Broadband Spectral Properties of Bright High-Energy Gamma-Ray Bursts Observed with BATSE an
傅里叶红外光谱的英文
傅里叶红外光谱的英文傅里叶红外光谱的英文I. IntroductionInfrared spectroscopy is a common analytical method used for studying the chemical properties of a sample. Fourier transform infrared spectroscopy (FTIR), also known as Fourier transform infrared (FTIR) analysis, is a type of infrared spectroscopy that uses a Fourier transform to obtain the spectral information. In this article, we will discuss the English terminology used for FTIR.II. Basic Terminology1. Infrared spectrum: a representation of the absorption or transmission of infrared radiation as a function of wavelength or frequency2. Spectral range: the range of wavelengths or frequencies measured in the infrared spectrum3. Wavenumber: the reciprocal of wavelength, measured in cm-1 in the FTIR spectrum4. Absorbance: the logarithm of the ratio of the incident radiation to the transmitted radiation, measured in the FTIR spectrum5. Peak: a point on the FTIR spectrum that corresponds to a specific vibrational mode of the sample6. Baseline: the absorption background in the FTIR spectrumIII. Sample PreparationBefore performing FTIR analysis, the sample must be prepared in the formof a thin film or powder to ensure uniformity of the sample.IV. InstrumentationFTIR analysis requires a Fourier transform infrared spectrometer, which consists of a source, interferometer, and detector. The sample is placed in the path of the infrared beam generated by the source and the transmitted or absorbed radiation is measured by the detector. The interferometer is used to obtain the interferogram, which is then transformed into the FTIR spectrum.V. ApplicationsFTIR is used in various fields such as chemistry, pharmaceuticals, and material science. It is commonly used for the identification of unknown compounds, characterization of functional groups, and monitoring of chemical reactions.VI. ConclusionFTIR analysis is a powerful technique for studying the chemical properties of a sample. Understanding the basic terminology and instrumentation used in FTIR is essential for accurate interpretation of the spectral data.。
宽带近红外荧光粉KScP2O7∶Cr3+的发光特性研究及近红外LED_器件应用
第 44 卷第 12 期2023年 12 月Vol.44 No.12Dec., 2023发光学报CHINESE JOURNAL OF LUMINESCENCE宽带近红外荧光粉KScP2O7∶Cr3+的发光特性研究及近红外LED器件应用马子婷,张先哲,戴鹏鹏*,沈丽娜*(新疆师范大学物理与电子工程学院,新疆发光矿物与光功能材料研究自治区重点实验室,新疆乌鲁木齐 830054)摘要:近红外(NIR)器件的小型化和智能化需求推动了高效宽带近红外荧光粉的设计与发展。
目前,Cr3+激活的宽带近红外荧光粉主要采用传统的多格位共占据策略设计实现。
然而,由于处在不同晶体学格位的Cr3+热猝灭行为不一致和光谱稳定性差等问题,导致其实际应用受限。
本文基于单格位占据策略,采用高温固相法制备了一系列宽带近红外荧光粉KSc1-x P2O7∶x Cr3+(x = 0.01~0.09),并对其晶体结构、发光性能及热猝灭机理进行分析。
研究结果表明,在x = 0.03 时,KSc0.97PO7∶0.03Cr3+(KSP∶0.03Cr3+)样品发光强度达到最大值,随后出现浓度猝灭现象,该现象主要归因于相邻Cr3+‐Cr3+之间的能量传递。
在蓝光激发下,KSP∶0.03Cr3+样品光谱覆盖700~1 200 nm,发射主峰位于857 nm,半高宽为149 nm。
此外,通过晶体结构和低温光谱分析以及对Cr3+所处晶体场强度计算,表明该宽带近红外发射的实现归因于Cr3+占据处于弱晶体场(D q/B = 1.98)的Sc3+晶体学格位。
在高温373 K时,样品的发光强度为室温下发光强度的60.2%,表明该荧光粉具有良好的热稳定性。
最后,利用该荧光粉与蓝光LED芯片制备了近红外荧光粉转换型LED(NIR pc‐LED)器件,证实该荧光粉在生物医学成像、夜视以及食品检测方面具有潜在应用价值。
关键词:近红外荧光粉;单格位占据策略;宽带发射; Cr3+掺杂; NIR pc-LED中图分类号:O482.31 文献标识码:A DOI: 10.37188/CJL.20230218Luminescence Properties of KScP2O7∶Cr3+ Broadband Near-infraredPhosphor and Application of Near-infrared LED DeviceMA Ziting, ZHANG Xianzhe, DAI Pengpeng*, SHEN Lina*(Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials,School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China)* Corresponding Authors, E-mail:394641236@;94423609@Abstract:The miniaturization and enhanced intelligence of near infrared (NIR)devices have stimulated the de‐sign and advancement of high-efficiency broadband NIR phosphors. It is widely believed that multisite co-occupancy strategy by Cr3+ ions is a very effective method for designing broadband near-infrared phosphors. However, Cr3+ ions at different crystallographic sites often exhibit distinct thermal-quenching behaviors, leading to poor spectral stabili‐ty,which hampers their practical applications.In our work,we prepared a series of KSc1-x P2O7∶x Cr3+(x= 0.01-0.09) broadband NIR phosphors via the high temperature solid-state method using the one-site occupation strategy.The crystal structure, luminescence performance and thermal quenching mechanism of KSc1-x P2O7∶x Cr3+ were inves‐tigated in detail. At x = 0.03 , the luminescence intensity of KSc0.97P2O7∶0.03Cr3+(KSP∶0.03Cr3+) reaches its maxi‐mum. The concentration quenching appears when x exceeds 0.03, which is attributable to energy transfer between文章编号: 1000-7032(2023)12-2158-10收稿日期:2023‐09‐20;修订日期:2023‐10‐08基金项目:国家自然科学基金(62264014,52262029,51762040);新疆维吾尔自治区自然科学基金(2021D01E19,2022TSY‐CXC0016);新疆师范大学青年科技创新人才项目(XJNUQB2022‐15);新疆维吾尔自治区研究生科研创新项目(XSY202201013)Supported by National Natural Science Regional Foundation of China(62264014,52262029,51762040); Natural Science Foun‐dation of Xinjiang Uygur Autonomous Region(2021D01E19,2022TSYCXC0016); Project of Youth Science and Technology In‐novation Talent Project of Xinjiang Normal University(XJNUQB2022‐15);Postgraduate Research and Innovation Project ofXinjiang Uygur Autonomous Regions(XSY202201013)第 12 期马子婷,等:宽带近红外荧光粉KScP2O7∶Cr3+的发光特性研究及近红外LED器件应用adjacent Cr3+-Cr3+. Under blue light excitation of ~ 471 nm, the KSP∶0.03Cr3+ phosphor exhibits a broadband emis‐sion ranging from 700 nm to 1 200 nm, with a peak centered at 857 nm and a full width at half-maximum (FWHM)of ~149 nm. Structural analysis and low temperature spectroscopy indicate that the broadband NIR emission originate from Cr3+ occupying a single Sc3+ site with the weak crystal field (D q/B = 1.98) in the KSP host. At 373 K, the inte‐grated emission intensity of KSP∶0.03Cr3+ sample keeps 60.2% of that at room temperature, suggesting good PL ther‐mal stability.Finally,we prepared a near-infrared phosphor-converted LED device (NIR pc-LED)by utilizing the KSP∶0.03Cr3+ NIR phosphor and a blue light LED chip, and confirm its potential applications in night vision, bio‐medical imaging, and food detection.Key words:near-infrared phosphor; one-site occupation strategy; broadband emission; Cr3+; NIR pc-LED1 引 言近红外光谱分析是一种高效、无损的分析技术,广泛应用于夜视照明、植物生长和生物成像等领域。
作者姓名:阿布都瓦斯提·吾拉木
作者姓名:阿布都瓦斯提·吾拉木论文题目:基于n维光谱特征空间的农田干旱遥感监测作者简介:阿布都瓦斯提·吾拉木,男,1975年2月出生,于2006年7月获北京大学理学博士学位。
2006年12月至今任美国圣路易斯大学环境科学中心Geospatial Analyst/Research Professor。
中文摘要农田生态系统是一个水分、土壤、植被、大气等诸多因素耦合的复杂系统(SPAC,Soil-Plant-Atmosphere Continuum)。
在农田生态系统水循环中,水分亏缺的积累使农田供水量在一定的时间段内不能满足作物需水量,导致农田干旱的发生。
农田干旱直接和间接地影响人类生存、社会稳定、农业生产、资源与环境可持续发展。
正确评价或预防农田干旱,对促进农业生产和区域可持续发展具有重要的现实意义。
遥感具有客观反映农田水分时空变化的监测能力。
国内外农田遥感干旱监测研究表明:在复杂地表环境下,单纯采用可见光、近红外、热红外或微波波段都无法全面、准确反映农田水分信息,其方法在农田水分监测中暴露出诸多问题,如水分监测的滞后效应、模型复杂、参数的不确定性和过度依赖于田间和气象观测资料等,不能适应全面、动态的农田干旱监测与农田水分信息提取的迫切需求。
利用定量遥感方法,实现准确的农田干旱信息提取一直是遥感应用领域亟待解决的重要科学问题之一。
基于多维光谱特征空间的农田干旱信息提取,可以综合多源遥感的优势,为干旱监测提供更丰富、更高分辨率的农田水分信息,有望去除以往的遥感干旱模型带来的监测效果滞后、模型复杂、参数的不确定性等问题,形成农田干旱遥感监测新方法。
本论文以可见光近红外2维光谱空间干旱建模为切入点,通过加入短波红外,进一步拓宽遥感干旱监测的波段和地表生态物理参数,构建了反演土壤水分、叶片/冠层含水量(EWT)和叶片/冠层相对含水量(FMC)等参数的遥感模型,针对农田干旱最关键的两个指标土壤水分和叶片/冠层含水量,建立了多个干旱监测模型,形成了以n维光谱特征空间为基础的农田遥感干旱监测的新方法。
一种基于n-ZnSp-CuSCN 纳米薄膜的高开关比和稳定性紫外光电探测器
第43卷第6期2022年6月Vol.43No.6June,2022发光学报CHINESE JOURNAL OF LUMINESCENCEA Stable UV Photodetector Based on n-ZnS/p-CuSCNNanofilm with High On/Off RatioWEI Yao-qi,QUAN Jia-le,ZHAO Qing-qiang,ZHOU Ming-chen,HAN San-can*(College of Materials and Chemistry,University of Shanghai for Science and Technology,Shanghai200093,China)*Corresponding Author,E-mail:mickey3can@Abstract:Herein,We fabricated a CuSCN nanofilm ultraviolet(UV)photodetector(PD)using an in situ growth method.When the bias is-1V and the incident light is350nm,the on/off ratio of the CuSCN PD is~94,and the rise/decay time is~1.41s/1.44s.However,such a device still cannot be called a high-performance photodetector.To improve the optoelectronic properties of CuSCN nanofilm further,we fabricated a UV photodetector based on n-ZnS/p-CuSCN composite nanofilm and analyzed its morphology,composition,and properties.The photocurrent and dark current of the ZnS/CuSCN UV photodetectors are1.22×10-5A and4.8×10-9A,respectively(at-1V,350nm).The ZnS/CuSCN nanofilms on/off ratio of~2542and rise/decay time is0.47s/0.48s.Besides,the n-ZnS/p-CuSCN nanofilm UV PDs have the best responsivity and detectivity at350nm with5.17mA/W and1.32×1011Jones,re‑spectively.In addition,the n-ZnS/p-CuSCN composite film is stable at room temperature,which indicates its great potential as a high-performance UV photodetector.Key words:photodetector;p-n junction;ZnS/CuSCN;on/off ratioCLC number:TN23Document code:A DOI:10.37188/CJL.20220069一种基于n-ZnS/p-CuSCN纳米薄膜的高开关比和稳定性紫外光电探测器魏瑶琪,全家乐,赵庆强,邹明琛,韩三灿*(上海理工大学材料与化学学院,上海200093)摘要:通过原位生长法制备了一种CuSCN纳米薄膜紫外光电探测器,在-1V偏压下,入射光为350nm时,CuSCN紫外光电探测器的开关比~94,响应/恢复时间~1.41s/1.44s。
灯和灯系统的光生物安全性 EN 62471
.
Introduction
IEC/EN 62560 ―Self-ballasted LED-lamps for general lighting services
>50V – Safety specifications‖ (自镇流LED灯)
Clause 5.2 c) —— For eye protection, see requirements of IEC 62471
.
Introduction
Ultraviolet radiation (UV)
Optical radiation for which the wavelengths are shorter than those for visible radiation. Note: For ultraviolet (UV) radiation, the range between 100 nm and 400 nm is commonly subdivided into: UV-A, from 315 nm to 400 nm; UV-B, from 280 nm to 315 nm; and UV-C, from 100 nm to 280 nm. 紫外辐射 波长小于可见辐射波长的光辐射。 100 nm - 400 nm范围内的紫外辐射通常被分为:UV-A (315 nm – 400 nm)、UV-B (280 nm – 315 nm)、UV-C (100 nm – 280 nm)。
.
