2013届高考数学快速提升成绩题型训练——数列求和

合集下载

2013届高考数学数列的前n项和2.doc

2013届高考数学数列的前n项和2.doc

教案7 数列的前n 项和(2)一、课前检测1.在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项的和.解:由已知得:a n =1n +1(1+2+3+…+n)=n2,b n =2n 2·n +12=8(1n -1n +1) ∴数列{b n }的前n 项和为S n =8[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=8(1-1n +1)=8nn +1. 2.已知在各项不为零的数列}{n a 中,),2(0,1*111N n n a a a a a n n n n ∈≥=-+=--。

(1)求数列}{n a 的通项;(2)若数列}{n b 满足1+=n n n a a b ,数列}{n b 的前n 项的和为n S ,求.n S 解:(1)依题意,0≠n a ,故可将)2(011≥=-+--n a a a a n n n n 整理得:)2(1111≥=--n a a n n 所以n n a n =-⨯+=)1(111 即n a n 1=1=n ,上式也成立,所以na n 1=(2)1+=n n n a a b 111)1(1111+-=+=+⨯=∴n n n n n n b n )111()4131()3121()2111(321+-++-+-+-=++++=∴n n b b b b S n n1111+=+-=n n n二、知识梳理(一)前n 项和公式S n 的定义:S n =a 1+a 2+…a n 。

(二)数列求和的方法(共8种)5.错位相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

如:等比数列的前n 项和就是用此法推导的. 解读:6.累加(乘)法 解读:7.并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f(n)类型,可采用两项合并求。

必考题型高考数学:数列求和问题大全

必考题型高考数学:数列求和问题大全

必考题型高考数学:数列求和问题大全第26练数列求和问题大全题型一分组转化法求和例1等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn.破题切入点(1)可以通过逐个验证来确定数列的前三项,进而求得an;(2)可以分组求和:将{bn}前n项和转化为数列{an}和数列{(-1)nlnan}前n项的和.解(1)当a1=3时,不合题意;当a1=2时,当且仅当a2=6,a3=18时,符合题意;当a1=10时,不合题意.因此a1=2,a2 =6,a3=18.所以公比q=3.故an=2·3n-1(n∈N).(2)因为bn =an+(-1)nlnan=2·3n-1+(-1)nln(2·3n-1)=2·3n-1+(-1)n[ln2+(n-1)ln3]=2·3n-1+(-1)n(ln2-ln3)+(-1)nnln3,所以Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)nn]ln3.所以当n为偶数时,Sn=2×+ln3=3n +ln3-1;当n为奇数时,Sn=2×-(ln2-ln3)+ln3=3n-ln3-ln2-1.综上所述,Sn=题型二错位相减法求和例2已知:数列{an}的前n项和为Sn,且满足Sn=2an-n(n∈N).(1)求a1,a2的值;(2)求数列{an}的通项公式;(3)若数列{bn}的前n项和为Tn,且满足bn=nan(n∈N),求数列{bn}的前n项和Tn.破题切入点(1)代入求解即可.(2)由Sn=2an-n得Sn-1=2an-1-(n-1),n≥2,两式相减构造数列求通项公式.(3)错位相减求和.解(1)Sn=2an-n.令n=1,解得a1=1;令n=2,解得a2=3.(2)Sn=2an-n,所以Sn-1=2an-1-(n-1)(n≥2,n∈N),两式相减得an=2an-1+1,所以an+1=2(an-1+1)(n≥2,n∈N),又因为a1+1=2,所以数列{an+1}是首项为2,公比为2的等比数列.所以an+1=2n,即通项公式an=2n-1(n∈N).(3)bn=nan,所以bn=n(2n-1)=n·2n-n,所以Tn=(1·21-1)+(2·22-2)+(3·23-3)+…+(n·2n-n),Tn=(1·21+2·22+3·23+…+n·2n)-(1+2+3+…+n).令Sn=1·21+2·22+3·23+…+n·2n,①2Sn=1·22+2·23+3·24+…+n·2n+1,②①-②,得-Sn=21+22+23+…+2n-n·2n+1,-Sn=-n·2n+1,Sn=2(1-2n)+n·2n+1=2+(n-1)·2n+1,所以Tn=2+(n-1)·2n+1-(n∈N).题型三倒序相加法求和例3已知函数f(x)=(x∈R).(1)证明:f(x)+f(1-x)=;(2)若数列{an}的通项公式为an=f()(m∈N,n=1,2,…,m),求数列{an}的前m项和Sm;(3)设数列{bn}满足b1=,bn+1=b +bn,Tn=++…+,若(2)中的Sm满足对不小于2的任意正整数m,Sm1)中的结论,构造倒序求和.(3)由已知条件求出Tn的最小值,将不等式转化为最值问题求解.(1)证明因为f(x)=,所以f(1-x)===.所以f(x)+f(1-x)=+==.(2)解由(1),知f(x)+f(1-x)=,所以f()+f(1-)=(1≤k≤m-1,k∈N),即f()+f()=.所以ak+am-k=,am=f()=f(1)=.又Sm=a1+a2+…+am-1+am,①Sm=am-1+am-2+…+a1+am,②由①+②,得2Sm=(m -1)×+2am=-,即Sm=-(m∈N).(3)解由b1=,bn+1=b+bn=bn(bn+1),显然对任意n∈N,bn>0,则==-,即=-,所以Tn=(-)+(-)+…+(-)=-=3-.因为bn+1-bn=b>0,所以bn+1>bn,即数列{bn}是单调递增数列.所以Tn关于n递增,所以当n∈N时,Tn≥T1.因为b1=,b2=()2+=,所以Tn≥T1=3-=.由题意,知Sm裂项相消法求和例4在公差不为0的等差数列{an}中,a1,a4,a8成等比数列.(1)已知数列{an}的前10项和为45,求数列{an}的通项公式;(2)若bn=,且数列{bn}的前n项和为Tn,若Tn=-,求数列{an}的公差.破题切入点(1)列方程组(两个条件)确定an.(2)可以采用裂项相消法求得含有公差的表达式,再和已知Tn=-对比求得公差.解设数列{an}的公差为d,由a 1,a4,a8成等比数列可得a=a1·a8,即(a1+3d)2=a1(a1+7d),∴a+6a1d+9d2=a+7a1d,而d≠0,∴a1=9d.(1)由数列{an}的前10项和为45可得S10=10a1+d =45,即90d+45d=45,故d=,a1=3,故数列{an}的通项公式为an=3+(n-1)·=(n+8).(2)bn==,则数列{bn}的前n项和为Tn=[++…+]====-.所以=1,d=±1.故数列{an}的公差d=1或-1.总结提高数列求和的主要方法:(1)分组求和法:一个数列既不是等差数列也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,即能分别求和,然后再合并,或对字母n分类讨论后再求和.(2)错位相减法:这是推导等比数列的前n项和公式时所用的方法,主要用于求{an·bn}的前n项和,其中{an}和{bn}分别是等差数列和等比数列.(3)倒序相加法:这是推导等差数列前n项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法:把数列和式中的各项分别裂开后,消去一部分从而计算和的方法,适用于求通项为的前n项和,其中{an}若为等差数列,则=·(-).其余还有公式法求和等.1.若数列{an}的通项公式为an=,则其前n项和Sn为()A.1-B.--C.--D.--答案D解析方法一因为an==-,所以Sn=a1+a2+…+an=1-+-+-+…+-+-=1+--=--.故选D.方法二因为a1=,a2=,所以S1=a1=.令n=1,选项B中,-1-=0,选项C中,-1-=,故排除B,C.又S2=+=,选项A中,令n=2,则1-=,故排除A,应选D.2.已知数列1,3,5,7,…,则其前n项和Sn为()A.n2+1-B.n2+2-C.n2+1-D.n2+2-答案A解析因为an=2n-1+,则Sn=n+=n2+1-.3.(2013·课标全国Ⅰ)设等差数列{an}的前n项和为Sn,Sm -1=-2,Sm=0,Sm+1=3,则m等于()A.3B.4C.5D.6答案C解析am=2,am+1=3,故d=1,因为Sm=0,故ma1+d=0,故a1=-,因为am+am+1=5,故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,即m=5.4.在数列{an}中,若存在一个确定的正整数T,对任意n∈N满足an+T=an,则称{an}是周期数列,T叫作它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,当数列{xn}的周期为3时,则{xn}的前2013项和S2013等于()A.1340B.1342C.1344D.1346答案B解析由xn+2=|xn+1-xn|,得x3=|x2-x1|=|a-1|=1-a,x4=|x3-x2|=|1-2a|,因为数列{xn}的周期为3,所以x4=x1,即|1-2a|=1,解得a=0或a=1.当a=0时,数列{xn}为1,0,1,1,0,1,…,所以S2013=2×671=1342.当a=1时,数列{xn}为1,1,0,1,1,0,…,所以S2013=2×671=1342.综上,S2013=1342.5.已知数列2008,2009,1,-2008,-2009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2014项之和S2014等于( )A.2008B.2010C.1D.0答案B解析由已知得an=an-1+an+1(n≥2),∴an+1=an-an-1.故数列的前8项依次为2008,2009,1,-2008,-2009,-1,2008,2009.由此可知数列为周期数列,周期为6,且S6=0.∵2014=6×335+4,∴S2014=S4=2008+2009+1+(-2008)=2010.6.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________.答案1830解析∵an+1+(-1)nan=2n-1,∴a2=1+a1,a3=2-a1,a4=7-a1,a5=a1,a6=9+a1,a7=2-a1,a8=15-a1,a9=a1,a10=17+a1,a11=2-a1,a12=23-a1,…,a57=a1,a58=113+a1,a59=2-a1,a60=119-a1,∴a1+a2+…+a60=(a1+a2+a3+a4)+(a5+a6+a7+a8)+…+(a57+a58+a59+a60)=10+26+42+…+234==1830.7.在等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列的前n项和Sn=________.答案解析设等比数列{an}的公比为q,则=q3=27,解得q=3.所以an=a1qn-1=3×3n-1=3n,故bn=log3an=n,所以==-.则数列的前n项和为1-+-+…+-=1 -=.8.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=1.{an}的“差数列”的通项公式为an+1-an=2n,则数列{an}的前n项和Sn=________.答案2n+1-n-2解析因为an+1-an=2n,应用累加法可得an=2n-1,所以Sn=a1+a2+a3+…+an=2+22+23+…+2n-n=-n=2n+1-n-2.9.定义:若数列{An}满足An+1=A,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列;(2) 设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)·(2a2+1)·…·(2an+1),求数列{an}的通项公式及Tn关于n的表达式.(1)证明由题意得an+1=2a+2an,得2an+1+1=4a+4an+1=(2an+1)2.所以数列{2an+1}是“平方递推数列”.令cn=2an+1,所以lgcn+1=2lgcn.因为lg(2a1+1)=lg5≠0,所以=2.所以数列{lg(2an+1)}为等比数列.(2)解因为lg(2a1+1)=lg5,所以lg(2an+1)=2n-1·lg5,所以2an+1=52n-1,即an=(52n-1-1).因为lgTn=lg(2a1+1)+lg(2a2+1)+…+lg(2an+1)==(2n-1)lg5.所以Tn=52n-1.10.(2014·湖南)已知数列{an}的前n项和Sn=,n∈N.(1)求数列{an}的通项公式;(2)设bn=2an+(-1)nan,求数列{bn}的前2n项和.解(1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=-=n.故数列{an}的通项公式为an =n.(2)由(1)知an=n,故bn=2n+(-1)nn.记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).记A=21+22+…+22n,B=-1+2-3+4-…+2n,则A==22n+1-2.B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n,故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.11.(2014·课标全国Ⅱ)已知数列{an}满足a1=1,an+1=3an+1.(1)证明{an+}是等比数列,并求{an}的通项公式;(2)证明++…+n+1+=3(an+).又a1+=,所以{an+}是首项为,公比为3的等比数列.an+=,因此{an}的通项公式为an=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)。

