高斯函数
高斯函数—解答
高斯函数一、基本知识定义:设R x ∈,用[]x 表示不超过x 的最大整数,则[]x y =称为高斯函数.函数的定义域为R ,值域为Z .任一实数都能写成整数部分与非负纯小数之和,即[]α+=x x ()10<≤α,因此. [][]1+<≤x x x 。
我们称[]x 为x 的整数部分,称{}[]x x x -=为x 的小数部分。
函数{}x y =的定义域为R ,值域为[)1,0。
二、性质1. 函数[]x y =是不减函数,即当21x x ≤时,有[][]21x x ≤;2. [][]11+<≤<-x x x x ;3. [][]n x n x Z n +=+⇔∈;4. [][][]y x y x +≤+,{}{}{}y x y x +≥+; 推广:(1)[][][][]n n x x x x x x +++≤+++ 2121 (2)[][]nx x n ≤ ()N n ∈5. 若0,0≥≥y x ,则[][][]y x xy ≥;6. 若0,1>≥y x ,则[][]x y x y ≤⎥⎦⎤⎢⎣⎡;7. []⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x (其中*N n ∈) 8. (1)若121≥-x x ,则存在整数k ,使[][]12121x k x x k x ≤≤+⇒≤<;(2)[][][][]110212121+==⇒<-≤x x x x x x 或; (3)[][]12121<-⇒=x x x x9. [][]()[]()⎩⎨⎧∉--∈-=-Z x x Z x x x 110. [][]1,,-+=+⇒∈+∉y x y x Z y x Z y x ;11. 若整数b a ,满足r bq a += ()b r r q b <≤>0,,,0是整数,则q b a =⎥⎦⎤⎢⎣⎡;12. [][]x x x 221=⎥⎦⎤⎢⎣⎡++;13. 设1>x ,m 为正整数,则从1到x 的整数中,m 的倍数有⎥⎦⎤⎢⎣⎡m x 个;14. 设为p 任一质数,在!n 中含p 的最高乘方次数记为()!n p ,则()⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=m p n p n p n n p 2! ()1+<≤m m p n p例1.求!30的标准分解式。
高斯函数
不妨令(4)的解为 e 2 / 2u( ) 可得,u( ) 满足的方程:
(5)
d 2 u 2 d u ( 1)u 0
d 2
d
(6)
此即Hermite方程,可在 =0的邻域用幂级数展开求解。为保证束
缚态边界条件,必须要求u( )中断为一个多项式,可以证明只有
(k k0)a / 2
在 处,F(k)=0,此范围内是频谱函数的“主极强”,
外边它的数值就很小了。从而我们定义频谱的宽度为
k 4 / a
另一方面,波列的长度 x a ,古频谱宽度与波列长度成
反比:
k x 4
2.指数型波列
f (x) Aea x eik0x
者说,它的空间频谱有一定的宽度。一般来说,频谱 宽度与波列长度是成反比的。看几个包络形式不同的 波列:
1.方垒型波列
Aeik0x , x a
f (x) {
0, x a
它的傅里叶变换为:
F (k ) e a / 2 i(kk0 )x a / 2
dx
2
Aa
2
sin
可以证明,一维谐振子能量本征函数(实)为:
n (x)
A e 2x2 n
/2Hn (x)
An / 2n n!1/2
(归一化常数)
m (x) n (x)dx mn
最低的三条能级上的谐振子波函数如下:
0 ( x)
1/4
e 2 x2 / 2
2
则方程(1)化为
d2 d 2
(
2 )
0
(1) (2)
高斯函数
高斯函数一、知识概要1、定义:设x R ∈,用[]x 表示不超过x 的最大整数。
则[]y x =称为高斯函数,也叫取整函数。
显然,[]y x =的定义域就是R ,值域就是Z 。
任一实数都能写成整数部分与非负纯小数之与,即[]()01x x a a =+≤<,因此,[]x x ≤[]1x <+,这里,[]x 为x 的整数部分,而{}[]x x x =-为x 的小数部分。
2、性质1、函数[]y x =就是一个分段表达的不减的无界函数,即当12x x ≤时,有[][]12x x ≤;2、[][]n x n x +=+,其中n Z ∈;3、[][]11x x x x -<≤<+;4、若[][]x y n ==,则,,x n a y n b =+=+其中0,1a b ≤<;5、对于一切实数,x y 有[][][]x y x y +≤+;6、若0,0x y ≥≥,则[][][]xy x y ≥;7、[][][]1x x x ⎧--⎪-=⎨-⎪⎩8、若n N +∈,则[]x x n n ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦;当1n =时,[][]x x ⎡⎤=⎣⎦; 9、若整数,a b 适合a bq r =+(0,,b q r >就是整数,0r b ≤<),则a q b ⎡⎤=⎢⎥⎣⎦;10、x 就是正实数,n 就是正整数,则在不超过x 的正整数中,n 的倍数共有x n ⎡⎤⎢⎥⎣⎦个;下面再来讨论高斯函数[]x 的图像及{}x 的图像与性质、对于函数[]x y =,如何做出它的图像呢?我们先来分析一下高斯函数[]x 的图像的基本性质与特征、(1)由[]x y =的性质知[]x 的图形在x y =的图形的下方、(2)由[]x y =的性质知[]x 的图像就是一组阶高为1的平行于x 轴的平行线段,这组平行线段呈阶梯形、可见函数[]x y =就是一个不减(非单调) 的非周期的函数,其图像如下(a )定理2 设[]x x x f -=)(,则)(x f 就是一有界、周期为1的非单调函数,其图像如(b )、例1、方程[]1x x =-实数根的个数例2、函数()f x 定义在R 上,对任意x R ∈,有(1)()f x f x +>,则函数()f x 在R 上就是否为增函数,请说明理由。
高斯函数
高斯函数[x]程乐根1一、定义,[][]R x R x x y x Z ∈=1、定义:设用表示不超过的最大整数。
通常称函数为取整函数,也叫高斯函数。
显然,其定义域是,值域是。
{}=[]{}R [0,1)x x x y x x -=2、进一步,记则称函数为小数部分函数,它表示的是的小数部分,显然,其定义域是,值域是。
2二、高斯函数y=[x]的性质121212121212**,1[].[],,,[][].,[][],().,,[][][].,[][],().[],[][],().x R x x x y x x x R x x x x m Z m x m x x R x x R x x x x n N nx n x x R x x n N x R n n∀∈-<≤=∀∈≤≤∈+=+∈∈+≥+∈≥∈∈=∈性质1:性质2:函数是不减的函数,即若则性质3:若则有其中性质4:若则性质5:若则其中性质6:若则其中3二、高斯函数y=[x]的性质**23,[1,][],![][][]...n N x x xn n n N n n n np p p p∈∈+++定理1:若是正实数,则在区间中内,恰有个整数是的倍数。
定理2::若则在的质因数分解式中,质数的指数是4三、函数y={x}的性质*{}0.,{}{},().,,,0,{}{}.x x Z m Z m x x x R m aq r m Z a N m rr a a a=∈∈+=∈=+∈∈≤<=性质1:的充要条件是性质2:若则有其中性质3:若则53[] 3.(20)x x -=例1:解方程:第届莫斯科数学竞赛题62[]lg [lg ]20995x x x x --=例2:用表示不大于实数的最大整数,方程的实根的个数是多少?(1年全国高中数学联赛试题)72004!0例3:求末尾的的个数。
811,2,2!().k n k n n --=例4:求证:当且仅当存在某个正整数使得时能整除加拿大数学奥林匹克试题9222005,[]([])[1,]n x x x x n -=-例设为一个正整数问方程在区间上有多少个解?106.[][2][4][8][16][32]12345x x x x x x +++++=例求证:方程无实数解。
高斯函数