Introduction
Infrared radiation (IR)
Optical radiation for which the wavelengths are longer than those for visible radiation. Note: For infrared radiation, the range between 780 nm and 106 nm is commonly subdivided into: IR-A (780 nm to 1400 nm), IR-B (1400 nm to 3000 nm), and IR-C (3000 nm to 106 nm). 红外辐射 波长大于可见辐射波长的光学辐射。 780 nm到106 nm这个区域的红外辐射通常被分为:IR-A(780 nm – 1400 nm)、IRB(1400 nm – 3000 nm)、IR-C(300 nm – 106 nm)。
Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser
June1,1997/Vol.22,No.11/OPTICS LETTERS799 Noiselike pulses with a broadband spectrumgenerated from an erbium-doped fiber laserM.Horowitz,Y.Barad,and Y.SilberbergDepartment of Physics of Complex Systems,Weizmann Institute of Science,Rehovot76100,IsraelReceived January2,1997An erbium-doped fiber laser that produces a train of intense noiselike pulses with a broadband spectrum anda short coherence length is reported.The noiselike behavior was observed in the amplitude as well as inthe phase of the pulses.The maximum spectral width obtained was44nm.The high intensity and theshort coherence length of the light were maintained even after propagation through a long dispersive fiber.A theoretical model indicates that this mode of operation can be explained by the internal birefringence ofthe laser cavity combined with a nonlinear transmission element and the gain response of the fiber amplifier.©1997Optical Society of AmericaDuring the past few years,lasers based on erbium-doped fiber amplifiers have been intensively investi-gated.Such lasers are compatible with semiconductor pump lasers and can generate light in a well-confined diffraction-limited mode.Several laser configura-tions were suggested and demonstrated for ultrashort pulse sources1as well as narrow-band cw lasers.2For several important applications,in particular in op-tical metrology,light sources with short coherence lengths are essential.LED’s,which generate broad-band noise,are commonly used for such applications; however,the power of LED’s is limited.Optical amplifiers such as erbium-doped fibers have been as spontaneous-emission sources or as light amplifiers to LED’s.However,the power of such sources is limited because of the continuous mode of operation of the device.A further increase in the optical power could improve the performance of optical systems that use such sources.In this Letter we report a pulsed erbium-doped fiber laser that generates a train of high-intensity,broadband,noiselike pulses.A theoretical model indicates that this mode of operation can be explained by the internal birefringence of the laser cavity combined with a nonlinear transmission element and the gain response of the fiber amplifier.Figure1shows the laser configuration schemati-cally.We used a modified ring fiber cavity,simi-lar to those used for passive mode locking through nonlinear polarization rotation,3which contained an erbium-doped fiber,two polarization controllers,a po-larizer,and an isolator.We found that a second polarizer between the polarization controllers was needed to control and to broaden the spectrum of the laser.This element provides additional intracav-ity pulse shaping4and helps to produce a smooth and broad spectrum.We achieved noiselike generation in a long cavity͑ഠ15m͒with a significant birefringence that was caused by the erbium-doped fiber and by winding some of the cavity fibers.In most of our experiments the overall dispersion was significantly positive because of inclusion of a3-m section fiber with positive group dispersion͓d75ps͑͞nm͞km͔͒. Although noiselike behavior could have been achieved without it,we found that positive dispersion improved the stability of the laser.The laser was pumped with a master-oscillator power-amplifier laser with a wavelength of985nm.When the laser was pumped above threshold,we observed a train of pulses with a repetition rate of 6.7MHz and a pulse duration of the order of100ps by using a fast detector and a sampling scope.The laser output was polarized and had an average power ofϳ10mW and a peak power ofϳ15W.We could change the pulse width by adjusting the polarization controllers or by changing the pump power.However, long and noiselike pulses were generated,even at pump powers close to the threshold.We could obtain shorter noiselike pulses with widths of the order of tens of pi-coseconds by changing the length of the positive disper-sion fiber.The optical spectrum,shown in Fig.2(a), was broad and smooth.The background-free second-harmonic autocorrelation trace shown in Fig.2(b)con-sisted of a190-fs peak riding upon wide and smooth shoulders that extended over the entire width of our measurement window of20ps.The ratio between the peak intensity and the shoulder level of the autocorre-lation trace was close to2.The maximum spectrum width obtained was44nm[Fig.2(c)].We stress that broad and smooth spectra were obtained only after we inserted the additional intracavity pulse shaping.The optical spectrum and the autocorrelation trace indicate that the laser generates noiselike pulseswith Fig.1.Schematic setup of the laser:PC’s,polarization controllers;P’s,polarizers;ISO,isolator;DCF,positive-dispersion fiber;Er,erbium-doped fiber amplifier.0146-9592/97/110799-03$10.00/0©1997Optical Society of America800OPTICS LETTERS/Vol.22,No.11/June1,1997Fig.2.(a)Optical spectrum and(b)the corresponding background-free autocorrelation trace of the laser output.(c)Spectrum with the maximum spectral width that was obtained.low coherence lengths and broad spectra.The auto-correlation measurement was noncollinear and there-fore was affected only by the intensity of the light and not by its phase.The ratio of2between the peak in-tensity and the shoulder level of the autocorrelation trace indicates that the power of the noiselike part of the pulse intensity is similar to the average pulse power.Therefore we can conclude that most of the pulse amplitude consists of noise and does not have a significantly ordered structure.We believe that the phase of the pulse has noiselike behavior similar to that measured for the amplitude.Indeed,the maxi-mal spectral width that was measured corresponds to a coherence time ofϳ50fs.Note that a figure-8-shaped fiber laser was reported to operate in a long-pulse mode,5which was attributed to modulational instabil-ity.However,modulational instability normally leadsto structured spectra and autocorrelation traces,which we did not observe in our experiments.The narrow peak in the autocorrelation trace wasmaintained even after the pulses propagated through a long dispersive medium.For example,after apulse passed through700m of a standard fiber ͓d216ps͑͞km͞nm͔͒,the half-width of the autocor-relation peak increased from190to380fs and thepeak value decreased by approximately a factor of2.A transform-limited pulse with a similar bandwidth is expected to broaden by more than3orders of mag-nitude after propagating through a similar fiber,and the maximum intensity of the autocorrelation trace would be attenuated by6orders of magnitude.We believe that the phase distortion caused by the fiber dispersion is relatively weak compared with the initial noise of the pulses and therefore has only a small effect on the coherence.This property could be important for optical measurements that need to be carried out through long fibers.An interesting question is:What are the pulse-to-pulse changes in this laser or,equivalently,to what extent are the modes of this laser locked?The fixed repetition rate and the constant pulse envelope suggest at least partial mode locking.The transition from cw to pulsed operation is sudden;the spectrum becomes wide and continuous,suggesting the onset of mode locking.In cavities in which the overall dispersion was smallwe could switch between a noiselike mode of operationand a single-pulse mode by adjusting the polarization controllers.We verified that for noiselike operation the polarization controllers were set at midrange be-tween maximal and minimal transmissivity of the po-larizers for low-power signals.The birefringence in our laser was significant.Theeffect of the birefringence combined with the gainresponse of the amplifier could be experimentally observed when the laser was operated in a continuous mode.In this case we could control the laser frequency over a wide range,between1541and1565nm and near 1535nm,by adjusting the polarization controllers. The birefringence of fiber lasers was analyzed and used for controlling the frequency of a cw laser.6Because the birefringence inside our laser cavity is not uniform, the frequency dependence of the linear transmissivity of the cavity has a complex behavior.We estimate the average birefringence of our laser to be D n531026.To explain the formation of the pulsed noiselike oper-ation mode we modeled a laser that comprised three elements:a fiber(with dispersion and Kerr effect), an optical amplifier,and a nonlinear transmission ele-ment.The total dispersion wasϳ0.2ps͞nm.To ana-lyze the nonlinear element we used a simplified model for nonlinear polarization rotation in a birefringent fiber.7,8The power of linearly polarized light trans-mitted through a birefringent fiber and a polarizer is given by8P tP0sin2͓͑f NL1f0͒͞2͔sin2͑2u͒,(1)June1,1997/Vol.22,No.11/OPTICS LETTERS801Fig.3.(a)Calculated time-dependent intensity and(b) autocorrelation trace obtained by numerical solution of the theoretical model after300iterations.where P0is the input power;u is the angle between the polarization of the incident wave and one of the principal axes of the fiber(denoted x and y);f0k0͑n x2n y͒l is the phase difference induced by thefiber birefringence,where n x and n y are the refractive indices for light polarized along the x and the y axes, respectively;k0is the wave number in vacuum;l is the fiber length;and f NLg l͑P x2P y͒͞3is the non-linear phase difference,where P x and P y are powers of the light components polarized along the x and the y axes and is g the nonlinear coefficient.Assuming a peak intracavity power of P150W and a nonlinear coefficient of g4W21km21,the interaction length needed for a nonlinear phase shift of p between the two polarization components isϳ15m.In our laser the birefringence is significant,and polarization-dependent delay(PDD)should be in-cluded.We included it in the frequency domain, where each frequency component was assigned a different bias phase delay f0.The model also in-cluded the spectral dependence of the amplifier.We took these effects into account by transforming the nonlinear transmissivity into the frequency domain, adding the frequency dependence of the transmission, and then transforming the result back into the time domain.The nonlinear phase shift was calculated in the time domain,but,to simplify our calculations,we did not include the PDD.A more precise model,which includes a more accurate modeling of the nonlinear polarization rotation,9has been described.We expectthe same general behavior to be reproduced.Figure3shows the time-dependent intensity and the calculated autocorrelation trace obtained by inte-gration of the laser equations numerically.We usedspontaneous emission,modeled as white noise,to initi-ate the oscillation.Noiselike behavior,similar to thatmeasured in the experiments,was obtained after a fewiterations.Our calculations reproduce the noiselike intensity,which leads to an autocorrelation trace witha narrow coherent peak and wide shoulders.Note thatthe noise is leading to nearly full modulation of the laser intensity.To simplify the calculations,we chosethe pulse duration in the simulations to be shorter thanthose measured in the experiments.Our laser cannot support short pulses because of thestrong positive dispersion and the significant birefrin-gence,which introduces significant PDD.Dispersion tends to broaden short pulses,and birefringence splitsthem through PDD.However,our laser does not sup-port long,narrow-band pulses because of the frequency dependence of the nonlinear element transmissivity ascaused by the birefringence and by the gain responseof the amplifier.Long,narrow-band pulses tend to be unstable owing to the growth of noise components thatare added to the pulses and have a bias phase͑f0͒that causes high nonlinear differential gain.Hence the only stable mode of operation available is the for-mation of noiselike bursts,as we have observed experi-mentally and theoretically.We have reported a new erbium-doped fiber laserthat produced a train of long noiselike100-ps pulseswith a unique broad spectrum as wide as44nm. Such a wide spectrum is useful in many applica-tions in metrology for which low coherence is re-quired.Unlike most other sources for low-coherence light,this laser output is produced with relatively high peak power in well-defined pulses.We believe that this new source will offer these advantages for many applications in fiber-optics measurements and other fields.This research was supported in part by a grant fromthe Israeli Ministry of Science.References1.M.E.Fermann,Appl.Phys.B58,197(1994).2.M.Horowitz,R.Daisy,B.Fischer,and J.L.Zyskind,Opt.Lett.19,1406(1994).3.H. A.Haus, E.P.Ippen,and K.Tamura,IEEE J.Lightwave Technol.30,200(1994).4.G.P.Agrawal,Nonlinear Fiber Optics,2nd ed.(Aca-demic,San Diego,Calif.,1995),p.247.5.R..H.Stolen,J.Botineau,and A.Ashkin,Opt.Lett.7,512(1982).6.K.I.Kitayama,Y.Kimura,and S.Seikai,Appl.Phys.Lett.46,317(1985).7.H.G.Winful,Opt.Lett.11,33(1986).8.D.J.Richardson,ming,D.N.Payne,V.Matsas,and M.W.Phillips,Electron.Lett.27,542,730(1991).9.U.Ghera,N.Konforti,and M.Tur,IEEE Photon.Technol.Lett.4,4(1992).。
两类BL Lac天体和FSRQs之间的关系
图3 爱丁顿吸积率分布 图4 红移分布Fig.3 Distribution of the Eddington rate Fig.4 Distribution of the redshift
吸积率是最能够说明演化的参数[28].从图3可知:HBLs、LBLs和FSRQs的爱丁顿吸积率分布范围差异较大,它们的爱丁顿吸积率平均值分别为0.007、0.104和0.699,FSRQs的爱丁顿吸积率平均值最大,HBLs的爱丁顿吸积率最小,LBLs的爱丁顿吸积率介于两者之间;其峰值从HBLs到FSRQs逐渐往右移动,LBLs的吸积率介于HBLs和FSRQs之间,并且LBLs的吸积率与HBLs和FSRQs的吸积率都有交叉,进一步表明LBLs可能是从FSRQs到HBLs的中间态.
【期刊名称】《云南师范大学学报(自然科学版)》
【年(卷),期】2014(000)006
【总页数】5页(P30-34)
【关键词】Blazar天体:黑洞质量;吸积率:热光度
【作 者】徐云冰;易庭丰
【作者单位】云南师范大学 物理与电子信息学院,云南 昆明 650092;云南师范大学 物理与电子信息学院,云南 昆明 650092
Georganopoulos等人认为LBLs和HBLs之间的差别是视角和内禀光度的选择效应造成[30].Sambruna等人发现,HBLs的峰值频率高于FSRQs,当然也高于作为桥梁的LBLs,均匀和非均匀的喷流模型不能解释这种能谱分布的差异,blazar能谱分布形状的观测结果不能只从视角这个单一因素出发来解释[9].因此,对LBLs和HBLs之间差别的解释,除了考虑视角效应外,另一个重要的因素应该是多普勒因子.由于LBLs是介于FSRQs和HBLs的中间态,所以轻子模型的结果是否也预示着是活动星系核黑洞周围的物不同的分类[31].
光学超表面案例
