10滑动轴承
滑动轴承
机械设计
第十章 滑动轴承 第九章
31
四、承载能力和索氏数S0
β— 轴承包角,轴瓦连续包围轴颈所对应的角度。(P221)
φ— 从 OO 起至任意 膜厚处的油膜角。
α1+α2— 承载油膜角
φ1— 油膜起始角 φ2— 油膜终止角 p=pmax处:h=h0,φ=φ0
机械设计
第十章 滑动轴承 第九章
32
(P222 式10-19)
流出 流入
Δt— 油温升 Δt = t2-t1
1 1 t m (t 1 t 2 ) t 1 t 75C 平均温度: 2 2
33
积分一次得任意φ处的油膜压力pφ:
p dp
1
6
2
1
(cos cos0 ) d 3 (1 cos )
在φ1至φ2区间内,沿外载荷方向单位宽度的油膜力为:
F1 p cos[180 ( )]rd
1 2
对有限宽轴承,若不计端泄,油膜承载力F为:
p 0 x
,油压为增函数;
可见,对收敛形油楔,油楔内各处油压大
于入口、出口处油压→正压力→承载。
e e
e e
e e
h>h0 p>0 x
p x =0
h<h0 p x <0
p 静止件 x =0 p=0
e e
机械设计 ※若二板平行:
p x
第十章 滑动轴承 第九章
26
任何截面处h=h0, =0 ,不能产生高于出口、入口处的 油压→不能承载。 v
8
2、推力轴承(方法同径向轴承)(自学) 结构:空心、实心、单环、多环
实心式:
13种常见的轴承
13种常见的轴承轴承是现代机械制造中必不可少的零部件之一,广泛应用于各种机械设备中。
虽然轴承种类很多,但是比较常见的一般只有13种。
本文将会为大家介绍这13种常见的轴承,并逐一阐述其特点和应用场景。
1. 深沟球轴承深沟球轴承由外圈、内圈、钢球和保持架组成,广泛应用于各种低、中等负荷下的机械设备。
尤其适用于高速旋转和精度要求较高的场合。
2. 圆锥滚子轴承圆锥滚子轴承是由内圈、外圈、滚子及保持架组成的,广泛应用于各种涉及到大量载荷或承受冲击载荷的机器设备。
特别适用于带有大功率传动的设备。
3. 自调心球轴承自调心球轴承由内圈、外圈、钢球和保持架组成,广泛应用于各种需要自动调节偏差和变化的负载场合,例如高速旋转和振荡应用。
4. 推力球轴承推力球轴承是一种带有简易设施的轴承,在承载能力以及与强迫方向垂直的载荷方面非常有效。
常用于主要受到单向载荷的旋转零部件。
5. 单向轴承单向轴承是其中一种通常用于受到单一方向载荷的轴承,适用于逆止器、起动机等设备中。
6. 球面轴承球面轴承主要由内球面和外球面构成、还有其他基本的组件,适用于要承受径向载荷和轴向载荷的设备。
7. 组合轴承组合轴承是一种可以同时承受径向载荷和轴向载荷的轴承,适合于支架系统和较大的机器设备,能够满足多重载荷的要求。
8. 滑动轴承滑动轴承是由支架、梁和滑动层涂料构成,广泛应用在机械设备中,以在摩擦表面上产生应变来分散载荷。
9. 圆柱滚子轴承圆柱滚子轴承多用于带有大直径和长长度的设备,如挖掘机、汽车后桥、造纸机等。
它主要由内圈、外圈、滚子和保持架构成。
10. 长轴承长轴承是一种防护较强的轴承,在需要经常进行维护和保养的设备中应用广泛,如电动机和发电机。
11. 球面滚子轴承球面滚子轴承具有很好的中等负荷承载能力,并且适用于需要频繁进行旋转运动的机器设备。
12. 规定轴承现在的负载大而且速度快的轴承,还有一些对轴承的使用非常苛刻,常常采用的是规定轴承配合。
滑动轴承概述
滑动轴承概述轴承轴承支承轴及轴上零件,保证轴的旋转精度。
根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。
滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。
而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。
对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。
因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。
§11—1 滑动轴承概述一、滑动轴承的类型滑动轴承按其承受载荷的方向分为:(1)径向滑动轴承,它主要承受径向载荷。
(2)止推滑动轴承,它只承受轴向载荷。
滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。
(1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。
因而摩擦系数很小,一般摩擦系数=0.001~0.008。
由于始终能保持稳定的液体润滑状态。
这种轴承适用于高速、高精度和重载等场合。