第二讲 高斯函数][x函数][x y =,称为高斯函数,又称取整函数. 它是数学竞赛热点之一.定义一:对任意实数][,x x 是不超过x 的最大整数,称][x 为x 的整数部分.与它相伴随的是小数部分函数].[}{},{x x x x y -==由][x 、}{x 的定义不难得到如下性质:(1)][x y =的定义域为R ,值域为Z ;}{x y =的定义域为R ,值域为)1,0[;(2)对任意实数x ,都有1}{0},{][<≤+=x x x x 且;(3)对任意实数x ,都有1][][1+<≤<-x x x x ;(4)][x y =是不减函数,即若21x x ≤则][][21x x ≤,其图像如图I -4-5-1;}{x y =是以1为周期的周期函数,如图I -4-5-2.图Ⅰ—4—5—1 图Ⅰ—4—5—2(5)}{}{];[][x n x x n n x =++=+.其中*∈∈N n R x ,;(6)}{}{}{];[][][y x y x y x y x +≥++≥+;(7)][][][y x xy ⋅≥,其中+∈R y x ,;.(8)]][[][nx n x =,其中*∈∈N n R x ,; (9)⎩⎨⎧∉--∈-=-Z x x Z x x x ,1][][][ ; (10)x 为正实数,n 为正整数,则不超过x 的所有正实数中,是n 的倍数的数共有][n x 个;(11)在n !的质因数分解中,质数p 的指数是:)(][][][][132+<≤+++m m m p n p pn p n p n p n 例1 分解30!为质因数乘积.例2 求1995!中末尾0的个数.例3 求 ]!19951!31!21!111[ ++++的值. 例4求 ]10014131211[ ++++的值. 例5 求方程051][4042=+-x x 的实数解.例6 证明方程12345]32[]16[]8[]4[]2[][=+++++x x x x x x ,没有实数解.。
高斯函数公式
高斯函数公式
高斯(Gaussian)函数是指满足下列一元二次方程的函数:
y (x) = ae^(-bx^2)
其中,a,b为常数。
更深入的说,高斯函数是一种随机变量的概率分布,它描述了满足正态性质的随机变量的概率分布,这种性质可以从高斯分布曲线中清楚地看出。
高斯函数具有众多的应用,广泛应用于统计学、物理学、信号处理、机器学习、数字图像处理等各个领域。
在机器学习中,经常用到高斯函数,例如:机器学习算法中的高斯核函数,表示两个输入点之间的相似程度。
在聚类分析和分类分析中,要求输入点的相似程度,以便更好地聚类分析和分类分析。
除此之外,高斯函数还常被用作信号滤波器、模糊处理器等。
此外,高斯函数也能应用于有监督式和无监督式学习,可以帮助人们找出相关的数据和特征,从而更好的理解决策的背后的原因。
总的来说,高斯函数是一种非常有用的数学函数,广泛地应用在各个领域,具有着广泛的应用前景。
无论是分析问题,理解数据,还是从数据中寻找出新的解决方案,高斯函数都是一个极好的工具。
高斯函数公式
高斯函数公式
高斯函数是一种广泛应用于数学和物理学的概率函数,由德国数学家卡尔·高斯于1809年发明。
它通过平滑的曲线描述一个随机变量的概率分布。
高斯函数有许多应用,其中最常见的是高斯分布,它描述了一个变量的概率分布,其中变量的期望值和标准差都是已知的。
高斯函数的公式如下:
f(x) = 1/(sqrt(2*pi)*sigma) * exp(-((x-mu)^2)/2*sigma^2)
其中,mu是随机变量的期望值,sigma是随机变量的标准差。
高斯函数的形状是一个正态分布,它是函数值最大值(即期望值处)最高,其他位置处函数值越来越小,向两边变大的过程。
在这个过程中,函数值的变化越来越缓慢,最后趋近于0,形成一个“钟形”的曲线。
高斯函数的应用非常广泛,比如在统计学中,它被广泛用于估计概率分布,以及做出估计和预测。
它还可以用于图像处理,比如图像模糊化,图像增强,以及图像检测等。
此外,高斯函数也可以用于模拟和分析系统,如电磁学,天文学,热力学和化学等。
总之,高斯函数是一种非常有用的数学函数,它在数学和物理学中
有着广泛的应用。
它的函数形状可以很好的描述正态分布的概率,可以用于多种应用,从而使我们更好地理解和研究系统的模拟和分析。
高斯函数——精选推荐
⾼斯函数⾼斯函数⼀、定义对于任意R x ∈,[]x 是不超过x 的最⼤整数,称[]x 为x 的整数部分。
y=[]x 称为定义在实数集上的函数,即取整函数,⼜称为⾼斯函数。
由定义知,[]x x ≤,故[]0≥-x x ,称[]x x -为x 的⼩数部分,记作{}x 。
y={}x 称为x 的⼩数部分函数。
如[]23.2=,[]33.2-=-,[]025.0=;{}3.03,2=,{}7.03.2=-,{}25.025.0=,{}75.025.0=-。
⼆、性质1、[]x y =的定义域为R ,值域为Z ;{}x y =的定义域为R ,值域为[)1,0。
2、[][]11+<≤<-x x x x3、y=[x]是不减函数,即若21x x ≤,则[][]21x x ≤4、[x+n]=n+[x],{x+n}={x},其中x ∈R,n ∈N. 证明:因为n+x=n+[x]+{x}及0≤{x}<1, 所以n+[x]≤n+x5、[x+y]≥[x]+[y],其中x,y ∈R ,且{x}+{y}≥{x+y} 证明:x+y=[x]+[y]+{x}+{y},0≤{x}<1,0≤{y}<1 x+y=[x+y]+ {x+y}即[x]+[y]+{x}+{y}=[x+y]+ {x+y} 因为{x}+{y}≥{x+y}所以[x+y]≥[x]+[y]说明:{x}+{y}≥{x+y}是显然成⽴的。
0≤{x}+{y}<2 若{x},{y}都⼩于1/2⼀般地,[]∑∑==≥ni i n i i x x 11 ,R x i ∈,[][]x n nx ≥特别地,??≥?b a n b na ,N n ∈ 6、[][][]y x xy ?≥,其中+∈R y x ,,⼀般地有[]+==∈≥∏∏R x x x i ni i n i i ,11特别地[][]x x nn ≤,+∈R x7、[]??=n x n x ,其中N n R x ∈∈, [][]x n nx =,??=???mn x n m x 证明:(1)因为[][]11+<≤<-x x x x 所以[][])1(+<≤x n nx x n ,由性质5,[][][])1(+<≤x n nx x n 所以[][][]1+<≤x nnx x因此[][]x n nx =??。
gauss函数
gauss函数
高斯函数是数学中一种重要的单变量函数。
它也被称为正态分布函数或钟形曲线,由卡尔高斯(Carl Friedrich Gauss)在19世纪初提出,是很多研究领域的基础,例如信号处理、图像处理、金融、机器学习等。
高斯函数是一个双尾分布,表示一组数值的概率密度,它表现为一种滚动的钟形曲线,可以用来表示某一特定结果或者一类结果的可能性。
高斯函数的函数形式可以表示为:
f(x)= A e^(- (x-μ)^2 / 2σ^2)
其中,A为归一化系数,μ是函数的最大值的位置,σ为函数的幅宽度。
高斯函数的最大特点是它具有高斯分布的属性。
它表明了一组随机变量(如温度、重量等)取值的概率分布,并由此定义出此变量取值的概率分布情况。
此外,高斯函数也用于其它领域,例如统计学、模式识别等,它可以帮助我们判断变量存在哪些异常作用,从而帮助我们对数据进行实际的解释和理解。
再者,高斯函数还在计算机视觉和语言处理等领域被广泛使用,它可以表示一个特定图像或文本的概率分布,即给出了图像或文本出现某处的可能性。
最后,高斯函数也可以用于生物统计学的研究,可以用来把生物
特征数据化,从而探索两种或者多种特性属性之间的关系,为后续的研究提供依据。
总之,高斯函数的应用非常广泛,它的特点是具有很强的概率表达能力和数据分析能力,是不同研究领域的重要工具。
高斯函数-
高斯函数高斯函数(Gaussian Function),又称为正态分布函数(Normal Distribution Function),是一种常见的数学函数。
它是以卡尔·弗里德里希·高斯(Carl Friedrich Gauss)的名字命名的,因为他首先研究了这种函数。
高斯函数可以用以下公式表示:$$f(x)=\\frac{1}{\\sigma\\sqrt{2\\pi}}e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}$$其中,$x$ 为自变量,$\\mu$ 为期望值,$\\sigma$ 为标准差。
