.九年级下册数学(人教版)-第二十七章-相似-反比例函数-同步提升练习(含答案)一、单选题1. ( 2分) 如图,已知矩形ABCD中,AB=3,BE=2,EF⊥BC.若四边形EFDC与四边形BEFA 相似而不全等,则CE=()A. 3B. 3.5C. 4D. 4.52. ( 2分) 若,则()A. B. C. D. -3. ( 2分) 如图,小正方形的边长均为1,则下列图形中的三角形与△ABC相似的是()A. B. C. D.4. ( 2分) 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张B. 第5张C. 第6张D. 第7张5. ( 2分) 如图,如果l1∥l2∥l3,则下列各式不正确的是()A. B. C. D.6. ( 2分) 如图,菱形ABCD中,对角线AC、BD相交于点O ,M、N分别是边AB、AD 的中点,连接OM、ON、MN ,则下列叙述正确的是()A.△AOM和△AON都是等边三角形B.四边形MBON和四边形MODN都是菱形C. 四边形AMON和四边形ABCD都是位似图形D. 四边形MBCO和四边形NDCO都是等腰梯形7. ( 2分) △ABC和△A′B′C′是相似图形,且对应边AB和A′B′的比为1:3,则△ABC和△A′B′C′的面积之比为()A. 3:1B. 1:3C. 1:9D. 1:27二、填空题8. ( 1分) 如图,在△ABC中,∠BAC=90°,∠B=30°,AD⊥BC,AE平分∠BAD,则△ABC∽________ ,△BAD∽△ACD(写出一个三角形即可).9. ( 1分) 如图;课外活动小组测量学校旗杆的高度.如图,在地面上C处放一小镜子,当镜子离旗杆AB底端6米,小明站在离镜子3米的E处,恰好能看到镜子中旗杆的顶端,测得小明眼睛D离地面1.5米,则旗杆AB的高度约是________ 米.10. ( 1分) 已知,则=________.11. ( 1分) 如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE// BC,EF//AB,且AD:DB=3:5,那么CF:CB 等于________.12. ( 1分) 如图,△ABC中,DE∥FG∥BC,AD:DF:FB=2:3:4,若EG=4,则AC=________.13. ( 1分) 如图,已知零件的外径为30mm,现用一个交叉卡钳(两条尺长AC和BD相等,OC=OD)测量零件的内孔直径AB.若OC:OA=1:2,且量得CD=12mm,则零件的厚度x=________mm.三、解答题14. ( 5分) 如图,DE∥BC,EC=AD,AE=2cm,AB=7.5cm,求DB的长.15. ( 5分) (1)计算:|﹣2|﹣+(﹣)﹣1;(2)如图,直线AD∥BE∥CF,=,DE=6,求EF的长.16. ( 5分) 如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)若以P,F,E为顶点的三角形也与△ABE相似,试求x的值.四、作图题17. ( 5分) 如图.①写出△ABC的各点坐标;②以直角坐标系的原点O为位似中心作△ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的位似比为1:2.五、综合题18. ( 7分) 如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒________ cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是________;(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM= S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.答案部分一、单选题1.【答案】D【解析】【解答】解:设CE=x,∵四边形EFDC与四边形BEFA相似,∴,∵AB=3,BE=2,EF=AB,∴,解得:x=4.5,故答案为:D【分析】设CE=x,由四边形EFDC与四边形BEFA相似,可得出对应边成比例,建立关于x 的方程,求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
I
J
H
A C B
E F G
第18题图 九年级数学下册《相似》单元试卷 (20150319命题人:徐元山)
一、选择题(每小题3分,共30分)
1、下列每组图中的两个图形是相似图形的是 ( )
A B C D 2、下列各组线段中,能成比例的是 ( )
A . 1㎝,3㎝,4㎝,6㎝
B . 30㎝,12㎝,0.8㎝,0.2㎝
C . 0.1㎝,0.2㎝,0.3㎝,0.4㎝
D . 12㎝,16㎝,45㎝,60㎝
3、下列命题:①所有的等腰三角形都相似,②所有的等边三角形都相似,③所有的等腰直角三角形都相似,④所有的直角三角形都相似.其中,正确的是 ( ) A.②③ B.②③④ C.③④ D.②④
4、如图,点P 是△ABC 的边AB 上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与原三角形相似.满足这样条件的直线最多有 ( ) A.2条 B.3条 C.4条 D.5条
5、如图所示,课堂上小亮
站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( ) A.△DCE
B.四边形ABCD C.△ABF
D.△ABE
6、 如图,△ABC ∽△AED ,且∠AED=∠B ,则△ABC 与△AED 的相似比等于( )
A.AB AD
B. AC AB
C. AC AE
D. AE
AB 7、 如图,已知AB ∥DE ,∠AFC=∠E ,则图中相似的三角形共有 ( ) A.1对 B.2对 C.3对 D.4对
8、在梯形ABCD 中,AB ∥CD ,AB=a ,CD=b ,两腰延长线交于点M ,过M 作DC 的平行线,分别交AC 、
BD 延长线于E ,F ,则EF 等于( ) A .
b a ab - B .b a ab -2 C .b a a + D .b
a ab
+2 9、在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上一点,DF 平分CE 于点G ,CF=1,△CFG 与△BFD 的面积之比为( )
A .2
1
B . 13
C . 14
D .16
第10题
10、如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( ) A 、②③④ B 、③④⑤ C 、④⑤⑥ D 、②③⑥ 二、填空题(每小题3分,共24分)
11、已知:若
23x y =,则2x y x y
+=- 12、在比例尺1:10 000 000的地图上,量得甲、乙两个城市之间的距离是8cm ,那么甲、乙两个城市之间的实际距离应为 km
13、直角三角形的两条直角边分别为3和4,则它的斜边上的高把原三角形分成的两个三角形的面积之比为
14、如图,A 、B 两间有一湖泊无法直接测距,已知AC=30m ,CD=24m,DE ∥AB,DE=16,
则AB= m.
15、在平行四边形ABCD 中,E 在AD 上,E F ∥AB 交对角线BD 与点F ,且DE :EA=2:3,则CD
P . A
B
C
第4题图
第5题图
E A B
C
D
第6题图
第7题图 A B C
D
E
F
A
D
B
C
F
G E 第9题图
A
B
C
D
E M
F
第8题
第14题图
A B
C
D E
· ·E F ·
B
C
A D P 16题图
的长为
16、如图,在边长为5的正方形ABCD 中,CE:DE=2:3,BF=DE,若在BC 上存在一点P,使△BPF 和△ECP,则满足条件的BP 的长为________
17、△ABC ∽△A 1B 1C 1,相似比为2:3,△A 1B 1C 1∽△A 2B 2C 2 ,相似比为5:4,则△ABC 与△A 2B 2C 2的相似比为
18、如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积为S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,…,S n (n 为正整数),那么第8个正方形的面积S 8= 三、解答题(共66分)
19、(6分)如图,方格纸中有一条美丽可爱的小金鱼.
(1)在同一方格纸中,画出将小金鱼图案绕原点O 旋转180°后得到的图案; (2)在同一方格纸中,并在y 轴的右侧,将原小金鱼图案以原点O 为位似中心放大,使它们的位似比为2︰1,画出放大后小金鱼的图案
20、(6分)已知:如图,Rt ABC ∆∽Rt ACD ∆,
26==AD AC ,, 求AB 及BC 的长。