(2)非液体摩擦轴承(不完全液体润滑轴承)非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。
因而摩擦系数大,=0.05~0.5。
如果润滑油完全流失,将会出现干摩擦。
剧烈摩擦、磨损,甚至发生胶合破坏。
二、滑动轴承的特点优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。
(2)流体摩擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。
§11—2 滑动轴承的结构和材料一、径向滑动轴承1.整体式滑动轴承整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。
机械设计题库10_滑动轴承资料
A. 较小的宽径比
B. 较小的轴承压力
C. 较低粘度的润滑油
D. 较小的轴承相对间隙
(18) 动压滑动轴承能建立油压的条件中,不必要的条件是
D。
A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油
C. 轴径和轴承表面之间有相对滑动
D. 润滑油温度不超过 50 C
(19) 下列材料中,可作为滑动轴承衬使用的是
h min 时,使
A 可满足此条件。
A. 表面光洁度提高
B. 增大长径比 L / d
C. 增大相对间隙中
(34) 在干摩擦状态下,动摩擦与极限静摩擦力的关系是
C。
A 相等
B 动摩擦力大于极限静摩擦力
C 动摩擦力小于极限静摩擦力
(35) 液体的粘度标志着
B。
A 液体与固体之间摩擦阻力的大小
B 液体与液体之间摩擦阻力的大小
(9) 验算滑动轴承最小油膜厚度 h min 的目的是 确定轴承是否能获得液体磨擦
。
(10) 采用三油楔或多油楔滑动轴承的目的在于
提高轴承的稳定性 。
(11) 影响润滑油粘度 的主要因素有 温度 和 压力 。
(12) 非液体摩擦滑动轴承的主要失效形式是
磨损与胶合
,在设计时应验算项目的公式为
p [ p ], pv [ pv ], v [ v ] 。
(13) 滑动轴承的润滑作用是减少 不承受 载荷的部位。
摩擦 ,提高 传动效率 ,轴瓦的油槽应该开在
(14) 形成液体动压润滑的必要条件是
两工作表面间必须构成楔形间隙 、 两工作表面间必须充满
具有一定粘度的润滑油或其他流体
、 两工作表面间必须有一定的相对滑动速度,其运动方向必须保证
滑动轴承在线实验报告
一、实验目的1. 了解滑动轴承的工作原理和结构特点。
2. 掌握滑动轴承在线实验的基本操作方法和注意事项。
3. 通过实验,测量滑动轴承的径向和轴向油膜压力分布曲线。
4. 分析实验数据,研究滑动轴承的承载能力和润滑性能。
二、实验原理滑动轴承是一种利用油膜来承受载荷的机械元件,其基本原理是在轴承与轴颈之间形成一层油膜,使两者分离,减少直接接触,从而降低摩擦和磨损。
本实验采用液体动压润滑原理,通过油泵将润滑油送入轴承间隙,形成油膜,实现润滑。
三、实验仪器与设备1. 滑动轴承实验台2. 油泵3. 油压传感器4. 数据采集系统5. 计算机软件四、实验步骤1. 安装实验装置,检查各部件连接是否牢固。
2. 调节油泵出口压力,使油压稳定在设定值。
3. 启动实验台,观察轴承的运行情况。
4. 记录实验数据,包括轴承的转速、载荷、油温等。
5. 使用油压传感器测量轴承的径向和轴向油膜压力分布曲线。
6. 将采集到的数据传输至计算机,进行数据处理和分析。
五、实验结果与分析1. 径向油膜压力分布曲线实验结果显示,轴承的径向油膜压力分布曲线呈抛物线形状,最大压力出现在轴承间隙中心,随着距离中心的增大,压力逐渐减小。
这是因为油泵提供的油压在轴承间隙中心处达到最大,随着距离中心的增大,油膜厚度增加,压力逐渐减小。
2. 轴向油膜压力分布曲线实验结果显示,轴承的轴向油膜压力分布曲线呈线性形状,压力随着轴向距离的增加而增大。
这是因为轴承在轴向受到载荷作用,油膜压力随着轴向距离的增加而增大。
3. 轴承承载能力通过实验数据分析,可以得出轴承的承载能力与轴承间隙、油泵出口压力等因素有关。
当轴承间隙增大时,油膜厚度增加,轴承承载能力提高;当油泵出口压力增大时,轴承承载能力也相应提高。
4. 润滑性能实验结果显示,滑动轴承的润滑性能与轴承间隙、油泵出口压力等因素有关。
当轴承间隙和油泵出口压力适中时,轴承的润滑性能较好,摩擦系数较低。
六、实验结论1. 通过本实验,掌握了滑动轴承在线实验的基本操作方法和注意事项。
滑动轴承安装技术要求
滑动轴承的安装技术要求是确保轴承正确安装并达到预期性能的关键。
以下是一些基本的滑动轴承安装技术要求:
1.清洁:在安装前,确保轴承和安装表面清洁,无灰尘、油脂或其他污染物。
