X射线衍射技术用于铁电薄膜残余应力的测量
【VIP专享】x射线衍射测量残余应力实验指导书
X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。
2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。
3.了解表面残余应力的概念、分类及测试方法种类,掌握XRD仪器设备的操作过程。
二、实验基本原理和装置1. X射线衍射测量残余应力原理当多晶材料中存在内应力时,必然还存在内应变与之对应,导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映,通过分析这些衍射信息,就可以实现内应力的测量。
材料中内应力分为三大类。
第I类应力,应力的平衡范围为宏观尺寸,一般是引起X射线谱线位移。
由于第I类内应力的作用与平衡范围较大,属于远程内应力,应力释放后必然要造成材料宏观尺寸的改变。
第II类内应力,应力的平衡范围为晶粒尺寸,一般是造成衍射谱线展宽。
第III类应力,应力的平衡范围为单位晶胞,一般导致衍射强度下降。
第II类及第III类内应力的作用与平衡范围较小,属于短程内应力,应力释放后不会造成材料宏观尺寸的改变。
在通常情况下,我们测得是残余应力是指第一类残余应力。
当材料中存在单向拉应力时,平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大),同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小),其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时,其晶面间距及衍射角的变化与拉应力相反。
材料中宏观应力越大,不同方位同族晶面间距或衍射角之差异就越明显,这是测量宏观应力的理论基础。
原理见图1。
由于X射线穿透深度很浅,对于传统材料一般为几十微米,因此可以认为材料表面薄层处于平面应力状态,法线方向的应力(σz )为零。
当然更适用于薄膜材料的残余应力测量。
布拉格方程:2dsinθ=nλ图1 x射线衍射原理图及ψ为空间任意方向OP的两个方位角,εφψ为材料沿OP方向的弹性应分别为x及y方向正应力。
此外,还存在切应力τxy 根据弹性力学的理可表示为:图3 XRD设备照片表1 Cu膜和BaF2膜不同的制备工艺参数样品编号电子束沉积参数退火条件Ba-1202-27-3基片温度500℃,氧分压1×10-3Pa,沉积速率:3Å/s在O2气氛下,400℃退火30minBa-110530-2基片温度500℃,氧分压1×10-3Pa,沉积速率:3Å/s沉积结束,直接将样品取出,无退火Cu-110530-2基片温度200℃,氧分压1×10-3Pa,沉积速率:3Å/s沉积结束,直接将样品取出,无退火08-04基片温度600℃,氧分压1×10-3Pa,沉积速率:3Å/s沉积结束,直接将样品取出,无退火三、实验步骤和注意事项1.样品全谱扫描,确定合适的高角度衍射峰,一般寻找60度以上的峰。
射线衍射方法测量残余应力的原理与方法
X射线衍射方法测量残余应力得原理与方法-STRESSX射线衍射方法测量残余应力得原理与方法什么就是残余应力?外力撤除后在材料内部残留得应力就就是残余应力。
但就是,习惯上将残余应力分为微观应力与宏观应力。
两种应力在X射线衍射谱中得表现就是不相同得。
微观应力就是指晶粒内部残留得应力,它得存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起得衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰得宽化,并采用近似函数法或傅立叶变换方法来求得微观应力得大小。
宏观应力就是指存在于多个晶体尺度范围内得应力,相对于微观应力存在得范围而视为宏观上存在得应力。
一般情况下,残余应力得术语就就是指在宏观上存在得这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上得表现就是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间得距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰得位移情况,可以求得残余应力。
X射线衍射法测量残余应力得发展X射线衍射法就是一种无损性得测试方法,因此,对于测试脆性与不透明材料得残余应力就是最常用得方法。
20世纪初,人们就已经开始利用X射线来测定晶体得应力。
后来日本成功设计出得X射线应力测定仪,对于残余应力测试技术得发展作了巨大贡献。
1961年德国得E、Mchearauch提出了X射线应力测定得sin2ψ法,使应力测定得实际应用向前推进了一大步。
X射线衍射法测量残余应力得基本原理X射线衍射测量残余内应力得基本原理就是以测量衍射线位移作为原始数据,所测得得结果实际上就是残余应变,而残余应力就是通过虎克定律由残余应变计算得到得。