光学超表面案例Optical metasurfaces, also known as optical super surfaces, have gained significant attention in the field of optics due to their ability to control the phase, amplitude, and polarization of light with subwavelength resolution. These metasurfaces consist of arrays of subwavelength nanostructures that are designed to impart specific optical properties to incident light. In recent years, optical metasurfaces have found applications in a wide range of areas, including lens design, beam shaping, holography, and metasurface-based devices.光学超表面,也被称为光学超表面,由于其能够以亚波长分辨率控制光的相位、幅度和极化而在光学领域引起了很大关注。
这些超表面由亚波长纳米结构阵列组成,旨在为入射光赋予特定的光学特性。
近年来,光学超表面在透镜设计、光束整形、全息术以及基于超表面的设备等领域找到了应用。
One of the key advantages of optical metasurfaces is their ability to manipulate light at the nanoscale, which allows for the development of ultrathin and lightweight optical components. Traditional optical elements, such as lenses and prisms, are bulky and limited by thelaws of diffractive optics. In contrast, optical metasurfaces can be designed to achieve functionalities that are not possible with conventional optical elements, leading to more compact and efficient optical systems.光学超表面的一个关键优势是它们能够在纳米尺度上操纵光,这使得超薄轻便的光学元件得以发展。
通信工程专业英语
一、汉译英1、时分多址:TDMA (Time Division Multiple Address/ Time Division Multiple Access)2、通用无线分组业务:GPRSGeneral Packet Radio Service3、国际电报电话咨询委员会:CCITT4、同步数字体系:SDH Synchronous Digital Hierarchy (同步数字序列)5、跳频扩频:FHSS frequency hopping spread spectrum6、同步转移模块:STM synchronous transfer module7、综合业务数字网:ISDNIntegrated Services Digital Network8、城域网:MAN Metropolitan Area Network9、传输控制协议/互联网协议:TCP/IP Transmission Control Protocol/Internet Protocol10、服务质量:QOS Quality of Service11、中继线:trunk line12、传输速率:transmission rate 13、网络管理:network management14、帧结构:frame structure15、移动手机:Mobile Phone 手机Handset16、蜂窝交换机:(Cellular switches)(电池开关cell switch)(cell 蜂房)17、天线:Antenna18、微处理器:microprocessor19、国际漫游:International roaming20、短消息:short message21、信噪比:SNR(Signal to Noise Ratio)22、数字通信:Digital communication23、系统容量:system capacity24、蜂窝网:cell network(cellular network)(Honeycomb nets)25、越区切换:Handover26、互联网:internet27、调制解调器:modem28、频谱:spectrum29、鼠标:Mouse30、电子邮件:electronic mail E-mail31、子网:subnet32、软件无线电:software defined radios33、网络资源:network resources二、英译汉1、mobile communication:移动通信2、Computer user:计算机用户3、Frame format:帧格式4、WLAN:wireless local area network 无线局域网络5、Communication protocol:通信协议6、Transmission quality:传输质量7、Remote terminal:远程终端8、International standard:国际标准9、GSM:全球移动通信系统Global System for Mobile Communications 10、CDMA:码分多址Code Division Multiple Access11、ITU:国际电信联盟International Telecommunication Union 12、PCM:pulse code modulation 脉冲编码调制13、WDM:波分复用Wavelength Division Multiplex14、FCC:联邦通信委员会Federal communications commission 15、PSTN:公用电话交换网Public Switched Telephone Network16、NNI:网络节点借口Network Node Interface17、WWW:万维网World Wide Web18、VOD:视频点播Video-On-Demand19、VLR:访问位置寄存器Visitor Location Register20、MSC:移动交换中心Mobile Switching Centre21、HLR:原籍位置寄存器Home Location Register22、VLSI:超大规模集成电路Very Large Scale Integrated Circuits23、Bluetooth technology:蓝牙技术24、Matched filter:匹配滤波器25、ADSL:非对称数字用户环路Asymmetrical Digital Subscriber Loop 非对称数字用户线路(Asymmetric Digital Subscriber Line)26、GPS:全球定位系统Global Position System27、ATM:异步传输模式AsynchronousTransfer Mode三、汉译英1、脉冲编码调制(PCM)依赖于三个独立的操作:抽样、量化和编码。
通信名词中英对照
名词委编号词条英文01.001通信communication01.002电信telecommunication01.003信息information01.004信息技术information technology IT01.005吉普曲线Jipp curve01.006模拟通信analog communication01.007数字通信digital communication01.008有线通信wire communication01.009无线通信wireless communication01.010无线电通信radio communication01.011电话通信telephone communication01.012数据通信data communication01.013图像通信image communication01.014静止图像通信still image communication static image communication 01.015全活动视频full-motion video01.016传真通信fax communication facsimile communication 01.017传真存储转发facsimile storage and forwarding01.018视像通信video communication01.019多媒体通信multimedia communication01.020自适应(的)adaptive01.021自适应通信adaptive communication01.022网(络)network01.023分级网(络)hierarchical network01.024对等网络peer-to-peer network01.025有源网络active network01.026无源网络passive network01.027网络拓扑network topology01.028星状网star network01.029树状网tree network01.030网状网mesh network01.031环状网ring network01.032重叠网overlay network01.033通信系统communication system01.034时变系统time-varying system01.035信源source01.036信宿sink01.037信道channel01.038通道path01.039波道channel01.040物理信道physical channel01.041逻辑信道logical channel01.042承载信道bearer channel01.043对称信道symmetrical channel01.044不对称信道asymmetrical channel01.045多用户信道multiuser channel01.046正向信道forward channel01.047反向信道backward channel01.048同信道co-channel01.049邻信道adjacent channel01.050信道间隔channel spacing01.051信道容量channel capacity01.052信号signal01.053模拟信号analog signal01.054数字信号digital signal01.055n值信号n-ary signal01.056随机信号stochastic signal01.057伪随机信号pseudo-random signal01.058对称信号symmetrical signal01.059突发信号burst01.060正交信号orthogonal signal01.061双极性信号bipolar signal01.062单极性信号unipolar signal01.063有用信号desired signal wanted signal 01.064无用信号undesired signal unwanted signal 01.065信号带宽signal bandwidth01.066波形waveform01.067载波carrier01.068副载波subcarrier01.069谐波harmonic01.070行波traveling wave01.071发送transmit send01.072接收receive01.073传送transport01.074传输transmit transmission 01.075传播propagation01.076传播常数propagation constant01.077传播媒介propagation medium01.078传播时延propagation delay01.079传播速度propagation velocity01.080传递函数transfer function01.081传递特性transfer characteristic01.082传输媒体transmission medium01.083传输控制transmission control01.084传输损耗transmission loss01.085传输因数transmission factor01.086传输线路transmission line01.087传输性能transmission performance01.088数据传输data transmission01.089突发传输burst transmission01.090并行传输parallel transmission01.091串行传输serial transmission01.092带间传输interband transmission01.093带内传输intraband transmission01.094基带传输baseband transmission01.095基带baseband01.096基带信号baseband signal01.097基带处理baseband processing01.098参考模型reference model01.099参考系统reference system01.100单工simplex01.101双工duplex01.102半双工half duplex01.103频分双工frequency-division duplex FDD01.104时分双工time-division duplex TDD01.105白噪声white noise01.106背景噪声background noise01.107大气噪声atmosphere noise01.108高斯噪声Gaussian noise01.109高斯白噪声white Gaussian noise WGN01.110加性高斯白噪声additive white Gaussian noise AWGN01.111互调噪声intermodulation noise01.112参考噪声reference noise01.113加权噪声weighted noise01.114量化噪声quantization noise01.115热噪声thermal noise01.116散粒噪声shot noise01.117闪烁噪声flicker noise01.118随机噪声random noiseSNR01.119信噪比signal-to-noise ratio signal to noi01.120噪声带宽noise bandwidth01.121干扰interference01.122干扰信号interfering signal01.123干涉图样interference pattern01.124同信道干扰co-channel interference01.125邻信道干扰adjacent channel interference01.126信道间干扰interchannel interference01.127符号间干扰intersymbol interference ISI01.128多址干扰multi-site interference01.129电磁干扰electromagnetic interference EMI01.130电磁兼容性electromagnetic compatibility EMC01.131抗干扰性immunity01.132载波干扰比carrier-to-interference ratio C/I01.133信号干扰比signal to interference ratio01.134率失真理论rate distortion theory01.135失真distortion01.136线性失真linear distortion01.137非线性失真nonlinear distortion01.138量化失真quantization distortion quantizing distortion 01.139过负荷失真overload distortion01.140互调失真intermodulation distortion01.141互调产物intermodulation product01.142不规则畸变fortuitous distortion01.143串扰crosstalk01.144信串比signal-to-crosstalk ratio01.145衰减串话比attenuation-to-crosstalk ratio ACR 01.146侧音sidetone01.147插入损耗insertion loss01.148回波echo01.149回波损耗return loss01.150时延delay01.151群时延group delay01.152包络时延envelop delay01.153窄带narrowband01.154阔带wideband01.155宽带broadband01.156子带subband01.157边带sideband01.158单边带single sideband SSB 01.159双边带double sideband DSB 01.160残留边带vestigial sideband VSB 01.161保护(频)带guard band01.162带内(的)in band01.163带外(的)out of band01.164数字化digitization01.165香农定律Shannon law01.166奈奎斯特定理Nyquist theorem01.167二进制(的)binary01.168二进制数字binary digit bit01.169二进制信道binary channel01.170八比特组octet01.171八进制(的)octal01.172波特baud01.173比特流bit stream01.174比特率bit rate01.175等效比特率equivalent bit rate01.176符号率symbol rate01.177比特差错bit error01.178比特差错率bit error ratio01.179块差错概率block error probability01.180比特滑动bit slip01.181比特间隔bit interval01.182比特交织bit interleaving01.183比特劫取bit robbing01.184比特填充bit stuffing01.185比特同步bit synchronization01.186比特图案bit pattern01.187同步(的)synchronous01.188不同步(的)non-synchronous01.189数字差错digital error01.190差错比特error bit01.191突发差错burst error01.192超时time-out01.193样值sample01.194抽样sampling01.195抽样时间sampling time01.196抽样率sampling rate01.197定时timing01.198定时抽取timing extraction01.199定时恢复timing recovery01.200定时信号timing signal01.201定时信息timing information01.202抖动jitter01.203抖动积累jitter accumulation01.204抖动限值jitter limit01.205量化quantization01.206均匀量化uniform quantization01.207非均匀量化non-uniform quantization non-uniform quantizing 01.208量化误差quantization error01.209开销overhead01.210内务信息housekeeping information01.211时域time domain01.212时隙time-slot TS01.213时基time base01.214时钟恢复clock recovery01.215时钟提取clock extraction01.216帧frame01.217帧结构frame structure01.218帧定位frame alignment01.219帧格式frame format01.220帧滑动frame slip01.221帧同步frame synchronization01.222帧失步out-of-frame OOF01.223帧丢失loss-of-frame01.224复帧multiframe01.225超帧superframe01.226成帧framing01.227成帧图案framing pattern01.228IP技术IP technology01.229分组packet01.230分组拆卸packet disassembly01.231分组装配packet assembly01.232异步转移模式asynchronous transfer mode ATM01.233同步转移模式synchronous transfer mode STMdynamic synchronous transfer mode DTM 01.234动态同步转移模式01.235对等操作peering01.236跳时time hopping01.237跳频frequency hopping FH 01.238扩频frequency spread01.239变频frequency conversion01.240上变频up conversion01.241下变频down conversion01.242并串转换parallel-to-serial conversioserializationdeserialization 01.243串并转换serial-to-parallel conversio01.244模数转换analog-to-digital conversion01.245数模转换digital-to-analog conversion01.246倒谱cepstrum01.247倒相phase inversion01.248极化polarization01.249加扰scrambling01.250解扰descrambling01.251检测detection01.252检错error detection01.253纠错error correcting01.254压缩compression01.255压扩companding01.256扩充expansion01.257压缩比compression ratio01.258数字线对增益digital pair gain DPG 01.259交织interleaving01.260聚合带宽aggregate bandwidth01.261均衡equalization01.262码速调整justification01.263脉冲整形pulse shaping01.264脉冲再生pulse shaping01.265奇偶检验parity check01.266滤波filtering01.267限带滤波band-limiting filtering01.268限幅limiting01.269信号变换signal conversion01.270信号再生signal regeneration01.271预加重pre-emphasis01.272预均衡pre-equalization01.273预校正pre-correction01.274模mode01.275TEM模TEM mode01.276TE模TE mode01.277TM模TM mode01.278相位phase01.279频段frequency band01.280频率frequency01.281高频high frequency HF 01.282甚高频very high frequency VHF 01.283特高频ultrahigh frequency UHF 01.284超高频super high frequency SHF 01.285音频audio frequency AF 01.286射频radio frequency01.287视频video01.288频率响应frequency response01.289频谱frequency spectrum01.290复频谱complex spectrum01.291频域frequency domain01.292谱宽spectral width01.293功率谱power spectrum01.294功率谱密度power spectrum density01.295半功率点half-power point01.296波段band01.297波长wavelength01.298长波long wave LW 01.299中波medium wave MW 01.300短波shortwave SW 01.301超短波ultrashort wave USW 01.302微波microwave MW 01.303导频信号pilot signal01.304参考导频reference pilot01.305单音tone01.306可靠性reliability01.307可用性availability01.308可用时间up time01.309可用状态up state01.310不可用性unavailability01.311不可用时间unavailability time01.312不可用状态down state01.313不能工作状态disabled state01.314冲激impulse01.315冲激响应impulse response01.316带宽距离积bandwidth-distance product01.317增益带宽积gain-bandwidth product01.318增益gain01.319自动增益控制automatic gain control AGC 01.320电平level01.321分贝decibel dB 01.322毫瓦分贝dBm01.323发射emission01.324辐射radiation01.325前馈feedforward01.326反馈feedback01.327正反馈positive feedback01.328负反馈negative feedback01.329反射波reflected wave01.330反射系数reflection coefficient01.331线性linearity01.332非线性nonlinearity01.333载波恢复carrier recovery01.334频偏frequency deviation01.335带宽bandwidth BW 01.336按需分配带宽bandwidth on demand01.337负荷load01.338净荷payload01.339接收机灵敏度receiver sensitivity01.340眼图eye diagram eye pattern 01.341容错fault tolerance01.342透明性transparencyconnectivity transparency01.343连通(性)透明性01.344业务透明性service transparency01.345应用透明性application transparency01.346过冲overshoot01.347过载点overload point01.348钳位clamping01.349门限threshold01.350耦合coupling01.351衰减attenuation01.352衰减系数attenuation coefficient01.353锁相phase locking01.354相干coherence01.355选通gating01.356选择性selectivity01.357争用contention01.358业务属性service attribute01.359连接connection01.360无连接connectionless01.361面向连接connection-oriented01.362多点到多点连接multipoint-to-multipoint connection 01.363多点到点连接multipoint-to-point connection01.364点到多点连接point-to-multipoint connection01.365点到点连接point-to-point connection01.366回程backhaul01.367接入access01.368交叉连接cross-connect01.369级联cascading01.370桥接bridging01.371互连interconnection01.372互联interconnection01.373互通interworking01.374互操作性interoperability01.375呼叫call01.376呼叫建立call set-up01.377主叫方calling party01.378被叫方called party01.379最终用户end user01.380编号numbering01.381寻址addressing01.382选路routing01.383动态选路dynamic routing01.384拥塞控制congestion control01.385链路link01.386上行链路uplink01.387下行链路downlink01.388长途线路long distance line01.389线路段line section01.390支路tributary01.391话路voice channel01.392节点node01.393端口port01.394接口interface01.395物理接口physical interface01.396接口速率interface rate01.397二端网络two-terminal network01.398四端网络four-terminal network01.399流stream01.400流量控制flow control01.401业务量控制traffic control01.402实时控制real-time control01.403调解功能mediation function01.404端到端性能end-to-end performance01.405端到端通信end-to-end communication01.406单方向unidirectional01.407双方向bidirectional01.408单向式one-way01.409双向式two-way01.410话音voice01.411语音speech01.412备用冗余standby redundancy01.413热备用hot standby01.414远程供电remote power-feeding01.415多址接入multiple access01.416频分多址frequency-division multiple access FDMA 01.417时分多址time-division multiple access TDMA 01.418空分多址space-division multiple access SDMA 01.419码分多址code-division multiple access CDMA 01.420时分码分多址time-division CDMA TD-CDMA 01.421波分多址wavelength-division multiple access WDMA01.422复用multiplexing01.423分用demultiplexing01.424频分复用frequency-division multiplexing FDM 01.425时分复用time-division multiplexing01.426码分复用code-division multiplexing01.427波分复用wavelength-division multiplexing01.428异类复用heterogeneous multiplex01.429统计复用statistical multiplexing01.430时分语音插空time-division speech interpolation01.431数字语音内插digital-speech interpolation DSI 01.432逆复用inverse multiplexing01.433数字复用体系digital multiplex hierarchy01.434代码code01.435码字code word01.436码块block01.437归零return to zero RZ 01.438不归零non-return to zero NRZ 01.439传号mark01.440空号space01.441编码coding encoding01.442解码decoding01.443编码率encoding law01.444 A 律A-law01.445μ 律μ-law01.446编码变换transcoding coding transform 01.447编码增益coding gain01.448信源编码source coding01.449信道编码channel coding01.450相关编码correlative coding01.451图像编码image coding01.452游程长度编码run-length