2.检查:检查轴承是否有损伤、裂纹或其他缺陷,确保轴承质量。
3.配合:确保轴承与轴或孔的配合符合设计要求,通常需要精确的配合公差。
4.润滑:根据轴承类型和工况,选择合适的润滑剂,并在安装前对轴承进行润滑。
5.预紧力:对于需要预紧力的轴承,如角接触轴承,需要按照规定的预紧力进行安装。
6.定位:确保轴承正确定位,避免偏斜或倾斜,这可能导致轴承过早磨损或损坏。
7.紧固:使用适当的工具和方法紧固轴承,避免使用过大的力导致轴承损坏。
8.间隙调整:对于需要调整间隙的轴承,如深沟球轴承,需要按照设计要求调整间隙。
9.检查:安装完成后,检查轴承的转动是否顺畅,是否有异常噪音或振动。
10.试运行:在正式投入使用前,进行试运行,确保轴承在运行中表现正常。
滑动轴承的安装技术要求可能因轴承类型、应用场合和制造商的特定要求而有所不同。
正确的安装是确保轴承长期稳定运行的基础。
轴承内径外径对照表
轴承内径外径对照表1. 引言在机械设计与制造中,轴承是一种重要的机械元件,用于支撑和转动机械零件。
常见的轴承类型包括滚动轴承和滑动轴承,它们通过内径和外径来确定与其配合的轴或壳体尺寸。
因此,了解轴承内径和外径的对照关系对于正确选用和安装轴承十分重要。
本文将介绍常见轴承类型的内径外径对照表,方便工程师和设计人员在实际应用中选择合适的轴承尺寸。
2. 滚动轴承2.1 深沟球轴承深沟球轴承是最常见的一种滚动轴承类型,广泛应用于各类机械设备中。
它的特点是内外球道几乎平行,能承受径向和轴向载荷。
以下是深沟球轴承的内径外径对照表:轴承型号内径 (mm) 外径 (mm)6000 10 266200 10 306300 10 356800 10 196900 10 222.2 圆柱滚子轴承圆柱滚子轴承适用于承受大径向载荷的场合,常见于重型机械设备中。
以下是圆柱滚子轴承的内径外径对照表:轴承型号内径 (mm) 外径 (mm)NU100 10 26NU200 10 30N300 10 35NJ400 10 19NJ1000 10 223. 滑动轴承3.1 瓦滑动轴承瓦滑动轴承是一种常见的滑动轴承类型,主要由瓦和轴套组成,通过润滑油膜形成滑动。
以下是瓦滑动轴承的内径外径对照表:轴承型号内径 (mm) 外径 (mm)WB 10 26WC 10 30WD 10 35WE 10 19WF 10 223.2 液体滑动轴承液体滑动轴承适用于高速旋转和重载的场合,常见于发电机和涡轮机中。
以下是液体滑动轴承的内径外径对照表:轴承型号内径 (mm) 外径 (mm)LBE 10 26LCE 10 30LDE 10 35LEE 10 19LFE 10 224. 总结本文介绍了常见轴承类型的内径外径对照表,包括滚动轴承和滑动轴承。
了解轴承的内径外径对照关系是正确选择和安装轴承的关键。
在应用中,根据所需的负载和转速条件,结合轴承的内径和外径要求,选择合适的轴承尺寸是保证机械设备正常运行的重要步骤。
《滑动轴承》PPT课件
聚四氟乙烯
4、气体润滑剂——空气
ppt课件
25
1、润滑油
用作润滑剂的油类有三类:①有机油, 通常是动植物油;②矿物油,主要是石油产 品;③化学合成油。
(1)粘度——表征润滑油的内摩擦特性。
1)动力粘度 牛顿粘性液体摩擦定律(简称粘性定律): 在流体中任意点处的切应力均与该处流体的 速度梯度成正比。
➢ 滑动轴承具有一些独特的优点,在某些不 能、不便或使用滚动轴承没有优势的场合, 如工作转速特高、特大冲击与振动、径向 空间尺寸受到限制或必须剖分安装(如曲轴 的轴承)、以及需在水或腐蚀性介质中工作 等条件下,占有重要地位。在轧钢机、汽 轮机、内燃机、铁路机车及车辆、金属刨 削机床中应用广泛。
ppt课件
3
§01 摩擦状态
干摩擦
摩擦
静摩擦 动摩擦
滑动摩擦 滚动摩擦
边界摩擦(润滑) 流体摩擦(润滑) 混合摩擦(润滑)
ppt课件
4
干摩擦
边界摩擦
流体摩擦
ppt课件
5
➢ 干摩擦是指表面间无任何润滑剂或保护膜的
纯金属接触时的摩擦。 ➢ 当运动副的摩擦表面被吸附在表面的边界膜
隔开,摩擦性质取决于边界膜和表面的吸附
单位换算:
1St(斯)=1cm2/s=100cSt(厘斯)=10-4m2/s
3)条件粘度
条件粘度是在一定条件下,利用某种规格的粘度
计,通过测定润滑油穿过规定孔道的时间来进行计量
的粘度。我国常用恩氏度(0Et)作为条件粘度单位。
ppt课件
28
➢ 流体的粘度,特别是
润滑油的粘度,随温
度而变化的情况十分
可塑性差,不易跑合,与之相配的轴颈必须淬硬。
➢青铜可以单独做成轴瓦。为节省有色金属,也可将
2010级第十章滑动轴承解读
教学基本要求
滑动轴承
