填充柱气相色谱仪的应用
填充柱气相色谱法
5.4.2 气-液色谱固定相
担体表面涂固定液
填充柱
载体/担体 固定液
(1)担体及其选择 担体是一种化学惰性的多孔性固体颗粒.
作用:提供惰性表面,使固定液以液 膜状态均匀地分布在其表面
① 表面积大,孔径分布均匀; ② 化学惰性好; 要求: ③ 热稳定性好,有一定的机械强度; ④ 颗粒均匀、细小。
最小检测量mmin
产生色谱峰高等于二倍噪音时的进样量。
峰高 h(cm) u2 (mv cm-1)=2RN h 2RN
u2
最小检测量
浓度型检测器: mc0 1.065 y1/2Fc'DLc
质量型检测器: mm0 1.065 y1/2DLm
与检测器性能、色谱柱效和操作条件有关
最低检出浓度Cmin
Sm
60u1u2 m
A
60 1.056u1u2 m
y1 h 2
(mv
s
g 1)
物理意义:当每秒有1g组分进入检测器时,所 产生的mv数
检测限(DL)
—衡量检测器性能好坏的综合指标
3R N
浓度型检测器:DLc
2RN Sc
质量型检测器:DLm
2RN Sm
mg/ mL g/s
检测限与灵敏度的区别:
检测限考虑了噪声大小对检测器性能的 影响,是灵敏度和噪音的综合指标。
第五章 填充柱气相色谱法
5.1 气相色谱法的特点 (1)分离效能高
可以分离性质十分相似的组分,如顺式、 反式异构体、旋光异构体、同位素等。也可 以分离组成极其复杂的样品,如降水中的 100多种成分和石油样品中的200多种组分。
(2)灵敏度高
可以检出10-11~10-13g的物质量,常 用于高纯物质中微量杂质的测定。农副 产品中农药残留量的测定,以及环境样 品中痕量组分的测定。
气相色谱仪的工作原理详解
气相色谱仪的工作原理详解
气相色谱仪,是指用气体作为流动相的色谱分析仪器。
其原理主要是利用物质的沸点、极性及吸附性质的差异实现混合物的分离。
气相色谱分析技术是一种多组分混合物的分离、分析技术。
它主要利用样品中各组份的沸点、极性及吸附系数在色谱柱中的差异,使各组份在色谱柱中得到分离,并对分离的各组分进行定性、定量分析。
仪天成电力设备有限公司就YTC450气相色谱仪
的工作原理做以下讲解。
气相色谱仪以气体作为流动相(载气),当样品被送入进样器并气化后由载气携带进入填充柱或毛细管柱,由于样品中各组份的沸点、极性及吸附系数的差异,使各组份在柱中得到分离,然后由接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来,最后通过串口或网络把数据传输至色谱工作站,由色谱工作站将各组份的气相色谱图记录并进行分析从而得到各组份的分析报告。
其工作原理简图如下图所示:
由于该分析方法有分离效能高,分析速度快,样品用量少等特点,因此已广泛地应用于石油化工、生物化学、医药卫生、卫生检疫、食品检验、环境保护、食品工业、医疗临床等部门。
气相色谱法在这些领域中解决了工业生产的中间体和工业产品的质量检验、科学研究、公害检测、生产控制等问题。
气相色谱分析实验报告
气相色谱分析实验报告气相色谱分析实验报告引言:气相色谱(Gas Chromatography,GC)是一种常用的分离和分析技术,通过样品在气相载气流中的分配行为,实现对混合物的分离和定性定量分析。
本实验旨在探究气相色谱分析的原理、仪器设备及其应用。
一、实验目的本实验的目的是通过气相色谱仪对混合物进行分离和定性分析,了解气相色谱分析的原理、操作步骤和数据处理方法。
二、实验原理气相色谱分析是基于样品在固定填充柱(色谱柱)中在气相载气流中的分配行为进行分离的。
其原理可概括为以下几个步骤:1.样品进样:将待分析样品通过进样口进入色谱柱,通常使用注射器进行进样。
2.样品分离:样品在色谱柱中与载气流相互作用,不同组分的分配系数不同,从而实现分离。
分离程度取决于色谱柱的填充物和操作条件。
3.信号检测:分离后的组分通过检测器进行信号检测,通常使用火焰离子化检测器(FID)或者质谱检测器(MS)等。