其基本原理就是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生得衍射峰也将随之移动,而且移动距离得大小与应力大小相关。
用波长λ得X射线,先后数次以不同得入射角照射到试样上,测出相应得衍射角2θ,求出2θ对sin2ψ得斜率M,便可算出应力σψ。
x射线衍射测量残余应力实验指导书
X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。
2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。
二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。
三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。
材料中内应力分为三大类。
第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。
由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。
第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。
第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。
第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。
在通常情况下, 我们测得是残余应力是指第一类残余应力。
当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。
材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。
原理见图1。
由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。
当然更适用于薄膜材料的残余应力测量。
图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。
X射线衍射仪在薄膜结构分析中的测试方法研究
X 射线衍射仪在薄膜结构分析中的测试方法研究概述薄膜结构是材料科学中的一个重要研究领域。
在现代技术和应用领域,薄膜结构具有广泛的应用,如微电子制造、磁性存储介质、光学涂层等。
因此,精确地了解薄膜结构对于实际应用具有重要意义。
在现代材料分析技术中,X 射线衍射仪是一种重要的测试方法,用于薄膜结构分析。
X 射线衍射X 射线衍射是一种利用X 射线对物质进行结构分析的技术。
当X 射线穿过晶体时,由于晶体结构的周期性,X 射线会被晶体中的原子散射,产生衍射现象。
通过测量这些衍射信号,可以确定晶体结构的各项参数,如晶格常数、晶面间距等。
同时,X 射线衍射还可以用于薄膜结构的分析。
薄膜结构分析薄膜结构的分析要求精确的测试和数据处理。
针对不同的数据需求,有不同的测试方法和分析技术。
在薄膜的制备过程中,通常涉及到多层堆叠、多种配比、不同的表面修饰等因素。
这些因素都可能导致薄膜结构的变化。
因此,薄膜结构分析要求测试方法高灵敏度、准确性和精度。
X 射线衍射仪作为其中一种测试工具可以提供详细的反射衍射图像和数据。
下面将对如何利用X 射线衍射仪进行薄膜结构分析作进一步介绍。
X 射线衍射仪测试方法X 射线衍射测量一般基于布拉格衍射原理。
实验装置包括X 射线管、样品支架、测量仪器等。
在测量时,X 射线管首先产生特定波长的X 射线。
这些X 射线进入一束狭缝,减少散射。
X 射线通过样品时,发生布拉格衍射,并被检测器采集。
检测器通常由计数器、多道分析器等部分组成。
通过这些仪器,可以获得反射强度图像、条纹和峰值数据等信息。
各种样品不同的测量方式如下:单晶体薄膜采用反射式衍射模式下探测器扫描得到单晶体样品衍射波图谱。
反射式衍射将X 射线射向样品,然后将相反方向的反射信号收集。
此模式的优点是采集信噪比高、信号清晰。
同时这种方式能够减少三维晶体情况下的各向异性的影响,更加真实反映单晶体本身的衍射情况。
多层薄膜在利用X 射线衍射仪进行多层薄膜的测试时,需特别注意X 射线的入射角度和滑动角度的选取,进而增强测试数据的准确性和精度。
残余应力测量方法
残余应力是指材料内部或表面存在的不平衡力,它可以对材料的性能和可靠性产生重要影响。
以下是几种常见的残余应力测量方法:
1.X射线衍射法(X-ray Diffraction, XRD):这是一种常用的非破坏性测量方法,通过测量
材料中晶体结构的畸变来间接计算残余应力。
X射线经过材料后会发生衍射,根据衍射角度的变化可以推断出残余应力的大小和方向。
2.中子衍射法(Neutron Diffraction):类似于X射线衍射法,中子衍射法也是通过测量材
料晶体结构的畸变来确定残余应力。
相比X射线,中子具有更好的穿透能力,因此可以深入材料内部进行测量,适用于非金属材料的残余应力分析。