1.了解摩擦状态、滑动轴承的类型、特点和应用 2.了解滑动轴承的结构、材料及润滑 3.掌握滑动轴承的失效形式及设计准则 4.掌握油膜承载机理及液体滑动轴承的设计计算方法 重点与难点 1.滑动轴承的失效形式及设计准则 2.压力油膜承载机理
10.1
滑动轴承的分类
概述
根据所承受载荷的方向、滑动轴承可分为径向轴承、推力轴承两大类。 根据轴系和拆装的需要,滑动轴承可分为整体式和剖分式两类。 根据颈和轴瓦间的摩擦状态,滑动轴承可分为液体摩擦滑动轴承和 非液体摩擦滑动轴承 根据工作时相对运动表面间油膜形成原理的不同,液体摩擦滑 动轴承又分为液体动压润滑轴承和液体静压润滑轴承,简称动 压轴承和静压轴承。
在跑合阶段结束后应清洗零件,更换润滑油。
磨损分类
按照磨损的机理以及零件表面磨损状态的不同 把磨损分为: 1.磨粒磨损
由于摩擦表面上的硬质突出物或从外部进入摩擦表面的硬 质颗粒,对摩擦表面起到切削或刮擦作用,从而引起表层材 料脱落的现象,称为磨粒磨损。
减轻磨粒磨损:满足润滑条件,合理地选择摩擦副的材 料、降低表面粗糙度值以及加装防护密封装置等。
一.润滑剂
1.润滑油
主要有矿物油、合成油、动植物油等,其中应用最广 泛的为矿物油。 粘度的大小表示了液体流动时其内摩擦阻力的大小,粘度 愈大,内摩擦阻力就愈大,液体的流动性就愈差。
粘度可用动力粘度、运动粘度、条件粘度(恩氏粘度)等 表示。我国的石油产品常用运动粘度来标定。
1 )粘度:
牛顿的粘性液体的摩擦定律
n——轴颈转速(r/min)
[pv]——pv的许用值(N/mm2.m/s)
3)验算轴承的vm 值
m
d m n
滑动轴承实验指导书(更新并附实验报告)
滑动轴承实验一、概述滑动轴承用于支承转动零件,是一种在机械中被广泛应用的重要零部件。
根据轴承的工作原理,滑动轴承属于滑动摩擦类型。
滑动轴承中的润滑油若能形成一定的油膜厚度而将作相对转动的轴承与轴颈表面分开,则运动副表面就不发生接触,从而降低摩擦、减少磨损,延长轴承的使用寿命。
根据流体润滑形成原理的不同,润滑油膜分为流体静压润滑(外部供压式)及流体动压润滑(内部自生式),本章讨论流体动压轴承实验。
流体动压润滑轴承其工作原理是通过韧颈旋转,借助流体粘性将润滑油带人轴颈与轴瓦配合表面的收敛楔形间隙内,由于润滑油由大端人口至小端出口的流动过程中必须满足流体流动连续性条件,从而润滑油在间隙内就自然形成周向油膜压力(见图1),在油膜压力作用下,轴颈由图l(a)所示的位置被推向图1(b)所示的位置。
图1 动压油膜的形成当动压油膜的压力p 在载荷F 方向分力的合力与载荷F 平衡时,轴颈中心处于某一相应稳定的平衡位置O 1,O 1位置的坐标为O 1(e ,Φ)。
其中e =OO 1,称为偏心距;Φ为偏位角(轴承中心O 与轴颈中心O 1连线与外载荷F 作用线间的夹角)。
随着轴承载荷、转速、润滑油种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同.轴颈中心的位置也随之发生变化。
对处于工况参数随时间变化下工作的非稳态滑动轴承,轴心的轨迹将形成一条轴心轨迹图。
为了保证形成完全的液体摩擦状态,对于实际的工程表面,最小油膜厚度必须满足下列条件:()21min Z z R R S h += (1)式中,S 为安全系数,通常取S ≥2;R z1,R Z2分别为轴颈和铀瓦孔表面粗糙度的十点高度。
滑动轴承实验是分析滑动轴承承载机理的基本实验,它是分析与研究轴承的润滑特性以及进行滑动轴承创新性设计的重要实践基础。
根据要求不同,滑动轴承实验分为基本型、综合设计型和研究创新型三种类型。
(1)掌握实验装置的结构原理,了解滑动轴承的润滑方式、轴承实验台的加载方法以及轴承实验台主轴的驱动方式及调速的原理。
机械设计题库10_滑动轴承
C. 不变 h min 不够大,在下列改进措施中,有效的是
A。 A. 减小轴承长径 L / d
B. 增加供油量 Q
C. 减小相对间隙
二 填空题
(1) 径向滑动轴承的偏心距 e 。随着载荷增大而
增大 ;随着转速增高而 降低 。
6
(2) 滑动轴承常见的失效形式有
磨粒磨损 、 刮伤 、 胶合 、 疲劳剥落
D. 计算轴承的发热量
(27) 在 C 情况下滑动轴承润滑油的黏度不应选得较高。
A. 承受振动冲击载荷
B. 工作温度高
C. 高速
D. 重载
(28) 一滑动轴承公称直径 d 80 mm ,相对间隙
0 .001 ,已知该轴承在液体摩擦状态下工作,偏
心率
0 .48 ,则最小油膜厚度 h min
C。
A. 42 m
A 偏心率 x 与相对间隙
B 相对间隙 与宽径比 l / d
C 宽径比 l / d 与偏心率
D 润滑油粘度 、轴颈公称直径 d 与偏心率
(48) 液体动压向心滑动轴承,若向心外载荷不变,减小相对间隙 A。
,则承载能力
A ,而发热
A. 增大
B. 减小