4.数据处理:通过计算机对检测器输出的信号进行处理和分析,得到各组分的峰面积或峰高,进而定性和定量分析。
三、实验步骤1.仪器准备:打开气相色谱仪电源,预热色谱柱和检测器至设定温度。
2.样品制备:将待分析样品按照要求制备成适当的溶液。
3.进样操作:将样品溶液通过进样器进入色谱柱。
4.分离条件设置:根据样品性质和分析要求,设置适当的进样量、柱温、载气流速等分离条件。
5.信号检测:通过检测器对分离后的组分进行信号检测。
6.数据处理:使用相应的软件对检测器输出的信号进行数据处理和分析。
四、实验结果与讨论本实验选取了某种混合物进行气相色谱分析,并得到了相应的色谱图。
根据色谱图的峰面积或峰高,可以对各组分进行定性和定量分析。
在本次实验中,我们发现样品中存在两个主要的峰,根据标准品的对照,我们初步确定这两个峰分别代表A和B两种化合物。
进一步分析峰的峰面积,我们可以计算出A和B的相对含量。
通过对实验数据的分析和讨论,我们得出以下结论:1.气相色谱分析是一种有效的分离和分析技术,可以对复杂混合物进行快速、准确的分析。
气相色谱与质谱联用在多晶硅生产上的应用进展
77太阳能作为一种可持续再生能源,利用太阳能的光伏发电技术在过去几十年里引起了广泛的研究[1]。
多晶硅作为太阳能光伏行业的重要原材料,是推动国家战略能源结构和新能源产业改革的重要产品。
随着多晶硅技术的成熟和客户标准的提高,生产商开始规划生产电子级多晶硅以满足市场需求[2]。
目前,全球多晶硅生产工艺主要为三氯氢硅氢还原法(也称改良西门子法)和硅烷法生产,前者的产量全球占比约96%,后者约占4%[3]。
光伏行业对多晶硅的使用量已远超其他行业,成为消耗量最大的行业领域,太阳能级多晶硅对多晶硅的纯度要求达到99.9999%以上,对杂质具有严格的要求。
改良西门子法生产多晶硅作为化工生产,通过气相沉积方式在反应炉内生产柱状多晶硅[4-5]。
如今,采用了闭环循环生产工艺,在整个过程中,工业硅粉与氢气(H 2)在催化剂的作用下进行气固反应,反应生成三氯氢硅(SiHCl 3)及其副产物,利用精馏提纯,将SiHCl 3 气化后,将其输送至 H 2气氛,以此形成多晶硅,而从还原炉排放的废气则由 H 2、HCl、SiH 2Cl 2、SiHCl 3、SiCl 4等成分构成,最终经过回收处理设备的分离,最终将其输送至系统,以实现对废气的有效净化,达到资源循环利用的目的 [6] [7]。
如今,气相色谱分析技术已成为当前化工分析中仪器分析的常用手段。
气相色谱技术作为一种物理分析的方式,通过对取样样本分析,实现化工产品成分分析的技术。
气相色谱技术的应用能够对生产化学反应环节中的各种原材料、反应物和产品进行分析,并结合相应内标物对化学物料进行监测分析,实现化工样本的分析 [8]。
1 气相色谱与质谱联用技术的原理气相色谱技术作为色谱检测法中的一种常用的检测方式,通过利用物质特定的沸点、极性以及吸附性质的差异,利用气体作流动相对混合组分的分离和分析[9]。
在医药研发领域、环境领域、能源化工领域以及食品领域等均有广泛应用[10-12]。
第五章 填充柱气相色谱法
Mcreynalds(麦氏常数) 为了提高I值的准确代表性,Mcreynalds做了大量工作, 最后,他认为,五种代表物,将丁醇 乙醇,戊酮-2 甲乙酮,硝基丙烷 硝基甲烷,更准确些。为了区 别,将麦氏常数分别用X’、Y’、Z’、U’、S’表示。 五种化合物的ΔI值之和称为总极性,按总极性由小 到大的顺序,就构成M氏、R氏常数表。 一些书中,R氏常数表 溶剂常数 M氏常数表 ΔI值 ΔI = 100 X R、M氏常数表的应用
酸性作用点,适用于分析碱性样品。
(3)硅烷化:除去载体表面的硅醇基,消除氢键作用点,方
法是加如入硅烷化试剂,如二甲基二氯硅烷等,处理 后,性能 好,但试剂昂贵。
(四)载体的选择 1、红色硅藻土载体:烷烃、芳烃等非极性、弱极性物。 2、白色硅藻土载体:醇、胺、酮等极性物 3、固定液含量大于5%,一般的红色、白色载体 4、固定液含量小于5%,处理过的载体。 5、高沸点:选玻璃微球;强腐蚀的选氟载体。 二、气液色谱固定液