高斯函数的曲线呈钟形状,中间最高,两边逐渐趋向于零。
高斯函数在统计学和概率论中有广泛的应用。
根据中心极限定理(Central Limit Theorem),许多随机变量的分布都可以近似为高斯分布。
例如,测量误差、温度、身高和体重等数据都可以用高斯函数来描述它们的分布情况。
在工程、计算机视觉和自然科学领域中,高斯函数也被广泛应用于平滑、滤波、特征提取和图像处理等方面。
高斯函数的一些性质:1.对称性:高斯函数以 $\\mu$ 为中心对称。
2.单峰性:高斯函数是单峰的,即只有一个最高峰值。
3.渐近性:高斯函数的两侧渐近于 $y=0$。
4.面积为 $1$:高斯函数的积分面积是 $1$,因为它代表随机变量在整个取值范围内的概率密度。
5. 方差:方差是 $\\sigma^2$,它决定了高斯函数的宽度。
6.标准差:标准差是 $\\sigma$,它代表了高斯函数的扁度,即曲线在中间多陡峭。
7.期望值:期望值是 $\\mu$,它是高斯函数曲线的对称轴。
在实际应用中,我们可以用高斯函数来拟合一些数据,得到一个高斯分布的特征。
由于高斯函数的定点计算速度比较快,效果也比较好,因此在信号处理、图像处理等领域都有广泛应用。
例如,我们可以用高斯滤波器来消除图像中的噪声,通过调整高斯函数的标准差和滤波器的大小,可以获得不同的平滑效果。
高斯函数性质及应用
高斯函数性质及应用高斯函数,又称为正态分布函数或钟形曲线,是数学上一种极其重要的函数形式。
它以德国数学家高斯命名,广泛应用于统计学、概率论、物理学、经济学等领域。
高斯函数具有许多重要的性质和广泛的应用。
首先,高斯函数具有对称性。
高斯函数的图像是关于其均值μ对称的,即函数的左右两边是完全一致的。
这是因为高斯函数的定义式中有(x-μ)的平方项,(x-μ)的值取正值和负值时对应的函数值是对称的。
这一特性使得高斯函数在处理对称性问题时非常有用。
其次,高斯函数的峰值出现在均值μ处。
高斯函数的峰值对应的横坐标就是函数的均值μ,即μ是高斯函数的中心位置。
这是因为高斯函数的定义式中有e的指数函数,指数函数在最值点处取最大值。
这一特性使得高斯函数在寻找数据的中心趋势时非常有用。
此外,高斯函数具有唯一的一个拐点。
当x等于均值μ时,高斯函数的斜率达到峰值的一半,这是高斯函数曲线从凹向下凸转折的点。
拐点使得高斯函数在研究曲线的凹凸性质时具有重要的参考依据。
另外,高斯函数具有无穷域的性质。
高斯函数的定义式中有e的指数函数,指数函数的定义域为负无穷到正无穷。
因此,高斯函数也具有相同的定义域,即对于实数x,高斯函数的定义是有效的,可以计算得出函数值。
这一性质使得高斯函数在推导数学模型和计算概率分布时非常方便。
在应用方面,高斯函数具有广泛的应用价值。
首先,高斯函数在统计学中常用于建模和描述数据分布。
许多自然界和社会现象都近似地符合高斯分布,例如人们的身高、IQ分数、心率等。
通过对数据进行高斯拟合,可以得到数据的均值和方差等统计特性,进而进行数据分析和决策。
其次,高斯函数在概率论中是重要的分布函数之一。
高斯函数常作为正态分布的密度函数,用于计算连续型随机变量的概率密度。
正态分布在实际问题中具有重要的应用,例如在质量控制中,高斯函数描述了产品质量分布的规律,帮助进行品质评估和质量改进。
此外,高斯函数在物理学领域也具有重要的应用。
例如,在量子力学中,高斯波包是描述粒子的一种波动模式,广泛应用于研究光束传播、粒子传导等问题。
高斯函数
高斯函数一、 定义对于任意R x ∈,[]x 是不超过x 的最大整数,称[]x 为x 的整数部分。
y=[]x 称为定义在实数集上的函数,即取整函数,又称为高斯函数。
由定义知,[]x x ≤,故[]0≥-x x ,称[]x x -为x 的小数部分,记作{}x 。
y={}x 称为x 的小数部分函数。
如[]23.2=,[]33.2-=-,[]025.0=;{}3.03,2=,{}7.03.2=-,{}25.025.0=,{}75.025.0=-。
二、性质1、[]x y =的定义域为R ,值域为Z ;{}x y =的定义域为R ,值域为[)1,0。
2、[][]11+<≤<-x x x x3、y=[x]是不减函数,即若21x x ≤,则[][]21x x ≤4、[x+n]=n+[x],{x+n}={x},其中x ∈R,n ∈N. 证明:因为n+x=n+[x]+{x}及0≤{x}<1, 所以n+[x]≤n+x<n+[x]+1 又因为n ∈Z,n+[x]∈Z, 由整数部分定义得[n+x]=n+[x].5、[x+y]≥[x]+[y],其中x,y ∈R ,且{x}+{y}≥{x+y} 证明:x+y=[x]+[y]+{x}+{y},0≤{x}<1,0≤{y}<1 x+y=[x+y]+ {x+y}即[x]+[y]+{x}+{y}=[x+y]+ {x+y} 因为{x}+{y}≥{x+y}所以[x+y]≥[x]+[y]说明:{x}+{y}≥{x+y}是显然成立的。
0≤{x}+{y}<2 若{x},{y}都小于1/2一般地,[]∑∑==≥⎥⎦⎤⎢⎣⎡ni i n i i x x 11 ,R x i ∈,[][]x n nx ≥特别地,⎥⎦⎤⎢⎣⎡≥⎥⎦⎤⎢⎣⎡b a n b na ,N n ∈ 6、[][][]y x xy ⋅≥,其中+∈R y x ,,一般地有[]+==∈≥⎥⎦⎤⎢⎣⎡∏∏R x x x i ni i n i i ,11特别地[][]x x nn ≤,+∈R x7、[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x ,其中N n R x ∈∈, [][]x n nx =⎥⎦⎤⎢⎣⎡,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡mn x n m x 证明:(1)因为[][]11+<≤<-x x x x 所以[][])1(+<≤x n nx x n ,由性质5,[][][])1(+<≤x n nx x n 所以[][][]1+<≤x nnx x因此[][]x n nx =⎥⎦⎤⎢⎣⎡。
高斯函数(取整函数)[1]
Gauss function []x (高斯函数[]x )一、高斯函数[]x 的定义 设R x ∈, 用[]x 表示不超过x 的最大整数(如0215=⎥⎦⎤⎢⎣⎡-,[]11263.0-=-,[]763.7=,等等),则=y []x 称为高斯函数,也叫取整函数。
任意一个实数都能写成整数部分与非负纯小数之和,即:[]α+=x x ()10<≤α,所以有:[][]1+<≤x x x ,这里[]x 是x 的整数部分,而{}[]x x x -=是x 的小数部分。
二、高斯函数[]x 的图象和性质1、高斯函数=y []x 的定义域是R ,值域是Z ,图象为:2、高斯函数=y []x 是一个分段表达的不减的无界函数,即当21x x ≤时,有[][]21x x ≤。
3、对于任意整数n ,有:[][]x n x n +=+。
4、对于任意实数x 、y ,有:[][][]y x y x +≥+,且 {}{}{}y x y x +≤+。
5、由图象易见:[]=-x []()[]()是整数时当不是整数时当x x x x ,,1---。
6、若a 、b ∈N ,则在数列,,3,2,1 1-a ,a 中,b 的倍数共有⎥⎦⎤⎢⎣⎡ba 个。
7、若a 、b 是整数,且0>b , 则⎭⎬⎫⎩⎨⎧⋅+⎥⎦⎤⎢⎣⎡⋅=b a b b a b a ,且10-≤⎭⎬⎫⎩⎨⎧⋅≤b b a b 。
8、对于任意正整数n 及实数x ,有:[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n x n x 。
三、函数{}x y =的图象和性质1、函数{}x y =的定义域是R ,值域为[)1,0,图象为:2、{}0=x 的充要条件是Z x ∈。
3、{}{}x x m =+的充要条件是Z m ∈。
4、若Z n ∈,N a ∈,()a r r aq n <≤+=0,则ar a n =⎭⎬⎫⎩⎨⎧。
四、高斯函数=y []x 的初步应用1、证明含有[]x 的不等式例1 若1≥x ,0>y ,求证:[][]x y x y ≤⎥⎦⎤⎢⎣⎡。
1高斯函数