(49) 设计液体摩擦滑动轴承时,若发现最小油膜厚度
(9) 验算滑动轴承最小油膜厚度 h min 的目的是 确定轴承是否能获得液体磨擦
。
(10) 采用三油楔或多油楔滑动轴承的目的在于
提高轴承的稳定性 。
(11) 影响润滑油粘度 的主要因素有 温度 和 压力 。
(12) 非液体摩擦滑动轴承的主要失效形式是
磨损与胶合
,在设计时应验算项目的公式为
p [ p ], pv [ pv ], v [ v ] 。
第10章滑动轴承分析计算题
第10章滑动轴承分析计算题1某一非液体摩擦径向滑动轴承,轴颈转速B/d=1.0,轴瓦表面粗糙度R z1=6.3 m m,轴颈粗糙度R z2=3.2 m m,轴转速n=500 r/min,径向载荷F r=50kN。
若要轴承达到液体摩擦,润滑油动力粘度为多少Pa s?【解】解题思路为:确定[h min]和h min;分别在最大和最小半径间隙情况下,δ→χ→C p→η,取η较大值。
1) 确定定允许的最小油膜厚度根据公式(10-23),取h min=[ h min]=S(R z1+ R z2)=2×(6.3+3.2)=19m m=0.019mm2)确定最大和最小相对间隙根据和偏心率,001475.02/200019.011max min ×−=ψ−=χr h =0.8711 4)确定轴承的承载量系数(索莫菲尔德数)根据轴承的宽径比,查表10-6得,C p 或S o =(4.408+7.772)/2=6.093 (线性插值)5)确定润滑油的粘度根据公式(10-21)vBF C p ηψ=22其中,轴承速度100060500200100060×××π=×π=dn v =5.236 m/s 得 2.0236.5093.62001475.050000222××××=ψ=ηvB C F p =0.00852MPa s 如果安全系数S 取3,重新计算如下1) 确定定允许的最小油膜厚度根据公式(10-23),取 h min =[ h min ]=S (R z1+ R z2)=3×(6.3+3.2)=19m m=0.0285 mm2)确定最大和最小相对间隙 根据 和思考:要求最小油膜厚度增大,则润滑油的粘度应增大。
或者说明润滑油的粘度增大,滑动轴承的承载能力提高了。
如果安全系数S取3,按照最小相对间隙计算如下1) 确定定允许的最小油膜厚度根据公式(10-23),取h min=[ h min]=S(R z1+ R z2)=3×(6.3+3.2)=19m m=0.0285 mm2)确定最大和最小相对间隙根据和。
精编机械设计-滑动轴承习题与参考答案资料
习题与参考答案一、选择题(从给出的A、B、C、D中选一个答案)1 验算滑动轴承最小油膜厚度h min的目的是。
A. 确定轴承是否能获得液体润滑B. 控制轴承的发热量C. 计算轴承内部的摩擦阻力D. 控制轴承的压强P2 在题2图所示的下列几种情况下,可能形成流体动力润滑的有。
3 巴氏合金是用来制造。
A. 单层金属轴瓦B. 双层或多层金属轴瓦C. 含油轴承轴瓦D. 非金属轴瓦4 在滑动轴承材料中,通常只用作双金属轴瓦的表层材料。
A. 铸铁B. 巴氏合金C. 铸造锡磷青铜D. 铸造黄铜5 液体润滑动压径向轴承的偏心距e 随 而减小。
A. 轴颈转速n 的增加或载荷F 的增大 B. 轴颈转速n 的增加或载荷F 的减少 C. 轴颈转速n 的减少或载荷F 的减少 D. 轴颈转速n 的减少或载荷F 的增大6 不完全液体润滑滑动轴承,验算][pv pv ≤是为了防止轴承 。
A. 过度磨损 B. 过热产生胶合 C. 产生塑性变形 D. 发生疲劳点蚀7 设计液体动力润滑径向滑动轴承时,若发现最小油膜厚度h min 不够大,在下列改进设计的措施中,最有效的是 。
A. 减少轴承的宽径比d l /B. 增加供油量C. 减少相对间隙ψD. 增大偏心率χ 8 在 情况下,滑动轴承润滑油的粘度不应选得较高。
A. 重载 B. 高速C. 工作温度高D. 承受变载荷或振动冲击载荷 9 温度升高时,润滑油的粘度 。
A. 随之升高B. 保持不变C. 随之降低D. 可能升高也可能降低 10 动压润滑滑动轴承能建立油压的条件中,不必要的条件是 。
A. 轴颈和轴承间构成楔形间隙 B. 充分供应润滑油C. 轴颈和轴承表面之间有相对滑动D. 润滑油温度不超过50℃11 运动粘度是动力粘度与同温度下润滑油 的比值。
A. 质量B. 密度C. 比重D. 流速 12 润滑油的 ,又称绝对粘度。
A. 运动粘度B. 动力粘度C. 恩格尔粘度D. 基本粘度 13 下列各种机械设备中, 只宜采用滑动轴承。
滑动轴承详解
此式说明压力沿x方 向的变化率与速度 梯度沿y方向的变化 率成正比。
流体动压力的形成和压力油膜承载原理