第一节 填充柱气相色谱
一、系统流程图
二、分析单元
(一)气路系统 作用 供给色谱分析所需要的载气、燃气、助燃气。 包括 气体钢瓶(气体发生器)、减压阀、干燥管等。
1、载气:最常用的有N2,H2等。所走的路线为: 钢瓶(或气体发生器)------压力表-----减压阀----净化管-----(仪器)-----表-----汽化室----柱----检测器。
计算方法:选择一物质对,常用正丁烷----丁二烯,分别在非极性、极性、被测固定液柱上 测物质对的相对保留值,并取对数:
q = lg[
t R丁 t R环
]
气相色谱仪用途范文
气相色谱仪用途范文一、原理气相色谱仪的原理基于分子在气相中的分配行为。
当样品通过色谱柱时,被分离成不同的成分,然后通过检测器进行检测和定量分析。
其主要原理是利用气体载流型的色谱柱和气态样品间的化学吸附、物理吸附、剂相吸附等各种吸附现象,分离化合物。
二、组成部分1.色谱柱:色谱柱是整个仪器中最关键的部分,用于样品分离。
2.样品进样系统:用于将待分析的样品进样到色谱柱中。
3.色谱柱热箱:用于控制色谱柱的温度,以改变样品的挥发度。
4.载气系统:用于提供色谱柱气流的流动。
5.检测器:用于检测样品组分的浓度和质量。
6.数据处理系统:用于数据采集、处理和分析。
三、应用领域1.环境分析:气相色谱仪可以用于大气、水体、土壤等环境样品中有机污染物的定性和定量分析,如VOCs、PAHs等。
2.食品安全:气相色谱仪可以分析食品中的添加剂、农药残留、重金属等有害物质,保障食品安全。
3.药物分析:气相色谱仪可用于药物中成分的检测和纯度的分析。
4.石油化工:气相色谱仪可以用于石油产品中杂质的检测和分析,如石脑油中的硫化物、甲醛等。
5.生物学研究:气相色谱仪可以用于鉴定和定量生物样品中的代谢产物、脂肪酸、氨基酸等。
四、优势1.高效:气相色谱仪的分离效率高,分析速度快。
2.敏感:气相色谱仪可以进行微量样品的分析和检测。
3.快速:气相色谱仪的分析时间短,适用于大批量样品的分析。
4.准确:气相色谱仪的定量精确度高。
5.多功能:气相色谱仪可与不同类型的检测器结合使用,可根据需要选择不同的检测器进一步提高分析灵敏度和选择性。
常用的检测器有质谱检测器、氮磷检测器、火焰离子化检测器等。
综上所述,气相色谱仪具有广泛的应用领域,可用于环境监测、食品安全、药物分析、石油化工、生物学研究等领域中对样品的分离、分析和检测。
其高效、敏感、快速、准确等优势使其成为科研和生产中不可或缺的重要仪器。
简述气相色谱仪的原理组成及应用
简述气象色谱仪的原理组成及应用气相色谱分析于1952 年出现,经过50 年的发展已成为重要的近代分析手段之一,由于它具有分离效能高,分析速度快,定量结果准,易于自动化等特点;且当其与质谱,计算机结合进行色-质联用分析时,又能对复杂的多组分混合物进行定性和定量分析。
首先我们对气象色谱仪进行探讨:1 气象色谱流程与分离原理气象色谱仪分离的原理:分离原理是气体流动相携带混合物流过色谱柱中的固定相,混合物与固定相发生作用,并在两相间分配。
由于各组分在性质和结构上的差异,发生作用的大小、强弱也有差异,因此不同组分在固定相中滞留时间有长有短,从而按先后不同的次序从固定相中流出,从而达到各组分分离的目的。
气象色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。
可用流程方框图表示,如下图:2 气象色谱仪的基本组成和核心部分2.1气路控制系统主要作用是为了保证进样系统、色谱柱系统和检测器的正常工作提供稳定的载气和有关检测器必须的燃气、助燃气以及辅助气体,气路控制系统的好坏将直接影响仪器的分离效率、灵敏度和稳定性,从而将直接影响定性定量的准确性。
气路控制系统主要由开关阀、稳定阀、针型阀、压力表、电子流量计等部件组成。