coding RLC01.453差错控制编码error control coding ECC01.454差分编码differential encoding01.455均匀编码uniform encoding01.456非均匀编码non-uniform encoding01.457赫夫曼编码Huffman coding01.458群编码group coding01.459极性码polar code01.460双极性码bipolar coding01.461双相编码biphase coding01.462通用编码universal coding01.463预测编码predictive coding01.464线性预测编码linear prediction coding LPC 01.465BCH码BCH code01.466n元码n-ary code01.467部分响应编码partial response coding01.468成对不等性码paired-disparity code01.469定比码constant ratio code01.470二进制码binary codebinary coded decimal BCD 01.471二进制编码的十进01.472双二进码duobinary code01.473汉明码Hamming code01.474曼彻斯特码Manchester code01.475交织码interleaved code01.476检错码error-detection code01.477防错码error-protection code01.478纠错码error-correcting code01.479块码block code01.480平衡码balanced code01.481扰码scramble01.482冗余码redundant code01.483循环码cyclic code01.484调制modulation01.485解调demodulation01.486调制因数modulation factor01.487调制速率modulation rate01.488调制指数modulation index01.489调频frequency modulation FM01.490调幅amplitude modulation AM01.491调相phase modulation PM01.492鉴相phase discrimination01.493数字调制digital modulation01.494幅移调制amplitude-shift modulation01.495脉冲编码调制pulse-code modulation PCM 01.496差分调制differential modulation01.497差分脉码调制differential pulse-code modulation DPCMadaptive differential pulse-code modul ADPCM 01.498自适应差分脉码调01.499无载波幅相调制carrierless amplitude-and-phase modula CAPM 01.500网格编码调制trellis-coded modulation TCM 01.501波长调制wavelength modulation WM01.502换频调制frequency-exchange modulation01.503相干调制coherent modulation01.504增量调制delta modulation DM01.505倒相调制phase-inversion modulation01.506正交调制quadrature modulation01.507正交调幅quadrature amplitude modulation QAM 01.508正交频分复用orthogonal frequency-division multiple OFDM 01.509脉冲调制pulse modulation PM01.510脉幅调制pulse-amplitude modulation PAMPDM,PWM 01.511脉宽调制pulse-duration modulation pulse-width m01.512脉冲位置调制pulse-position modulation PPM 01.513脉冲相位调制pulse-phase modulation PPM 01.514频移键控frequency-shift keying FSK 01.515幅移键控amplitude-shift keying ASK01.516相移键控phase-shift keying PSK 01.517四相移相键控quaternary PSK QPSKminimum frequency-shift keying MSK 01.518最小相位频移键控01.519高斯频移键控Gaussian FSK GFSKGaussian MSK GMSK 01.520高斯最小频移键控01.521欠调制under modulation01.522过调制over modulation01.523互调intermodulation IM 01.524交叉调制cross modulation01.525相干解调coherent demodulation01.526包络解调envelop demodulation01.527包络检波envelop detection01.528平方律检波square-law detection01.529发送机transmitter01.530接收机receiver01.531调制器modulator01.532解调器demodulator01.533倍频器frequency multiplier01.534分频器frequency divider01.535放大器amplifier01.536参量放大器parametric amplifier01.537低噪声放大器low-noise amplifier01.538功率放大器power amplifier01.539选频放大器frequency-selective amplifier01.540带通滤波器bandpass filter01.541带阻滤波器bandstop filter01.542高通滤波器high-pass filter01.543低通滤波器low-pass filter01.544数字滤波器digital filter01.545电路circuit01.546二线电路two-wire circuit01.547四线电路four-wire circuit01.548汇接电路tandem circuit01.549触发电路trigger circuit01.550单稳态电路monostable circuit01.551判决电路decision circuit01.552时序电路sequential circuit01.553平衡电路balanced circuit01.554数字电路倍增digital circuit multiplication DCM 01.555多谐振荡器multivibrator01.556振荡器oscillator01.557缓冲存储器buffer memory01.558弹性缓冲器elastic buffer01.559高速缓冲存储器cache01.560回波抵消器echo canceller01.561回波抑制器echo suppressor01.562混合耦合器hybrid coupler01.563混合线圈hybrid transformer hybrid coil01.564混合网络hybrid network01.565混频器mixer converter01.566检波器detector01.567鉴幅器amplitude discriminator01.568鉴频器frequency discriminator01.569检相器phase detector01.570复用器multiplexer MUX 01.571异步复用器asynchronous multiplexer01.572分用器demultiplexer deMUX 01.573复用分用器muldex01.574编码器coder encoder01.575解码器decoder01.576编解码器codec01.577解扰码器descrambler01.578声码器voice coder vocoder01.579均衡器equalizer01.580耦合器coupler01.581环行器circulator01.582数字配线架digital distribution frame DDF 01.583衰减器attenuator01.584背板backplate01.585波导waveguide01.586带状线strip line01.587散射scattering01.588瑞利散射Rayleigh scattering01.589射束beam01.590分集diversity01.591主瓣main lobe01.592旁瓣side lobe01.593天线antenna01.594天馈线antenna feeder01.595天线方向图antenna pattern01.596天线合路器antenna combiner ACOM 01.597无源天线passive antenna01.598有源天线active antenna01.599捕获acquisition01.600有效辐射功率effective radiated power02.001电信网telecommunication network02.002信息网information network02.003信息基础设施information infrastructure02.004信息高速公路information superhighway02.005业务网service network02.006传输网transmission network02.007城市传输网metropolitan transmission network02.008电视传输网television transmission network02.009宽带网boradband network02.010城市宽带网metropolitan broadband network02.011传送网transport network02.012光同步传送网optical synchronous transport network 02.013中继网trunk network02.014转接网transmit network02.015终接网terminating network02.016核心网core network02.017主干网backbone network02.018分配网distribution network02.019公用网public network02.020专用网private network02.021虚拟专用网virtual private network VPN 02.022企业网enterprise network02.023电路交换网circuit-switched network02.024分组交换网packet-switched network02.025分级选路网hierarchical routing network02.026无级选路网nonhierarchical routing network02.027下一代网络next-generation network NGN 02.028电话网telephone network02.029本地电话网local telephone network02.030市内电话网urban telephone network02.031长途电话网toll telephone network02.032农村电话网rural telephone network02.033公用电话交换网public switched telephone network PSTN 02.034专用电话网private telephone network02.035移动电话网mobile telephone network02.036电话交换局telephone exchange02.037本地电话交换局local telephone exchange02.038长途电话交换局toll telephone exchange02.039汇接局tandem office02.040端局end office02.041电话网编号计划telephone network numbering plan02.042数据网data network02.043公用数据网public data network02.044专用数据网private data network02.045电路交换数据网circuit-switched data network CSDN02.046分组交换数据网packet-switched data network PSDNX.25 packet-switched data network02.047X.25分组交换数据02.048虚电路virtual circuit02.049永久虚电路permanent virtual circuit PVC02.050交换虚电路switched virtual circuit SVC02.051数据站data stationdata circuit terminal equipment DCE02.052数据电路终端设备02.053吞吐量throughput02.054数字数据网digital data network DDN02.055数据业务单元data service unit02.056帧中继网frame relay network02.057介入速率access rate AR02.058承诺信息速率committed information rate CIR02.059承诺突发量committed burst size BC02.060超额突发量excess burst size02.061计算机通信网computer communication network02.062人体域网body area network02.063个人域网personal area network02.064特别联网ad hoc networking02.065局域网local area network LAN02.066城域网metropolitan area network MAN02.067广域网wide area network WAN02.068存储(器)域网storage area network SAN02.069互联网internet02.070IP 网IP network02.071因特网Internet02.072内联网Intranet02.073外联网extranet02.074万维网world wide web WWW02.075泛在网ubiquitous network02.076以太网Ethernet02.077吉比特以太网gigabit Ethernet02.078面向连接网connection-oriented network CO network 02.079无连接网connectionless network CL network 02.080网络服务接入点network service access point NSAP02.081网间互通internetworkingdistributed queue dual bus DQDB02.082分布队列双重总线02.083弹性分组环resilient packet ring RPR02.084光纤分布式数据接fiber-distributed data interface FDDI02.085网桥bridge02.086网关gateway GW02.087核心路由器core router02.088边缘路由器edge router02.089边界路由器border router02.090网守gatekeeper GK02.091多点控制单元multipoint control unit MCU02.092网络运行中心network operation center NOC02.093网络信息中心network information center NIC02.094下一代因特网next-generation Internet NGI02.095网格grid02.096域domain02.097域名系统domain-name system DNS02.098自治系统autonomous system AS02.099因特网接入点point of presence POP02.100网络接入点network access point NAP02.101镜像站点mirror site02.102计算机电话集成computer telephony integration CTI02.103综合数字业务网integrated services digital network ISDN02.104综合数字网integrated digital network IDN02.105用户-网络接口user-network interface UNI02.106参考点reference point02.107参考配置reference configuration02.108基本速率接口basic rate interface BRI02.109基群速率接口primary rate interface PRI02.110 B 信道B-channel02.111 D 信道D-channelbroadband ISDN B-ISDN02.112宽带综合业务数字02.113异步转移模式网asynchronous transfer mode network ATM network02.114同步转移模式网synchronous transfer mode network02.115ATM 信元ATM cell02.116ATM 适配层ATM adaption layer AAL02.117虚信道virtual channel VC02.118虚通道virtual path VP02.119数据交换接口data exchange interface DXI02.120局域网仿真LAN emulation LANE02.121仿真局域网emulated LAN ELAN02.122专用的网间接口private network-to-network interface PNNI02.123有线电视网cable television network CATV network02.124头端head-end02.125用户驻地网customer premise network CPN02.126用户驻地设备customer premise equipment CPE02.127家庭网home network02.128家庭联网home networking02.129接入网access network AN02.130光纤接入网fiber-access network02.131混合光纤同轴电缆hybrid fiber/coax access network HFC access network 02.132无线接入网wireless access network02.133业务节点service node SN 02.134用户节点user node02.135业务节点接口service node interface SNI 02.136业务端口service port02.137用户端口user port02.138用户配线网subscriber distribution network02.139业务接入复用器service access multiplexer02.140远端机remote terminal RT 02.141局端机central office terminal02.142远程接入remote access02.143综合接入设备integrated access device IAD 02.144全业务网full-service network FSN 02.145网络适配器network adapter NA 02.146智能网intelligent network IN 02.147高级智能网advanced intelligent network AIN 02.148业务特征service feature SF 02.149能力集capability set CS 02.150业务逻辑service logic SL 02.151业务交换点service-switching point SSP 02.152业务控制点service-control point SCP 02.153业务数据点service data point SDP 02.154业务管理点service management point SMP 02.155业务管理接入点service management access point SMAP 02.156业务生成环境点service-creation environment point SCEP 02.157智能外设intelligent peripheral IP02.158功能实体functional entity FE03.001支撑网support network03.002信令signaling03.003信令网signaling network03.004信令系统signaling system03.005七号信令系统signaling system No.7SS7 03.006随路信令channel-associated signaling CAS 03.007共路信令common channel signaling CCS 03.008直联信令(方式)associated signalingnon-associated signaling03.009非直联信令(方式quasi-associated signaling03.010准直联信令(方式03.011信令点signaling point03.012信令转接点signaling transfer point03.013信令点编码signaling point coding03.014信令路由signaling route03.015信令链路signaling link03.016信令信息signaling information03.017同步网synchronization network synchronized network,synchronous network 03.018准同步网plesiochronous network03.019混合同步网hybrid synchronization network03.020非同步网non-synchronized network non-synchronous network03.021互同步网mutually synchronized network03.022主从同步master-slave03.023单端同步single-ended synchronization03.024时钟clock CK03.025基准时钟reference clock03.026主时钟master clock03.027本地时钟local clockbuilding-integrated timing supply BITS03.028大楼综合定时供给03.029时钟控制信号clock control signal03.030时钟频率clock frequency03.031世界时universal time UT03.032世界协调时universal tie coordinated UTC03.033同步信息synchronization information03.034同步节点synchronization node03.035同步链路synchronization link03.036网络管理network management03.037电信管理网telecommunication management network TMN03.038网元管理network element management03.039用户网络管理customer network management CNM03.040业务管理service management03.041事务管理business management03.042管理树management tree03.043管理对象managed object MO03.044管理应用功能management application function MAFtelecommunication information network TINA03.045电信信息网络体系common object request broker architect CORBA03.046公共对象请求代理03.047Q3协议Q3 Protocol04.001交换switching04.002模拟交换analog switching04.003数字交换digital switching04.004电路交换circuit switching04.005分组交换packet switching04.006报文交换message switching04.007空分交换space-division switching04.008时分交换time-division switching04.009频分交换frequency-division switching04.010时隙交换time-slot interchange TSI04.011波长交换wavelength switching04.012光交换photonic switching04.013软交换softswitching04.014光分组交换optical packet switching OPS 04.015光突发交换optical burst switching04.016异步数据交换机asynchronous data switch04.017多协议标签交换multi-protocol label switching MPLSgeneral multi-protocol label switching GMPLS 04.018通用多协议标签交04.019虚信道交换单元VC switch04.020虚通道交换单元VP switch04.021数字视频交互digital video interactive DVI 04.022帧中继frame relay04.023集中控制centralized control04.024分布(式)控制distributed control04.025存储程序控制stored-program control SPC 04.026分组装拆器packet assembler/disassembler PAD 04.027聚合器aggregatordigital crossconnected system DCS 04.028数字交叉连接系统04.029交换机switch04.030自动交换设备automatic switching equipment04.031专用小交换机private branch exchange PBX 04.032数字交换机digital exchange digital switch 04.033程控数字交换机SPC digital switch04.034汇接交换机tandem switch04.035局域网交换机LAN switch04.036路由器router04.037网桥路由器brouter04.038主干路由器backbone router04.039远端用户模块remote subscriber module04.040交换网(络)switching network04.041交换局exchange switching office 04.042交换中心switching center04.043数字交换局digital exchange04.044本地交换局local exchange local centralLE, LCO 04.045交换矩阵switching matrix04.046中央处理机central processor04.047交换级switching stage04.048集中器concentrator04.049集线器hub04.050信令网关signaling gateway04.051媒体网关media gateway04.052媒体网关控制器media gateway controller04.053总配线架main distribution frame04.054路由route04.055直达路由direct route04.056溢呼路由overflow route04.057逐段路由hop-by-hop route04.058选路策略routing policy04.059迂回路由alternative routing04.060多点接入multipoint access04.061半永久连接semi-permanent connection04.062交换连接switched connection04.063对称连接symmetric connection04.064信元cell04.065信元交换cell switching04.066业务量描述语traffic descriptor04.067峰值信元速率peak cell rate04.068持续信元速率sustained cell rate SRC 04.069允许信元速率allowed cell rate ACR 04.070恒定比特率constant bit rate CBR 04.071可变比特率variable bit rate VBR 04.072可用比特率available bit rate ABR 04.073未定比特率unspecified bit rate UBR 04.074信元时延变化cell delay variation CDV 04.075信元差错比cell error ratio CER 04.076信元丢失比cell loss ratio CLR 04.077信元误插率cell misinsertion rate CMR 04.078信元头cell header04.079逻辑数据链路logical data link04.080逻辑节点logical node04.081用户线(路)subscriber's line04.082用户引入线subscriber's drop line04.083本地环路local loop04.084呼叫跟踪call tracing04.085呼叫单音calling tone04.086拨号dialing04.087拨号连接dial-up connection04.088拨号因特网接入dial-up Internet access04.089国际前缀international prefix04.090国际号码international number04.091个人号码personal number04.092地址address04.093双音多频dual-tone multifrequency DTMF 04.094占线occupation04.095接入时延access delay04.096接入争用access contention04.097试呼call attempt04.098忙时busy hour04.099忙时试呼busy hour call attempts BHCA 04.100业务电路traffic circuit04.101出(局)outgoing04.102入(局)incoming04.103始发originating04.104终接terminating04.105转接transit。
Broad Band Dielectric Spectroscopy -williams
Snapshot of an ensemble at time t = 0 The local regions span the range of dynamical behaviour - giving slow to fast relaxations Motions occur in the local regions; continual exchange of energies between the regions changes their dynamics continually
ε (ω ) =
σ (ω ) 1 = M (ω ) iωε v
C0
Broadband Dielectric Spectroscopy
Complex Permittivity
ε = ε '−iε ' ' ε '= ε∞ +
∆ε 1 + ω 2τ 2
ε ''=
log f/Hz 1. Relaxation Strength ∆ε 3. Shape of process Low frequencies
Electrical Properties of Polymers
E Riande & R Diaz-Calleja, Marcel Dekker 2004
Introductory Review
G Williams & DK Thomas, Novocontrol Application Notes, No.3, 1998.