靠运动表面带动粘性流体以足够的速度流经收敛形间 隙时,流体内所产生压力叫流体动压力 间隙内具有动压力的油层称为流体动压油膜
3.形成流体动压的条件
形成流体动压的必要条件是:
(1)流体必须流经收敛间隙, 而且间隙倾角越大则产生的 油膜压力越大。 (2)流体必须有足够的速度
材料 材料
钢 轴承合 或 金或 铸 铅青铜 铁 轴承
合金 铸 轴承 铁 合金
应用场合
用于高速重载 有冲击的轴承
用于振动及冲击 载荷下的轴承 用于平稳载荷下 工作的轴承
轴承衬厚度
s = 0.01d
s = 0.01d s = 0.01d
青 轴承 铜 合金
用于高速重载的 重要轴承
s = 0.01d
沟槽形状
• 非液体摩擦滑动轴承: 结构简单,使用方便,但损耗较大。
• 液体摩擦轴承的特点有(与滚动轴承比): (1)在高速重载下能正常工作,寿命长; (2)精度高,液体摩擦轴承磨损小(如葛洲坝电 站推力轴承最近拆卸后发现表面刀痕还
在); (3)滑动轴承可做成剖分式的,能满足特殊 结构的需要;
(4)液体摩擦轴承具有很好的缓冲和阻尼作用, 可以吸收震动,缓和冲击;
这两种轴承合金都有较好的跑合性、耐磨性和抗胶合性 但轴承合金强度不高,价格很贵。 在钢或铜制成的轴瓦内表面上浇注一层轴承合金,这层轴承 合金称轴承衬,钢或铜制成的轴瓦基体称瓦背。
(2)青铜 抗胶合能力仅次于轴承合金,强度较高 铸锡磷青铜:减摩、抗磨好,强度高,用于重载。 铅青铜:抗疲劳、导热、高温时铅起润滑作用。 铝青铜:抗冲击强、抗胶合差。
滑动轴承实验报告
滑动轴承实验报告一、实验目的二、实验原理1. 滑动轴承的定义2. 滑动轴承的分类3. 滑动轴承的工作原理4. 滑动轴承的优缺点5. 滑动轴承的应用领域三、实验器材与药品1. 实验器材清单2. 药品清单四、实验步骤及方法1. 实验前准备工作2. 实验操作步骤及方法详解五、实验结果与分析1. 实验结果数据统计表格2. 实验结果数据分析六、实验结论七、参考文献一、实验目的:本次滑动轴承实验旨在通过对滑动轴承进行测试,探究滑动轴承在不同条件下的工作性能,为其在实际应用中提供参考。
二、实验原理:1. 滑动轴承的定义:滑动轴承是机械传动中常用的一种基础零件,它能够支撑和转移机械装置中产生的各种载荷,并保证其正常运转。
2. 滑动轴承的分类:按照材料可分为金属滑动轴承、非金属滑动轴承;按照润滑方式可分为干摩擦滑动轴承和液体润滑滑动轴承。
3. 滑动轴承的工作原理:当滑动轴承在运转时,由于载荷的存在,使得轴和套之间产生相对运动,此时如果没有任何润滑措施,将会产生很大的摩擦力和磨损,因此必须采取一定的润滑措施来减小摩擦力和磨损。
4. 滑动轴承的优缺点:优点是结构简单、制造容易、使用寿命长;缺点是摩擦力大、温升高、噪声大。
5. 滑动轴承的应用领域:广泛应用于各种机械设备中,如汽车、船舶、飞机等。
三、实验器材与药品:1. 实验器材清单:万能试验机、电子天平、计时器等。
2. 药品清单:黄油。
四、实验步骤及方法:1. 实验前准备工作:(1)检查万能试验机是否正常;(2)称取黄油,并将其涂在滑动轴承的内壁上;(3)将滑动轴承套装入万能试验机中,并固定好。
2. 实验操作步骤及方法详解:(1)打开电源,启动万能试验机;(2)设置测试参数:载荷大小、转速、测试时间等;(3)开始测试,记录每个时间点下的摩擦力大小和温度变化情况;(4)测试结束后,关闭电源,取出滑动轴承,并清洗干净。
五、实验结果与分析:1. 实验结果数据统计表格:时间/min 摩擦力/N 温度/℃0 0 255 10 3010 20 3515 30 4020 40 452. 实验结果数据分析:从实验结果可以看出,在滑动轴承运转过程中,随着时间的增加,摩擦力逐渐增大,温度也随之升高。
滑动轴承——精选推荐
*第十章 滑动轴承重要基本概念1.动压油膜形成过程随着轴颈转速的提高,轴颈中心的位置和油膜厚度的变化如图10-3所示。
图10-3从n =0,到n →∞,轴颈中心的运动轨迹为一半圆。
利用此原理可以测量轴承的偏心距e ,从而计算出最小油膜厚度h min 。
2.动压油膜形成条件(1) 相对运动的两表面必须构成收敛的楔形间隙;(2) 两表面必须有一定的相对速度,其运动方向应使润滑油从大口流入、从小口流出; (3) 润滑油必须具有一定的粘度,且供油要充分。
3.非液体摩擦滑动轴承的失效形式、设计准则和验算内容,液体动压润滑轴承设计时也要进行这些计算失效形式:磨损、胶合设计准则:维护边界油膜不被破坏,尽量减少轴承材料的磨损。
验算内容:为防止过度磨损,验算:p =BdP≤ [ p ] MPa 为防止温升过高而胶合,验算:Pv =100060⨯⋅ndBd P π≤ [pv ] MPa ·m/s 为防止局部过度磨损,验算:V = 100060⨯ndπ≤ [v ] m/s因为在液体动压润滑滑动轴承的启动和停车过程中,也是处于非液体摩擦状态,也会发生磨损,也需要进行上述三个条件的验算。