数列求和7种方法(方法全-例子多)精选全文

数列求和7种方法(方法全-例子多)精选全文

可编辑修改精选全文完整版数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立练习题1.答案:.练习题2。

高考数学快速提升成绩题型训练——数列求和

高考数学快速提升成绩题型训练——数列求和

高考数学快速提升成绩题型训练——数列求和1. 求数列1357,,,,24816⋅⋅⋅,212n n -的前n 项和.2 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和.3. 求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。

4. 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++5. 求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S6. 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.7. 求数5,55,555,…,55…5 的前n 项和S n8.已知数列{}n a 是等差数列,且1171713951=+-+-a a a a a ,求153a a +的值.9. 已知数列{}n a 的通项公式为nn a n ++=11 求它的前n 项的和.10. 在数列{}n a 中,).2(122,121≥-==n S S a a n n 证明数列⎭⎬⎫⎩⎨⎧n s 1是等差数列,并求出S n 的表达式.11. 数列{}na 为正数的等比数列,它的前n 项和为80,前2 n 项和为6560,且前n 项中数值最大的项为54. 求其首项a 1及公比q .12. 已知数列!)1(!32!21++++=n n a n 求2008a .13. 设{}na 为等差数列,S n 为数列{}n a 的前n 项和,已知S 7 = 7, S 15 = 75. 记T n 为数列⎭⎬⎫⎩⎨⎧n S n 的前n 项和,求T n .14. 求数列)2112(815,413,211n n +- 的前项和15. 已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .16. 求和222222100994321-++-+- .17. ()()111112323434512n S n n n =++++⨯⨯⨯⨯⨯⨯++,求n S 。

2013届高考数学总复习教学案:数列求和

2013届高考数学总复习教学案:数列求和

第四节数_列_求_和[知识能否忆起]一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: (1)1+2+3+4+…+n =n (n +1)2;(2)1+3+5+7+…+2n -1=n 2; (3)2+4+6+8+…+2n =n 2+n . 二、非等差、等比数列求和的常用方法 1.倒序相加法如果一个数列{a n },首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,等差数列的前n 项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,等比数列的前n 项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[小题能否全取]1.(2012·沈阳六校联考)设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( ) A.n [(-1)n -1]2B.(-1)n -1+12C.(-1)n +12D.(-1)n -12解析:选D 因为数列{(-1)n }是首项与公比均为-1的等比数列,所以S n =-1-(-1)n ×(-1)1-(-1)=(-1)n -12.2.等差数列{a n }的通项公式为a n =2n +1,其前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100解析:选C ∵S n =n (a 1+a n )2=n (n +2),∴S n n =n +2.故S 11+S 22+…+S 1010=75. 3.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185解析:选C a 1+…+a k +…+a 10=240-(2+…+2k +…+20)=240-(2+20)×102=240-110=130.4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为________. 解析:S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.答案:2n +1+n 2-25.数列12×4,14×6,16×8,…,12n (2n +2),…的前n 项和为________.解析:因a n =12n (2n +2)=14⎝ ⎛⎭⎪⎫1n -1n +1则S n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1=n 4(n +1). 答案:n4(n +1)数列求和的方法(1)一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(2)解决非等差、等比数列的求和,主要有两种思路:①转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.②不能转化为等差或等比数列的数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.分组转化法求和典题导入[例1] (2011·山东高考)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前2n 项和S 2n . [自主解答] (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以S 2n =b 1+b 2+…+b 2n =2(1+3+…+32n -1)+[-1+1-1+…+(-1)2n ](ln 2-ln 3)+[-1+2-3+…+(-1)2n 2n ]ln 3=2×1-32n1-3+n ln 3=32n +n ln 3-1. 由题悟法分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.以题试法1.已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列.求:(1)p ,q 的值;(2)数列{x n }前n 项和S n 的公式.解:(1)由x 1=3,得2p +q =3,又因为x 4=24p +4q , x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q , 解得p =1,q =1.(2)由(1),知x n =2n+n ,所以S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n (n +1)2.错位相减法求和典题导入[例2] (2012·江西高考)已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .[自主解答] (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2).由a 2=4,a 6=8a 3 ,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2), 于是a n =2n .(2)T n =∑i =1nia i =∑i =1ni ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2n .T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1 =-2n +1+2+n ·2n +1=(n -1)2n +1+2.由题悟法用错位相减法求和应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.以题试法2.(2012·济南模拟)已知等比数列{a n }的前n 项和为S n ,且满足S n =3n +k . (1)求k 的值及数列{a n }的通项公式;(2)若数列{b n }满足a n +12=(4+k )a n b n ,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,由a n =S n -S n -1=3n +k -3n -1-k =2·3n -1,得等比数列{a n }的公比q =3,首项为2.∴a 1=S 1=3+k =2,∴k =-1,∴数列{a n }的通项公式为a n =2·3n -1. (2)由a n +12=(4+k )a n b n ,可得b n =n 2·3n -1,即b n =32·n 3n .∵T n =32⎝⎛⎭⎫13+232+333+…+n 3n , ∴13T n =32⎝ ⎛⎭⎪⎫132+233+334+…+n 3n +1,∴23T n =32⎝ ⎛⎭⎪⎫13+132+133+…+13n -n 3n +1, ∴T n =94⎝ ⎛⎭⎪⎫12-12·3n -n 3n +1.裂项相消法求和典题导入[例3] 已知数列{a n }的前n 项和为S n ,a 1=1,S n =na n -n (n -1)(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2a n a n +1,求数列{b n }的前n 项和T n .[自主解答] (1)∵S n =na n -n (n -1),当n ≥2时, S n -1=(n -1)·a n -1-(n -1)(n -2),∴a n =S n -S n -1=na n -n (n -1)-(n -1)a n -1+(n -1)·(n -2), 即a n -a n -1=2.∴数列{a n }是首项a 1=1,公差d =2的等差数列, 故a n =1+(n -1)·2=2n -1,n ∈N *.(2)由(1)知b n =2a n a n +1=2(2n -1)(2n +1)=12n -1-12n +1,故T n =b 1+b 2+…+b n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.本例条件不变,若数列{b n }满足b n =1S n +n ,求数列{b n }的前n 项和T n .解:S n =na n -n (n -1)=n (2n -1)-n (n -1)=n 2. b n =1S n +n =1n 2+n =1n (n +1)=1n -1n +1,T n =⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.由题悟法利用裂项相消法求和应注意(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.以题试法3.(2012·“江南十校”联考)在等比数列{a n }中,a 1>0,n ∈N *,且a 3-a 2=8,又a 1、a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n ∈N *恒成立.若存在,求出正整数k 的最小值;不存在,请说明理由. 解:(1)设数列{a n }的公比为q ,由题意可得a 3=16, ∵a 3-a 2=8,则a 2=8,∴q =2. ∴a n =2n +1.(2)∵b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n (n +3)4.∵1S n =4n (n +3)=43⎝ ⎛⎭⎪⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n=43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3 =43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<229, ∴存在正整数k 的最小值为3.1.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5 C.3116D.158解析:选C 设数列{a n }的公比为q .由题意可知q ≠1,且9(1-q 3)1-q =1-q 61-q,解得q =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得S 5=3116.2.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4D .不确定解析:选B 由数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R ),可知数列{a n }是等差数列,由S 25=(a 1+a 25)×252=100,解得a 1+a 25=8,所以a 1+a 25=a 12+a 14=8.3.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:选A 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎫12+122+…+12n =n 2+1-12n . 4.(2012·“江南十校”联考)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ) A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14nD.23⎝⎛⎭⎫1-12n 解析:选C a n =2n -1,设b n =1a n a n +1=⎝⎛⎭⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝⎛⎭⎫123+…+⎝⎛⎭⎫122n -1 =12⎝⎛⎭⎫1-14n 1-14=23⎝⎛⎭⎫1-14n . 5.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100解析:选A 设等差数列{a n }的首项为a 1,公差为d .∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15, ∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1,∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101. 6.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B 由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.7.在等差数列{a n }中,S n 表示前n 项和,a 2+a 8=18-a 5,则S 9=________. 解析:由等差数列的性质及a 2+a 8=18-a 5, 得2a 5=18-a 5,则a 5=6, 故S 9=(a 1+a 9)×92=9a 5=54.答案:548.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n . ∴S n =2-2n +11-2=2n +1-2.答案:2n +1-29.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和S n =________.解析:设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n ,所以1b n b n +1=1n (n +1)=1n -1n +1.则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.答案:nn +110.(2013·唐山统考)在等比数列{a n }中,a 2a 3=32,a 5=32. (1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n . 解:(1)设等比数列{a n }的公比为q ,依题意得⎩⎪⎨⎪⎧a 1q ·a 1q 2=32,a 1q 4=32,解得a 1=2,q =2, 故a n =2·2n -1=2n .(2)∵S n 表示数列{a n }的前n 项和, ∴S n =2(1-2n )1-2=2(2n -1),∴S 1+2S 2+…+nS n =2[(2+2·22+…+n ·2n )-(1+2+…+n )]=2(2+2·22+…+n ·2n )-n (n +1),设T n =2+2·22+…+n ·2n ,① 则2T n =22+2·23+…+n ·2n +1,② ①-②,得-T n =2+22+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=(1-n )2n +1-2,∴T n =(n -1)2n +1+2,∴S 1+2S 2+…+nS n =2[(n -1)2n +1+2]-n (n +1) =(n -1)2n +2+4-n (n +1).11.(2012·长春调研)已知等差数列{a n }满足:a 5=9,a 2+a 6=14. (1)求{a n }的通项公式;(2)若b n =a n +qa n (q >0),求数列{b n }的前n 项和S n .解:(1)设数列{a n }的首项为a 1,公差为d ,则由a 5=9,a 2+a 6=14,得⎩⎪⎨⎪⎧a 1+4d =9,2a 1+6d =14,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以{a n }的通项a n =2n -1.(2)由a n =2n -1得b n =2n -1+q 2n -1.当q >0且q ≠1时,S n =[1+3+5+…+(2n -1)]+(q 1+q 3+q 5+…+q 2n -1)=n 2+q (1-q 2n )1-q 2;当q =1时,b n =2n ,则S n =n (n +1). 所以数列{b n }的前n 项和 S n=⎩⎪⎨⎪⎧n (n +1),q =1,n 2+q (1-q 2n)1-q 2,q >0,q ≠1.12.(2012·“江南十校”联考)若数列{a n }满足:a 1=23,a 2=2,3(a n +1-2a n +a n -1)=2.(1)证明:数列{a n +1-a n }是等差数列;(2)求使1a 1+1a 2+1a 3+…+1a n >52成立的最小的正整数n .解:(1)由3(a n +1-2a n +a n -1)=2可得:a n +1-2a n +a n -1=23,即(a n +1-a n )-(a n -a n -1)=23,故数列{a n +1-a n }是以a 2-a 1=43为首项,23为公差的等差数列.(2)由(1)知a n +1-a n =43+23(n -1)=23(n +1),于是累加求和得a n =a 1+23(2+3+…+n )=13n (n +1),∴1a n =3⎝ ⎛⎭⎪⎫1n -1n +1, ∴1a 1+1a 2+1a 3+…+1a n =3-3n +1>52,∴n >5, ∴最小的正整数n 为6.1.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2 (1≤n ≤3)n 2-6n (n >3) 解析:选C ∵由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7, ∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).2.(2012·成都二模)若数列{a n }满足a 1=2且a n +a n -1=2n +2n -1,S n 为数列{a n }的前n 项和,则log 2(S 2 012+2)=________.解析:因为a 1+a 2=22+2,a 3+a 4=24+23,a 5+a 6=26+25,….所以S 2 012=a 1+a 2+a 3+a 4+…+a 2 011+a 2 012=21+22+23+24+…+22 011+22 012 =2(1-22 012)1-2=22 013-2.故log 2(S 2 012+2)=log 222 013=2 013. 答案:2 0133.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .解:(1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧ a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2,或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }为递增数列,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n . (2)∵b n =2n ·log 122n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n .①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.② ①-②得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-n ·2n +1-2. ∴S n =2n +1-n ·2n +1-2.1.已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项; (2)求数列{2a n }的前n 项和S n .解:(1)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d 1+2d ,解得d =1或d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n . (2)由(1)知2a n =2n , 由等比数列前n 项和公式得 S n=2+22+23+…+2n =2(1-2n )1-2=2n +1-2.2.设函数f (x )=x 3,在等差数列{a n }中,a 3=7,a 1+a 2+a 3=12,记S n =f (3a n +1),令b n =a n S n ,数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为T n .(1)求{a n }的通项公式和S n ; (2)求证:T n <13.解:(1)设数列{a n }的公差为d ,由a 3=a 1+2d =7,a 1+a 2+a 3=3a 1+3d =12,解得a 1=1,d =3,则a n =3n -2.∵f (x )=x 3,∴Sn =f (3a n +1)=a n +1=3n +1.(2)证明:∵b n =a n S n =(3n -2)(3n +1), ∴1b n =1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1. ∴T n =1b 1+1b 2+…+1b n=13⎝ ⎛⎭⎪⎫1-14+14-17+…+13n -2-13n +1 =13⎝ ⎛⎭⎪⎫1-13n +1.∴T n <13. 3.已知二次函数f (x )=x 2-5x +10,当x ∈(n ,n +1](n ∈N *)时,把f (x )在此区间内的整数值的个数表示为a n .(1)求a 1和a 2的值; (2)求n ≥3时a n 的表达式;(3)令b n =4a n a n +1,求数列{b n }的前n 项和S n (n ≥3).解:(1)f (x )=x 2-5x +10,又x ∈(n ,n +1](n ∈N *)时,f (x )的整数个数为a n ,所以f (x )在(1,2]上的值域为[4,6)⇒a 1=2;f (x )在(2,3]上的值域为⎣⎡⎦⎤154,4⇒a 2=1.(2)当n ≥3时,f (x )是增函数,故a n =f (n +1)-f (n )=2n -4. (3)由(1)和(2)可知,b 1=42×1=2,b 2=41×2=2.而当n ≥3时,b n =4(2n -4)(2n -2)=2⎝ ⎛⎭⎪⎫12n -4-12n -2.所以当n ≥3时,S n =b 1+b 2+b 3+b 4+…+b n=2+2+2⎝ ⎛⎭⎪⎫12-14+14-16+…+12n -4-12n -2=4+2⎝ ⎛⎭⎪⎫12-12n -2=5-1n -1.。