光谱特征 英文
光谱特征英文Spectral FeaturesSpectral features refer to the unique characteristics of the electromagnetic spectrum that are associated with different materials, substances, or objects. These features are determined by the way in which the material interacts with and absorbs or reflects different wavelengths of light. Spectral features can be used to identify and analyze various substances, including chemicals, minerals, and biological materials, through techniques such as spectroscopy.One of the most important spectral features is the absorption spectrum, which represents the wavelengths of light that a material absorbs. Each material has a unique absorption spectrum, which is determined by the molecular structure and composition of the material. The absorption spectrum can be used to identify the presence of specific elements or compounds in a sample, as well as to quantify their concentrations.Another important spectral feature is the emission spectrum, which represents the wavelengths of light that a material emits. When a material is excited, such as by heat or electricity, it can release energy in the form of photons, which have specific wavelengths. The emission spectrum of a material can be used to identify the presence of specific elements or compounds, as well as to study the energy levels and transitions within the material.Reflectance spectra are also important spectral features, as they represent the wavelengths of light that a material reflects. The reflectance spectrum of a material can beused to study the surface properties of the material, aswell as to identify the presence of specific materials or coatings.Spectral features can also be used to study thestructure and composition of materials at the molecular level. For example, the vibrational and rotational spectraof molecules can be used to identify the presence ofspecific functional groups or to study the interactions between molecules.In addition to identifying and analyzing materials, spectral features can also be used in a wide range of applications, such as remote sensing, environmental monitoring, and medical diagnostics. For example,satellite-based remote sensing can use spectral features to map and monitor the Earth's surface, while medical imaging techniques like magnetic resonance imaging (MRI) and positron emission tomography (PET) rely on the unique spectral properties of different tissues and materials within the body.Overall, spectral features are a fundamental aspect of the physical world, and their study and analysis have ledto numerous scientific and technological advancements across a wide range of fields.光谱特征光谱特征指的是与不同材料、物质或物体相关的电磁光谱的独特特征。
电子信息工程专业英语词汇(精华整理版)
transistor n 晶体管diode n 二极管semiconductor n 半导体resistor n 电阻器capacitor n 电容器alternating adj 交互的amplifier n 扩音器,放大器integrated circuit 集成电路linear time invariant systems 线性时不变系统voltage n 电压,伏特数Condenser=capacitor n 电容器dielectric n 绝缘体;电解质electromagnetic adj 电磁的adj 非传导性的deflection n偏斜;偏转;偏差linear device 线性器件the insulation resistance 绝缘电阻anode n 阳极,正极cathode n 阴极breakdown n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中insulator n 绝缘体,绝热器oscilloscope n 示波镜;示波器gain n 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN结MOS(metal-oxide semiconductor)金属氧化物半导体enhancement and exhausted 增强型和耗尽型integrated circuits 集成电路analog n 模拟digital adj 数字的,数位的horizontal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富multimeter n 万用表frequency n 频率,周率the cathode-ray tube 阴极射线管dual-trace oscilloscope 双踪示波器signal generating device 信号发生器peak-to-peak output voltage 输出电压峰峰值sine wave 正弦波triangle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator n 振荡器feedback n 反馈,回应phase n 相,阶段,状态filter n 滤波器,过滤器rectifier n整流器;纠正者band-stop filter 带阻滤波器band-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n十六进制的binary adj 二进制的;二元的octal adj 八进制的domain n 域;领域code n代码,密码,编码v编码the Fourier transform 傅里叶变换Fast Fourier Transform 快速傅里叶变换microcontroller n 微处理器;微控制器assembly language instrucions n 汇编语言指令chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay contact 继电接触器Artificial Intelligence 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑intelligent agent 智能代理electromagnetic adj 电磁的coaxial adj 同轴的,共轴的microwave n 微波charge v充电,使充电insulator n 绝缘体,绝缘物nonconductive adj非导体的,绝缘的simulation n 仿真;模拟prototype n 原型array n 排队,编队vector n 向量,矢量inverse adj倒转的,反转的n反面;相反v倒转high-performance 高精确性,高性能two-dimensional 二维的;缺乏深度的three-dimensional 三维的;立体的;真实的object-oriented programming面向对象的程序设计spectral adj 光谱的distortion n 失真,扭曲,变形wavelength n 波长refractive adj 折射的ivision Multiplexing单工传输simplex transmission半双工传输half-duplex transmission全双工传输full-duplex transmission电路交换circuit switching数字传输技术Digital transmission technology灰度图像Grey scale images灰度级Grey scale level幅度谱Magnitude spectrum相位谱Phase spectrum频谱frequency spectrum相干解调coherent demodulation coherent相干的数字图像压缩digital image compression图像编码image encoding量化quantization人机交互man machine interface交互式会话Conversational interaction路由算法Routing Algorithm目标识别Object recognition话音变换Voice transform中继线trunk line传输时延transmission delay远程监控remote monitoring光链路optical linkhalf-duplex transmission 半双工传输accompaniment 伴随物,附属物reservation 保留,预定quotation 报价单,行情报告,引语memorandum 备忘录redundancy 备用be viewed as 被看作…be regards as 被认为是as such 本身;照此;以这种资格textual 本文的,正文的variation 变化,变量conversion 变化,转化identity 标识;标志criterion 标准,准则in parallel on 并联到,合并到juxtapose 并置,并列dialing pulse 拨号脉冲wave-guide 波导wavelength division multiplexed 波分复用baud rate 波特率playback 播放(录音带,唱片)no greater than 不大于update 不断改进,使…适合新的要求,更新asymmetric 不对称的irrespective 不考虑的,不顾的inevitably 不可避免的inevitable 不可避免的,不可逃避的,必定的segment 部分abrasion 擦伤,磨损deploy 采用,利用,推广应用take the form of 采用…的形式parameter 参数,参量layer 层dope 掺杂FET(field effect transistors) 场效应管audio recording 唱片ultra-high-frequency(UHF) 超高频in excess of 超过in excess of 超过hypertext 超文本ingredient 成分,因素ingredient 成分,组成部分,要素metropolitan-area network(WAN) 城域网metropolitan area network(WAN) 城域网,城市网络congestion 充满,拥挤,阻塞collision 冲突extractive 抽出;释放出extract 抽取,取出,分离lease 出租,租约,租界期限,租界物pass on 传递,切换transmission 传输facsimile 传真innovative=innovatory 创新的,富有革新精神的track 磁道impetus 促进,激励cluster 簇stored-program control(SPC) 存储程序控制a large number of 大量的peal 大声响,发出supersede 代替supplant 代替,取代out-of-band signaling 带外信号simplex transmission 单工传输monochromatic 单色的,单色光的,黑白的ballistic 弹道的,射击的,冲击的conductor 导体hierarchy 等级制度,层次infrastructure 底层结构,基础结构geographic 地理的,地区的geographically 地理上GIS(ground instrumentation system) 地面测量系统ground station 地面站earth orbit 地球轨道extraterrestrial 地球外的,地球大气圈外的Land-sat 地球资源卫星rug 地毯,毯子ignite 点火,点燃,使兴奋electromagnetic 电磁的inductive 电感arc 电弧telephony 电话(学),通话dielectric 电介质,绝缘材料;电解质的,绝缘的capacitor 电容telecommunication 电信,无线电通讯scenario 电影剧本,方案modem pool 调制解调器(存储)池superimposing 叠加,重叠pin 钉住,扣住,抓住customize 定做,定制monolithic 独立的,完全统一的aluminize 镀铝strategic 对全局有重要意义的,战略的substantial 多的,大的,实际上的multi-path fading 多径衰落multi-path 多路,多途径;多路的,多途径的multi-access 多路存取,多路进入multiplex 多路复用multiplex 多路复用的degradation 恶化,降级dioxide 二氧化碳LED(light-emitting-diode) 发光二极管evolution 发展,展开,渐进feedback 反馈,回授dimension 范围,方向,维,元scenario 方案scenario 方案,电影剧本amplifer 放大器noninvasive 非侵略的,非侵害的tariff 费率,关税率;对…征税distributed functional plane(DFP) 分布功能平面DQDB(distributed queue dual bus) 分布式队列双总线hierarchy 分层,层次partition 分成segmentation 分割interface 分界面,接口asunder 分开地,分离地detached 分离的,分开的,孤立的dispense 分配allocate 分配,配给;配给物centigrade 分为百度的,百分度的,摄氏温度的fractal 分形molecule 分子,微小,些微cellular 蜂窝状的cellular 蜂窝状的,格形的,多孔的auxiliary storage(also called secondary storage)辅助存储器decay 腐烂,衰减,衰退negative 负电vicinity 附近,邻近vicinity 附近地区,近处sophisticated 复杂的,高级的,现代化的high-frequency(HF) 高频high definition television 高清晰度电视chromium 铬annotate 给…作注解in terms of 根据,按照disclosure 公布,企业决算公开public network 公用网functionality 功能,功能度mercury 汞resonator 共鸣器resonance 共振whimsical 古怪的,反复无常的administration 管理,经营cursor 光标(显示器),游标,指针optical computer 光计算机photoconductor 光敏电阻optical disks 光盘optically 光学地,光地wide-area networks 广域网specification 规范,说明书silicon 硅the international telecommunication union(ITU)国际电信联盟excess 过剩obsolete 过时的,废弃的maritime 海事的synthetic 合成的,人造的,综合的synthetic 合成的,综合性的rational 合乎理性的rationalization 合理化streamline 合理化,理顺infrared 红外线的,红外线skepticism 怀疑论ring network 环形网hybrid 混合物counterpart 伙伴,副本,对应物electromechanical 机电的,电动机械的Robot 机器人Robotics 机器人技术,机器人学accumulation 积累infrastructure 基础,基础结构substrate 基质,底质upheaval 激变,剧变compact disc 激光磁盘(CD)concentrator 集中器,集线器centrex system 集中式用户交换功能系统converge on 集中于,聚集在…上lumped element 集总元件CAI(computer-aided instruction) 计算机辅助教学computer-integrated manufacturing(CIM) 计算机集成制造computer mediated communication(CMC) 计算机中介通信record 记录register 记录器,寄存器expedite 加快,促进weight 加权accelerate 加速,加快,促进categorize 加以类别,分类in addition 加之,又,另外hypothetical 假设的rigidly 坚硬的,僵硬的compatibility 兼容性,相容性surveillance 监视surveillance 监视retrieval 检索,(可)补救verification 检验simplicity 简单,简明film 胶片,薄膜take over 接管,接任ruggedness 结实threshold 界限,临界值with the aid of 借助于,用,通过wire line 金属线路,有线线路coherent 紧凑的,表达清楚的,粘附的,相干的compact 紧密的approximation 近似undertake 进行,从事transistor 晶体管elaborate 精心制作的,细心完成的,周密安排的vigilant 警戒的,警惕的alcohol 酒精,酒local area networks(LANs) 局域网local-area networks(LANs) 局域网drama 剧本,戏剧,戏剧的演出focus on 聚集在,集中于,注视insulator 绝缘root mean square 均方根uniform 均匀的open-system-interconnection(OSI) 开放系统互连expire 开始无效,满期,终止immunity 抗扰,免除,免疫性take…into account 考虑,重视…programmable industrial automation 可编程工业自动化demountable 可拆卸的tunable 可调的reliable 可靠be likely to 可能,大约,像要videotex video 可视图文电视negligible 可以忽略的aerial 空气的,空中的,无形的,虚幻的;天线broadband 宽(频)带pervasive 扩大的,渗透的tensile 拉力的,张力的romanticism 浪漫精神,浪漫主义discrete 离散,不连续ion 离子force 力量;力stereophonic 立体声的continuum 连续统一体,连续统,闭联集smart 灵巧的;精明的;洒脱的token 令牌on the other hand 另一方面hexagonal 六边形的,六角形的hexagon 六角形,六边形monopoly 垄断,专利video-clip 录像剪辑aluminum 铝pebble 卵石,水晶透镜forum 论坛,讨论会logical relationships 逻辑关系code book 码本pulse code modulation(PCM) 脉冲编码调制roam 漫步,漫游bps(bits per second) 每秒钟传输的比特ZIP codes 美国邮区划分的五位编码susceptible(to) 敏感的,易受…的analog 模拟,模拟量pattern recognition模式识别bibliographic 目录的,文献的neodymium 钕the european telecommunicationstandardization institute(ETSI) 欧洲电信标准局coordinate 配合的,协调的;使配合,调整ratify 批准,认可bias 偏差;偏置deviate 偏离,与…不同spectrum 频谱come into play 其作用entrepreneurial 企业的heuristic methods 启发式方法play a …role(part) 起…作用stem from 起源于;由…发生organic 器官的,有机的,组织的hypothesis 前提front-end 前置,前级potential 潜势的,潜力的intensity 强度coincidence 巧合,吻合,一致scalpel 轻便小刀,解剖刀inventory 清单,报表spherical 球的,球形的distinguish 区别,辨别succumb 屈服,屈从,死global functional plane(GFP) 全局功能平面full-duplex transmission 全双工传输hologram 全息照相,全息图deficiency 缺乏thermonuclear 热核的artifact 人工制品AI(artificial intelligence) 人工智能fusion 熔解,熔化diskettes(also called floppy disk) 软盘sector 扇区entropy 熵uplink 上行链路arsenic 砷neural network 神经网络very-high-frequency(VHF) 甚高频upgrade 升级distortion 失真,畸变identification 识别,鉴定,验明pragmatic 实际的implementation 实施,实现,执行,敷设entity 实体,存在vector quantification 矢量量化mislead 使…误解,给…错误印象,引错vex 使烦恼,使恼火defy 使落空facilitate 使容易,促进retina 视网膜compatible 适合的,兼容的transceiver 收发两用机authorize 授权,委托,允许data security 数据安全性data independence 数据独立data management 数据管理database 数据库database management system(DBMS) 数据库管理信息系统database transaction 数据库事务data integrity 数据完整性,数据一致性attenuation 衰减fading 衰落,衰减,消失dual 双的,二重的transient 瞬时的deterministic 宿命的,确定的algorithm 算法dissipation 损耗carbon 碳diabetes 糖尿病cumbersome 讨厌的,麻烦的,笨重的razor 剃刀,剃go by the name of 通称,普通叫做commucation session 通信会话traffic 通信业务(量)synchronous transmission 同步传输concurrent 同时发生的,共存的simultaneous 同时发生的,同时做的simultaneous 同时发生的,一齐的coaxial 同轴的copper 铜statistical 统计的,统计学的dominate 统治,支配invest in 投资perspective 透视,角度,远景graphics 图示,图解pictorial 图像的coating 涂层,层deduce 推理reasoning strategies 推理策略inference engine 推理机topology 拓扑结构heterodyne 外差法的peripheral 外界的,外部的,周围的gateway 网关hazardous 危险的microwave 微波(的)microprocessor 微处理机,微处理器microelectronic 微电子nuance 微小的差别(色彩等)encompass 围绕,包围,造成,设法做到maintenance 维护;保持;维修satellite communication 卫星通信satellite network 卫星网络transceiver 无线电收发信机radio-relay transmission 无线电中继传输without any doubt 无疑passive satellite 无源卫星sparse 稀少的,稀疏的downlink 下行链路precursor 先驱,前任visualization 显像feasibility 现实性,可行性linearity 线性度constrain 限制,约束,制约considerable 相当的,重要的geo-stationary 相对地面静止by contrast 相反,而,对比起来coorelation 相关性mutual 相互的mutually 相互的,共同的interconnect 相互连接,互连one after the other 相继,依次minicomputer 小型计算机protocol 协议,草案protocol 协议,规约,规程psycho-acoustic 心理(精神)听觉的;传音的channelization 信道化,通信信道选择run length encoding 行程编码groom 修饰,准备virtual ISDN 虚拟ISDNmultitude 许多,大批,大量whirl 旋转preference 选择,喜欢avalanche 雪崩pursue 寻求,从事interrogation 询问dumb 哑的,不说话的,无声的subcategory 亚类,子种类,子范畴orbital 眼眶;轨道oxygen 氧气,氧元素service switching and control points(SSCPs) 业务交换控制点service control points(SCPs) 业务控制点service control function(SCF) 业务控制功能in concert 一致,一齐handover 移交,越区切换at a rate of 以……的速率in the form of 以…的形式base on…以…为基础yttrium 钇(稀有金属,符号Y)asynchronous transmission 异步传输asynchronous 异步的exceptional 异常的,特殊的voice-grade 音频级indium 铟give rise to 引起,使产生cryptic 隐义的,秘密的hard disk 硬盘hard automation 硬自动化by means of 用,依靠equip with 用…装备subscriber 用户telex 用户电报PBX(private branch exchange) 用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority 优势predominance 优势,显著active satellite 有源卫星in comparison with 与…比较comparable to 与…可比preliminary 预备的,初步的premonition 预感,预兆nucleus 原子核valence 原子价circumference 圆周,周围teleprocessing 远程信息处理,遥控处理perspective 远景,前途constrain 约束,强迫mobile 运动的,流动的,机动的,装在车上的convey 运输,传递,转换impurity 杂质impurity 杂质,混杂物,不洁,不纯regenerative 再生的improve over 在……基础上改善play important role in 在…中起重要作用in close proximity 在附近,在很近underlying 在下的,基础的in this respect 在这方面germanium 锗positive 正电quadrature 正交orthogonal 正交的quadrature amplitude modulation(QAM) 正交幅度调制on the right track 正在轨道上sustain 支撑,撑住,维持,持续outgrowh 支派;长出;副产品dominate 支配,统治knowledge representation 知识表示knowledge engineering 知识工程knowledge base 知识库in diameter 直径helicopter 直升飞机acronym 只取首字母的缩写词as long as 只要,如果tutorial 指导教师的,指导的coin 制造(新字符),杜撰fabrication 制造,装配;捏造事实proton 质子intelligence 智能,智力,信息intelligent network 智能网intermediate 中间的nucleus(pl.nuclei) 中心,核心neutrons 中子terminal 终端,终端设备overlay 重叠,覆盖,涂覆highlight 重要的部分,焦点charge 主管,看管;承载dominant 主要的,控制的,最有力的cylinder 柱面expert system 专家系统private network 专用网络transition 转变,转换,跃迁relay 转播relay 转播,中继repeater 转发器,中继器pursue 追赶,追踪,追求,继续desktop publish 桌面出版ultraviolet 紫外线的,紫外的;紫外线辐射field 字段vendor 自动售货机,厂商naturally 自然的;天生具备的synthesize 综合,合成integrate 综合,使完全ISDN(intergrated services digital network) 综合业务数字网as a whole 总体上bus network 总线形网crossbar 纵横,交叉impedance 阻抗initial 最初的,开始的optimum 最佳条件appear as 作为…出现A Analog 模拟A/D Analog to Digital 模-数转换AAC Advanced Audio Coding 高级音频编码ABB Automatic Black Balance 自动黑平衡ABC American Broadcasting Company 美国广播公司Automatic Bass Compensation 自动低音补偿Automatic Brightness Control 自动亮度控制ABL Automatic Black Level 自动黑电平ABLC Automatic Brightness LimiterCircuit 自动亮度限制电路ABU Asian Broadcasting Union 亚洲广播联盟(亚广联ABS American Bureau of Standard 美国标准局AC Access Conditions 接入条件Audio Center 音频中心ACA Adjacent Channel Attenuation 邻频道衰减ACC Automatic Centering Control 自动中心控制Automatic Chroma Control 自动色度(增益ACK Automatic Chroma Killer 自动消色器ACP Additive Colour Process 加色法ACS Access Control System 接入控制系统Advanced Communication Service 高级通信业务Area Communication System 区域通信系统ADC Analog to Digital Converter 模-数转换器Automatic Degaussirng Circuit 自动消磁电路ADL Acoustic Delay Line 声延迟线ADS Audio Distribution System 音频分配系统AE Audio Erasing 音频(声音AEF Automatic Editing Function 自动编辑功能AES Audio Engineering Society 音频工程协会AF Audio Frequency 音频AFA Audio Frequency Amplifier 音频放大器AFC Automatic Frequency Coder 音频编码器Automatic Frequency Control 自动频率控制AFT Automatic Fine Tuning 自动微调Automatic Frequency Track 自动频率跟踪Automatic Frequency Trim 自动额率微调AGC Automatic Gain Control 自动增益控制AI Artificial Intelligence 人工智能ALM Audio-Level Meter 音频电平表AM Amplitude Modulation 调幅AMS Automatic Music Sensor 自动音乐传感装置ANC Automatic Noise Canceller 自动噪声消除器ANT ANTenna 