3.压电法(Piezoelectric Method):利用材料的压电效应来测量残余应力。
该方法通过将
压电传感器固定在被测物体上,然后施加外力引起压电传感器的形变,根据形变量的变化推断出残余应力的大小。
4.高斯法(Hole Drilling Method):这是一种常用的局部测量方法,适用于金属材料。
该
方法通过在被测物体上钻一个小孔,然后测量孔周围的表面应变的变化来计算残余应力。
5.激光干涉法(Laser Interferometry):利用激光的干涉原理来测量表面的微小位移,从
而推断出残余应力的分布情况。
激光干涉法可以提供高精度的残余应力测量结果。
需要注意的是,不同的测量方法适用于不同类型的材料和应力状态,选择合适的方法取决于具体的应用需求和材料特性。
在进行残余应力测量时,应根据实际情况综合考虑各种因素,并采取适当的措施以确保测量结果的准确性和可靠性。
x射线衍射测定表面残余应力的基本原理
x射线衍射测定表面残余应力的基本原理
X射线衍射是一种常用的非破坏性分析方法,可用于测定材料内部的残余应力。
其基本原理是利用X射线在晶体中发生衍射现象来获取有关晶体结构的信息。
当入射X射线照射到晶体表面时,其中的晶粒会发生散射。
这个散射过程中,
X射线会与晶体中的原子相互作用,导致X射线改变方向。
这种改变方向的现象
称为衍射,衍射的角度和晶体的结构以及晶格参数密切相关。
X射线衍射测定表面残余应力的原理是利用晶体中晶面的平面间距与入射X射线的衍射角度之间的关系。
当晶体受到残余应力的影响时,晶面的平面间距会发生改变。
这种改变会导致入射X射线的衍射角度产生相应的偏移。
通过测量衍射角
度的改变,可以反推出材料中的残余应力大小和分布情况。
为了获得准确的残余应力测量结果,需要选择合适的晶体材料和衍射仪器。
常
用的晶体材料包括钼、铜和钨等。
衍射仪器通常采用X射线源、衍射仪器和探测
器组成,可以实现对入射X射线的发射和检测。
测量过程中,需要准确控制入射
角度和衍射角度,并进行有效的数据分析和处理。
X射线衍射测定表面残余应力的基本原理可应用于材料工程、金属加工、航空
航天等领域,有助于了解材料的力学性能和结构变化。
通过这种非破坏性的分析方法,可以提高材料的质量控制和设计优化,从而提升产品的可靠性和性能。
X射线衍射方法测量残余应力的原理与方法
X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度围的应力,相对于微观应力存在的围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法主要是测试沿试样表面某一方向上的应力σφ。
x射线衍射法测残余应力
x射线衍射法测残余应力x射线衍射法是一种常用的测量材料中残余应力的方法。
残余应力是指在材料内部存在的无外力作用下的应力状态。
x射线衍射法通过观察材料晶体的衍射图样,可以间接获得材料中的残余应力信息。
在材料制备和加工过程中,常常会产生各种类型的应力,如热应力、机械应力等。
这些应力可能会导致材料的性能下降甚至失效。
因此,了解材料中的残余应力分布情况对于材料的设计和使用具有重要意义。
x射线衍射法测量残余应力的原理是基于布拉格衍射定律。
根据布拉格衍射定律,当x射线入射到晶体上时,会与晶体中的原子产生相互作用,形成衍射峰。
这些衍射峰的位置和强度与晶体中的晶格常数、晶体结构以及晶体内部的应力状态有关。
x射线衍射实验通常使用x射线衍射仪进行。
首先,将待测材料制备成适当的样品,通常为薄片或者粉末。
然后,将样品放置在x射线衍射仪的样品台上,调整x射线的入射角度和入射波长,使得x 射线与样品发生衍射。
通过观察和分析衍射图样,可以得到一些重要的信息。
首先,衍射峰的位置可以计算出晶格常数,从而了解材料的晶体结构。
其次,衍射峰的宽度可以反映出材料中的残余应力大小。
在材料中存在应力时,晶体中的晶面会发生畸变,从而导致衍射峰的展宽。
根据衍射峰的形状和宽度,可以计算出材料中的残余应力大小和分布情况。
x射线衍射法测量残余应力具有许多优点。
首先,它是一种非破坏性的测量方法,可以对样品进行多次测量,而不会对样品的性能和结构造成损害。
其次,x射线衍射法可以测量材料中的残余应力分布情况,而不仅仅是某一个点的应力值。
这对于了解材料的应力状态以及应力的来源具有重要意义。
然而,x射线衍射法也存在一些限制。
首先,它只能测量具有晶体结构的材料,无法对非晶态材料进行测量。
其次,x射线衍射法对于样品的制备要求较高,需要将样品制备成适当的形状和尺寸,并且表面应该光滑且无缺陷。
此外,x射线衍射法对于测量环境的稳定性要求较高,温度和湿度的变化都会对测量结果产生影响。
X射线衍射技术在薄膜残余应力测量中的应用
关键 词 : 残余应 力 ; 平行 光镜 ; 细 管 ; 毛 同步 辐射 源 X 射线 : 二维探 测 器 中图分类号 : TG1 5 2 1. 2 文献标 识 码 : A
文章 编号 :0 19 3 (0 7 1 —7 50 1 0 —7 1 2 0 ) 11 4 —5