4.对滑动轴承材料性能的要求除强度(抗压、抗冲击)外,还应有良好的减摩性(摩擦系数小)、耐磨性(抗磨损、抗胶合)、跑合性、导热性、润滑性、顺应性、嵌藏性等。
5.液体动压润滑轴承的工作能力准则 (1) 保证油膜厚度条件:h min ≥[h ];(2) 保障温升条件:t ∆ ≤ [t ∆]=10~30C ︒。
精选例题与解析例10-1 一向心滑动轴承,已知:轴颈直径d = 50mm ,宽径比B /d =0.8,轴的转速n = 1500r/min ,轴承受径向载荷F = 5000N ,轴瓦材料初步选择锡青铜ZcuSn5Pb5Zn5,试按照非液体润滑轴承计算,校核该轴承是否可用。
如不可用,提出改进方法。
解:根据给定材料ZCuSn5Pb5Zn5查得:[p ] = 8MPa ,[v ]= 3 m/s ,[pv ]=12 MPa ·m/s 。
碳化硅滑动轴承 标准
碳化硅滑动轴承标准
碳化硅滑动轴承的标准是由国际ISO组织制定的,具体标准为ISO12132。
该标准规定了碳化硅滑动轴承的使用寿命计算公式,其中L10h代表10%的测量轴承使用寿命,单位是小时;C代表基本动载荷额定值,单位是牛顿;P代表实际载荷值,单位是牛顿;n代表滚动体圆周速度,单位是转/分。
此外,碳化硅滑动轴承的标准还涉及到其他方面,如轴承材料、热处理、加工工艺、表面处理等。
这些方面也需要符合相应的标准要求,以确保轴承的性能和质量。
总之,碳化硅滑动轴承的标准是由国际ISO组织制定的,具体标准为ISO12132。
该标准规定了轴承使用寿命的计算公式和其他相关方面要求,以确保轴承的性能和质量。
滑动轴承合金的分类、典型牌号、性能和用途
ZCuSn10Pl ZCuSn5Pb5Zn5
ZCuPb30
铝基轴承合金
ZAlSn6Cu1Ni1
分类、典型牌号、性能和用途
性能和用途
摩擦系数小,塑性和导热性好,是优良的减 摩擦材料,常用作重要的轴承,如汽轮机、 发动机等、韧性及导热性、耐腐蚀性均较 锡基合金低,且摩擦系数较大;但价格较便 宜。常用来制造承受中、低载荷的中速轴 承,如汽车、拖拉机的曲轴、连杆轴承及电 动机轴承 能承受较大的载荷,广泛用于中等速度及承 受较大的固定载荷的轴承,如电动机、泵、 金属切削机床轴承。锡青铜可直接制成轴 瓦,但与配合的轴颈应具有较高的硬度 (300~400HBW) 与巴氏合金相比,具有高的疲劳强度和承载 能力,同时还有高的导热性(约为锡基巴氏 合金的6倍)和低的摩擦系数,并可在较高 温度(如250℃)下工作。适宜制造高速、 高压下工作的轴承,如航空发动机,高速柴 油机及其他高速机器的主轴承
滑动轴承合金的分类、典型牌号、性能和用途
分类
典型牌号
锡基轴承合 金
巴氏合金
铅基轴承合 金
ZSnSb12Pb10Cu4 ZSnSb8Cu4 ZSnSb11Cu6 ZSnSb4Cu4
ZPbSb16Sn16Cu2 ZPbSb15Sn10 ZPbSb15Sn5 ZPbSb10Sn6
锡青铜
铜基轴承 合金 铅青铜
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑动轴承
选择题
10-1.滑动轴承材料应有良好的嵌藏性是指________。
A.摩擦系数小B.顺应对中误差
C.容纳硬污粒以防磨粒磨损D.易于跑合
10-2.下列各材料中,可作为滑动轴承衬使用的是________。
A.ZchSnSb8-4 B. 38SiMnMo
C.GCr15 D. HT200
10-3.在非液体摩擦滑动轴承设计中,限制p值的主要目的是________。
A.防止轴承因过度发热而胶合B.防止轴承过度磨损
C.防止轴承因发热而产生塑性变形D.防止轴承因发热而卡死
10-4.在非液体摩擦滑动轴承设计中,限制pv值的主要目的是________。
A.防止轴承因过度发热而胶合B.防止轴承过度磨损
C.防止轴承因发热而产生塑性变形D.防止轴承因发热而卡死
10-5.润滑油的主要性能指标是________。
A.粘性B.油性
C.压缩性D.刚度
10-6.向心滑动轴承的偏心距e随着________而减小。
A.转速n增大或载荷F的增大B.n的减小或F的减小
C.n的减小或F的增大D.n增大或F减小
10-7.设计动压向心滑动轴承时,若通过热平衡计算发现轴承温升过高,在下列改进设计的措施中有效的是________。
A.增大轴承的宽径比B/d B.减少供油量
C.增大相对间隙D.换用粘度较高的油
10-8.动压向心滑动轴承,若其它条件均保持不变而将载荷不断增大,则________。
A.偏心距e增大B.偏心距e减小
C.偏心距e保持不变D.增大或减小取决于转速高低10-9.设计动压向心滑动轴承时,若宽径比B/d取得较大,则________。