天线AO Analog Output 模拟输出APS Automatic Program Search 自动节目搜索APPS Automatic Program Pause System 自动节目暂停系统APSS Automatic Program Search System 自动节目搜索系统AR Audio Response 音频响应ARC Automatic Remote Control 自动遥控ASCII American Standard Code for Information Interchange 美国信息交换标准AST Automatic Scanning Tracking 自动扫描跟踪ATC Automatic Timing Control 自动定时控制Automatic Tone Correction 自动音频校正ATM Asynchronous Transfer Mode 异步传输模式ATF Automatic Track Finding 自动寻迹ATS Automatic Test System 自动测试系统ATSC Advanced Television Systems Committee (美国高级电视制式委员会)***C Automatic Volume Control 自动音量控制***R Automatic Voltage Regulator 自动稳压器AWB Automatic White Balance 自动白平衡AZC Automatic Zooming Control 自动变焦控制AZS Automatic Zero Setting 自动调零BA Branch Amplifier 分支放大器Buffer Amplifier 缓冲放大器BAC Binary-Analog Conversion 二进制模拟转换BB Black Burst 黑场信号BBC British Broadcasting Corporation 英国广播公司BBI Beijing Broadcasting Institute 北京广播学院BC Binary Code 二进制码Balanced Current 平衡电流Broadcast Control 广播控制BCT Bandwidth Compression Technique带宽压缩技术BDB Bi-directional Data Bus 双向数据总线BER Basic Encoding Rules 基本编码规则Bit Error Rate 比特误码率BF Burst Flag 色同步旗脉冲BFA Bare Fiber Adapter 裸光纤适配器Brillouin Fiber Amplifier 布里渊光纤放大器BGM Background Music 背景音乐BIOS Basic Input/Output System 基本输入输出系统B-ISDN Broadband-ISDN 宽带综合业务数据网BIU Basic Information Unit 基本信息单元Bus Interface Unit 总线接口单元BM Bi-phase Modulation 双相调制BML Business Management Layer 商务管理层BN Backbone Network 主干网BNT Broadband Network Termination 宽带网络终端设备BO Bus Out 总线输出BPG Basic Pulse Generator 基准脉冲发生器BPS Band Pitch Shift 分频段变调节器BSI British Standard Institute 英国标准学会BSS Broadcast Satellite Service 广播卫星业务BT Block Terminal 分线盒、分组终端British Telecom 英国电信BTA Broadband Terminal Adapter 宽带终端适配器Broadcasting Technology Association (日本BTL Balanced Transformer-Less 桥式推挽放大电路BTS Broadcast Technical Standard 广播技术标准BTU Basic Transmission Unit 基本传输单元BVU Broadcasting Video Unit 广播视频型(一种3/4英寸带录像机记录格式BW BandWidth 带宽BWTV Black and White Television 黑白电视CA Conditional Access 条件接收CAC Conditional Access Control 条件接收控制CAL Continuity Accept Limit 连续性接受极限CAS Conditional Access System 条件接收系统Conditional Access Sub-system 条件接收子系统CATV Cable Television 有线电视,电缆电视Community Antenna Television 共用天线电视C*** Constant Angular Velocity 恒角速度CBC Canadian Broadcasting Corporation加拿大广播公司CBS Columbia Broadcasting System (美国哥伦比亚广播公司CC Concentric Cable 同轴电缆CCG Chinese Character Generator 中文字幕发生器CCIR International Radio ConsultativeCommittee 国际无线电咨询委员会CCITT International Telegraph andTelephone ConsultativeCommittee 国际电话电报咨询委员会CCR Central Control Room 中心控制室CCTV China Central Television 中国中央电视台Close-Circuit Television 闭路电视CCS Center Central System 中心控制系统CCU Camera Control Unit 摄像机控制器CCW Counter Clock-Wise 反时针方向CD Compact Disc 激光唱片CDA Current Dumping Amplifier 电流放大器CD-E Compact Disc Erasable 可抹式激光唱片CDFM Compact Disc File Manager 光盘文件管理(程序CDPG Compact-Disc Plus Graphic 带有静止图像的CD唱盘CD-ROM Compact Disc-Read OnlyMemory 只读式紧凑光盘CETV China Educational Television 中国教育电视台CF Color Framing 彩色成帧CGA Color Graphics Adapter 彩色图形(显示卡CI Common Interface 通用接口CGA Color Graphics Adapter 彩色图形(显示卡CI Common Interface 通用接口CIE Chinese Institute of Electronics 中国电子学会CII China Information Infrastructure 中国信息基础设施CIF Common Intermediate Format 通用中间格式CIS Chinese Industrial Standard 中国工业标准CLV Constant Linear Velocity 恒定线速度CM Colour Monitor 彩色监视器CMTS Cable Modem Termination System线缆调制解调器终端系统CNR Carrier-to-Noise Ratio 载噪比CON Console 操纵台Controller 控制器CPB Corporation of Public Broadcasting(美国公共广播公司CPU Central Processing Unit 中央处理单元CRC Cyclic Redundancy Check 循环冗余校验CRCC CRI Cyclic Redundancy Check Code循环冗余校验码CROM China Radio International 中国国际广播电台CRT Control Read Only Memory 控制只读存储器CS Cathode-Ray Tube 阴极射线管CSC Communication Satellite 通信卫星CSS Color Sub-carrier 彩色副载波Center Storage Server 中央存储服务器Content Scrambling System 内容加扰系统CSU Channel Service Unit 信道业务单元CT Color Temperature 色温CTC Cassette Tape Controller 盒式磁带控制器Channel Traffic Control 通道通信量控制Counter Timer Circuit 计数器定时器电路Counter Timer Control 计数器定时器控制CTE Cable Termination Equipment 线缆终端设备Customer Terminal Equipment 用户终端设备CTV Color Television 彩色电视CVD China Video Disc 中国数字视盘CW Carrie Wave 载波DAB Digital Audio Broadcasting 数字音频广播DASH Digital Audio Stationary Head 数字音频静止磁头DAT Digital Audio Tape 数字音频磁带DBMS Data Base Management System 数据库管理系统DBS Direct Broadcast Satellite 直播卫星DCC Digital Compact Cassette 数字小型盒带Dynamic Contrast Control 动态对比度控制DCT Digital Component Technology 数字分量技术Discrete Cosine Transform 离散余弦变换DCTV Digital Color Television 数字彩色电视DD Direct Drive 直接驱动DDC Direct Digital Control 直接数字控制DDE Dynamic Data Exchange 动态数据交换DDM Data Display Monitor 数据显示监视器DES Data Elementary Stream 数据基本码流Data Encryption Standard 美国数据加密标准DF Dispersion Flattened 色散平坦光纤DG Differential Gain 微分增益DI Digital Interface 数字接口DITEC Digital Television Camera 数字电视摄像机DL Delay Line 延时线DLD Dynamic Linear Drive 动态线性驱动DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital Multimedia Broadcasting 数字多媒体广播DMC Dynamic Motion Control 动态控制DME Digital Multiple Effect 数字多功能特技DMS Digital Mastering System 数字主系统DN Data Network 数据网络DNG Digital News Gathering 数字新闻采集DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输出总线DOCSIS Data Over Cable Service Interface Specifications 有线数据传输业务接口规范DOC Drop Out Compensation 失落补偿DOS Disc Operating System 磁盘操作系统DP Differential Phase 微分相位Data Pulse 数据脉冲DPCM Differential Pulse Code Modulation 差值脉冲编码调制DPL Dolby Pro Logic 杜比定向逻辑DSB Digital Satellite Broadcasting 数字卫星广播DSC Digital Studio Control 数字演播室控制DSD Dolby Surround Digital 杜比数字环绕声DSE Digital Special Effect 数字特技DSK Down-Stream Key 下游键DSP Digital Signal Processing 数字信号处理Digital Sound Processor 数字声音处理器DSS Digital Satellite System 数字卫星系统DT Digital Technique 数字技术Digital Television 数字电视Data Terminal 数据终端Data Transmission 数据传输DTB Digital Terrestrial Broadcasting 数字地面广播DTBC Digital Time-Base Corrector 数字时基校正器DTC Digital Television Camera 数字电视摄像机DTS Digital Theater System 数字影院系统Digital Tuning System 数字调谐系统Digital Television Standard 数字电视标准DVB Digital Video Broadcasting 数字视频广播DVC Digital Video Compression 数字视频压缩DVE Digital Video Effect 数字视频特技DVS Desktop Video Studio 桌上视频演播DVTR Digital Video Tape Recorder 数字磁带录像机EA Extension Amplifier 延长放大器EB Electron Beam 电子束EBS Emergency Broadcasting System 紧急广播系统EBU European Broadcasting Union 欧洲广播联盟EC Error Correction 误差校正ECN Emergency Communications Network应急通信网络ECS European Communication Satellite 欧洲通信卫星EDC Error Detection Code 错误检测码EDE Electronic Data Exchange 电子数据交换EDF Erbium-Doped Fiber 掺饵光纤EDFA Erbium-Doped Fiber Amplifier 掺饵光纤放大器EDL Edit Decision List 编辑点清单EDTV Extended Definition Television 扩展清晰度电视EE Error Excepted 允许误差EFM Eight to Fourteen Modulation 8-14调制EFP Electronic Field Production 电子现场节目制作EH Ethernet Hosts 以太网主机EIN Equivalent Input Noise 等效输入噪声EIS Electronic Information System 电子信息系统EISA Extended Industrial StandardArchitecture 扩展工业标准总线EL Electro-Luminescent 场致发光EM Error Monitoring 误码监测EN End Node 末端节点ENG Electronic News Gathering 电子新闻采集EOT End of Tape 带尾EP Edit Point 编辑点Error Protocol 错误协议EPG Electronic Program Guides 电子节目指南EPS Emergency Power Supply 应急电源ERP Effective Radiated Power 有效辐射功率ES Elementary Stream 基本码流End System 终端系统ESA European Space Agency 欧洲空间局ETV Education Television 教育电视FA Enhanced Television 增强电视FABM FAS Facial Animation 面部动画FC Fiber Amplifier Booster Module 光纤放大器增强模块Fiber Access System 光纤接入系统Frequency Changer 变频器FCC Fiber Channel 光纤通道FD Film Composer 电影编辑系统Federal Communications Commission 美国联邦通信委员会FDCT Frequency Divider 分频器FDDI FDM Fiber Duct 光纤管道FDP Forward Discrete Cosine Transform离散余弦正变换FE Fiber Distributed Data Interface 分布式光纤数据接口Frequency-Division Multiplexing 频分复用FF Fiber Distribution Point 光纤分配点FG Front End 前端FH Framing Error 成帧误差FIT Fast Forward 快进FN Frequency Generator 频率发生器FOA Frequency Hopping 跳频FOC Frame-Interline Transfer 帧一行间转移Fiber Node 光纤节点Fiber Optic Amplifier 光纤放大器FOM Fiber Optic Cable 光缆FON Fiber Optic Communications 光纤通信FOS Fiber Optic Coupler 光纤耦合器FOTC Fiber Optic Modem 光纤调制解调器FS Fiber Optic Net 光纤网Factor of Safety 安全系数Fiber Optic Trunk Cable 光缆干线FT Frame Scan 帧扫描FTP Frame Store 帧存储器FTTB Frame Synchro 帧同步机FTTC France Telecom 法国电信Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi-directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-- BJT双极结型晶体管Boost-Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper降压斩波电路Buck Converter降压变换器Commutation换流Conduction Angle导通角Constant Voltage Constant Frequency --CVCF恒压恒频Continuous Conduction--CCM(电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cyclo convertor周波变流器DC-AC-DC Converter直交直电路DC Chopping直流斩波DC Chopping Circuit直流斩波电路DC-DC Converter直流-直流变换器Device Commutation器件换流Direct Current Control直接电流控制Discontinuous Conduction mode (电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode快恢复二极管fast revcovery epitaxial diodes 快恢复外延二极管fast switching thyristor快速晶闸管field controlled thyristor场控晶闸管flyback converter 反激电流forced commutation 强迫换流forward converter 正激电路frequency converter 变频器full bridge converter全桥电路full bridge rectifier 全桥整流电路full wave rectifier 全波整流电路fundamental factor基波因数gate turn-off thyristor——GTO 可关断晶闸管general purpose diode 普通二极管giant transistor——GTR 电力晶体管half bridge converter 半桥电路hard switching 硬开关high voltage IC 高压集成电路hysteresis comparison 带环比较方式indirect current control间接电流控制indirect DC-DC converter直接电流变换电路insulated-gate bipolar transistor---IGBT绝缘栅双极晶体管intelligent power module---IPM智能功率模块integrated gate-commutated thyristor---IGCT 集成门极换流晶闸管inversion 逆变latching effect 擎住效应leakage inductance 漏感light triggered thyristor---LTT光控晶闸管line commutation 电网换流load commutation 负载换流loop current 环流1 backplane 背板2 Band gap voltage reference 带隙电压参考3 bench top supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET8 bucket capacitor 桶形电容9 chassis 机架11 constant current source 恒流源12 Core Saturation 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。
聚苯乙烯微球的表面等离子体共振图像处理与分析
第37卷第9期2022年9月Vol.37No.9Sept.2022液晶与显示Chinese Journal of Liquid Crystals and Displays聚苯乙烯微球的表面等离子体共振图像处理与分析吴静宁1,2,刘紫威1,2,杨博1,2,蔡宸1,祁志美1,2,3*(1.中国科学院空天信息创新研究院传感技术国家重点实验室,北京100190;2.中国科学院大学电子电气与通信工程学院,北京100049;3.中国科学院大学光电学院,北京100049)摘要:使用高光谱SPRi传感器对聚苯乙烯微球进行SPR显微成像,并对不同偏振条件下采集的高光谱SPR图像数据进行了处理,有效削弱了SPR高光谱图像中固有污点的对比度,使得聚苯乙烯微球样品的位置与轮廓更加清晰。
处理后的单像素SPR光谱变得平滑,降低了光源光谱本身特性以及随机噪声对SPR共振信息提取的影响。
对比聚苯乙烯微球的SPR图像与反射式明场显微图像,发现二者存在明显区别,主要是由于消逝场穿透深度的限制。
结果表明,相较于反射式明场显微图像,SPR图像可以明显反映出消逝场内微粒与金属表面的接触情况,但无法量化超出消逝场穿透深度的物体的真实尺寸。
关键词:表面等离子体共振成像;光谱成像;聚苯乙烯微球;图像处理中图分类号:TH744;TP391文献标识码:A doi:10.37188/CJLCD.2022-0057Processing and analysis of surface plasmon resonanceimage of polystyrene microspheresWU Jing-ning1,2,LIU Zi-wei1,2,YANG Bo1,2,CAI Chen1,QI Zhi-mei1,2,3*(1.State Key Laboratory of Transducer Technology,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing100190,China;2.School of Electronic,Electrical and Communication Engineering,University ofChinese Academy of Sciences,Beijing100049,China;3.School of Optoelectronics,University of Chinese Academy of Sciences,Beijing100049,China)Abstract:The hyperspectral SPRi sensor was used to perform microscopic analysis of polystyrene microspheres,and the hyperspectral SPR data collected under different polarization conditions were processed,resulting in effective suppression of the contrast of inherent stains in the SPR hyperspectral images and making the position and outline of the polystyrene microsphere sample clearer.The processed SPR spectra become smooth,reducing the influence of the spectral characteristics of the light source and 文章编号:1007-2780(2022)09-1174-08收稿日期:2022-02-16;修订日期:2022-03-09.基金项目:国家自然科学基金(No.62121003,No.61931018,No.61871365)Supported by National Natural Science Foundation of China(No.62121003,No.61931018,No.61871365)*通信联系人,E-mail:zhimei-qi@第9期吴静宁,等:聚苯乙烯微球的表面等离子体共振图像处理与分析random noise on the SPR resonance information extraction.By comparing the SPR image of polystyrene microspheres with the reflection bright field microscopic image,it is found that there are obvious differences between the two images.The main reason is the limitation of the penetration depth of the evanescent field.The results show that SPR images can clearly reflect the contact between particles and metal surfaces in the evanescent field,but cannot quantify the true size of objects beyond the penetration depth of the evanescent field compared with reflection bright field microscopy images.Key words:surface plasmon resonance imaging;spectral imaging;polystyrene microspheres;image processing1引言表面等离子体共振(Surface plasmon resonance,SPR)传感器因其免标记、非侵入性、高灵敏度和原位检测的特点而被广泛应用于生化分析中,主要采用被称为Krestchmann结构的SPR棱镜激发结构[1]。
光波长的英语
光波长的英语The wavelength of light refers to the distance between two consecutive points of the same phase along the wave. Light is an electromagnetic wave that travels at a speed of approximately 299,792 kilometers per second in a vacuum.Light waves have different wavelengths, which correspond to different colors in the visible spectrum. The range of visible light wavelengths is approximately 400 to 700 nanometers. Shorter wavelengths are associated with colors such as violet and blue, while longer wavelengths are associated with colors such as red and orange.In addition to visible light, there are also light waves with wavelengths outside the visible spectrum. For example, ultraviolet (UV) light has shorter wavelengths than visible light, while infrared (IR) light has longer wavelengths. UV light is often associated with sunburn and skin damage, while IR light is commonly used in devices such as remote controls and thermal imaging cameras.The relationship between light wavelength and color is fundamental to the field of optics. Different materialsinteract with light in different ways based on their wavelength. This principle is used in technologies such as spectrophotometry, which analyzes the interaction of light with a sample to determine its properties.Understanding the concept of light wavelength is crucial in various scientific disciplines, including physics, chemistry, and biology. For example, in physics, the behavior of light waves is described by the wave-particle duality theory, which explains how light can exhibit both wave-like and particle-like properties.In conclusion, the wavelength of light plays a central role in our understanding of the electromagnetic spectrum and the nature of light itself. By studying light wavelengths and their interactions with matter, scientists and researchers can unlock new insights into the behavior of light and its practical applications in various fields.光的波长是指波长沿波浪的距离,光是一种以大约299,792千米/秒的速度在真空中传播的电磁波。
增益中心波长的英文术语
增益中心波长的英文术语In the realm of optics, the term "central wavelength" is a pivotal concept that describes the wavelength at the peak of a spectral line or band. It is a fundamental parameter in the analysis of light sources and optical filters.This central wavelength is crucial for the design and optimization of optical systems, as it determines the operating point for maximum performance. For instance, in fiber optics, the central wavelength dictates the light's propagation characteristics within the fiber.In spectroscopy, the central wavelength is often used to identify specific elements or compounds, as each has a unique spectral fingerprint. Accurate measurement of this wavelength is essential for precise chemical analysis.Moreover, in the field of laser technology, the central wavelength is a key factor in determining the laser's coherence and monochromaticity. Lasers with a well-defined central wavelength are preferred for applications requiring high precision, such as holography and interferometry.Understanding the central wavelength is not only important for scientists and engineers but also for students learning about the properties of light and its applications in various technologies.In summary, the central wavelength is a fundamental term in optics that plays a critical role in the performance and analysis of light-based systems, from telecommunications to scientific research.。