第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x],即y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n 1]+[x+n 2]+…+[x+nn 1-]=[nx]; 证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa +11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 .3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 .2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+[4y]+ 月份 1 2 3 4 5 6 7 8 9 10 11 12[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字(见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 .2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= .3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+ 第一讲:高斯函数 3[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:对应的m 值 11 12 1 2 3 4 5 6 7 8 9 101.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . ③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = .②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 .2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .4 第一讲:高斯函数②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23] ③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.[练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数).6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 第一讲:高斯函数 5⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= . 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ]. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.8.不等问题:[例8]:(1981年美国数学奥林匹克试题)对正整数n 和一切实数x.求证:[nx]≥1][x +2]2[x +…+nnx ][. [解析]:为方便,记a n =1][x +2]2[x +…+nnx ][.用数学归纳法证明:①当n=1时,a 1=[x],[nx]=[x]⇒原不等式成立;②假设当k<n 时,原不等式均成立,即a 1≤[x],a 2≤[2x],…,a n-1≤[(n-1)x];注意到:a k -a k-1=kkx ][⇒ka k -ka k-1=[kx]⇒na n =a 1+(2a 2-a 1) 6 第一讲:高斯函数+(3a 3-2a 2)+…+[na n -(n-1)a n-1]=a 1+(2a 2-2a 1)+(3a 3-3a 2)+…+(na n -na n-1)+(a 1+a 2+…+a n-1)=[x]+[2x]+[3x]+…+[nx]+(a 1+a 2+…+a n-1)≤n[nx]⇒a n ≤[nx].[练习8]:1.(第10届地中海地区数学奥林匹克试题)设x 为大于1的实数.证明:(][}{x x x +-}{][x x x +)+(}{][x x x +-][}{x x x +)>29.2.(2005年国家集训队训试试题)求所有正整数m 、n,使得不等式[(m+n)α]+[(m+n)β]≥[m α]+[m β]+[n(α+β)]对任意实数α、β都成立.3.(2005年国家集训队选拔考试试题)设n 是任意给定的正整数,x 是正实数.证明:∑++-=nk x kx x k x 1])1)[1(][(≤n.第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x]与y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n1]+[x+n2]+…+[x+nn 1-]=[nx];证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+ n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa+11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .解:因f(x)+f(-x)=(x a +11-21)+(x a -+11-21)=x a +11+xxa a +1-1=0⇒f(-x)=-f(x);设f(x)=k+α,其中,k ∈Z,0≤α<1,①若α=0,则f(x)=k ⇒-f(x)=-k ⇒[f(x)]=k,[f(-x)]=-k ⇒[f(x)]+[f(-x)]=0;②若α≠0,则f(x)=k+α⇒-f(x)=-k-α= -(k+1)+(1-α)⇒[f(x)]=k,[f(-x)]=-(k+1)⇒[f(x)]+[f(-x)]=-1⇒[f(x)]+[f(-x)]的值域是{-1,0}. 2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 . 解:令g(x)=kx+k,由图知g(2)≤1,g(3)>1⇒41<k ≤31. 3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 . 解:令f(k)=[51-k ]-[52-k ],则f(k+5)=[515-+k ]-[525-+k ]=[1+51-k ]-[1+52-k ]=[51-k ]-[52-k ]=f(k),故f(k)是周期为5的函数;计算可知:f(2)=0,f(3)=0,f(4)=0,f(5)=0,f(6)=1;由x k =x k-1+1-5f(k)⇒x k -x k-1=1-5f(k)⇒x 2008=x 1+(x 2- x 1)+(x 3-x 2)+…+(x 2008-x 2007)=x 1+2007-5[f(2)+f(3)+…+f(2008)]=x 1+2007-5[4001(f(2)+f(3)+…+f(6))+f(2)+f(3)]=3;同理可得y 2008=402.所以,2008棵树的种植点为(3,402).2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+ [4y ]+[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字 (见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 . 解:因c=20,y=8,d=18,m=4⇒d+[2.6m-0.2]+y+[4y ]+[4c]-2c=18+[10.2]+8+[2]+[5]-40=3≡3(mod7)⇒2008年6月18日是星期三.2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值. 解:因为0<1<2π,2π<2、3<π,π<4<23π,23π<5、6<2π⇒sin1、sin2、sin3∈(0,1),sin4、sin5∈(-1,0)⇒[sin1]=第一讲:高斯函数 3[sin2]=[sin3]=0,[sin4]=[sin5]=-1⇒[sin1]+[sin2]+[sin3]+[sin4]+[sin5]=-2.