随着 转 靶 和 同 步 辐 射 X 射 线 源 等大 功 率 X射 线
X 射线 穿透 深度 很 浅 ( 于传 统 材 料一 般 仅 为几 十微 对 米 ) 因此 可 以认 为 材 料 表 面 处 于 平 面应 力 状 态 , 时 , 这 不 同方位 角 下 测 量 得 到 衍 射 晶 面 的 X射线 衍射 峰 会 发 生相应 的移动 ;( k ) h 1 晶面 间距 dk s 2 成线 I i h与 n
维普资讯
杨
帆 等 : 射 线衍 射 技术 在 薄 膜 残 余 应 力 测 量 中 的 应 用 X
X射 线 衍 射 技 术 在 薄 膜 残 余 应 力测 量 中 的应 用
杨 帆 , 维栋 蒋建 清 费 ,
(1 东 南大 学 材料 科 学与工 程学 院 , . 江苏 南 京 2 1 8 ; 1 1 9 2 哈 尔滨 工 业大 学 材料 科 学与工 程学 院 , 龙江 哈尔 滨 1 0 0 ) . 黑 5 0 1
tu 、 rm) 中子衍 射 法 ( ur ndf a t n 、 痕 法 (n Ne to i rci ) 压 f o i— d nain meh d 和 X 射 线 衍 射 法 ( —a i rc e tt t o ) o X ry df a— f
性 关 系 , 时可 以通 过 拟合 dk s 曲线求 得材 料 此 ~ i h I n 中的残余 应 力 。s 法 测 量残 余 应力 的基 本公 式 如 i n
X射线衍射法残余应力测试
目录1.概述 (2)1.1 X射线残余应力测试技术和测量装置的进展 (2)a.测试技术的进展 (3)b.测量装置的进展 (4)1.2测试标准 (5)2、测定原理及方法: (6)2.1二维残余应力 (6)2.1.1原理 (6)2.1.2方法 (9)2.2三维残余应力 (15)2.2.1沿深度分布的应力测定一剥层法 (16)2.2.2 X射线积分法(RIM) (17)2.2.3 多波长法 (20)3、X射线残余应力测定法的优、缺点 (21)4、一些应用 (22)参考文献: (23)X射线衍射法残余应力测试原理、计算公式、测试方法的优缺点、目前主要应用领域。
1.概述X射线法是利用X射线入射到物质时的衍射现象测定残余应力的方法。
包括X射线照相法、X射线衍射仪法和X射线应力仪法。
1.1 X射线残余应力测试技术和测量装置的进展早在1936年,Glocker等就建立了关于x射线应力测定的理论。
但是当时由于使用照相法,需要用标准物质粉末涂敷在被测试样表面以标定试样至底片的距离,当试样经热处理或加工硬化谱线比较漫散时,标准谱线与待测谱线可能重叠,测量精度很低,因此,这种方法未受到重视,直到二十世纪四十年代末还有人认为淬火钢的应力测定是不可能的。
只有在使用衍射仪后,X射线应力测定才重新引起人们的重视,并在生产中日渐获得广泛应用。
美国SAE在巡回试样测定的基础上,于1960年对X射线应力测定技术进行了全面的讨论。
日本于1961年在材料学会下成立了X射线应力测定分会,并在1973年颁布了X射线应力测定标准方法。
a.测试技术的进展在二十世纪五十年代,X射线应力测定多采用0°~ 45°法(又称两次曝光法),这种方法在dψϕ与sin2ψ有较好的线性关系时误差不大,但当试件由于各种原因,dψϕ与sin2ψ偏离离直线关系时,0°~ 45°法就会产生很大误差。
为了解决这个问题,德国E.Macherauch在1961年提出了X射线应力测定的sin2ψ法,使x射线应力测定的实际应用向前迈进了一大步。
X射线衍射方法测量残余应力的原理与方法
---------------------------------------------------------------最新资料推荐------------------------------------------------------ X射线衍射方法测量残余应力的原理与方法X 射线衍射方法测量残余应力的原理与方法射线衍射方法测量残余应力的原理与方法-STRESSXRD 2009-01-10 21:07:39 阅读 616 评论 2 字号:大中小X 射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在 X 射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力) X 射线衍射谱上的表现是使峰位漂移。
在当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
1/ 12X 射线衍射法测量残余应力的发展 X 射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20 世纪初,人们就已经开始利用 X 射线来测定晶体的应力。