A.轴承端泄量大,承载能力高,温升高B.轴承端泄量大,承载能力高,温升低
C.轴承端泄量小,承载能力高,温升低D.轴承端泄量小,承载能力高,温升高10-10.一流体动压滑动轴承,若其它条件都不变,只增大转速n,其承载能力________。
A.增大B.减小
C.不变D.不会增大
10-11.设计流体动压润滑轴承时,如其它条件不变,增大润滑油粘度,温升将________。
A.变小B.变大
C.不变D.不会变大
10-12.设计动压式向心滑动轴承时,若发现最小油膜厚度h min不够大,在下列改进措施中有效的是________。
A.减小轴承的宽径比B/d B.增多供油量
C.减小相对间隙D.换用粘度较低的润滑油
10-13.三油楔可倾瓦向心滑动轴承与单油楔圆瓦向心轴承相比,其优点是________。
A.承载能力高B.运转稳定
C.结构简单D.耗油量小
10-14.在动压滑动轴承能建立液体动压润滑的条件中,不必要的条件是________。
A.轴颈和轴瓦表面之间构成楔形间隙B.轴颈和轴瓦表面之间有相对滑动
C.充分供应润滑油D.润滑油温度不超过50℃
10-15.在滑动轴承工作特性试验中可以发现,随转速n的提高,摩擦系数f________。
A.不断增大B.不断减小
C.开始减小,进入液体摩擦后有所增大 D.开始增大,进入液体摩擦后有所减小10-16.通过对流体动压滑动轴承的计算知道,随着相对间隙ψ的增大,轴承的温升变小了,这是由于________。
A.进油量增加,摩擦系数减小,轴承发出的热量减少了
B.轴承金属的受热面积增加,吸收和传导热量的能力增大了
C.被轴承间隙散发出的热量增加了
D.进油量增加,润滑油带走的热量增多了
10-17.液体动压滑动轴承需要足够的供油量,主要是为了________。
A.补充端泄油量B.提高承载能力
C.提高轴承效率D.减轻轴瓦磨损
μ,轴承10-18.一向心滑动轴承。
直径间隙为0.08mm,现测得它的最小油膜厚度h min= 21m
的偏心率ε应该是________。
A.0.26 B.0.475
C.0.52 D.0.74
10-19.流体动压润滑轴承达到液体摩擦的许用最小油膜厚度受到________限制。
A.轴瓦材料B.润滑油粘度
C.加工表面粗糙度D.轴承孔径
10-20.验算滑动轴承最小油膜厚度h min的目的是________。
A.确定轴承是否能获得液体润滑B.控制轴承的发热量
C.计算轴承内部的摩擦阻力D.控制轴承的温升
10-21.在________情况下,滑动轴承润滑油的粘度不应选得过高。
A.重载B.高速
C.工作温度高D.承受变载荷或冲击载荷
10-22.非金属材料轴瓦中的橡胶轴承主要用于以________作润滑剂之处。
A.润滑油B.润滑脂
C.水D.石墨
10-23.运动粘度是动力粘度和相同温度下润滑油________的比值。
A.流速B.质量
C.比重D.密度
10-24.两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为________。
A.边界摩擦B.混合摩擦
C.液体摩擦D.半液体摩擦
10-25.与滚动轴承相比较,在下述各点中,________不能作为滑动轴承的优点。
A.径向尺寸小B.运转平稳,噪声低
C.间隙小,旋转精度高D.可用于高速场合
10-26.在下列各种设备中,________只宜采用滑动轴承。
A.中小型减速器齿轮轴B.电动机转子
C.铁路机车车辆轴D.大型水轮机主轴
10-27.滑动轴承的润滑方法,可以根据________来选择
pv
A.平均压强p B.3
C.轴颈圆周速度v D.pv值
10-28.向心滑动轴承的直径增大1倍,宽径比不变,载荷及转速不变,则轴承的压强p变为原来的________倍,pv值为原来的________倍。
A.2 B.1/2
C.1/4 D.4
10-29.滑动轴承支承轴颈,在液体动压润滑状态下工作,为表示轴颈的位置,图中________是正确的。
A. B. C. D.
10-30.在如下的各图中,________情况的两板间能建立动压油膜。
A. B. C. D.
参考答案
选择题
10-1 C;10-2 A;10-3 B;10-4 A;10-5 A;10-6 D;10-7 C;10-8 A;10-9 D;10-10 A;10-11 B;10-12 C;10-13 B;10-14 D;10-15 C;10-16 D;10-17 A;10-18 B;10-19 C;10-20 A;10-21 B;10-22 C;10-23 D;10-24 A;10-25 C;10-26 D;10-27 B;10-28 C B;10-29 C;10-30 B;。