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= . 解:因为0<1<2π,2π<2<π,43π<3<π,π<4<23π,23π<5<2π,47π<6<2π⇒sin1∈(0,1),cos2∈(−1,0),tan3∈(−1, 0),sin4∈(−1,0),cos5∈(0,1),tan6∈(−1,0)⇒[sin1]+[cos 2]+[tan 3]+[sin 4]+[cos5]+[tan 6] =0+(-1)+(-1)+(-1) +0+(-1)=-4.3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数. 解:当20052k <1,即k<44时,[20052k ]=0;当1≤20052k <2,即45≤k<63时,[20052k ]=1;当2≤20052k <3,即64≤k<77时,[20052k ]=2; 当3≤20052k <4,即78≤k<89时,[20052k ]=3;当4≤20052k <5,即90≤k<100时,[20052k ]=4;当5≤20052k <6,即100≤k<109时,月份 1 2 3 4 5 6 7 8 9 10 11 12 对应的m 值111212345678910[20052k ]=5;当6≤20052k <7,即110≤k<118时,[20052k ]=6;当7≤20052k <8,即119≤k<126时,[20052k ]=7;…,集合{n|n=[20052k ], 1≤k ≤2004,k ∈N}的元素个数=1503.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . 解:由k<)1(+k k <k+21⇒2)1(+n n <a n <2)1(+n n +21n ⇒n+1<n a n 2<n+2⇒[n a n 2]=n+1. ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . 解:设f(x)=nx 3+2x-n,易知,当n 为正整数时,f(x)为增函数;f(1)=2>0,且当n ≥2时,f(1+n n )=n(1+n n )3+21+n n -n=3)1(+n n (- n 2+n+1)<0⇒x n ∈(1+n n ,1)⇒n<(n+1)x n <n+1⇒a n =[(n+1)x n ]=n ⇒10051(a 2+a 3+…+a 2011)=2013. ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 解:由b n =[5n a ]=[523-n ]⇒b 5k+r =[52)5(3-+r k ]=[3k+523-r ]=3k+[523-r ](r=0,1,2,3,4)⇒b 5k =3k-1,b 5k+1=b 5k+2=3k,b 5k+3=3k+1,b 5k+4=3k+2⇒b 5k-4+b 5k-3+b 5k-2+b 5k-1+b 5k =15k-10⇒b 1+b 2+…+b 2007=(b 1+b 2+…+b 5)+…+(b 401×5-4+b 401×5-3+b 401×5-2+b 401×5-1+b 401×5)+(b 401×5+1+b 401×5+2)=152)4011(401+-10×401+(3×401+3×401)=(15×201-4)401=1207411.3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 4 第一讲:高斯函数2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:1.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .解:当2t ≤k<2t+1时,[log 2k]=t,t=0,1,2,…,且在区间[2t ,2t+1)中的正整数有2t 个.设f(x)=[log 2x],注意到29=512,所以, [log 21]+[log 22]+[log 23]+…+[log 2500]=∑=5001)(k k f =f(1)+∑-=1222)(k k f +∑-=12232)(k k f +∑-=12243)(k k f +∑-=12254)(k k f +∑-=12265)(k k f +∑-=12276)(k k f +∑-=12287)(k k f +∑=50028)(k k f =0+1×21+2×22+3×23+4×24+5×25+6×26+7×27+8(28-11)=3498.②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . 解:因为1≤k ≤9⇒[lgk]=0;10≤k ≤99⇒[lgk]=1;100≤k ≤999⇒[lgk]=2;1000≤k ≤2010⇒[lgk]=3;所以,[lg1]+ [lg2]+[lg3]+…+[lg2010]=60×1+900×2+1011×3=4923.③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.解:由[log 36]=[log 37]=[log 38]=1⇒[log 36]+[log 37]+[log 38]=3;[log 39]=[log 310]=…=[log 326]=2⇒[log 39]+[log 310]+ …+[log 326]=36;[log 327]=[log 328]=…=[log 380]=3⇒[log 327]+[log 328]+…+[log 380]=162;[log 381]=[log 382]=…= [log 3242]=4⇒[log 381]+[log 382]+…+[log 3242]=648;3+36+162+648=849;[log 3243]=[log 3244]=…=[log 3728]=5⇒ [log 3243]+[log 3244]+…+[log 3728]=2430⇒n=474.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .解:当log 2n 为整数时,{log 2n}=[log 2n](n=20,21,…,210);当log 2n 为整数时,{log 2n}=[log 2n]+1;所以,{log 21}+{log 22}+…+{log 21991}=[log 21]+[log 22]+…+[log 21991]+1991-11;由a=2,1024=210<1991<211⇒m=10,由1991-210=967⇒b=967⇒ [log 21]+[log 22]+…+[log 21991]+1991-11=[2×9-2]29+2+10×968+1991-11=19854.2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .解:当k 为整数时,[k ]+[-k ]=0(k=12,22,…,19892),当k 不是整数时,设k =n+α(0<α<1),则[k ]=n,[-k ]=[-n-α]=[-(n+1)+(1-α)]=-(n+1)⇒[k ]+[-k ]=-1⇒[1]+[2]+[3]+…+[19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]=-1989×1990+1989=-19892.②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.解:因为nlg2和nlg5是无理数,那么可以表示nlg2=m+a 其中m=[nlg2],a={nlg2}≠0,而nlg5=n-nlg2=n-m-a=(n-m-1)+(1- a)⇒[nlg5]=n-m-1⇒[nlg2]+[nlg5]=n-1=2012⇒n=2013.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = . 解:由1222012++k k <1⇒2012+2k <2k+1⇒2k>2012⇒k>11⇒当k>11时,[1222012++k k ]=0;当k=0时,[1222012++k k ]=1006;当k=1时,[1222012++k k]=503;当k=2时,[1222012++k k ]=250;当k=3时,[1222012++k k ]=126;当k=4时,[1222012++k k ]=63;当k=5时,[1222012++k k ]=31;当k=6时,[1222012++k k ]=16;当k=7时,[1222012++k k ]=8;当k=8时,[1222012++k k ]=4;当k=9时,[1222012++k k ]=2;当k=10、第一讲:高斯函数 511时,[1222012++k k ]=1⇒∑+=+20121]222012[k k k =1006+503+250+126+63+31+16+8+4+2+1+1=2012.②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.解:设下x=a n ×2n+a n-1×2n-1+…+a 2×22+a 1×21+a 0×20,其中a i ∈{0,1}(i=0,1,2,…,n),则x-2[2x ]=a 0;[2x ]-2[22x]=a 1; [22x ]-2[32x ]=a 2,…,[nx 2]-2[12+n x ]=a n ⇒a 0+a 1+a 2+…+a n =(x-2[2x ])+([2x ]-2[22x ])+([22x ]-2[32x ])+…+([n x2]- 2[12+n x])=x-([2x ]+[22x ]+[32x ]+…+[12+n x ])=x-m=x 的“亏损数”⇒亏损数”为9的最小正整数x=1+2+22+…+28=511. 4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .解:由81<2x <8⇒-3<x<3⇒[x]=-3,-2,-1,0,1,2;①若[x]≤-2,则x 2=2[x]+3<0,没有实数解;②若[x]=-1,则x 2=1⇒x=-1; ③若[x]=0,则x 2=3,没有符合条件的解;④若[x]=1,则x 2=5,没有符合条件的解;⑤若[x]=2,则x 2=7⇒有一个符合条件的解x=7⇒ A ∩B={-1,7}.②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .解:因|x|<2⇒[x]的值可取-2,-1,0,1;当[x]=-2,则x 2=0无解;当[x]=-1,则x 2=1⇒x=-1;当[x]=0,则x 2=2无解;当[x]=1,则x 2=3⇒x=3⇒A ∩B={-1,3}.③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . 解:由0≤2cos 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,cosx=0,tanx 无意义;当[tanx]=1时,cosx=±22, 注意:[tanx]=1⇒x=k π+4π(k ∈Z);当[tanx]=2时,cosx=1⇒sinx=0⇒tanx=0,矛盾. ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 . 解:由0≤2sin 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,sinx=0,tanx=0⇒x=k π;当[tanx]=1时,sinx=±22,注意:[tanx]=1⇒x=2k π+4π(k ∈Z);当[tanx]=2时,sinx=1⇒cosx=0⇒tanx=0无意义.2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .6 第一讲:高斯函数解:由4[x]2-36[x]+45<0⇒23<[x]<215⇒2≤[x]≤7⇒2≤x<8. ②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23]解:因[|x 2-1|]=10⇔10≤|x 2-1|<11⇔-11<x 2-1≤-10,或10≤x 2-1<11⇔x ∈(-23,-11]∪[11,23),选(C).③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 解:显然x>0;①若x ≥3,则[x]≥3⇒x [x]≥27>29;②若0<x<2,则0≤[x]<2⇒x [x]<22=4<29;③若2≤x<3,则[x]=2⇒x 2=29 ⇒x223. 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .解:由x ≥[x]=872+x ⇒1≤x ≤7⇒[x]=1,2,3,4,5,6,7⇒x=1,33,41,7.②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .解:1,2005,2006,2007.③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .解:设2x+1=k,则x=21-k ,3x-465=6389-k =k+6383-k ,于是原方程等价于[k+6383-k ]-k=0⇒[6383-k ]=0⇒0≤6383-k<1⇒338≤k<344⇒k=13,14⇒解是x=6,213. ④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 解:设2x-21=k ∈Z,则x=412+k ,3x+1=k+1+432+k ,于是原方程等价于[432+k ]=-1,即-2<432+k ≤-1⇒-211<k ≤-27⇒k=-5,-4⇒x=-49,-47⇒所有实根之和为-4. 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q ])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.第一讲:高斯函数 7 [练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).解:由x-1<[x]≤x;①当x ≥3时,x 3-3[x]≥x 3-3x=x(x 2-3)≥3(32-3)=18;②当x ≤-3时,x 3-3[x]<x 3-3(x-1)=x(x 2-3)+3≤ -3[(-3)2-3]+3=-15;③当-3<x<3时,[x]=-3,-1,-1,0,1,2;若[x]=-3,则x 3=3[x]+4=-5,不合要求;若[x]=-2,则x 3=3[x]+4= -2⇒x=-32,合要求;若[x]=-1,则x 3=3[x]+4=-1,不合要求;若[x]=0,则x 3=3[x]+4=4,不合要求;若[x]=1,则x 3=3[x]+4= 7⇒x=37,合要求;若[x]=2,则x 3=3[x]+4=10⇒x=310,合要求⇒(-32)3+(37)3+(310)3=15.2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .解:由[x 3]+[x 2]+[x]∈Z ⇒{x}−1∈Z ⇒{x}=0⇒x ∈Z ⇒x 3+x 2+x=-1⇒(x+1)(x 2+1)=0⇒x=-1.②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. 解:设[x]=n,x-[x]=α(0≤α<1),则x 2−2x=(n+α)2-2(n+α)=n 2-2n+α2+2(n-1)α,所以原方程等价于[n 2-2n+α2+2(n-1)α]=n 2-2n ⇔[α2+2(n-1)α]=0⇔0≤α2+2(n-1)α<1;当α=0时,不等式成立,此时,x=n;当α≠0时,由0≤α2+2(n-1)α<1⇔0<α<1)1(2+-n -(n-1)⇔0<x-n<1)1(2+-n -(n-1)⇔x ∈(n,1)1(2+-n +1)(n=1,2,…). ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 解:由[x]+[!x 3]+[!x 5]+[!x 7]=1993⇒[x]<1993⇒x<1994⇒[!x 7]=0⇒[x]+[!x 3]+[!x5]=1993⇒x>5!;设x=5!n+r(0≤r<5!