后来日本成功设计出的 X 射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961 年德国的---------------------------------------------------------------最新资料推荐------------------------------------------------------ E.Mchearauch 提出了 X 射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
无损检测技术中的残余应力测量与分析方法剖析
无损检测技术中的残余应力测量与分析方法剖析残余应力是指在物体内部存在的,由于外部加载和热应变引起的应力状态。
残余应力的存在对材料的性能和稳定性有着重要影响,因此在工程领域中需要对其进行准确测量和分析。
无损检测技术在残余应力测量与分析中起到了重要的作用,本文将对无损检测技术中的残余应力测量与分析方法进行剖析。
一、X射线衍射法X射线衍射(XRD)技术是一种常用的测量材料残余应力的方法。
该方法通过分析材料中晶体的衍射图谱来确定其残余应力。
当材料发生应力时,晶格的排列会发生变化,从而引起X射线的衍射角度的变化。
通过测量和分析这种变化,可以得到材料的残余应力信息。
XRD技术具有测量范围广、准确性高、可重复性好等优点。
对于单晶材料,XRD技术能够直接测量晶体中的残余应力,精度较高。
而对于多晶材料,则需要通过倾角扫描或者称为θ-2θ扫描,来获得材料中的残余应力信息。
不过,XRD技术对于非晶态材料的测量精度较低。
二、中子衍射法中子衍射(ND)技术是一种利用中子进行测量的方法,可用于测量材料的残余应力。
中子的波长大约为0.1-1.0纳米,相较于X射线而言,中子的波长更适合用于测量晶体结构。
中子与材料作用时,受到材料中的晶格排列和残余应力的影响,从而产生衍射。
中子衍射技术具有穿透性强、对非晶态材料测量精度高等优点。
相较于XRD技术,中子衍射技术在测量多晶材料的残余应力时精度更高,适用范围更广。
不过,中子衍射技术的设备成本较高,且实验条件要求较为苛刻。
三、位错法位错法是一种基于物理模型的测量残余应力的方法。
位错是材料晶体结构中的缺陷,它们是材料中形成应力的主要机制之一。
位错法通过测量材料中位错的密度和分布来推导残余应力。
位错法具有非常高的空间分辨率和准确性,适用于各种材料的残余应力测量。
位错法可以通过电子显微镜和X射线繁切分析仪等设备进行实施。
但是,位错法需要对材料进行特殊制备和取样,且实验条件更为复杂。
四、光弹法光弹法是一种基于光学和力学原理的测量方法,通过测量光线透过或反射于材料表面时产生的应力光学效应来推断残余应力。
x射线法测残余应力试验方案
x射线法测残余应力试验方案一、试验目的。
咱们为啥要做这个X射线法测残余应力的试验呢?简单来说,就是想知道那些经过加工或者处理后的材料里面还藏着多少“内部压力”。
这残余应力可重要啦,如果控制不好,可能会让材料在使用过程中突然出问题,就像一颗隐藏的小炸弹一样。
所以咱们得把这个残余应力给找出来,好好研究研究。
二、试验材料和设备。
1. 试验材料。
咱们得先找一些有代表性的材料来做试验。
比如说,金属材料可以选铝合金或者钢材,这两种材料在工业上可常见啦,就像大街上到处能看到的汽车和大楼里的钢梁,很多都是用它们做的。
如果想再丰富一点,也可以加上一些陶瓷材料或者复合材料。
这些材料各有各的特点,残余应力的情况肯定也不一样,这样咱们的试验结果就更全面啦。
2. 试验设备。
X射线应力分析仪:这可是咱们的主角,它就像一个超级侦探,可以用X射线把材料内部的应力情况给侦查出来。
要找一台精度高、稳定性好的分析仪,就像找一个厉害的侦探一样重要。
样品夹具:这个夹具的作用就是把咱们的样品稳稳地固定住,让X射线可以准确地对它进行检测。
夹具的设计要根据样品的形状和大小来,就像给每个样品定制一个专属的小椅子一样。
计算机:它和X射线应力分析仪是好搭档,用来记录和分析检测到的数据。
计算机就像一个聪明的小秘书,把分析仪发现的各种信息都整理得井井有条。
三、试验样品准备。
1. 样品尺寸和形状。
对于金属材料的样品,咱们可以把它们加工成小方块或者小圆柱的形状。
尺寸的话,边长或者直径大概在10 20毫米左右就挺合适的,厚度可以是5 10毫米。
这样的尺寸既方便操作,又能保证X射线检测的准确性。
要是陶瓷材料或者复合材料,形状可以更灵活一点。
比如陶瓷可以做成薄片的形状,复合材料可以根据它原本的结构特点,截取合适大小的块状样品。
2. 样品加工和处理。
在加工样品的时候,可一定要小心哦。
尽量采用精密的加工方法,减少加工过程中引入新的残余应力。
比如说用数控加工中心来加工金属样品,这样可以精确地控制加工的参数,就像一个细心的工匠在雕琢一件艺术品一样。
射线衍射方法测量残余应力的原理与方法
X射线衍射方法测量残余应力的原理与方法-STRESSX射线衍射方法测量残余应力的原理与方法什么是残余应力外力撤除后在材料内部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的提出了X 射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