2.3 色谱柱和柱箱色谱柱的作用就是分离混合物样品中的有关组分。
是色谱分析的关键部分,主要有填充柱和毛细柱两大类。
色谱柱选用的正确与否,将直接影响分离的效率、稳定性和检测灵敏度。
柱箱就是装接和容纳各种色谱柱的精密控温的炉箱,是色谱仪的重要组成部分之一,柱箱结构设计的合理与否,将直接影响整体性能。
2.4 检测器检测器是气象色谱仪的心脏部分,它的功能就是把随载气流出色谱柱的各种组分进行非电量转换,将组分转变为电信号,便于记录测量的处理。
检测器的性能直接影响整机仪器的性能,主要影响稳定性和灵敏度,检测器的性能也决定了该仪器的应用范围。
一般色谱仪的检测器都有热导检测器和氢焰检测器:A 热导检测器的原理:气体具有热导作用,不同物质具有不同的热导系数,热导检测器就是根据不同物质热导系数的差别而设计的,它对有机、无机样品均匀响应,而不破坏样品,可用于常量分析。
安捷伦7890A气相色谱仪使用说明
Agilent 7890A气相色谱仪分流/不分流进样(0-100 psi 和0-150 psi)、填充柱进样、冷柱头进样、程序升温汽化进样口和挥发性物质分析接口内置Agilent 7683 自动进样器控制功能。
如要实现高效率、室温顶空、微量液萃取和不同范围的进样体积,您只需简单地添加进样器和样品盘模块即可。
可选择的进样技术,包括顶空进样、吹扫捕集和阀进样主要特点Agilent 7890A气相色谱仪1突破性的微板流路控制技术实现了柱箱内可靠的无泄漏连接,提高了工作效率和数据完整性,为复杂的GC分析提供了通用、可靠的解决方案2安捷伦仪器监测和智能诊断软件可跟踪配件的使用情况,监测色谱峰形变化,在问题发生之前提醒您进行处理3每个分流/不分流(SSL进样口)都采用了新的方便的扳转式顶盖设计,使您能在30秒内更换进样口衬管- 无需特殊的工具或培训4品种齐全的选件和附件使您能够配置恰好满足您实验室目前需求的系统, 并能方便地进行升级,以满足不断变化的应用和分析通量的需求·强大的、操作界面友好的GC软件简化了方法设置和系统操作,缩短了培训时间;您可选择正好符合您实验室需求的软件包5在品质卓越的6890进样口, 检测器和GC柱箱上建立的分析方法,您可以完全放心地将其转移到7890A GC上6其它功能和详细信息请参看仪器样本和资料库中的技术规格文件7填充柱进样、冷柱头进样、程序升温汽化进样口和挥发性物质分析接口内置的 Agilent 7683 自动进样器控制功能进样口两个进样口三个检测器(第三个检测器是TCD)四个检测器信号柱温箱最大升温速率:120°C/min(如使用120 V 电源最大升温速率75°C/min,参见表1)。
•最长运行时间:999.99 min(16.7 h)。
•柱箱冷却降温(22°C 室温),从450°C 到50°C 需要4.0 min (采用柱箱插入附件时为3.5 min)电子压力控制范围:0 到100 psig每个EPC单元都使用专用的进样口和检测器选项进行了优化。
gc气相色谱 用途
GC系列气相色谱仪是一种色谱分析仪器,它通过载气带入,通过对欲检测混合物中组分有不同保留性能的色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。
GC系列气相色谱仪在多个领域都有应用,如石油化工、生物化学、医药卫生、食品工业、环保等。
GC系列气相色谱仪的用途包括:
1.分离和定量分析:通过GC可以分离和定量各种复杂的混合物中的成分,包括有机
物、无机物和生物活性物质等。
例如,可以用GC来分析食品中的添加剂和残留物、药物中的活性成分、环境样品中的有机污染物等。
2.质谱联用:GC技术与质谱(MS)联用可以实现对复杂样品的更详细的鉴定和定量
分析。
GC-MS联用技术被广泛应用于药物代谢分析、环境污染物的鉴定和研究、毒理学分析等领域。
3.测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。
以上信息仅供参考,如需了解更多信息,建议咨询专业人士。