影响Czerny-Turner结构像散校正的因素
影响Czerny-Turner结构像散校正的因素董科研;李欣航;安岩【摘要】针对宽波段Czerny-Turner结构像散校正存在的问题,分析了影响光学系统像散校正的主要因素.基于发散光束照射平面光栅的像差理论,应用Matlab软件模拟分析了光学系统产生像散的原因和相应抑制方法的不足.讨论了了准直镜离轴角与聚焦镜离轴角的角度差值α和光学系统像散S之间关系,理论模拟了α取不同值时,宽波段C-T结构的全波段像散校正情况.为了验证理论分析的正确性,设计了光谱段为900~1 700 nm的消像散型光学系统,利用光学设计软件Zemax对该波段的光学系统进行了光线追迹和设计优化,并对设计结果进行处理和分析.结果显示:随着角度差值的逐渐增大,短波波段像散校正能力越来越强,像散校正能力提高了1.6倍左右;长波波段像散束缚能力越来越弱,像散校正能力平均降低了1.27倍左右.得到的结果表明:角度差值的合理选取可以为宽波段Czerny-Turner结构的像散校正提供理论指导.【期刊名称】《光学精密工程》【年(卷),期】2016(034)010【总页数】8页(P2384-2391)【关键词】光学设计;Czerny-Turner结构;像散校正;边缘波段【作者】董科研;李欣航;安岩【作者单位】长春理工大学空间光电技术研究所,吉林长春130022;长春理工大学空间光电技术研究所,吉林长春130022;长春理工大学光电工程学院,吉林长春130022;长春理工大学空间光电技术研究所,吉林长春130022【正文语种】中文【中图分类】O435.1;TH703Czerny-Turner(C-T)结构型光谱仪是采用平面光栅作为分光元件的光学仪器,能够获取物质的光谱信息,为物质检测识别工作提供依据。
C-T结构具有结构简单、分辨能力高、色散均匀、有效避免二次和多次衍射等优点。
在天文学、物理学、生物学和化学等基础科学领域,光谱仪是常用的分析仪器;在工业和农业领域,光谱仪已经成为不可缺少的检测设备;在药物研制、环境保护和食品安全等领域,光谱仪可以实现在线实时的定性检测[1-4]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0801.1869v 1 [a s t r o -p h ] 12 J a n 2008Draft version February 2,2008Preprint typeset using L A T E X style emulateapj v.10/09/06BROADBAND SPECTRAL PROPERTIES OF BRIGHT HIGH-ENERGY GAMMA-RAY BURSTS OBSERVEDWITH BATSE AND EGRETYuki Kaneko 1,M.Magdalena Gonz ´alez 2,Robert D.Preece 3,Brenda L.Dingus 4and Michael S.Briggs 3Draft version February 2,2008ABSTRACTWe present the spectral analysis of duration-integrated broadband spectra (in ∼30keV −200MeV)of 15bright BATSE gamma-ray bursts (GRBs).Some GRB spectra are very hard,with their spectral peak energies being above the BATSE LAD passband limit of ∼2MeV.In such cases,their high-energy spectral parameters (peak energy and high-energy power-law indices)cannot be adequately constrained by BATSE LAD data alone.A few dozen bright BATSE GRBs were also observed with EGRET’s calorimeter,TASC,in multi-MeV energy band,with a large effective area and fine energy bining the BATSE and TASC data,therefore,affords spectra that span four decades of energy (30keV −200MeV),allowing for a broadband spectral analysis with good statistics.Studying such broadband high-energy spectra of GRB prompt emission is crucial,as they provide key clues to understanding its gamma-ray emission mechanism.Among the 15GRB spectra,we found two cases with a significant high-energy excess,and another case with a extremely high peak energy (E peak 170MeV).There have been very limited number of GRBs observed at MeV energies and above,and only a few instruments have been capable of observing GRBs in this energy band with such high sensitivity.Thus,our analysis results presented here should also help predict GRB observations with current and future high-energy instruments such as AGILE and GLAST,as well as with ground-based very-high-energy telescopes.Subject headings:gamma rays:bursts –gamma rays:observations1.INTRODUCTIONHigh-energy observations of gamma-ray burst (GRB)prompt emission with various detectors have indicated that GRB continuum spectra extend up to MeV–GeV energies (Hanlon et al.1994;Hurley et al.1994;Catelli et al.1998;Dingus et al.1998;Harris &Share 1998;Kippen et al.1998).GRB spectra in the MeV to GeV range are usually well-described by a single power-law with an index in the approximate range of −1to −4(Schneid et al.1992;Kwok et al.1993;Hurley et al.1994;Hanlon et al.1994;Schneid et al.1995;Catelli et al.1998;Kippen et al.1998;Briggs et al.1999;Wren et al.2002).This range is in agreement with the distributions of the high-energy power-law indices observed with BATSE Large Area Detectors (LADs)in ∼30keV −2MeV (Kaneko et al.2006,K06hereafter).However,due to the power-law nature of GRB spectra,photon counts above ∼1MeV are usually very low,and this,combined with the fact that the field of view of a high-energy detector is generally limited,results in much fewer GRBs observed in multi-MeV band than keV-band observations.The Burst and Transient Source Experiment (BATSE)on board the Compton Gamma-Ray Observatory (CGRO)has provided the largest GRB spectral database to date in the passband of sub-MeV range.Previously,K06showed that there are some BATSE GRB spectra whose peak energy (E peak )lies very close to or above the1Universities Space Research Association /NSSTC,VP62,Huntsville,AL 35805,yuki@2Instituto de Astronomia,Universidad Nacional Autonoma de Mexico,Mexico3Department of Physics,University of Alabama in Huntsville /NSSTC,VP62,Huntsville,AL 358054Los Alamos National Laboratory,Los Alamos,NM 87545upper energy bound (∼2MeV)of BATSE LADs.For such cases,the LAD data alone cannot adequately de-termine either E peak or the high-energy power law index.Moreover,the ability to identify the high-energy power law component using LAD data alone is limited,since the LAD sensitivity decreases significantly toward the up-per energy bound (Fishman et al.1989).Therefore,ob-servations of spectra extending to much higher energies with reasonable sensitivity are needed for these spectral parameters to be well bining BATSE LAD data with multi-MeV observations by another high-energy detector enables such a broadband study.Broadband spectral analyses of a few BATSE GRBs have been presented in the literature,using the data ob-tained with the CGRO instruments (Schaefer et al.1998;Briggs et al.1999).However,those broadband spectra were superpositions of the deconvolved photon spectra that were obtained by analyzing each dataset separately with various photon models.Deconvolved photon counts are model dependent,and a spectrum constructed by combining individually deconvolved spectra can be quite different from that obtained properly by simultaneously fitting a common model to all datasets.The Total Absorption Shower Counter (TASC),the calorimeter of another experiment also aboard the CGRO –the Energetic Gamma-Ray Experiment Tele-scope (EGRET)spark chamber –was one of the few instruments capable of observing GRBs in the multi-MeV energy band with excellent energy resolution (Thompson et al.1993).Due to its sensitivity to all di-rections,some bright,BATSE-triggered GRBs were also observed with the TASC apart from the EGRET spark chamber events.Since the TASC provided spectra in the range ∼1−200MeV,broadband GRB spectra spanning four decades of energy can be obtained by combining2LAD and TASC data.Such spectra,in at least one case, resulted in the discovery of a distinct multi-MeV spec-tral component apart from the extrapolated sub-MeV BATSE component(Gonz´a lez et al.2003).In this paper, we present duration-integrated broadband spectral anal-ysis of15bright BATSE GRBs,using LAD and TASC data.Wefirst describe the instuments and available data types of TASC in§2,and the selection and anal-ysis methodology of our study in§3&§4.Then in§5, we present the results,andfinally discuss the results in §6.2.TOTAL ABSORPTION SHOWER COUNTER(TASC) EGRET spark chamber was designed to observe high-energy gamma rays much above the BATSE energy band, between∼20MeV−30GeV.It was equipped with an anti-coincidence counter and a calorimeter,TASC,which was located at the bottom of the module.Although the field of view of the EGRET spark chamber was limited (Dingus et al.1998),the TASC was capable of accumu-lating data for BATSE-triggered GRBs from all direc-tions,independently from the spark chamber events. Like the BATSE detectors,the TASC was also a NaI(Tl)scintillation detector but with much larger di-mensions of76cm×76cm with a20-cm thickness(cor-responding to8radiation lengths).In its low-energy mode in the energy range of∼1−200MeV,the TASC continuously accumulated the non-burst Solar spectra (SOLAR),every32.768s.In addition,it collected Burst spectra(BURST)initiated by BATSE triggers,in four commandable time intervals of1,2,4,and16(or32)s. Both the SOLAR and BURST data provided spectra with256energy channels.An example of TASC raw count-rate spectra(i.e.,including background counts)of GRB910503integrated over the burst duration is shown in Figure1.In the spectra,the40K line at1.46MeV and the Fe neutron capture line at7.64MeV are always present,and they were used for on-board calibration pur-poses.The instrumental artifact at∼12MeV is due to an error in the electronics design(Thompson et al.1993). There is also a bump around100−200MeV caused by cosmic-ray protons that passed through the TASC along the z-axis and deposited energy of∼105MeV.The pro-ton spectral feature was also used to monitor the gain of the TASC.The FWHM energy resolution of the TASC is about20%over its entire energy range.The response is highly dependent on the incident di-rection of the event photons,because of the block shape of the TASC NaI crystal,as well as the presence of in-tervening spacecraft materials surrounding the detector. The TASC was not capable of localizing events;there-fore,for GRB observations,the locations determined by BATSE were used to obtain detector response for each event.The response was calculated using EGS4Monte Carlo code(Nelson et al.1985)with the complete CGRO mass model.It should be noted that the deadtime of the TASC is extremely high,∼60%on average.3.SELECTION METHODOLOGYWe searched the TASC data for the trigger times of43bright BATSE GRBs.The43GRBs were se-lected based on the criteria of peak photonflux≥10photons cm−2s−1in the1024ms timescale and BATSE channel-4energyfluence(>300keV)≥5.0×10−5ergs cm−2.Theflux andfluence values were taken from the4B(Paciesas et al.1999)and the cur-rent5BATSE catalog.Among these,we identified28 GRBs to have significant detections in the TASC data. In this analysis our sample consists of15bursts(out of 28),for which we had computed TASC detector response matrices prior to this study.The15GRBs are listed in Table1along with the time and energy intervals used for analysis,for which the selection methods are described below.For this analysis we used TASC SOLAR data,which provides32.768-s time resolution.Since all of the15 events are very strong and most of them have durations longer than33seconds,the time resolution is adequate for the duration-integrated spectral analysis performed here.As for the selection of corresponding BATSE data, we use the LAD Continuous(CONT)data of the bright-est LAD,with2.048-s time resolution.The brightest LAD(i.e.,the LAD that recorded the highest counts) for each event is also listed in Table1.The CONT data were able to provide time intervals with a sufficient match to the SOLAR data time intervals,which often began before the BATSE trigger time.The time inter-vals chosen for analysis were determined based upon the detection significance above background for either the LAD or TASC lightcurves.For all but one event(witha very weak tail in the LAD data),the time intervals chosen for the analysis contained their BATSE T90in-tervals.All15events are also included in the BATSE LAD spectral analysis presented in K06,although the data type used here(hence the time and the energy in-tervals)may be different.In Figure2,we show,for all15 GRBs,both the LAD and TASC lightcurves over their entire energy ranges.In the Figure,the background mod-els and the time intervals used for the analysis are also shown.The background models were determined byfit-ting a low-order polynomial function to the spectra accu-mulated for several hundreds of seconds before and after the burst duration interval.LAD CONT data provided16energy channels in the energy range of∼30keV−2MeV.The lowest few chan-nels are usually below the electronic threshold,and the highest channel is an energy overflow channel;therefore,a total of about13energy channels were usually includedin the analysis.For the TASC SOLAR data,the lowest6−7channels are always excluded to assure the exclusion of an electronic cutoff.This translates into a lower energy bound of∼1.3MeV(Table1,column9).In addition,the uppermost10−20channels are also excluded,depending upon the gain of the detector at the time of the event. The resulting upper bound for the TASC energy range was∼130−200MeV(Table1,column10).Notice that overlap in energy between the LAD and TASC datasets of a few hundred keV exists in each event.4.SPECTRAL ANALYSISWe converted the TASC data into the BATSE BFITS format,and used the BATSE spectral analysis tool RMFIT6for this analysis.For comparison purpose and consistency,the same set of photon models used5See /batse/grb/catalog/current/. 6R.S.Mallozzi,R.D.Preece,&M.S.Briggs,”RMFIT,A Lightcurve and Spectral Analysis Tool,”c Robert D.Preece,Uni-versity of Alabama in Huntsville3to analyze the bright BATSE GRBs in K06,namely, a single power-law(PWRL),empirical GRB functions with and without the high-energy power-law(BAND and COMP,respectively;Band et al.1993),and the smoothly-broken power-law(SBPL;Preece et al.1994; Ryde1999;Preece et al.2000)with its subsets,werefit-ted to the joint LAD–TASC dataset.Extensive discus-sions on these spectral models are found in K06.Since we are only analyzing the duration-integrated spectra, the GRB function withfixed high-energy indexβ(BETA model in K06)was not applicable and thus not used. The PWRL and COMP models are expected to result in very poorfits to the joint spectra because of the broad energy coverage,as well as the fact that our sample con-tains the very brightest of all BATSE GRBs,which have been shown to have a smoothly-broken power-law behav-ior with no cutoffin keV band(their best-fit models in the LAD-only analysis are SBPL or BAND;K06).In order to account for uncertainties in the effective areas of the two detectors,we added an effective area correction(EAC)term to the spectral model of eachfit: this is a multiplicative factor,to normalize the data of the second detector to those of thefirst detector.In our case,the EAC factor always normalized the TASC data to the LAD data.The EAC values can vary from event to event and were determined by simultaneouslyfitting the BAND model to both datasets with the EAC term as a free parameter.Once the EAC factor was found,it was keptfixed in the subsequentfinalfits.Between the LAD and the TASC datasets,they were always found to be unusually large(∼0.5).We investigate this issue further in§5.1.5.ANALYSIS RESULTSAs we predicted,broadband high-statistics data confi-dently rejected PWRL and COMP as best-fit models for all15spectra in our sample.Following the LAD GRB analysis in K06,we determined the best-fit(BEST)mod-els for the15joint spectra as well.The BEST model is the simplest,statistically well-fit model among the four spectral models described above that is required by the observed spectrum.Since we have four models with2,3, 4,and5free parameters,we compared resultingχ2val-ues between all combination of models,and searched for significant(>99.9%)improvement inχ2as we move from the simplest to more complicated models.We also take into account the spectral parameter constraints.The de-tails of determining the BEST models is found in K06. For all GRBs,the joint count spectra and the BEST models,along with the correspondingνFνspectra are shown in Figure 3.The spectral parameters of the BEST model are also presented in Table2.In the ta-ble,E pk value7is the peak energy inνFνspectrum and break energy(E b)value is the break energy of a broken power law,regardless of the modelfitted.As mentioned in K06,E peak and E b are not necessarily the same for a given spectrum due to the curvature around the break energy.The derivation of these values are presented in appendices of K06.It must be noted that due to the high photon counts of these events,uncertainties in the data 7Hereafter,we use E pk notation to represent the actual peak en-ergy inνFνspectrum,to distinguish from afit parameter E peak in BAND model.E peak=E pk only ifβ<−2.are dominated by systematics,which can be large espe-cially at lower energies( 100keV)in the LAD data. This can result in a relatively largeχ2value even for an acceptablefit,which can be seen in the sigma residuals in Figure3.To compare these parameters with the parameter dis-tributions of the larger sample of bright BATSE bursts presented in K06,we overplot in Figures4and5the BEST model parameters of the jointly-analyzed events on top of the time-integrated LAD spectral parameter distributions,taken from K06.It is evident in terms of the photonfluence(in25−2500keV;Figure4,top panel) that these15events are in the very brightest group of all BATSE GRBs.No bias or tendency is seen in the distributions of spectral indices(Figure4,bottom pan-els).It is clear,however,that the E pk for the15events belong to the higher end of the BATSE distributions (Figure5),and by themselves forms a quasi-Gaussian with a median of E pk =517keV.A likely reason for this is because our sample selection was based on the high photonflux andfluence above300keV:a group correlation between burst brightness and E pk was previ-ously identified using an early BATSE GRB sample by Mallozzi et al.