高三数学一轮专题复习------- 数列的求和(有详细答案)

高三数学一轮专题复习-------  数列的求和(有详细答案)

数列的求和1. 在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 答案:a n =2n -1解析:由已知{a n }为等差数列,d =a n +1-a n =2, ∴ a n =2n -1.2. 已知数列{a n }中,a 1=1,(n +1)a n +1=na n (n ∈N *),则该数列的通项公式a n =________. 答案:a n =1n解析:a n a 1=a n a n -1×a n -1a n -2×…×a 2a 1=1n .3. (必修5P 44习题2(2)改编) 20n =å(1+2 n )=________.答案:441 解析:20n =å(1+2n)=1+(1+2×1)+(1+2×2)+…+(1+2×20)=21+2×20(1+20)2=441.4. (必修5P 60复习题8(1)改编)数列{a n }的前n 项和为S n ,若a n =1n (n +1),则S 4=________.答案:45解析:a n =1n (n +1)=1n -1n +1,∴ S 4=1-12+12-13+13-14+14-15=45.5. (必修5P 51例3改编) 数列112,214,318,4116,…的前n 项和是 __________.答案:S n =n (n +1)2+1-12n解析:S n =(1+2+3+…+n)+⎝⎛⎭⎫12+122+…+12n =n (n +1)2+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=n (n +1)2+1-12n.1. 当已知数列{a n }中,满足a n +1-a n =f(n),且f(1)+f(2)+…+f(n)可求,则可用累加法求数列的通项a n .2. 当已知数列{a n }中,满足a n +1a n=f(n),且f(1)·f(2)·…·f(n)可求,则可用迭乘法求数列的通项a n .3. (1) a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.(2) 等差数列前n 项和S n =n (a 1+a n )2,推导方法:倒序相加法. (3) 等比数列前n 项和S n =⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.推导方法:错位相减法.4. 常见数列的前n 项和: (1) 1+2+3+…+n =n (n +1)2;(2) 2+4+6+…+2n =n(n +1); (3) 1+3+5+…+(2n -1)=n 2;(4) 12+22+32+…+n 2=n (n +1)(2n +1)6.5. (1) 分组求和:把一个数列分成几个可以直接求和的数列.(2) 拆项相消:有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和.(3) 错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (4) 倒序相加:例如,等差数列前n 项和公式的推导方法. 6. 常见的拆项公式有:(1) 1n (n +1)=1n -1n +1;(2) 1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);(4)1a +b =1a -b(a -b).题型1 求简单数列的通项公式 例1 求下列数列{a n }的通项公式: (1) a 1=1,a n +1=a n +2n +1; (2) a 1=1,a n +1=2n a n . 解:(1) a n =n 2(2) a n =2n (n -1)2变式训练求下列数列{a n }的通项公式: (1) a 1=1,a n +1=2a n +1; (2) a 1=1,a n +1=2a n2+a n ;(3) a 1=2,a n +1=a 2n . 解:(1) a n =2n -1 (2) a n =2n +1(3) a n =22n -1 题型2 分组转化求和例2 求下面数列的前n 项和: 112,314,518,7116, … 解:S n =112+314+518+7116+…+⎣⎡⎦⎤(2n -1)+12n =[1+3+5+…+(2n -1)]+⎝⎛⎭⎫12+14+18+…+12n =n[1+(2n -1)]2+12⎝⎛⎭⎫1-12n 1-12=n 2-12n +1.备选变式(教师专享)已知a n =⎩⎪⎨⎪⎧5n +1,n 为奇数,2n 2,n 为偶数.(1) 求数列{a n }的前10项和S 10;(2) 求数列{a n }的前2k 项和S 2k .解:(1) S 10=(6+16+26+36+46)+(2+22+23+24+25) =5(6+46)2+2(1-25)1-2=192.(2) 由题意知数列{a n }的前2k 项中,k 个奇数项组成首项为6,公差为10的等差数列,k 个偶数项组成首项为2,公比为2的等比数列.∴ S 2k =[6+16+...+(10k -4)]+(2+22+ (2))=k[6+(10k -4)]2+2(1-2k )1-2=5k 2+k +2k +1-2.题型3 裂项相消求和例3 求下面各数列的前n 项和: (1)11×5,13×7,15×9,17×11,… (2) 2222-1,4242-1,6262-1,8282-1,…解:(1) ∵ a n =1(2n -1)(2n +3)=14(12n -1-12n +3),∴ S n =14(1-15+13-17+15-19+…+12n -3-12n +1+12n -1-12n +3)=14(1+13-12n +1-12n +3)=n (4n +5)3(2n +1)(2n +3). (2) ∵ a n =(2n )2(2n -1)(2n +1)=1+1(2n -1)(2n +1)=1+12⎝⎛⎭⎫12n -1-12n +1,∴ S n =n +12⎝⎛⎭⎫1-12n +1=2n (n +1)2n +1. 备选变式(教师专享) 求1+11+2+11+2+3+…+11+2+3+…+n .解:∵a k =2⎝⎛⎭⎫1k -1k +1,∴S n =2n n +1.题型4 倒序相加求和例4 设f(x)=13x +3,求f(-12)+f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)+f(13)的值.解:∵ f(x)+f(1-x)=33,∴ 原式=1333. 备选变式(教师专享)一个等差数列前4项之和为26,最末4项之和为110,所有项之和为187,则它的项数为________.答案:11解析:∵a 1+a 2+a 3+a 4=26,a n +a n -1+a n -2+a n -3=110,∴a 1+a n =26+1104=34.又S n =n (a 1+a n )2=187,∴n =11. 题型5 错位相减求和 例5 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列.(1) 求数列{a n }的通项公式;(2) 设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 解:(1) 设{a n }公比为q ,由题意得q>0,且⎩⎪⎨⎪⎧a 2=2a 1+3,3a 2+5a 3=2a 4,即⎩⎪⎨⎪⎧a 1(q -2)=3,2q 2-5q -3=0, 解得⎩⎪⎨⎪⎧a 1=3,q =3或⎩⎨⎧a 1=-65,q =-12(舍),所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N (2) 由(1)可得b n =log 3a n =n ,所以a n b n =n·3n . 所以S n =1·3+2·32+3·33+…+n·3n ,所以3S n =1·32+2·33+3·34+…+n·3n +1,两式相减得,2S n =-3-(32+33+…+3n )+n·3n +1=-(3+32+33+…+3n )+n·3n +1=-3(1-3n )1-3+n ·3n +1=3+(2n -1)·3n +12,所以数列{a n b n }的前n 项和S n =3+(2n -1)·3n +14.备选变式(教师专享)已知数列{a n }的前n 项和为S n =3n -1. (1) 求数列{a n }的通项公式;(2) 若b n =log 13(S n +1),求数列{b n a n }的前n 项和T n .解:(1) 当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n -1)-(3n -1-1)=2×3n -1,综上所述,a n =2×3n -1.(2) b n =log 1(S n +1)=log 13n =-n ,所以b n a n =-2n ×3n -1,T n =-2×1-4×31-6×32-…-2n ×3n -1,3T n =-2×31-4×32-…-2(n -1)×3n -1-2n ×3n , 相减,得-2T n =-2×1-2×31-2×32-…-2×3n -1+2n ×3n=-2×(1+31+32+…+3n -1)+2n ×3n , 所以T n =(1+31+32+…+3n -1)-n ×3n=1-3n1-3-n ×3n=-(2n -1)×3n +12,n ∈N *.1. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N ).若b 3=-2,b 10=12,则a 8=________.答案:3解析:已知b n =2n -8,a n +1-a n =2n -8,由叠加法(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=-6-4-2+0+2+4+6=0a 8=a 1=3.2. (2013·大纲)等差数列{a n }中,a 7=4,a 19=2a 9. (1) 求{a n }的通项公式; (2) 设b n =1na n,求数列{b n }的前n 项和S n . 解:(1) 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d ,因为⎩⎪⎨⎪⎧a 7=4,a 19=2a 9,所以⎩⎪⎨⎪⎧a 1+6d =4,a 1+18d =2(a 1+8d ).解得a 1=1,d =12.所以{a n }的通项公式为a n =n +12. (2) b n =1na n =2n (n +1)=2n -2n +1,所以S n =⎝⎛⎭⎫21-22+⎝⎛⎭⎫22-23+…+⎝⎛⎭⎫2n -2n +1 =2n n +1. 3. (2013·湖南)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N(1) 求a 1,a 2,并求数列{a n }的通项公式; (2) 求数列{na n }的前n 项和.解:(1) ∵ S 1=a 1.∴ 当n =1时,2a 1-a 1=S 1·S 1a 1≠0,a 1=1. 当n>1时,a n =S n -S n -1=2a n -a 1S 1-2a n -1-a 1S 1=2a n -2a n -1a n =2a n -1{a n }是首项为a 1=1公比为q =2的等比数列,a n =2n -1,n ∈N *.(2) 设T n =1·a 1+2·a 2+3·a 3+…+n·a n qT n =1·qa 1+2·qa 2+3·qa 3+…+n·qa n qT n =1·a 2+2·a 3+3·a 4+…+n·a n +1, 上式左右错位相减:(1-q)T n =a 1+a 2+a 3+…+a n -na n +1=a 11-q n1-q -na n +1=2n -1-n·2nT n =(n -1)·2n +1,n ∈N *.4. 已知等差数列{a n }前三项之和为-3,前三项积为8. (1) 求等差数列{a n }的通项公式;(2) 若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.解:(1) 设公差为d ,则⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∴ a n =-3n +5或a n =3n -7.(2) 当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4成等比数列,满足条件.当|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.n =1,S 1=4;n =2时,S 2=5;当n ≥3时,S n =|a 1|+…+|a n |=32n 2-112n +10.又n =2满足此式,∴ S n =⎩⎪⎨⎪⎧4(n =1),32n 2-112n +10(n >1).1. 已知数列a n =⎩⎪⎨⎪⎧n -1,n 为奇数,n ,n 为偶数,求a 1+a 2+a 3+a 4+…+a 99+a 100的值.解:由题意得a 1+a 2+a 3+a 4+…+a 99+a 100=0+2+2+4+4+…+98+98+100=2(2+4+6+…+98)+100=2×49×(2+98)2+100=5 000.2. 已知各项均为正数的数列{a n }的前n 项的乘积T n =⎝⎛⎭⎫14n 2-6n (n ∈N *),b n =log 2 a n ,则数列{b n }的前n 项和S n 取最大时,n =________.答案:3解析:当n =1时,a 1=T 1=45=210,当n ≥2时,a n =T n T n -1=⎝⎛⎭⎫14n 2-6n -(n -1)2+6(n -1)=⎝⎛⎭⎫142n -7=214-4n,此式对n =1也成立,所以a n =214-4n,从而b n =log 2a n =14-4n ,可以判断数列{b n }是首项为10,公差为-4的等差数列,因此S n =-2n 2+12n ,故当n =3时,S n 有最大值.3. 已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f(x)=x 2+2x 的图象上,且在点P n (n ,S n )处的切线的斜率为k n .(1) 求数列{a n }的通项公式;(2) 若b n =2k n a n ,求数列{b n }的前n 项和T n .解: (1) ∵ 点P n (n ,S n )在函数f(x)=x 2+2x 的图象上,∴ S n =n 2+2n(n ∈N *),当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1.(2) 由f(x)=x 2+2x ,求导得f′(x)=2x +2. ∵ 在点P n (n ,S n )处的切线的斜率为k n , ∴ k n =2n +2,∴ b n =2k n a n =4·(2n +1)·4n ,∴ T n =4×3×4+4×5×42+4×7×43+…+4×(2n +1)×4n ,用错位相减法可求得T n =6n +19·4n +2-169.4. 已知等差数列{a n }是递增数列,且满足a 4·a 7=15,a 3+a 8=8. (1) 求数列{a n }的通项公式;(2) 令b n =19a n -1a n(n ≥2),b 1=13,求数列{b n }的前n 项和S n .解:(1) 根据题意:a 3+a 8=8=a 4+a 7,a 4·a 7=15,知:a 4,a 7是方程x 2-8x +15=0的两根,且a 4<a 7,解得a 4=3,a 7=5,设数列{a n }的公差为d ,由a 7=a 4+(7-4)·d ,得d =23.故等差数列{a n }的通项公式为a n =a 4+(n -4)·d =3+23(n -4)=2n +13.(2) 当n ≥2时,b n =19a n -1a n =19⎝⎛⎭⎫23n -13⎝⎛⎭⎫23n +13=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.又b 1=13=12⎝⎛⎭⎫1-13, ∴ S n =b 1+b 2+…+b n=12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n 2n +1.1. a n 的两种常见变形a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)(累加法) a n =a 1·a 2a 1·a 3a 2·…a na n -1(累乘法)2. 数列求和的方法技能① 倒序相加 ② 错位相减 ③ 分组求和 ④ 拆项相消3. 方程思想、函数思想、化归思想、整体思想、分类讨论等数学思想在数列中均得到广泛应用,尤其是运用化归的思想将问题转化为等差、等比数列问题来研究是解决数列综合问题的最基本思维方法.。