=120)⇒(120n+r)+(20n+[6r ])+n=1993⇒141n+r+[6r ]=1993=14×141+19⇒n=14,r+[6r]=19⇒r=17⇒x=1697. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.解:因为当3k≤n<3k+1时,[log 3n]=k(k=0,1,2,…),且区间[3k,3k+1)内的正整数个数=3k+1-3k=2×3k,所以,S k =[log 31]+[log 32]+ [log 33]+[log 34]+…+[log 3(3k+1-1)]=2(0×30+1×31+2×32+…+k ×3k)=(23k-43)3k +43;令(23k-43)3k+43≤2007⇒(2k- 1)3k≤2675⇒k ≤5;S 5=1391,2007-1391=6×101⇒n=36+100=829. ②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数). 解:{5,6}.6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 ⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= .解:若a 为负整数,则a 2>0,2b(a+b)<0,不可能,故a ≥0;于是a 2=2b(a +b)<2(a+1)⇒a 2-2a-2<0⇒0≤a<1+3⇒a=0,1,8 第一讲:高斯函数2;a=0时,b=0;a=1时,2b 2+2b-1=0⇒b=213-;a=2时,b 2+2b-2=0⇒b=3-1. 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .解:由[x]2+[y]2=50⇒[x]=±1,[y]=±7;[x]=±5,[y]=±5;[x]=±7,[y]=±1.每组解有4种情况,每种情况下的面积为1⇒图形的面积是12.②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.解:设[x]=a,[y]=b,即所有这样的点(x,y)组成的图形就是a ≤x<a+1,b ≤y<b+1界定的区域,它的面积为1,又2011是质数,所以满足[x][y]=2011的点(x,y)组成的图形是4个面积为1的区域,即[x]=1,[y]=2011;[x]=2011,[y]=1;[x]=−1,[y] =−2011;[x]=−2011,[y]=−1.这些图形的总面积是4.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .解:由[x][y]=2013=1×2013=3×671=11×183=33×61,共有16种情况,每种情形下的面积为1,所以,所有点(x,y)组成的图形面积为16.3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7解:设a n =(3+8)2n +(3-8)2n =(17+122)n +(17-122)n ,则a 1=34,a 2=342-2=1154,a n+2=34a n+1-a n ⇒a 1≡2(m0d8),a 2≡2(m0d8),a 3≡34×2-2≡2(m0d8)⇒a n ≡2(m0d8);又因0<(3-8)2n <1⇒[(3+8)2n ]=a n -1⇒[(3+8)2n]≡1(m0d8).选(A).②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .解:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<(0.008)300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?解:设[x ]=n,由[x ]≤x <[x ]+1⇒n ≤x <n+1⇒n 2≤x <(n+1)2⇒n 2≤[x ]<(n+1)2⇒n ≤][x <n+1⇒n ≤[][x ]<n+1⇒[][x ]=n ⇒[][x ]=[x ]成立.②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ].第一讲:高斯函数 9解:因(n +1+n )2=2n+1+2)1(+n n <2n+1+[n+(n+1)]=4n+2⇒n +1+n <24+n ⇒[n +1+n ]≤[24+n ];若存在某个正整数n,使得[n +1+n ]≠[24+n ],则[n +1+n ]<[24+n ];设[24+n ]=k,则n +1+n <k ≤24+n⇒2n+1+2)1(+n n <k 2≤4n+2⇒2)1(+n n <k 2-(2n+1)≤2n+1⇒4n(n+1)<[k 2-(2n+1)]2≤4n(n+1)+1(因4n(n+1)与4n(n+1)+1是连续整数)⇒[k 2-(2n+1)]2=4n(n+1)+1⇒k 2=4n+2,但任意整数的平方被4除不余2,矛盾. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. 解:设[r]=n,r=n+α(0≤α<1),则[r+100i ]=[n+α+100i ]=n(当0<α+100i <1时),或n+1(当1≤α+100i<2时),设其中有 73-k 个n,k 个n+1,则(73-k)n+k(n+1)=546⇒n=7+7335k -⇒k=35,n=7⇒α+10056<1,α+10057≥1⇒10043≤α<10044⇒7+10043≤r<7+10044⇒743≤100r<744⇒[100r]=743. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 解:设f(x)=[x]+[2x]+[4x]+[8x]+[16x]+[32x],则f(x)单调不减;由f(x)≤[(1+2+4+8+16+32)x]=[63x]≤63x ⇒x ≥6312345>195;f(196)=63×196=12348⇒x<196⇒x ∈(195,196);令t=x-195,则t ∈(0,1),且f(x)=[195+t]+[2(195+t)]+ [4(195+t)]+[8(195+t)]+[16(195+t)]+[32(195+t)]=63×195+[t]+[2t]+[4t]+[8t]+[16t]+[32t]<12285+0+1+3+7+15+31 =12342⇒方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解.3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.解:由a n+1-a n =b([c n ++1]-[c n +]),由题知,a n+1-a n =0,或2⇒b([c n ++1]-[c n +])=0,或2;由c n ++1-c n +=cn c n ++++11≤1⇒c n +<c n ++1≤c n ++1⇒[c n +]<[c n ++1]≤[c n +]+1⇒[c n ++1]-[c n +]=0,或1;显然b ≠0,当b([c n ++1]-[c n +])=2时,b=2,[c n ++1]-[c n +]=1;由a 1=2[c +1]+d=1⇒c ≥-1,d=1-2[c +1];注意到2k a =2k-1⇒2[c k +2]+d=2k-1⇒2[c k +2]+1-2[c +1]=2k-1⇒[c k +2]-[c +1]=k-1对任意的k ∈N +恒。
高斯函数
解:令
15 x 7 5n 7 10n 39 n ,由高斯 ,带入原方程整理得: n n Z ,则 x 5 15 40
函数的定义有 0
10n 39 1 13 n 1 ,解得: n ,则 n 0, n 1 。 40 30 10 7 4 若 n 0 ,则 x ;若 n 1 ,则 x 。 15 5
x 1 x
( x 不是整数时)
a
x
n n p n ! 2 p p
n m p m n p m1 。 p
73
证明:由于 p 是素数,所有 n! 中所含 p 的方次数等于 n! 的各个因数 1, 2, 数之总和。由性质 10 可知,在 1, 2,
p 1 Cp 25
p 1 2
,其中 p 是质数。因为
k Cp
p p 1 p 2 k!