(1995).We note also that because we se-lected only GRBs with significant detections in TASC data( 1MeV),this naturally introduces a preference for GRBs with higher E pk to be included in our sample. We found that the photonfluence and the energyfluence determined with the joint spectra were consistent with the values estimated by extrapolating the LAD-onlyfit spectra up to200MeV.In addition,we did notfind sig-nificant correlation between photonfluence and E peak or E b within our sample.To illustrate the improvements in parameter con-straints as a result of the joint analysis,in comparison with the single-detector analysis,we show the spectral parameters determined by the jointfits and the individ-ual detectorfits in Figure6.In the single-detector anal-ysis,the LAD data werefitted with the BEST model listed in Table2while the TASC data werefitted with PWRL with pivot energy of10MeV.The PWRL indices of TASC are compared with the high-energy indices of the BEST models in Figure6(top right panel).It is not surprising that in most cases the spectral parameters are determined much better with the joint analysis than with the individual cases.We also note that spectral parame-ters of our TASC-onlyfits were consistent with the pre-vious TASC analysis results found in the literature(e.g., Schneid et al.1992;Kwok et al.1993;Hurley et al.1994; Catelli et al.1998;Briggs et al.1999;Wren et al.2002) within a few sigma uncertainties.Moreover,a few of the15GRBs were also detected by the EGRET spark chamber in even higher energies,with theirflux values consistent with the TASC spectra(Schneid et al.1992; Kwok et al.1993;Hurley et al.1994).As seen in Figure6(top left panel),the low-energy spectral indices are already well constrained by the LAD data alone and are least affected by the addition of TASC data.On the other hand,the high-energy indices are much better constrained by the joint analysis,as one would expect.The values determined by the joint anal-ysis are nearly always found between the values derived from the LAD-only and TASC-only analyses.In cases where the LAD-determined index differs from the jointly-4determined index by more than a fewσ(i.e.,triggers249 and2831),the spectral break energy was also found to change significantly(Figure6,bottom right panel).The E pk values found by the joint analysis are consistent with those found by the LAD-onlyfits,although in many cases it seems to settle in the higher ends of the value ranges determined by LAD.We observed one case,trigger num-ber3523,in which the value of E pk determined with the jointfit was less constrained than the one found with the LAD-onlyfit.This is due to the high-energy index being very close to−2(−2.01±0.03),making the constraint of E pk very difficult,by definition(see itsνFνspectrum in Figure3).There was one event(trigger number2329) for which the E pk could not be determined even with the joint spectra because the high-energy index was above−2 by7.5σ(see Table2)and therefore,theνFνspectrum did not peak within the energy range.This may indicate a lower limit in E pk of167MeV(upper energy bound of the spectrum)for this event.The lightcurve of this burst(Figure2)shows that in thefirst time interval(T–33to0s),the TASCflux is clearly dominant and thus, spectrally harder than the second interval spectrum.We note that the time-resolved LAD-TASC joint analysis of this event in a time interval of1−23seconds also found that the high-energy indices were always above−2by at least1σ(Gonz´a lez et al.2004;Kaneko et al.2005). Although the spectralfits presented in Table2were all sufficiently good(largeχ2were due to systemat-ics in LAD),indications of a high-energy excess were found in the residual patterns of at least three spectra (GRBs920902,941017,and980923;triggers1886,3245, and7113).This was much more evident in the spec-trum of3245:The high-energy excess above10MeV is seen in sigma residuals of the spectrum(Figure3), and this is also evident from its lightcurves(Figure2). For this event,fitting an additional high-energy PWRL together with the BEST model resulted in an improve-ment inχ2of18.1(for∆dof=2),corresponding to a chance probability of10−4.In the case of7113,theχ2 improvement for adding high-energy PWRL was14.0,in-dicating a chance probability of∼10−3,whereas for the last event(1886),the correspondingχ2improvement was only about7,which translates into a chance probability of0.03.Although,in all case,the additional high-energy PWRL indices could not be well determined(1σuncer-tainties>0.5),the indices were rather hard,likely>−2. Time-resolved analysis of3245previously revealed,with much higher significance,a high-energy spectral compo-nent that deviates from the extrapolated keV LAD com-ponent(Gonz´a lez et al.2003).This high-energy compo-nent emerged later than and remained bright longer than the keV spectral component.Although our analysis pre-sented here is only for duration-integrated spectra,the delayed nature of the excess high-energy emission is clear from the lightcurves of all three events(Figure2).5.1.Effective Area Correction IssueAll detector response models have uncertainties.To allow for the uncertainties in their effective areas,we employ normalization factors between detectors when si-multaneously analyzing spectra from multiple detectors. Usually only about10%difference between datasets is expected(Briggs et al.1999).In our joint analysis,how-ever,wefind the discrepancy between the LAD and TASC data to be relatively large,∼30−80%,as indi-cated by the EAC factors(see Table2).Disagreements between LAD and TASC data were also previously found in some of the composed spectra(Schaefer et al.1998; Briggs et al.1999),although the response matrices used here have been newly calculated.As mentioned earlier,the TASC effective area de-pends highly upon the incident angles of events,be-cause of the geometric area of the NaI crystal as well as varying amount of intervening spacecraft material (Thompson et al.1993).Therefore,we investigated the EAC factors in our sample in terms of the incident an-gles,as well as other potential contributing factors,such as the TASC live time,event brightness,energy range, and spectral parameters.We found no apparent correla-tion in any of those;however,we noticed a striking re-semblance between the plots of EAC vs.incident zenith angle and of the effective area vs.zenith angle.The comparison is shown in Figure7,in which our EAC val-ues for the15GRBs and the normalized TASC effective area are plotted against incident zenith angles.This in-dicates that the discrepancy between the two detectors is more severe at the zenith angle where the TASC ef-fective area is smaller.As a matter of fact,a disagree-ment between the calculated effective area and the ac-tual experimental value was found at the time of the TASC instrument calibration,which was attributed to the CGRO mass model underestimating the intervening material(Thompson et al.1993).The EAC factors in our analysis were always found to be less than1,mean-ing count rates in the TASC data are overestimated.The count overestimation becomes more apparent when there is larger amount of intervening material,namely,when the effective area is smaller.Consequently,we conclude that the CGRO mass model used to determine the effec-tive area indeed underestimates the intervening material, at each zenith angle,resulting in overestimation of the photon counts observed with TASC.6.SUMMARY AND DISCUSSIONIn this study,we extended the BATSE GRB spec-tral analysis(K06)to high-energy broadband spectra obtained by combining BATSE LAD data and EGRET TASC data.Time-integrated joint spectra of15hard BATSE GRBs were analyzed in order to probe high-energy spectral properties of prompt emission.The TASC data in multi-MeV energy band withfine en-ergy resolution,clearly confirmed that the GRB spec-tra do extend up to∼200MeV and probably beyond. The joint broadband spectra in the energy range of ∼30keV−200MeV indeed constrain the high-energy spectral indices and break energies of strong GRBs that have significant MeV emission much better than single detector analysis.In most cases,E pk(and E b)values derived with LAD data alone and values found by joint analysis were consistent within1σuncertainty.However, in a few cases,the jointly-fit indices differed significantly from those determined with the LAD data alone.This indicates the possibility that some high-energy indices obtained with BATSE LADs alone may not reflect the intrinsic values,and thus highlights the importance of broadband spectral analysis.We identified one case(GRB930506;trigger2329)in which the E pk could be extremely high,with a lower limit5of∼167MeV.We note here,however,that this possibly very high E pk should be interpreted with caution for two reasons:1.While the high-energy power law index being>−2is statistically very significant(by7.5σ)as deter-mined by the statistical error bar,there is the possi-bility of a systematic error existing in a jointfit be-tween two instruments,which is not taken into ac-count here.Including the systematic uncertaintiesin the analysis could bring down the index valueto<−2,in which case the E pk would probablybecome a few MeV.2.Another possibility is that there are two spectralcomponents in this spectrum;the“regular”onewith E pk of a few MeV and an additional high-energy multi-MeV component.In addition,if thespectra evolved similar to the case of GRB941017,the duration-integrated spectrum could be a su-perposition of two evolving components.In suchcases,the single model used here could hinder cor-rect identification of the E pk as well as the high-energy power law index.We found,however,nostatistical evidence for such high-energy componentin the spectrum of GRB930506.In any case,the E pk of GRB930506is clearly above the BATSE LAD energy range.This,combined with the fact that in some cases the E pk values were found to be slightly higher than those determined by LAD data only,may indicate that there exists a tail population of E pk values extending to a few hundred MeV,especially given the limited sensitivity of TASC.In addition,while the broadband spectra were mostly consistent with broken power laws(BAND or SBPL), indications of high-energy excess were also found in two events(GRBs941017&980923;triggers3245&7113). For one of them(GRB941017;trigger3245),the dis-tinct MeV component has been clearly identified with time-resolved spectral analysis(Gonz´a lez et al.2003), with much stronger significance than with the time-integrated spectrum.For this particular GRB,the ex-istence of the extra component was further reinforced by the COMPTEL spectra,which covered an energy range of30keV−10MeV(Kaneko et al.2004).Possible explanations that have been proposed for such a high-energy component include the Comp-ton upscattering of synchrotron photons in the re-verse shock by the synchrotron-emitting relativistic electrons(Granot&Guetta2003),and the electro-magnetic cascade emission of ultra-relativistic baryons through photo-pion interactions and subsequent pion de-cay(Dermer&Atoyan2004).In the synchrotron shock model(Katz1994),the synchrotron self-Compton emis-sion associated with the synchrotron component that peaks in the keV band is expected to be observed in the MeV to TeV energy band,depending on the Lorentz factor of the electrons(Guetta&Granot2003).How-ever,the brightness and delayed nature of the high-energy component are inconsistent with the synchrotron-self Compton.It is particularly interesting if the compo-nent is indeed due to the relativistic baryons,since the observed component may be direct evidence of baryonic acceleration,namely,cosmic rays.The high-energy power-law component observed in GRB941017by Gonz´a lez et al.(2003)was described with an additional power law of index∼−1.This re-quires that there exists another break energy(and a true E pk)above200MeV,in order to avoid the energy diver-gence.Although the redshift for this event is unknown, a rough upper limit energy for such a break could be placed at∼1TeV,solely by the total(isotropic equiva-lent)energy constraint of∼1053ergs,and by assuming the burst originated nearby(z≪1).As was the case for GRB941017,time-resolved spectral analyses of high-energy GRBs are needed in order to ex-plicitly identify similar distinct spectral component.We have indeed performed such time-resolved analyses for all GRBs presented here,the result of which is the subject of another paper that will follow this work(M.M.Gonz´a lez et al.in preparation).It is possible that the time-resolved spectral analysis of broadband spectra would re-veal such high-energy spectral components in many more GRBs.Also in the MeV energy band and above,there should be a spectral cutoffdue to pair-production at-tenuation(Baring2000).Such a cutoffenergy would determine the bulk Lorentz factorΓ,which is one of the main factors,along with a redshift,preventing the deter-mination of the intrinsic E pk values in the rest frame of expanding matter(Zhang&M´e sz´a ros2004). Unfortunately,the TASC data are only available for the brightest of BATSE GRBs due to its sensitivity lim-itation.Although GRB spectra with a distinct MeV component seem to be rare,and we observed no pair-production cutoffin our analysis,these high-energy spec-tral features could be sought after using currently ex-isting very high-energy telescopes,such as AGILE8, MAGIC9,VERITAS10,and HESS11.Upcoming obser-vations by GLAST12with much higher sensitivity in an unprecedented broad energy band of10keV−∼30GeV, are anticipated to reveal broadband spectral character-istics of GRBs,which holds significant clues to under-standing GRB emission mechanism.8http://agile.iasf-roma.inaf.it/9http://wwwmagic.mppmu.mpg.de/10/11http://www.mpi-hd.mpg.de/hfm/HESS/HESS.html12/REFERENCESBand,D.L.,et al.1993,ApJ,413,281Baring,M.G.,2000,in GeV-TeV Gamma Ray Astrophysics Workshop:Towards a Major Atmospheric Cherenkov Detector VI,ed.B.Dingus,et al.AIP,515,238Briggs,M.S.,et al.1999,ApJ,524,82Catelli,J.R.,et al.1998,in Gamma-Ray Bursts,4th Huntsville Symposium,ed.C.Meegan,R.Preece and T.Koshut,AIP,428, 309。