高考数学-数列求和的方法总结(有答案)

高考数学-数列求和的方法总结(有答案)

两式相加得: 2S 9 f
1 10
9 9 f 9 ,所以 S . 2 10
2
例 5.求和: S n 2 3 5 解: S n 2 3 5

1
4 3 5 6 3 5
n(n 1) 2 ,1+3+5+„„+(2n-1)= n , 2
2
n(n 1)(2n 1) n(n 1) 3 3 3 3 1 2 3 ……+n = , 1 2 3 ……+n = 等。 6 2
2 2 2 2
2.错位相减法: 若数列各项是由一个等差数列和一个等比数列对应项相乘得到, 即数列是一个 “差比数列” , 则采用错位相减法。错位相减法的求解步骤:①在等式两边同时乘以“差比”数列中等比数列 的公比 q ;②将两个等式相减;③利用等比数列的前 n 项和的公式求和。 3.裂项相消法: 把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正 负项相互抵消,于是前 n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。该
c an an 1 方法适用于类似 的数列,其中 an 是各项不为零的等差数列,c 为常数。用裂项相消
法求和,需要掌握一些常见的裂项方法:
1 1 1 1 11 1 n n 1 n n 1 nn k k n n k ① ,特别地当 k 1 时, ;
﹣ )+ ( ﹣ ﹣ )
) . ﹣ ) + ﹣ +…+ ﹣ ) )+ ( ﹣ )
)]= .
=

故答案为:

2013高考数学解题方法攻略数列2理

2013高考数学解题方法攻略数列2理

特征方程是: 3x 2 5 x 2 0 。
2
x1 1, x2
1 an
3
1 n1 ( ) 两边乘以
n
2
1 得:
n
2
1
an 1
2
2 (2 n an ) 1 3
令 bn
n
2 an ,则 bn 1
2 bn 1 , 解之得: bn
3
2n 3 2( )
3
所以 a n
bn
n
3( 1 ) n 2( 1 ) n
2
2
3
变式 : ( 2006,全国 I, 理 22, 本小题满分 12 分)
an 3 ,则 b1
a1 3 4 , 且 bn 1 bn
an 1 3 an 3
2.所
以 bn 是以 b1
4 为首项, 2 为公比的等比数列,则
bn
n1
42
n1
2 , 所以 an
n1
2 3.
变式 : ( 2006,重庆 , 文 ,14 )
在数列 an 中,若 a1 1, an 1 2an 3( n 1) ,则该数列的通项 an _______________
n1 1
2
(1 3
2n)
n1 ,
23
n 1 a1 a2 ... an
n (n
N * ).
2 3 a2 a3
an 1 2
变式 : 递推式: an 1 pa n f n 。 解法:只需 构造数列 bn ,消去 f n 带来的 差异 .
类型 4 a n 1 pa n q n (其中 p, q 均为常数, ( pq( p 1)( q 1) 0) )。 (或 an 1 pan rq n , 其中 p,q, r 均为常数) 。

高考数列求和

高考数列求和
对于一个等差数列,如果要求其和,可以使用倒序相加法。
倒序相加法可以用于求和的数列必须是等差数列,如果数列不是等差数列,那么该 方法不适用。
倒序相加法在求和时具有简单、易操作的特点,因此在高中数学中经常被使用。
倒序相加法求和的例题解析
要点一
例题
要点二
解析
求等差数列1,3,5,7,9...的和。
将该数列的元素从后往前排列,得到9,7,5,3,1...,然后将两 两相加,得到4+2+0+(-2)+(-4)=-2,因此该数列的和为2。
通项公式
an = a1 + (n-1)d,其中an表示第n项 的值,a1表示第一项的值,d表示公 差。
等差数列的求和公式
• 等差数列的求和公式:Sn = n/2 * (a1 + an),其中Sn表示前n 项的和,a1表示第一项的值,an题
求等差数列1, 4, 7, 10, 13, ... 的前10项和。
VS
对于等差数列,我们也可以通过错位 相减法将原数列的项转化为易于求和 的新数列的项,从而得到等差数列的 和。不过需要注意的是,在等差数列 中,相邻两项的差是固定的,因此我 们需要在错位相减时将这个差值考虑 进去。
错位相减法求和的例题解析
例题
求 $1+2+3+...+n$ 的和。
分析
这是一个等差数列求和问题。我们可以通过错位相减 法将原数列的项转化为易于求和的新数列的项。具体 来说,我们将原数列的第一项和最后一项相加,第二 项和倒数第二项相加,以此类推,得到一个新的数列 $(n+1)+(n-1)+(n-2)+...+1$。这个新数列是一个等 差数列,可以轻松地求出其和为 $n(n+1)/2$。因此 ,原数列的和为 $n(n+1)/2$。

2013届高考数学考点回归总复习《第三十讲数列求和》课件

2013届高考数学考点回归总复习《第三十讲数列求和》课件

A. n n 1
B. n 2 n 1
C. n n 1
D. n 1 n
解析 : f x mxm1 a 2x 1,a 1, m 2,
f x x x 1, 1 1 1 1 ,用裂项法求和
f (n) n(n 1) n n 1
得Sn
n .故选A. n 1
答案:A
2.已知an=
2n
3
1(n1∈N*),记数列{an}的前n项和为Sn,则使
当x≠1时,①减去②,得(1-x)Sn=2(x+x2+…+xn)-2nxn+1=
2x(1 xn )-2nxn+1,
1 x
∴Sn=
2x(1 xn (1 x)2
)
2nxn1 1 x
.
当x 1时,Sn 2 4 2n n n 1.
n(n 1), x 1,
综上可得Sn
2
x(1
xn
)
(1 x)2
(1)
1 n(n
k)
1 k
1 n
1 n
k
;
(2)
1
1 ( n k n);
nk n k
(3)
(2n
1 1)(2n
1)
1 2
1 2n 1
1 2n
1
;
(4)
n(n
1 1)(n
2)
1 2
1 n(n 1)
(n
1 1)(n
2)
.
【典例3】数列1,1 1 ,1 1 2 ,1 1 2 3 , ,1 1
Sn
n 1 (1 6n 5) 2 2
n1
4(1 4 2 )
1 4
(n 1)(3n 2) 2