p k 1
k 2, 4,
, p 1 都能被质数 p 整除,所以原命题成
立。 三、巩固练习 1,计算 的值。 (76304) 503
n 0 502
305n
77
2,求函数 f x
x 12.5 0 x 100 的值域。 0, 1, 2, 3, 4, 5, 6, 7 12.5 x
3,求方程
31 27 23 2x 7 2x 1 , x3 , 的实数解。 x1 , x2 2 2 2 4 3
3 3
所以,原方程的解为: x x
3
4 。 3
高斯型函数
高斯型函数
高斯型函数是指形如$f(x)=ae^{-frac{(x-b)^2}{2c^2}}$的函数,其中$a,b,c$是常数,并且$c>0$。
这样的函数在数学、物理、工程、计算机科学等领域中都有广泛的应用。
高斯型函数最早由德国数学家高斯(Gauss)在研究误差理论时引入,并且被广泛应用于多个领域。
其中,高斯型函数在概率论和统计学中有着重要的应用,它被用来描述正态分布和正态随机变量的概率密度函数。
此外,高斯型函数还被应用于信号处理中的滤波器设计、图像处理中的平滑和边缘检测等方面。
在计算机科学中,高斯型函数也被广泛应用于机器学习中的分类器和聚类器设计。
高斯型函数具有很多优良的性质,如对称性、单峰性、平滑度和可微性等。
另外,高斯型函数的峰值和标准差可以由$a,b,c$计算得出,这些参数可以反映数据的中心位置、分布范围和峰度等特征。
因此,高斯型函数在数据分析和处理中具有重要的作用。
总之,高斯型函数是一个重要的数学工具,在多个领域中都有着广泛的应用和深远的影响。
- 1 -。
高斯函数的导数
高斯函数的导数高斯函数是一种常见的数学函数,它在物理、工程、统计学等领域中都有着广泛的应用。
高斯函数的导数是对高斯函数进行微分得到的新函数,它也具有很多重要的性质和应用。
本文将介绍高斯函数的导数及其主要内容。
一、高斯函数高斯函数又称为正态分布函数,它是一种连续概率分布函数。
在数学上,高斯函数可以表示为:f(x) = (1/σ√(2π)) e^(-(x-μ)^2 / 2σ^2)其中,μ是均值,σ是标准差。
这个公式描述了一个钟形曲线,在均值处取得最大值,并且随着距离均值越远,曲线下降得越快。
二、高斯函数的导数对于任意一个可微的实值函数f(x),它在某个点x0处的导数可以表示为:f'(x0) = lim(h→0) [f(x0+h)-f(x0)] / h同样地,对于高斯函数f(x),我们也可以求出它在某个点x0处的导数。
具体来说,我们需要使用以下公式:f'(x) = -(x-μ)/σ^2 (1/σ√(2π)) e^(-(x-μ)^2 / 2σ^2)这个公式可以通过对高斯函数进行求导得到。
我们可以发现,高斯函数的导数也是一个高斯函数,它同样具有钟形曲线的特性。
三、高斯函数导数的性质高斯函数的导数具有很多重要的性质,其中一些最基本的性质如下:1. 高斯函数导数在均值处取得最小值。
这是因为在均值处,导数为0,而且随着距离均值越远,导数绝对值越大。
2. 高斯函数导数在两个标准差处取得最大值。
这是因为在两个标准差处,导数绝对值达到最大,而且随着距离两个标准差越远,导数绝对值越小。
3. 高斯函数的二阶导数是一个常数。
这意味着高斯函数的曲率是恒定的,在任意一个点上都相同。
四、高斯函数导数的应用由于高斯函数和它的导数具有很多重要的性质和应用,因此它们被广泛地应用于各种领域中。
以下是一些常见的应用:1. 统计学:高斯函数被用于描述随机变量的分布,它的导数则被用于计算随机变量的概率密度函数。
2. 信号处理:高斯函数和它的导数被用于平滑和滤波信号,以及检测信号中的峰值和谷值。
高斯的积分
高斯的积分引言高斯的积分,也称为高斯积分或者高斯函数,是数学中一种重要的积分形式。
它由德国数学家卡尔·弗里德里希·高斯在18世纪末提出,并广泛应用于各个领域,包括物理学、工程学和统计学等。
高斯的积分在数学和科学研究中具有重要的地位,它不仅有着深厚的理论基础,还具有广泛的应用价值。
高斯函数及其性质高斯函数是指形如 e −x 2的函数形式。
它在数学中具有许多重要的性质,下面我们将介绍其中几个常见的性质。
对称性首先,高斯函数具有轴对称性。
即 e −x 2 关于原点对称,即 e −x 2=e −(−x )2。
这一性质使得高斯函数在实际问题中具有很大的优势。
归一化其次,高斯函数可以进行归一化处理。
归一化是指将一个函数调整为满足某些条件下总积分为1的过程。
对于高斯函数来说,它的归一化形式是 √π−x 2。
这个归一化的过程在概率论和统计学中有着重要的应用。
积分高斯函数的积分也是高斯的积分的核心内容。
高斯函数的积分形式为 ∫e −x 2∞−∞dx 。
这个积分在数学中被称为高斯积分,它是一个无穷区间上的定积分。
高斯积分的计算方法高斯积分由于其特殊性质,在数学中具有很大的难度。
然而,幸运的是,高斯本人提出了一种巧妙而有效的计算方法,即高斯消元法。
高斯消元法高斯消元法是通过变换和逐步简化来计算高斯积分。
具体步骤如下:1. 将被积函数 e −x 2进行变量替换,令 t =x 2。
2. 将原始积分转化为新变量 t 的定积分形式:12∫e −t ∞−∞dt 。
3. 利用定积分性质和指数函数关系进行计算,得到最终结果为 √π。
高斯消元法的关键在于变量替换和积分性质的灵活运用。
通过这种方法,我们可以简洁地计算出高斯积分的结果。
高斯积分的应用高斯积分作为一种重要的数学工具,在科学研究中有着广泛的应用。
下面我们将介绍几个常见的应用领域。
概率论与统计学在概率论与统计学中,高斯积分被广泛应用于概率密度函数和正态分布的计算中。