白酒中甲醇含量的测定:填充柱气相色谱法
与甲醇含量具有线性关系 因此可用内标法予以定量分析
3 试剂
3.1 担体 Chromosorb W (AW-DMCS) 60/80 或 80/100 目
中 3.2 固定液 邻苯二甲酸二壬酯 简称 DNP 吐温-80
3.3 无水甲醇 3.4 乙醇溶液 60% 应采用毛细管气相色谱法检验 确认所含甲醇低于 1mg/L 方可使用
件 使甲醇峰形成一个单一尖峰 内标峰和异戊醇两峰的峰高分离度达到 100% 色谱柱柱温
以 100 为宜
5.3 标样校正因子 f 值的测定
准确吸取 1.00mL 甲醇标准溶液 3.9g/L 于 10mL 容量瓶中 用 60 乙醇稀释至刻度
加入 0.20mL 乙酸正丁酯内标溶液 17.6g/L 待色谱仪基线稳定后 用微量注样器进样 1.0µL
记录甲醇色谱峰的保留时间及其峰面积 以其峰面积与内标峰面积之比 计算出甲醇的相对
质量校正因子 f 值
5.4 样品的测定
于 10mL 容量瓶中倒入酒样至刻度 准确加入 0.20mL 乙酸正丁酯内标溶液 17.6g/L
混匀 在与 f 值测定相同的条件下进样 根据保留时间确定甲醇峰的位置 并记录甲醇峰的
峰面积与内标峰的面积
SPJLBJ011 白酒 乙酸乙酯含量的测定 填充柱气相色谱法
SP_JL_BJ_011
白酒 甲醇含量的测定 填充柱气相色谱法
1 范围
本方法采用填充柱气相色谱法测定白酒中甲醇的含量
本方法适用于各种香型白酒中甲醇含量的测定 结果表示为 g/100mL 保留三位小数
2 原理
根据甲醇组分在 DNP 填充柱等温分离分析中 能够在乙醇峰前流出一个尖峰 其峰面积
1
6 结果计算 按下式计算甲醇的含量
hayesep q填充柱原理
hayesep q填充柱原理
“哈伊斯普Q填充柱原理”是指一种用于气相色谱分析的填充柱技术。
在气相色谱仪中,填充柱是一种用于分离化合物的柱子,内部填充有固定相材料。
而“哈伊斯普Q填充柱原理”是指利用哈伊斯普Q填充柱进行气相色谱分析时的基本原理和工作机制。
哈伊斯普Q填充柱是一种具有特殊化学性质的填充柱,通常用于对极性化合物的分离。
其原理主要包括以下几个方面:
1. 固定相选择,哈伊斯普Q填充柱的固定相通常是一种具有离子交换功能的树脂,其表面带有电荷,能够与带有相反电荷的分子发生吸附作用。
这种特殊的固定相使得填充柱对极性化合物具有很好的分离能力。
2. 分离原理,哈伊斯普Q填充柱利用分子在固定相表面的吸附作用进行分离。
当样品混合物通过填充柱时,不同极性的化合物会在固定相表面停留的时间不同,从而实现分离。
3. 应用范围,哈伊斯普Q填充柱主要用于对离子化合物、氨基酸、蛋白质等极性化合物的分离和分析。
在生物医药、食品安全等
领域有着广泛的应用。
总的来说,哈伊斯普Q填充柱原理是利用其特殊的固定相对极性化合物进行吸附分离的原理。
通过合理选择填充柱和色谱条件,可以实现对复杂混合物的高效分离和分析。
气相色谱在水质检测中的应用
ECD对某些化合物旳敏捷度
化合物 苯 甲苯 丙酮 2,3-丁二酮 正丁醇 氯苯 溴苯 1-氯丁烷 1-溴丁烷 1-碘丁烷 氯仿 四氯化碳
相对于苯旳响应值 1 3 8
800000 17
1200 7600
17 5000 1500000 1000000 6600000
检测器操作条件
检测器 样品类型 敏捷度范围 载气+尾吹气 氢气 空气(mL/min)
FID只对具有C-H键旳化合物有响应。非 碳氢化合物在FID上没有响应。响应值与 化合物中具有旳C-H键个数成正比,C-H 键个数越多,检测器敏捷度越高。
FID点火故障原因
气体 :气体纯度不够;氢气与空气百分比 不对;载气或尾吹气流量较大。
硬件:点火线圈坏了;喷嘴是否堵上;检测 器搜集极受潮或积水。
FID 碳氢化合物 10-100pg
20-60
30-40 200-500
10ppb-99%
TCD 除载气外旳 5-100ng
15-30
n. a.