X射线衍射方法主要是测试沿试样表面某一方向上的内应力σφ。
X射线衍射在残余应力分析中的应用
X射线衍射在残余应力分析中的应用杨国彬(测101)摘要 X射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
关键词 X射线衍射残余应力 XRD1引言 X射线衍射在残余应力分析中具有重要的作用。
X射线应用在残余应力的分析中,是科技的一项重大突破。
其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体检测输片惰性轮中的残余应力检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器)检测由于全回火引起的残余应力(家用电器、结构部件)检测气体传导时所存在的工作压力检测大幅度拉伸结构件中的工作应力通过检测应力来测量工件喷丸和轧制的效率检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件)检测焊接引起的应力(激光和电焊)研究铝合金汽车轮廓中的残余应力和应力阻抗的关系优化切削去除的工作参数以提高机械部件的应力阻抗检测螺旋式和叶式弹簧的残余应力研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。
2应用举例(1)DD3镍基单晶高温合金喷丸层残余应力的X射线衍射分析1试样制备与测试方法试验材料为DD3镍基单晶高温合金其化学成分质量分数%为9.6Co8.9Cr6.6W4.3Al2.9Ti3.4Ta2.1Mo将其进行1250℃×4h空冷+870℃×32h空冷的热处理后其组成相为固溶体相和′相晶体结构为立方晶系采用线切割加工出块状试样尺寸为20mm×10mm×4mm单晶111晶向为试样的表面法线方向即单晶111面与试样表面平行对试样原始线切割面进行磨削加工磨削深度超过0.5mm然后进行喷丸处理采用直径为0.2mm的陶瓷丸喷丸强度为0.15mmA型试片确保覆盖率在200%以上使用DmaxrC型X射线衍射仪铜靶K辐射测定331衍射晶面单晶弹性柔度系数S11=7.685×10-12m2N-1S12=-3.067×10-12m2N-1S44=7.752×10-12m2N-1X射线弹性常数K=-519Nmm-2结合电化学腐蚀技术进行剥层分别测试喷丸试样不同层深处单晶组分与多晶组分中的残余应力5由图1可见试样表面法线z轴为晶体n1n2n3方向试样表面某特定方向x轴即晶体w1w2w3方向空间OP方向是hkl晶面的法线方向。
射线衍射方法测量残余应力的原理与方法
X射线衍射方法测量残余应力的原理与方法-STRESSXRD 2009-01-10 21:07:39 阅读719 评论3 字号:大中小订阅X射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
x射线衍射仪 残余应力
x射线衍射仪残余应力残余应力是指在物体内部或表面存在的一种力。
在材料制备、加工或使用过程中,由于温度变化、机械载荷或相变等原因,会导致材料内部或表面发生应力分布的变化。
这种应力分布在去除外部载荷后仍然存在,称为残余应力。
残余应力的存在对材料的性能和稳定性产生重要影响,因此对残余应力的测量和分析具有重要意义。
x射线衍射是一种常用的测量残余应力的方法。
通过将x射线照射到材料上,然后测量射线经过材料后发生的衍射现象,可以获得材料内部的应力分布信息。
x射线衍射仪是用于实现这一目的的仪器设备。
x射线衍射仪由发射装置、衍射装置和检测装置组成。
发射装置主要用于产生x射线束,通常使用x射线管作为发射源。
衍射装置用于将x射线束照射到样品上,并收集衍射光。
检测装置用于测量衍射光的强度和角度,从而得到样品的衍射图样。
在使用x射线衍射仪进行残余应力测量时,首先需要准备样品。
样品的准备包括切割、抛光和清洗等步骤,以保证样品表面的平整度和干净度。
然后将样品放置在衍射装置中,调整衍射仪的参数,如入射角、衍射角和衍射距离等,以获得清晰的衍射图样。
得到衍射图样后,需要进行衍射图样的解析和数据处理。
通过测量衍射角和计算衍射峰的位置和强度,可以推导出材料的晶格参数和残余应力。
其中,晶格参数反映了材料的结构特征,残余应力则可以通过衍射峰的位移和展宽来得到。
残余应力的测量结果可以用于评估材料的性能和可靠性。
残余应力的存在会导致材料的变形和损伤,影响材料的力学性能和寿命。
因此,合理控制和管理残余应力对于材料的制备和使用具有重要意义。
通过x射线衍射仪的测量,可以及时发现和监测材料中的残余应力,为材料的设计和使用提供科学依据。
除了残余应力的测量,x射线衍射仪还可以用于其他领域的研究和应用。
例如,通过测量晶体的衍射图样,可以推导出晶体的结构信息,对于材料的研究和开发具有重要意义。
此外,x射线衍射仪还可以用于研究材料的相变行为、表面膜的结构等。
x射线衍射仪是一种重要的工具,可以用于测量材料中的残余应力。
残余应力测试报告
残余应力测试报告1. 引言残余应力是物体在经历了外力作用后,消除外力作用后仍然存在的内部应力状态。