高考数学专题-数列求和

高考数学专题-数列求和

高考数学专题-数列求和复习课:数列求和一、【知识梳理】1.等差、等比数列的求和公式,公比含字母时一定要讨论.2.错位相减法求和:如:已知成等差,成等比,求.3.分组求和:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和.4.合并求和:如:求的和.5.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项.常见拆项:,,(理科).6.倒序相加法求和:如等差数列求和公式的推导.7.其它求和法:归纳猜想法,奇偶法等.二、【经典考题】【1.公式求和】例1.(浙江)在公差为的等差数列中,已知,且成等比数列.(1)求;(2)若,求.【分析】第一问注意准确利用等差等比数列定义即可求解,第二问要注意去绝对值时项的正负讨论.【解答】(1)由已知得到:(2)由(1)知,当时,①当时,②当时,所以,综上所述:.【点评】本题考查等差数列、等比数列的概念,等差数列通项公式、求和公式等基础知识,同时考查运算求解能力.变式训练:(重庆文)设数列满足:,.(1)求的通项公式及前项和;(2)已知是等差数列,为前项和,且,求.【解答】(1)由题设知是首项为,公比为的等比数列,.(2),故.【2.倒序相加法】例2.已知函数.(1)证明:;(2)若数列的通项公式为,求数列的前项和;(3)设数列满足:,若(2)中的满足对任意不小于的任意正整数恒成立,试求的最大值.【分析】第(1)问,先利用指数的相关性质对化简,后证明左边=右边即可;第(2)问,注意利用(1)中的结论,构造倒序求和;第(3)问,由已知条件求出的最小值,将不等式转化为最值问题求解.【解答】(1).(2)由(1)知,,即,又两式相加得,即.(3)由,知对任意的,则,即,所以.,即数列是单调递增数列.关于递增,时,..由题意知,即,解得,的最大值为.【点评】解题时,对于某些前后具有对称性的数列,可以运用倒序相加法求和.变式训练:已知函数.(1)证明:;(2)求的值.【解答】(1)(2)利用第(1)小题已经证明的结论可知,令,两式相加得:所以.【3.错位相减法】例3.(山东理)设等差数列的前项和为,且.(1)求数列的通项公式;(2)设数列前项和为,且(为常数).令,求数列的前项和.【分析】第(1)问利用等差数列通项公式及前项和公式列方程组求解及即可;第(2)问先利用与关系求出,进而用乘公比错位相减法求出.【解答】(1)设等差数列的首项为,公差为,由得,解得,.因此.(2)由题意知:,所以时,故,.所以,则,两式相减得,整理得.所以数列数列的前项和.【点评】用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数时的情形;(2)在写出与的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出的表达式;(3)利用错位相减法转化为等比数列求和时,若公比是参数(字母),一般情况要先对参数加以讨论,主要分公比为和不等于两种情况分别求和.变式训练:(山东文)设等差数列的前项和为,且.(1)求数列的通项公式;(2)设数列满足,求的前项和.【解答】(1)同例3.(1).(2)由已知,当时,当时,结合知,.又,两式相减得,.【4.裂项相消法】例4.(广东)设各项均为正数的数列的前项和为,满足,且构成等比数列.(1)证明:;(2)求数列的通项公式;(3)证明:对一切正整数,有.【分析】本题主要考查利用与关系求出,进而用裂项相消法求出和,然后采用放缩的方法证明不等式.【解答】(1)当时,(2)当时,,当时,是公差的等差数列.构成等比数列,,解得,由(1)可知,是首项,公差的等差数列.数列的通项公式为.(3).【点评】(1)利用裂项相消法求和时,应注意抵消后不一定只剩第一项和最后一项,也有可能前后各剩两项或若干项;将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.(2)一般情况下,若是等差数列,则;此外,根式在分母上时可考虑利用分母有理化相消求和.变式训练:(大纲卷文)等差数列中,(1)求的通项公式;(2)设.【解答】(1)设等差数列的公差为,则因为,所以.解得,.所以的通项公式为.(2),所以.【5.分组求和法】例5.(安徽)设数列满足,且对任意,函数满足(1)求数列的通项公式;(2)若,求数列的前项和.【分析】,由可知数列为等差数列.【解答】(1)由,得,所以,是等差数列.而,.(2),.【点评】本题主要考查了分组求和法,具体求解过程中一定要注意观察数列通项的构成特点,将其分成等差、等比或其它可求和的式子,分组求出即可.变式训练:(2012山东)在等差数列中,.(1)求数列的通项公式;(2)对任意,将数列中落入区间内的项的个数记为,求数列的前项和.【解答】(1)由可得,则,于是,即.(2)对任意,则,即,,.于是,即.【6.奇偶项求和】例6.(2011山东)等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.(1)求数列的通项公式;(2)若数列满足:,求数列的前项和.第一列第二列第三列第一行第二行第三行【分析】根据等比数列定义先判断出,求出通项;求和时要对分奇偶讨论.【解答】(1)由题意知,因为是等比数列,所以公比为,所以数列的通项公式.(2)解法一:当时,.当时,故.解法二:令,即则故.【点评】解法一分为奇数和偶数对进行化简求和,而解法二直接采用乘公比错位相减法进行求和,只不过此时的公比.本题主要意图还是考查数列概念和性质,求通项公式和数列求和的基本方法.变式训练:已知数列,求.【解答】,若,则若.三、【解法小结】1.数列求和的关键在于分析数列的通项公式的结构特征,在具体解决求和问题中,要善于从数列的通项入手观察数列通项公式的结构特征与变化规律,根据通项公式的形式准确、迅速地选择方法,从而形成“抓通项、寻规律、定方法”的数列求和思路是解决这类试题的诀窍.2.一般地,非等差(比)数列求和题的通常解题思路是:如果数列能转化为等差数列或等比数列就用公式法;如果数列项的次数及系数有规律一般可用错位相减法、倒序相加法来解决;如果每项可写成两项之差一般可用裂项法;如果能求出通项,可用拆项分组法;如果通项公式中含有可用并项或分奇偶项求和法.四、【小试牛刀】1.数列前项的和为()A.B.C.D.2.数列的前项和为,若,则等于()A.C.D.3.数列中,若前项的和为,则项数为()A.B.C.D.4.(2013大纲)已知数列满足则的前项和等于()A.B.C.D.5.设首项为,公比为的等比数列的前项和为,则()A.B.C.D.6.(2013新课标)设等差数列的前项和为,则()A.B.C.D.7..8.已知数列,则其前项和为.9.(2013江西)某住宅小区计划植树不少于棵,若第一天植棵,以后每天植树的棵树是前一天的倍,则需要的最少天数等于.10..11.(2013江苏)在正项等比数列中,,则满足的最大正整数的值为.12.正项数列的前项和满足:.(1)求数列的通项公式;(2)令,数列的前项和为.证明:对于任意的,都有.参考答案:1.B2.B3.C4.C5.D6.C7.8.9.10.11.,.,..,所以的最大值为.12.(1)由,得.由于是正项数列,所以.于是时,.综上,数列的通项.(2)证明:由于.则..。