n. a.
其他全部物质 10ppm-100%
ECD 有机卤化物 0.05-1pg
30-60
n. a.
n. a.
氯化溶剂&农残 50ppt-1ppm
NPD 有机氮化合物& 0.1-10pg
有机物
苯系物 三卤甲烷、三氯乙醛 三氯乙烯、四氯乙烯 666、 DDT、 溴氰菊酯 、六氯苯 有机磷农药 氯苯类、二氯乙烯、 二氯乙烷、三氯乙烷 七氯、百菌清、 邻苯二甲酸二异辛酯 环氧氯丙烷
新原则旳应用
进样方式
顶空进样 顶空进样
色谱柱
DB-WAX HP-5
液液萃取
HP-5
370xa 气相色谱仪原理
370xa 气相色谱仪原理
气相色谱仪(Gas Chromatograph, GC)是一种用于分离和分析化合物的仪器。
其原理基于化合物在固定填充柱(固定相)和惰性
气体流动的柱内(移动相)之间的相互分配行为。
以下是气相色谱
仪的原理:
1. 样品进样,样品首先被注入气相色谱仪系统中。
通常采用进
样器将样品气化并注入气相色谱柱。
2. 柱分离,气相色谱柱通常是一根细长的管状结构,内部涂有
固定相。
当样品气体通过柱时,不同化合物会根据其与固定相的亲
和力不同而在柱内发生分离。
这导致化合物在柱内以不同速率移动,从而实现了分离。
3. 检测器检测,分离后的化合物通过柱后进入检测器。
检测器
通常会对化合物进行识别和定量分析,常见的检测器包括质谱检测
器(MS)、火焰光度检测器(FID)、电子捕获检测器(ECD)等。
4. 数据分析,检测器生成的信号被记录并转换成色谱图谱,通
过峰面积和保留时间等参数来定量和定性分析样品中的化合物。
总的来说,气相色谱仪的原理是基于化合物在固定相和移动相之间的分配行为,利用不同化合物在柱内的分离和检测来实现对样品的分析和定量。
这种方法被广泛应用于化学、生物、环境等领域的化合物分析。
气相色谱在石油化工中的应用
焰离子化检测器与色谱柱,能够开展对烃类气体的有效分析与检测,还能够将其分离。
这种新的分析模式有着独有的载气切换系统,能够开展对不同气体的有效检测,也能以极快的速度进行切换。
因此,在实际的使用中获得广泛的应用。
1.2 高纯烃类气体中的杂质分析就当前真实情况分析,石油化工行业对于乙烯、丙烯等在纯度要求上有着较高的标准。
而且,在这些气体之中总会出现甲醇[3]。
但应用从前的色谱展开分析时,无法开展精准的测定,影响分析效果。
石油企业应用了一种新的色谱柱,可以对乙烯、丙烯之中的甲醇含量深度分析。
并且,利用此种方式检测甲醇含量的精准程度相较以往缩小至0.5 mg/L 。
研究人员利用此种方法开展对甲醇含量的检测分析,其精准程度相较以往获得明显提高。
同时,在实际操作中,也较为简单,还能够满足相应的标准。
2 气相色谱在汽油馏分中分析在进行对石油的加工中,对于汽油的组分开展分析、检测,可将汽油的产品品质大幅度的增强。
2.1 汽油烃类成分分析目前,社会稳步发展,人们追求更高品质的生活,环保意识逐渐强化。
现今,国家对于环保的要求渐渐提高,汽车在实际的行驶过程中,若是使用劣质的汽油,就会出现大量的污染物质,0 引言随着社会的迅猛发展,石油化工行业的竞争也随之增强。
因此,降低投入成本,节约资源消耗以及提升产品品质已经成为当前多数企业所关注的要点。
同时,想要达成这一目标,就需要推动气相色谱相应技术的不断更新。
就发展情况来讲,已经从原本的填充柱发展到目前的毛细管气相色谱,通过细内径毛细管柱以及高性能色谱仪结合应用的分析系统已经得到全面使用。