残余应力测试是一种评估材料或构件内部应力状况的方法,对于判断材料的工艺性能以及结构的可靠性具有重要意义。
本报告旨在对进行残余应力测试的方法、测试结果以及结论进行详细的描述。
2. 测试方法在本次残余应力测试中,我们使用了非破坏性测试方法进行测试,具体测试方法如下:1.X射线衍射法:X射线衍射法是一种常用的测试方法,可通过测量材料中的晶体结构来估计残余应力的大小和分布。
在测试中,我们使用了X射线衍射仪对待测试材料进行扫描,并分析衍射图谱来获得残余应力的信息。
2.中子衍射法:中子衍射法与X射线衍射法相似,但使用的是中子束而不是X射线束。
中子具有与材料发生相互作用时不同于X射线的特性,因此中子衍射法可以提供不同的测试结果。
我们在本次测试中也使用了中子衍射法来对测试样品进行分析。
3.光栅法:光栅法是一种基于光学原理的残余应力测试方法。
通过测量材料表面反射光的偏移来获得残余应力的信息。
在测试中,我们使用了专用的光栅仪器来对测试样品进行测试。
3. 测试结果经过以上测试方法的应用,我们获得了如下的测试结果:1.X射线衍射法:通过X射线衍射仪对样品进行测试后,我们得到了样品不同区域的衍射图谱。
进一步分析衍射图谱,我们获得了样品中的残余应力分布情况。
测试结果显示,在样品的表面以及深入一定厚度的地方都存在着不同程度的残余应力。
2.中子衍射法:使用中子衍射仪器对样品进行测试后,我们得到了样品的中子衍射图谱。
通过分析图谱,我们发现样品的不同位置存在着不同的残余应力大小。
尤其是在样品的焊接处以及表面附近的区域,残余应力较高。
3.光栅法:通过光栅仪器对样品进行测试,我们观察到样品表面的光栅条纹发生了偏移。
根据光栅条纹的偏移情况,我们可以推测样品的残余应力分布情况。
测试结果显示,在样品的边缘处以及焊接部位都存在着较大的残余应力。
4. 结论根据以上测试结果,我们得出了以下的结论:1.测试样品在进行加工和焊接过程中产生了残余应力,并且这些残余应力在不同区域存在着差异。
(整理)X射线衍射方法测量残余应力的原理与方法.
X射线衍射方法测量残余应力的原理与方法-STRESSXRD 2009-01-10 21:07:39 阅读719 评论3 字号:大中小订阅X射线衍射方法测量残余应力的原理与方法什么是残余应力?外力撤除后在材料内部残留的应力就是残余应力。
但是,习惯上将残余应力分为微观应力和宏观应力。
两种应力在X射线衍射谱中的表现是不相同的。
微观应力是指晶粒内部残留的应力,它的存在,使衍射峰变宽。
这种变宽通常与因为晶粒细化引起的衍射峰变宽混杂在一起,两者形成卷积。
通过测量衍射峰的宽化,并采用近似函数法或傅立叶变换方法来求得微观应力的大小。
宏观应力是指存在于多个晶体尺度范围内的应力,相对于微观应力存在的范围而视为宏观上存在的应力。
一般情况下,残余应力的术语就是指在宏观上存在的这种应力。
宏观残余应力(以下称残余应力)在X射线衍射谱上的表现是使峰位漂移。
当存在压应力时,晶面间距变小,因此,衍射峰向高度度偏移,反之,当存在拉应力时,晶面间的距离被拉大,导致衍射峰位向低角度位移。
通过测量样品衍峰的位移情况,可以求得残余应力。
X射线衍射法测量残余应力的发展X射线衍射法是一种无损性的测试方法,因此,对于测试脆性和不透明材料的残余应力是最常用的方法。
20世纪初,人们就已经开始利用X射线来测定晶体的应力。
后来日本成功设计出的X射线应力测定仪,对于残余应力测试技术的发展作了巨大贡献。
1961年德国的E.Mchearauch提出了X射线应力测定的sin2ψ法,使应力测定的实际应用向前推进了一大步。
X射线衍射法测量残余应力的基本原理X射线衍射测量残余内应力的基本原理是以测量衍射线位移作为原始数据,所测得的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。
其基本原理是:当试样中存在残余应力时,晶面间距将发生变化,发生布拉格衍射时,产生的衍射峰也将随之移动,而且移动距离的大小与应力大小相关。
用波长λ的X射线,先后数次以不同的入射角照射到试样上,测出相应的衍射角2θ,求出2θ对sin2ψ的斜率M,便可算出应力σψ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 (c33 33 e33 ) ( 1 2 ) 3 (c13 33 e31e33 )
由此得到铁电薄膜残余应力测量公式:
' cot 0
(2 ) 360 (sin 2 )
(2)
其中 '为压电耦合因子:
2 2 2 (c11 c12 )(c33 33 e33 ) 4c13e31e33 2c13 33 2e31 c33 ' 2 2(c13 33 e31e33 ) (c33 33 e33 )
44.34 44.33
2
44.28 44.26 44.24
2
44.32 44.31 44.30
0.0
0.1
0.2
2
0.3
0.4
0.5
0.0
0.1
0.2
2
0.3
0.4
0.5
sin
44.35 44.34 44.33
70
衍射强度 (a. u.)