高考数学总复习考点知识讲解与提升练习43 数列求和

高考数学总复习考点知识讲解与提升练习43 数列求和

高考数学总复习考点知识讲解与提升练习专题43 数列求和考点知识1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常用方法.知识梳理数列求和的几种常用方法1.公式法直接利用等差数列、等比数列的前n项和公式求和.(1)等差数列的前n项和公式:S n =n(a1+a n)2=na1+n(n-1)2d.(2)等比数列的前n项和公式:S n =⎩⎨⎧na1,q=1,a1-a n q1-q=a1(1-q n)1-q,q≠1.2.分组求和法与并项求和法(1)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(2)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如a n=(-1)n f(n)类型,可采用两项合并求解.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常见的裂项技巧(1)1n(n+1)=1n-1n+1.(2)1n(n+2)=12⎝⎛⎭⎪⎫1n-1n+2.(3)1(2n-1)(2n+1)=12⎝⎛⎭⎪⎫12n-1-12n+1.(4)1n+n+1=n+1-n.(5)1n(n+1)(n+2)=12⎣⎢⎡⎦⎥⎤1n(n+1)-1(n+1)(n+2).常用结论常用求和公式(1)1+2+3+4+…+n=n(n+1)2.(2)1+3+5+7+…+(2n-1)=n2.(3)12+22+32+…+n2=n(n+1)(2n+1)6.(4)13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.(√) (2)求S n =a +2a 2+3a 3+…+na n 时,只要把上式等号两边同时乘a 即可根据错位相减法求得.(×)(3)已知等差数列{a n }的公差为d ,则有1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1. (×) (4)sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.(√) 教材改编题1.已知函数f (n )=⎩⎨⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于()A .0B .100C .-100D .10200 答案B解析由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.2.数列{a n }的前n 项和为S n .若a n =1n (n +1),则S 5等于()A .1 B.56 C.16 D.130答案B 解析因为a n =1n (n +1)=1n -1n +1,所以S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=56.3.S n =12+12+38+…+n2n 等于()A.2n -n -12nB.2n +1-n -22nC.2n -n +12nD.2n +1-n +22n答案B解析由S n =12+222+323+…+n2n ,①得12S n =122+223+…+n -12n +n2n +1,② ①-②得,12S n =12+122+123+…+12n -n 2n +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n2n +1,∴S n =2n +1-n -22n.题型一分组求和与并项求和例1(2023·菏泽模拟)已知数列{a n }中,a 1=1,它的前n 项和S n 满足2S n +a n +1=2n +1-1.(1)证明:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -2n 3为等比数列;(2)求S 1+S 2+S 3+…+S 2n .(1)证明由2S n +a n +1=2n +1-1(n ≥1),① 得2S n -1+a n =2n -1(n ≥2),② 由①-②得a n +a n +1=2n (n ≥2),得a n +1=-a n +2n⇒a n +1-2n +13=-⎝⎛⎭⎪⎫a n -2n 3(n ≥2),又当n =1时,由①得a 2=1⇒a 2-223=-⎝ ⎛⎭⎪⎫a 1-23,所以对任意的n ∈N *,都有a n +1-2n +13=-⎝⎛⎭⎪⎫a n -2n 3,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -2n 3是以13为首项,-1为公比的等比数列. (2)解由(1)知a n -2n 3=(-1)n -13⇒a n =2n+(-1)n -13,所以a n +1=2n +1+(-1)n 3,代入①得S n =2n +13-(-1)n 6-12,所以S 1+S 2+…+S 2n =13(22+23+…+22n +1)-16[(-1)+(-1)2+…+(-1)2n ]-2n 2=13×22-22n +21-2-0-n =22n +2-3n -43.延伸探究在本例(2)中,如何求S 1+S 2+S 3+…+S n ? 解当n 为偶数时,S 1+S 2+S 3+…+S n=13(22+23+…+2n +1)-16[(-1)+(-1)2+…+(-1)n -1+(-1)n ]-n 2=13×22-2n +1·21-2-n 2 =2n +2-43-n 2=2n +3-3n -86.当n 为奇数时,S 1+S 2+S 3+…+S n=(S 1+S 2+S 3+…+S n +S n +1)-S n +1=2n +4-3(n +1)-86-⎣⎢⎡⎦⎥⎤2n +23-(-1)n +16-12 =2n +3-3n -76.综上,S 1+S 2+…+S n =⎩⎪⎨⎪⎧2n +3-3n -86,n 为偶数,2n +3-3n -76,n 为奇数.思维升华(1)若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和. (2)若数列{c n }的通项公式为c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.跟踪训练1记数列{a n }的前n 项和为S n ,已知S n =2a n -2n +1. (1)求数列{a n }的通项公式;(2)记b n =(-1)n ·log 2⎣⎢⎡⎦⎥⎤23(a n +4)-43,求数列{b n }的前n 项和T n .解(1)当n =1时,由S n =2a n -2n +1,可得a 1=S 1=2a 1-2+1,即有a 1=1. 当n ≥2时,a n =S n -S n -1=2a n -2n +1-2a n -1+2(n -1)-1,即a n =2a n -1+2,可得a n +2=2(a n -1+2),显然a n -1+2≠0.所以数列{a n +2}是首项为3,公比为2的等比数列,则a n +2=3·2n -1,即有a n =3·2n-1-2.(2)b n =(-1)n ·log 2⎣⎢⎡⎦⎥⎤23(3·2n -1+2)-43=(-1)n ·log 22n =(-1)n ·n . 当n 为偶数时,T n =-1+2-3+4-…-(n -1)+n=(-1+2)+(-3+4)+…+[-(n -1)+n ]=n2.当n 为奇数时,T n =-1+2-3+4-…+(n -1)-n =n -12-n =-n -12=-n +12. 综上,T n=⎩⎪⎨⎪⎧n2,n 为偶数,-n +12,n 为奇数.题型二错位相减法求和例2(2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n ,对任意n ∈N *恒成立,求实数λ的取值范围. 解(1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9, 两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝ ⎛⎭⎪⎫-94+a 2=-274-9, 解得a 2=-2716,所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝ ⎛⎭⎪⎫34n -1=-3n +14n .(2)因为3b n +(n -4)a n =0, 所以b n =(n -4)×⎝ ⎛⎭⎪⎫34n .所以T n =-3×34-2×⎝ ⎛⎭⎪⎫342-1×⎝ ⎛⎭⎪⎫343+0×⎝ ⎛⎭⎪⎫344+…+(n -4)×⎝ ⎛⎭⎪⎫34n,①且34T n =-3×⎝ ⎛⎭⎪⎫342-2×⎝ ⎛⎭⎪⎫343-1×⎝ ⎛⎭⎪⎫344+0×⎝ ⎛⎭⎪⎫345+…+(n -5)×⎝ ⎛⎭⎪⎫34n +(n -4)×⎝ ⎛⎭⎪⎫34n +1,② ①-②得14T n =-3×34+⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫343+…+⎝ ⎛⎭⎪⎫34n -(n -4)×⎝ ⎛⎭⎪⎫34n +1=-94+916⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -11-34-(n -4)×⎝ ⎛⎭⎪⎫34n +1=-n ×⎝ ⎛⎭⎪⎫34n +1,所以T n =-4n ×⎝ ⎛⎭⎪⎫34n +1.因为T n ≤λb n 对任意n ∈N *恒成立, 所以-4n ×⎝ ⎛⎭⎪⎫34n +1≤λ⎣⎢⎡⎦⎥⎤(n -4)×⎝ ⎛⎭⎪⎫34n 恒成立,即-3n ≤λ(n -4)恒成立, 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立, 当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1.思维升华(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,常采用错位相减法.(2)错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.②应用等比数列求和公式时必须注意公比q 是否等于1,如果q =1,应用公式S n =na 1. 跟踪训练2(2023·重庆模拟)在①a 1=1,na n +1=(n +1)·a n ,②12a +22a +…+2n a =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答.问题:在数列{a n }中,已知________. (1)求{a n }的通项公式;(2)若b n =213nn a a -,求数列{b n }的前n 项和S n . 注:如果选择多个条件分别解答,按第一个解答计分. 解(1)选择①,因为na n +1=(n +1)a n ,所以a n +1n +1=a nn.所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是常数列. 又a 11=1,所以a nn =1,故a n =n . 选择②,因为12a +22a +…+2n a =2n +1-2,所以当n =1时,12a =22-2=2,解得a 1=1, 当n ≥2时,2n a =2n +1-2n =2n ,所以a n =n . 又a 1=1,所以a n =n . (2)由(1)可知b n =2n -13n, 则S n =131+332+…+2n -13n ,①13S n =132+333+…+2n -33n +2n -13n +1.② 两式相减得23S n =13+232+233+…+23n -2n -13n +1=13+29⎝⎛⎭⎪⎫1-13n -11-13-2n -13n +1=23-2n +23n +1.故S n =1-n +13n.题型三裂项相消法求和例3(10分)(2022·新高考全国Ⅰ)记S n 为数列{a n }的前n 项和,已知a 1=1,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 是公差为13的等差数列. (1)求{a n }的通项公式;[切入点:求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n a n 的通项公式] (2)证明:1a 1+1a 2+…+1a n <2.[关键点:把1a n拆成两项相减]思维升华裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.跟踪训练3(2022·湛江模拟)已知数列{a n}是等比数列,且8a3=a6,a2+a5=36.(1)求数列{a n}的通项公式;(2)设b n=an(a n+1)(a n+1+1),求数列{b n}的前n项和T n,并证明:T n<13.解(1)由题意,设等比数列{a n}的公比为q,则q3=a6a3=8,即q=2,∵a2+a5=36,∴a1q+a1q4=36,即2a1+16a1=36,解得a1=2,∴a n=2·2n-1=2n,n∈N*.(2)由(1)可得,b n=an(a n+1)(a n+1+1)=2n(2n+1)(2n+1+1)=12n+1-12n+1+1,故T n=b1+b2+…+b n=121+1-122+1+122+1-123+1+…+12n+1-12n+1+1=121+1-12n+1+1=13-12n+1+1<13,∴不等式T n<13对n∈N*恒成立.课时精练1.(2022·杭州模拟)已知单调递增的等差数列{a n}的前n项和为S n,且S4=20,a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若b n=2a n+1-3n+2,求数列{b n}的前n项和T n.解(1)设数列{a n }的公差为d (d >0), 由题意得⎩⎨⎧S 4=20,a 24=a 2·a 8,即⎩⎨⎧4a 1+4×32d =20,(a 1+3d )2=(a 1+d )(a 1+7d ),解得⎩⎨⎧a 1=2,d =2或⎩⎨⎧a 1=5,d =0(舍),所以a n =2+(n -1)·2=2n . (2)由(1)得,a n =2n , 所以b n =4(n +1)-3n +2,所以T n =4×2-33+4×3-34+…+4(n +1)-3n +2=4[2+3+…+(n +1)]-(33+34+…+3n +2)=4n ·2+n +12-27(1-3n )1-3=2n 2+6n +272-3n +32.2.(2023·宁波模拟)已知数列{a n }满足a n +1a n -2n 2(a n +1-a n )+1=0,且a 1=1. (1)求出a 2,a 3的值,猜想数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,且b n =S na n ·a n +1,求数列{b n }的前n 项和T n .解(1)由已知得,当n =1时,a 2a 1-2(a 2-a 1)+1=0,又a 1=1,代入上式,解得a 2=3,同理可求得a 3=5.猜想a n =2n -1.(2)由(1)可知a n =2n -1,经检验符合题意,所以S n =n 2, 则b n =n 2(2n -1)(2n +1)=14⎣⎢⎡⎦⎥⎤1+1(2n -1)(2n +1)=14+18⎝⎛⎭⎪⎫12n -1-12n +1, 所以T n =⎣⎢⎡⎦⎥⎤14+18⎝ ⎛⎭⎪⎫1-13+⎣⎢⎡⎦⎥⎤14+18⎝ ⎛⎭⎪⎫13-15+…+⎣⎢⎡⎦⎥⎤14+18⎝⎛⎭⎪⎫12n -1-12n +1 =n 4+18⎝⎛⎭⎪⎫1-12n +1=n 2+n 4n +2. 3.(2023·吕梁模拟)已知正项数列{a n }的前n 项和为S n ,且满足4S n =(a n +1)2. (1)求证:数列{a n }是等差数列;(2)设b n =2n ,求数列{a n ·b n }的前n 项和T n . (1)证明在4S n =(a n +1)2中,令n =1,可得a 1=1, 因为4S n =(a n +1)2,①所以当n ≥2时,4S n -1=(a n -1+1)2,② ①-②得,4a n =(a n +1)2-(a n -1+1)2, 整理得(a n +a n -1)(a n -a n -1-2)=0, 因为a n >0,所以a n -a n -1=2(n ≥2),所以数列{a n }是以1为首项,2为公差的等差数列. (2)解由(1)得a n =2n -1,所以a n ·b n =(2n -1)·2n , 所以T n =1×21+3×22+5×23+…+(2n -1)·2n , 2T n =1×22+3×23+…+(2n -3)·2n +(2n -1)·2n +1,两式相减得,-T n =2+2×(22+23+…+2n )-(2n -1)·2n +1=-6+(3-2n )·2n +1, 所以T n =6+(2n -3)·2n +1.4.(2022·淄博模拟)已知数列{a n }满足a 1=2,且a n +1=⎩⎨⎧a n +1,n 为奇数,2a n ,n 为偶数(n ∈N *),设b n =a 2n -1.(1)证明:数列{b n +2}为等比数列,并求出{b n }的通项公式; (2)求数列{a n }的前2n 项和.解(1)由题意知,b n +1=a 2n +1=2a 2n =2(a 2n -1+1)=2b n +2, 所以b n +1+2b n +2=2,又b 1+2=a 1+2=4, 所以{b n +2}是首项为4,公比为2的等比数列, 则b n +2=4·2n -1=2n +1, 所以b n =2n +1-2.(2)数列{a n }的前2n 项和为S 2n =a 1+a 2+a 3+…+a 2n =(a 1+a 3+a 5+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(a 1+a 3+a 5+…+a 2n -1)+(a 1+a 3+…+a 2n -1+n ) =2(a 1+a 3+a 5+…+a 2n -1)+n =2(b 1+b 2+…+b n )+n =2×(22+23+…+2n +1-2n )+n =2×4(1-2n )1-2-3n =2n +3-3n -8.5.(2023·蚌埠模拟)给出以下条件:①a 2,a 3,a 4+1成等比数列;②S 1+1,S 2,S 3成等比数列;③S n =a n a n +14(n ∈N *).从中任选一个,补充在下面的横线上,再解答.已知递增等差数列{a n }的前n 项和为S n ,且a 1=2,________. (1)求数列{a n }的通项公式;(2)若⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n a n 是以2为首项,2为公比的等比数列,求数列{b n }的前n 项的和T n .注:如果选择多个条件分别解答,按第一个解答计分. 解(1)设数列{a n }的公差为d ,则d >0, 选择条件①:因为a 2,a 3,a 4+1成等比数列,所以a 23=a 2·(a 4+1),所以(2+2d )2=(2+d )·(2+3d +1),化简得d 2-d -2=0,解得d =2或d =-1(舍),所以数列{a n }的通项公式为a n =2+(n -1)×2=2n . 选择条件②:因为S 1+1,S 2,S 3成等比数列,所以S 22=(S 1+1)·S 3,所以(2×2+d )2=(2+1)·(3×2+3d ),化简得d 2-d -2=0,解得d =2或d =-1(舍),所以数列{a n }的通项公式为a n =2+(n -1)×2=2n . 选择条件③: 因为S n =a n a n +14(n ∈N *),所以当n ≥2时,S n -1=a n -1a n4,两式相减得,a n =14a n (a n +1-a n -1),因为a n ≠0,所以a n +1-a n -1=4,即2d =4,所以d =2, 所以数列{a n }的通项公式为a n =2+(n -1)×2=2n .(2)因为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n a n 是以2为首项,2为公比的等比数列,所以b n a n=2·2n -1=2n ,所以b n =2n ·2n , 所以T n =2·21+4·22+6·23+…+2n ·2n ,2T n =2·22+4·23+6·24+…+(2n -2)·2n +2n ·2n +1,两式相减得,-T n =2·21+2·22+2·23+2·24+…+2·2n -2n ·2n +1=2×2(1-2n )1-2-2n ·2n +1=(1-n )2n +2-4, 所以T n =(n -1)2n +2+4.6.(2023·哈尔滨模拟)设正项数列{a n }的前n 项和为S n ,已知2S n =a 2n +a n . (1)求数列{a n }的通项公式; (2)记b n =a 2n cos2a n π3,T n 是数列{b n }的前n 项和,求T 3n . 解(1)由2S n =a 2n +a n ,当n ≥2时,2S n -1=a 2n -1+a n -1,两式相减得,2a n =a 2n -a 2n -1+a n -a n -1,整理可得(a n +a n -1)(a n -a n -1-1)=0,因为a n >0,所以a n -a n -1-1=0,即a n -a n -1=1(n ≥2), 在2S n =a 2n +a n 中,令n =1,则a 1=1,所以数列{a n }是首项为1,公差为1的等差数列, 故a n =n . (2)b n =a 2n cos2a n π3=n 2cos 2n π3, 设c k =b 3k -2+b 3k -1+b 3k =(3k -2)2·cos ⎝ ⎛⎭⎪⎫2k π-4π3+(3k -1)2cos ⎝ ⎛⎭⎪⎫2k π-2π3+(3k )2·cos2k π=-12(3k -2)2+⎝ ⎛⎭⎪⎫-12(3k -1)2+(3k )2=9k -52,所以T 3n =c 1+c 2+c 3+…+c n=⎝ ⎛⎭⎪⎫9-52+⎝ ⎛⎭⎪⎫9×2-52+⎝ ⎛⎭⎪⎫9×3-52+…+⎝ ⎛⎭⎪⎫9n -52=9(1+2+3+…+n )-52n=9×n (1+n )2-52n =9n 2+4n 2.。