21、(6分)小强用这样的方法来测量学校教学楼的高度:如图,在地面上放一面镜子(镜子高度忽略不计),他刚好能从镜子中看到教学楼的顶端B ,他请同学协助量得镜子与教学楼的距离EA=21米,以及他与镜子的距离CE=2.5米,已知他的眼睛距离地面的高度DC=1.6米,请你帮助小强计算出教学楼的高度。

(根据光的反射定律:反射角等于入射角)

22、(8分)如图,4531===∠=∠∠=∠BC DE AB D B ,,, (1)ABC ∆∽ADE ∆吗?说明理由。

(2)求AD 的长。

23、(10分)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD DE 2
1
=。

⑴求证:△ABF ∽△CEB; ⑵若△DEF 的面积为2,求□ABCD 的面积。

(第23题图)
C
A
B
D
F
A
D
E
B C x
(第19题图)
A
E
D
C
B
G
F 图(2) 24、(8分)如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。

求证:AC AF AB AE ⋅=⋅
25、(8分)在四边形ABCD 中,∠A=∠BCD=90°。

(1)如图①过C 作对角线BD 的垂线分别交BD 、AD 于点E 、F , 求证:DA DF CD ⋅=2

(2)如图②:若过BD 上另一点E 作BD 的垂线分别交BA 、BC 延长线于F 、G ,又有什么结论呢?你会证明吗
26(14分)、如图,正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.
(1)求证:Rt △ABM ∽Rt △MCN ;
(2)若MN 的延长线交正方形外角平分线CP 于点P ,当点M 在BC 边上如图位置时,请你在AB 边上找到一点H ,使得AH=MC ,连接HM ,进而判断AM 与PM 的大小关系,并说明理由;
(3)若BM=1,则梯形ABCN 的面积为__________;设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积; (4)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时BM 的值
F
A
E
D
C
B
图①。

相关文档
最新文档