PZT(100)
30
PZT(110)
40
50
60
2 ( 度 )
不同退火温度制备的PZT铁电薄膜样品的 XRD 图谱, 其中: (a) 750℃; (b) 650℃; (c) 600℃。
3. 四点法
Siemens D500 X-射线织构衍射仪
分别取ψ = 0º 、15º 、30º 和45º ,用慢速度(1º /min)对选定的 hkl 峰进行扫描,并将实验数据输入计算机,用OriginPro 8.0 软件绘图,以抛物线拟合定峰位。
(1)
Gergaud J. Appl. Phys. 2003 , 94: 1584.
铁电材料残余应力的测量公式
铁电体不满足胡克定律,需引入压电本构方程:
1 c11 1 c12 2 c13 3 e31 E z 2 c12 1 c11 2 c13 3 e31 E z 3 c13 1 c13 2 c33 3 e33 E z D z e31 1 e31 2 e33 3 33 E z
10000
Pt(111)
PZT(002)
6000 4000 2000 0 20
PZT(112)
8000
a b c
当 2q 取值大于 70 度,受硅基底衍射 峰的影响无法获取 准确的 PZT 薄膜衍 射峰位,因此只能 在小于 70 度的范围 内选取测量残余应 力的衍射峰,本例 取 2q 为 44 度附近 的(002)峰。
z
0 3 0 3 ( )
d 3 (d )
, d
y
p
2,2
x
1, 1
, x ,
薄膜表面任意点 p 的应力状况示意图.
X射线衍射的布喇格定律
n 2d sin
n
衍射级数 入射X射线波长 θ 衍射角
d 晶面间距
各向同性弹性体残余应力的测量公式
3 1 sin 2 cos 2 2 sin 2 sin 2 3 sin 2
1 x sin 2 E
(材料力学相关原理) (布喇格定理推论)
d / d0 cot 0 ( 0 )
(2 ) (2 ) E cot 0 = cot 0 2 (1 ) 360 sin 360 sin 2
实验:X射线衍射技术用于 铁电薄膜残余应力的测量
主讲教师:郑学军
实验目的
1. 了解铁电薄膜残余应力的特点。
2. 掌握X射线衍射法测量压电/铁电薄 膜材料表面残余应力的原理和实验 方法。
实验设备及器材
1. 设备:Siemens D500 X射线织构衍 射仪、计算机 。
2. 工具软件:Origin Pro 8.0
3. 试样:不同工艺参数制备的PZT薄膜。
实验原理概述
薄膜的残余应力
材料及器件内部的应力状态对器件的可 靠性和使用寿命有重要影响。残余应力 是器件或材料在不受外力作用的情况下, 其内部固有的在自身范围内平衡的应力 场。
一般将铁电薄膜表面残余应力作为平面 应力处理,即假设其主应力 σ1 和 σ2 平行 于薄膜表面,在试样表面法线方向的主 应力σ3 = 0。
(a)
(b)
=45
o
(c)
=45
o
=45
o
衍射强度 (a.u.)
衍射强度 (a.u.)
=30
o
=30
o
衍射强度 (a.u.)
=30
o
=15
o
=15 =0
o
0
o
44.0
44.4 2 ( 度 )
44.8
44.0
44.4 2 ( 度 )
44.8
44.0
44.4 2 ( 度 )
(3)
' 则简化为: 对于各向同性弹性体, E 1
Zheng Acta Mater. 2004, 52: 3313.
实验步骤
1. 检查样品
本实验提供3片不同退火温度下制备的 PZT(镐钛酸铅)铁 电薄膜样品,首先检查样品是否完好。
PZT 薄膜 Pt 底电极 Ti过渡层 Si 基底 PZT/Pt 界面
断面示意图
Pt/Ti界面 Ti/SiO2/Si(100)界面
不同退火温 度制备的样 品表面形貌
7500C
6000C
6500C
2.全谱扫描
Siemens D500 X-射线织构衍射仪
对样品作 2θ = 10°~ 70°范围的全谱扫描,根据衍射峰 位及峰高,选择合适的高角度峰以进行下一步测量工作。
Si(004)
44.8
不同退火温度制备的PZT铁电薄膜样品(002)晶面在不同掠射角 y 下 的 XRD 图形: (a) 600oC; (b) 650oC; (c) 750oC。
4. 拟合2θ—sin2Ψ 关系
分别对各样品作 2q-sin2y 图,用最小二乘法拟合直线并求出斜率。
44.35
44.34 44.32 44.30
c11 , c12 , c13 , c33 弹性常数
33 介电常数
e31 , e33 压电常数
以及力、电边值条件:
3 0, Dz 0
Ez
Zheng Acta Mater. 2003, 51: 3985 .
(c33 e31 e33 c13 ) 3 (e33 e31 c13 33 )