2013年高考数学二轮专题辅导与训练 专题三第2讲数列求和及数列的综合应用课时训练提能

2013年高考数学二轮专题辅导与训练 专题三第2讲数列求和及数列的综合应用课时训练提能

专题三 第2讲 数列求和及数列的综合应用课时训练提能[限时45分钟,满分75分]一、选择题(每小题4分,共24分) 1.1-4+9-16+…+(-1)n +1n 2等于A.n n +12B .-n n +12C .(-1)n +1n n +12D .以上答案均不对解析 对n 赋值验证,只有C 正确. 答案 C2.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数为 A .11B .99C .120D .121解析 ∵a n =1n +n +1=n +1-n ,∴S n =n +1-1=10,∴n =120. 答案 C3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10= A .15B .12C .-12D .-15解析 ∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15. 答案 A4.设f (n )=2+24+27+210+…+23n +1(n ∈N ),则f (n )等于 A.27(8n-1)B.27(8n +1-1) C.27(8n +3-1)D.27(8n +4-1)解析 显然,f (n )为数列{23n +1}的前n 项和S n =24+27+210+…+23n +1与2的和.数列{23n +1}为一个首项为a 1=24,公比为q =23的等比数列,由等比数列的前n 项和公式可得S n =24[1-23n]1-23=168n-17, 故f (n )=2+S n =2+168n-17=16×8n-27=2×8n +1-27=27(8n +1-1). 答案 B5.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线的斜率为3,数列⎩⎨⎧⎭⎬⎫1f n 的前n 项和为S n ,则S 2 010的值为A.2 0072 008 B.2 0082 009 C.2 0092 010D.2 0102 011解析 ∵f ′(x )=2x +b ,∴f ′(1)=2+b =3,∴b =1,∴f (x )=x 2+x , ∴1f n =1n n +1=1n -1n +1, ∴S 2 010=1-12+12-13+…+12 010-12 011=1-12 011=2 0102 011.答案 D6.甲、乙两间工厂的月产值在2010年元月份时相同,甲以后每个月比前一个月增加相同的产值.乙以后每个月比前一个月增加产值的百分比相同.到2010年11月份发现两间工厂的月产值又相同.比较甲、乙两间工厂2011年6月份的月产值大小,则有A .甲的产值小于乙的产值B .甲的产值等于乙的产值C .甲的产值大于乙的产值D .不能确定解析 设甲各个月份的产值为数列{a n },乙各个月份的产值为数列{b n },则数列{a n }为等差数列,数列{b n }为等比数列,且a 1=b 1,a 11=b 11,故a 6=a 1+a 112≥a 1a 11=b 1b 11=b 26=b 6,由于在等差数列{a n }中,公差不等于0,故a 1≠a 11,上面的等号不能成立,故a 6>b 6.答案 C二、填空题(每小题5分,共15分)7.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和S n =________.解析 由已知条件可得数列{a n }的通项公式为a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n n +1=4⎝ ⎛⎭⎪⎫1n -1n +1.S n =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=4⎝⎛⎭⎪⎫1-1n +1=4nn +1. 答案4n n +18.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析 ∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n . ∴S n =2-2n +11-2=2n +1-2.答案 2n +1-29.数列{a n }的前n 项和为S n 且a 1=1,a n +1=3S n (n =1,2,3,…),则log 4S 10=________. 解析 ∵a n +1=3S n ,∴a n =3S n -1(n ≥2). 两式相减得a n +1-a n =3(S n -S n -1)=3a n , ∴a n +1=4a n ,即a n +1a n=4. ∴{a n }为a 2为首项,公比为4的等比数列. 当n =1时,a 2=3S 1=3, ∴n ≥2时,a n =3·4n -2,S 10=a 1+a 2+…+a 10=1+3+3×4+3×42+…+3×48=1+3(1+4+…+48)=1+3×49-14-1=1+49-1=49.∴log 4S 10=log 449=9. 答案 9三、解答题(每小题12分,共36分)10.已知数列{a n }满足a n =⎩⎪⎨⎪⎧2n,n 为奇数,n , n 为偶数,试求其前n 项和.解析 (1)当n 为奇数时,S n =(a 1+a 3+a 5+…+a n )+(a 2+a 4+a 6+…+a n -1)=2⎝⎛⎭⎪⎫1-4n +121-4+n -12×2+n -12⎝ ⎛⎭⎪⎫n -12-12×2=13·2n +2+n 24-1112. (2)当n 为偶数时,S n =(a 1+a 3+a 5+…+a n -1)+(a 2+a 4+a 6+…+a n )=21-4n21-4+n2×2+n 2⎝ ⎛⎭⎪⎫n2-12×2=13·2n +1+n 24+n 2-23. 11.(2012·武昌模拟)已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n(n ∈N +).(1)设b n =a n -2n3n,证明:数列{b n }为等差数列,并求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n . 解析 (1)证明 ∵b n +1-b n =a n +1-2n +13n +1-a n -2n3n=3a n +3n +1-2n -2n +13n +1-a n -2n3n=1,∴{b n }为等差数列. 又b 1=0,∴b n =n -1. ∴a n =(n -1)·3n +2n.(2)设T n =0·31+1·32+…+(n -1)·3n,则 3T n =0.32+1·33+…+(n -1)·3n +1.∴-2T n =32+…+3n -(n -1)·3n +1=91-3n -11-3-(n -1)·3n +1.∴T n =9-3n +14+n -1·3n +12=2n -3·3n +1+94.∴S n =T n +(2+22+ (2))=2n -33n +1+2n +3+14.12.(2012·丰台一模)设数列{a n }的前n 项和为S n ,且S n =2n-1.数列{b n }满足b 1=2,b n+1-2b n =8a n .(1)求数列{a n }的通项公式;(2)证明:数列⎩⎨⎧⎭⎬⎫b n 2n 为等差数列,并求{b n }的通项公式;(3)设数列{b n }的前n 项和为T n ,是否存在常数λ,使得不等式(-1)nλ<1+T n -6T n +1-6(n ∈N +)恒成立?若存在,求出λ的取值范围;若不存在,请说明理由.解析 (1)当n =1时,a 1=S 1=21-1=1; 当n ≥2时,a n =S n -S n -1 =(2n-1)-(2n -1-1)=2n -1,因为a 1=1适合通项公式a n =2n -1.所以a n =2n -1(n ∈N +).(2)证明 因为b n +1-2b n =8a n , 所以b n +1-2b n =2n +2,即b n +12n +1-b n2n =2. 所以⎩⎨⎧⎭⎬⎫b n 2n 是首项为b 121=1,公差为2的等差数列.所以b n2n =1+2(n -1)=2n -1,所以b n =(2n -1)·2n.(3)存在常数λ使得不等式(-1)nλ<1+T n -6T n +1-6(n ∈N +)恒成立.因为T n =1·21+3·22+5·23+…+(2n -3)·2n -1+(2n -1)·2n①所以2T n =1·22+3·23+…+(2n -5)·2n -1+(2n -3)·2n+(2n -1)·2n +1②由①-②得-T n =2+23+24+…+2n +1-(2n -1)·2n +1,化简得T n =(2n -3)·2n +1+6.因为T n -6T n +1-6=2n -3·2n +12n -1·2n +2=2n -34n -2=12-24n -2=12-12n -1. (ⅰ)当n 为奇数时,(-1)λ<1+T n -6T n +1-6,所以λ>-1-T n -6T n +1-6,即λ>-32+12n -1.所以当n =1时,-32+12n -1的最大值为-12,所以只需λ>-12.(ⅱ)当n 为偶数时,λ<1+T n -6T n +1-6,所以λ<32-12n -1,所以当n =2时,32-12n -1的最小值为76,所以只需λ<76.由(ⅰ)(ⅱ)可知存在-12<λ<76,使得不等式(-1)nλ<1+T n -6T n +1-6(n ∈N +)恒成立.。

2013年高考真题理科数学分类汇编:考点25 数列求和及综合应用含解析

2013年高考真题理科数学分类汇编:考点25 数列求和及综合应用含解析

考点25 数列求和及综合应用一、选择题1。

(2013·新课标Ⅰ高考理科·T12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=错误!,c n +1=错误!,则( )A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列 【解析】选B.因为n n a a=+1,21nn n a c b +=+,21nn n a b c+=+,所以1a an=,++1n b =+1n c 2n n a c +2n n a b ++1)(21)(21a c b a c b n n n n n ++=++= ++1n b )2(212111a c b a c n n n -+=-+,注意到1112a c b =+,所以12a c b n n =+. 于是nnnC B A ∆中,边长1a C B nn=为定值,另两边的长度之和为12a c b n n =+为定值。

因为-+1n b =+1n c 2n n a c +2n n a b +-)(21n n c b --=, 所以)()21(111c b c bn nn --=--,当+∞→n 时,有0→-n n c b ,即n n c b →,于是n n n C B A ∆的边n n C B 的高n h 随n 增大而增大,于是其面积n n n n n h a h C B S 121||21==为递增数列. 二、填空题2。

(2013·新课标Ⅰ高考理科·T14)若数列}{na 的前n 项和3132+=n na S,则}{na 的通项公式是=na _________【解题指南】先利用S 1=a 1求出a 1的值,再利用S n —S n —1=a n 求出通项公式a n 。

详解数列求和的方法+典型例题

详解数列求和的方法+典型例题

详解数列求和的常用方法数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列的前n 项和公式2)1(2)(11dn n na a a n S n n -+=+=2、等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n3、常用几个数列的求和公式 (1)、)1(213211+=+⋯+++==∑=n n n k S nk n(2)、)12)(1(61321222212++=+⋯+++==∑=n n n n k S nk n (3)、2333313)]1(21[321+=+⋯+++==∑=n n n k S nk n第二类:乘公比错项相减(等差⨯等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ⨯的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。

例1:求数列}{1-n nq(q 为常数)的前n 项和。

解:Ⅰ、若q =0, 则n S =0Ⅱ、若q =1,则)1(21321+=+⋯+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+⋯+++=n n nqq q S ①n n nq q q q qS +⋯+++=3232 ②①式—②式:n n n nq q q q q S q -+⋯++++=--1321)1(⇒)1(11132n n n nq q q q q qS -+⋯++++-=- ⇒)11(11n nn nq qq q S ----=⇒qnq q q S nn n ----=1)1(12综上所述:⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≠----=+==)10(1)1(1)1)(1(21)0(02q q q nq q q q n n q S nn n 且解析:数列}{1-n nq 是由数列{}n 与{}1-n q 对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。

2013高考数学二轮名师精编精析:数列求和

2013高考数学二轮名师精编精析:数列求和

数列求和★★★高考在考什么 【考题回放】1.设4710310()22222()n f n n N +=+++++∈,则()f n 等于( D )A.2(81)7n -B.12(81)7n +-C.32(81)7n +- D.42(81)7n +-2. 等差数列{an}中,a1=1,a3+a5=14,其前n 项和Sn=100,则n=( B )A .9B .10C .11D .123.)数列{}n a 的前n 项和为nS ,若1(1)n a n n =+,则5S 等于( B )A .1B .56C .16D .1304.设Sn 是等差数列{an }的前n 项和,若S 3S 6=13,则S 6S 12=A.310B.13C.18D.19解析:由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A 5.已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设nb na c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .100 解:数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于1210b b b a a a +++=11119b b b a a a +++++,111(1)4b a a b =+-=,∴11119b b b a a a +++++=4561385++++=,选C.6.对正整数n ,设曲线)1(x x y n-=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n的前n 项和的公式是解:1(1)n n y nx n x -'=-+,曲线y=xn(1-x)在x=2处的切线的斜率为k=n2n-1-(n+1)2n切点为(2,-2n ),所以切线方程为y+2n=k(x-2),令x=0得 an=(n+1)2n,令bn=21nn a n =+.数列⎭⎬⎫⎩⎨⎧+1n a n 的前n 项和为2+22+23+…+2n=2n+1-2★★★高考要考什么1.直接用等差、等比数列的求和公式求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
37.将等差数列{ }的所有项依次排列,并如下分组:( ),( ),( ),…,其中第1组有1项,第2组有2项,第3组有4项,…,第n组有 项,记Tn为第n组中各项的和,已知T3=-48,T4=0,
(I)求数列{ }的通项公式;
(II)求数列{Tn}的通项公式;
(III)设数列{ Tn}的前n项和为Sn,求S8的值.
(取 )
答案:
1.设 则
两式相减得
∴ .
2.解:由
由等比数列求和公式得 = = =1-
3.解:若a=0,则Sn=0若a=1,
则Sn=1+2+3+…+n=
若a≠0且a≠1则Sn=a+2a2+3a3+4a4+…+ nan
∴aSn= a2+2 a3+3 a4+…+nan+1
∴(1-a) Sn=a+ a2+ a3+…+an- nan+1=
综上所述, 。
(2)假设对于某个正整数n,存在一个公差为d的n项等差数列 ,其中 ( )为任意三项成等比数列,则 ,即 ,化简得 (*)
由 知, 与 同时为0或同时不为0
当 与 同时为0时,有 与题设矛盾。
故 与 同时不为0,所以由(*)得
因为 ,且x、y、z为整数,所以上式右边为有理数,从而 为有理数。
(II)求证
33.已知数列{ }的各项分别为 的前n项和 .
34.已知数列{ }满足: 的前n项和
.
35.设数列{ }中, 中5的倍数的项依次记为

(I)求 的值.
(II)用k表示 ,并说明理由.
(III)求和:
36.数列{ }的前n项和为 ,且满足
(I)求 与 的关系式,并求{ }的通项公式;
(II)求和
若删去 ,则 ,即 化简得 ,得
综上,得 或 。
②当n=5时, 中同样不可能删去 ,否则出现连续三项。
若删去 ,则 ,即 化简得 ,因为 ,所以 不能删去;
当n≥6时,不存在这样的等差数列。事实上,在数列 中,由于不能删去首项或末项,若删去 ,则必有 ,这与 矛盾;同样若删去 也有 ,这与 矛盾;若删去 中任意一个,则必有 ,这与 矛盾。(或者说:当n≥6时,无论删去哪一项,剩余的项中必有连续的三项)
23.求证:
24.求 的值。
25.已知数列 的通项公式 ,求它的前n项和.
26.已知数列 的通项公式 求它的前n项和.
27.求和:
28.已知数列
29.求和
30.解答下列问题:
(I)设
(1)求 的反函数
(2)若
(3)若
31.设函数
求和:
32.已知数列 的各项为正数,其前n项和 ,
(I)求 之间的关系式,并求 的通项公式;
…………..……..②
①+②得 (反序相加)

5.解:∵ = )
Sn=
=
=
6.解:设S2002=
由 可得
……
∵ (找特殊性质项)
∴S2002= (合并求和)



=5
7. 解:因为55…5=
所以Sn=5+55+555+…+55…5
=
=
=
解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。
另外:Sn=
可以拆成:Sn=(1+2+3+…+n)+( )
8.∵ 为等差数列,且1+17=5+13,
∴ .由题设易知 =117.
又 为 与 的等差中项,∴ .
9. (裂项)
于是有
方程组两边相加,即得
10.【证明】∵ ∴.
化简,得Sn-1-Sn= 2SnSn-1
两边同除以.SnSn-1,得
∴数列 是以 为首项,2为公差的等差数列.
由此猜想Sn= ,n=1,2,3,….
下面用数学归纳法证明这个结论.
(i)n=1时已知结论成立.
(ii)假设n=k时结论成立,即Sk= ,
当n=k+1时,由①得Sk+1= ,即Sk+1= ,
故n=k+1时结论也成立.
综上,由(i)、(ii)可知Sn= 对所有正整数n都成立.
于是当n≥2时,an=Sn-Sn-1= - = ,
∴Sn=
当a=0时,此式也成立。
∴Sn=
解析:数列 是由数列 与 对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行讨论,最后再综合成两种情况。
4.证明:设 …………………………..①
把①式右边倒转过来得
(反序)
又由 可得
把①式右边倒转过来得
(反序)
又由 可得
…………..……..②
①+②得 (反序相加)

24.解:设 ………….①
将①式右边反序得
……②(反序)

①+②得(反序相加)

25.
=
=
26.
27.注意:数列的第n项“n·1”不是数列的通项公式,记这个数列为 ,
∴其通项公式是
28. 为等比数列,∴应运用错位求和方法:
29.
而 运用反序求和方法是比较好的想法,
①,
②,
①+②得
30.(1)
(2) 是公差为9的等差数列,
(3)
31.
①当n为偶数时
=
②当n为奇数时
32.(I) ①,而 ②,
①—②得
的等差数列,
(II)
33.
(1)
(2)当

②当 时,1)当n为奇数时
2)当n为偶数时
34.当

②,
①-②得
35.(I)
(II)
综上可知,甲方案更好。
8.已知数列 是等差数列,且 ,求 的值.
9.已知数列 的通项公式为 求它的前n项的和.
10.在数列 中, 证明数列 是等差数列,并求出Sn的表达式.
11.数列 为正数的等比数列,它的前n项和为80,前2n项和为6560,且前n项中数值最大的项为54.求其首项a1及公比q.
12.已知数列 求 .
13.设 为等差数列,Sn为数列 的前n项和,已知S7= 7,S15= 75.记Tn为数列 的前n项和,求Tn.
于是,对于任意的正整数 ,只要 为无理数,相应的数列就是满足题意要求的数列。
例如n项数列1, , ,……, 满足要求。
40.解析:甲方案是等比数列,乙方案是等差数列,
①甲方案获利: (万元),
银行贷款本息: (万元),
故甲方案纯利: (万元),
②乙方案获利:
(万元);
银行本息和:
(万元)
故乙方案纯利: (万元);
又n=1时,a1= = ,所以
{an}的通项公式an= ,n=1,2,3,….
19.解:∵ (找通项及特征)
(设制分组)
(裂项)
∴ (分组、裂项求和):设
将其每一项拆开再重新组合得
当 时, =
当 时, =
22.解:设
∴ =
将其每一项拆开再重新组合得
23.证明:设 …………………………..①
,其中任意三项(按原来的顺序)都不能组成等比数列.
40.某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的使用期都是10年,到期一次性归还本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?
(III)
36.(I)
(II)
37.(I)设{ }的公差为d,则 ①, ②,解①、②得
(II)当 时,在前n-1组中共有项数为
∴第n组中的
(III)
38.解析:因为 ,


39.(1)①当n=4时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0。
若删去 ,则 ,即 化简得 ,得
14.解:Sn=
15.当 为正奇数时,
当 为正偶数时,
综上知 ,注意按 的奇偶性讨论!
16.
17.解:因为
所以
18.解:(Ⅰ)当n=1时,x2-a1x-a1=0有一根为S1-1=a1-1,
于是(a1-1)2-a1(a1-1)-a1=0,解得a1= .
当n=2时,x2-a2x-a2=0有一根为S2-1=a2- ,
2013届高考数学快速提升成绩题型训练——数列求和
1.求数列 , 的前 项和.
2 已知 ,求 的前n项和.
3.求数列a,2a2,3a3,4a4,…,nan,…(a为常数)的前n项和。
4.求证:
5.求数列 , , ,…, ,…的前n项和S
6.数列{an}: ,求S2002.
7.求数5,55,555,…,55…5的前n项和Sn
∴ ∴
11.∵ ∴此数列为递增等比数列.故q≠1.
依题设,有
②÷①,得 ④
④代入①,得 ⑤
⑤代入③,得 ⑥
④代入⑥,得 ,再代入③,得a1=2,再代入⑤,得q= 3.
12.令 (裂项)
故有 = .
13.设等差数列 的公差为d,则 ( I )
∵ ∴
解得
代入(I)得 (II)

∴数列 是首项为-2,公差为 的等差数列,∴
38.设数列 是公差为 ,且首项为 的等差数列,
求和:
39.(1)设 是各项均不为零的 ( )项等差数列,且公差 ,若将此数列删去某一项后得到的数列(按原来的顺序)是等比数列.
相关文档
最新文档