并且,石油化工行业也依据自身的真实需求,研发出更多的具有专业性的气相色谱技术。
1 气相色谱在石油化工气体分析中的应用石油在进行加工的过程中,会分离出不同种类的石化产品。
其中,就包含不同的气体成分[1]。
如:O 2、H 2等。
此外,因为石油中还包含着一些杂质,在分离时也会形成CO 2、CO 等。
dmf气相色谱检测方法
dmf气相色谱检测方法气相色谱(Gas Chromatography, GC)是一种常用的分离和分析技术,广泛应用于化学、药学、环境科学、食品科学等领域。
本文将以气相色谱检测方法为主题,详细介绍气相色谱的原理、仪器设备、样品制备及检测步骤,以及常见的应用领域和优缺点。
一、气相色谱的原理气相色谱基于溶质在固定相(柱填充物)和流动相(惰性气体)间的分配行为进行分离。
样品在高温下蒸发成气相,与流动相一起通过柱填充物,溶质在固定相和流动相之间交替分配,间接实现化合物的分离。
分离程度取决于样品分子量、极性和温度等因素。
二、气相色谱仪器设备1. 柱塞装置:包括进样口、分离柱和检测器。
进样口用于引入样品,分离柱是色谱分离的核心部件,检测器用于检测分离后的化合物。
2. 色谱柱:常用的包括毛细管柱和填充柱。
毛细管柱由精细的硅化硅制成,并用液体固定相涂覆内壁。
填充柱则填充固定相,具有较高的样品承载能力。
3. 外部进样系统:常用的有自动进样器和手动进样器。
自动进样器具备样品进样精确、可靠的功能,提高了分析效率。
4. 流动相传输系统:主要由高纯度气体源、流量控制器、进样口、色谱柱和检测器组成。
5. 检测器:常见的检测器有火焰离子化检测器(FID)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。
三、样品制备气相色谱分析的前提是将要分析的化合物从样品中提取出来,并使其达到可检测的浓度。
样品制备的方式多种多样,通常包括溶剂提取、固相微萃取、减压蒸馏等方法。
四、气相色谱检测步骤1. 样品制备:根据样品的性质和需求,采用合适的样品制备方法,如溶剂提取、固相微萃取等。
2. 进样:将经过制备的样品加热蒸发,引入进样口,或通过自动进样器进行定量进样。
3. 色谱分离:在高温条件下,样品蒸气与流动相一起通过柱填充物,根据分配系数进行交替分配,实现化合物的分离。
4. 检测:分离后的化合物进入检测器,根据其物理性质(电离能、热导率、化学反应等)进行测定。
气相色谱仪拆解-概述说明以及解释
气相色谱仪拆解-概述说明以及解释1.引言1.1 概述概述气相色谱仪是一种用于物质分离和分析的重要仪器,广泛应用于化学、医药、环境等领域。
它通过将待分析物挥发成气相,然后在载气的流动作用下通过填充在柱子中的固定相进行分离,最终通过检测器进行检测和定量分析。
气相色谱仪的拆解将有助于我们更深入地了解其内部构造和工作原理,为日后的维护和修理提供帮助。
本文将从气相色谱仪的原理、组成部分、工作过程和应用领域等方面对其进行深入探讨,以期能够全面了解这一重要的分析仪器。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分是对整篇文章的组织和框架进行介绍。
通过清晰的结构,读者可以更好地理解文章的内容和逻辑关系。
本文的结构分为引言、正文和结论三个部分。
引言部分是文章开篇的部分,主要介绍了气相色谱仪的背景和重要性。
文章的引言部分将从概述、文章结构和目的三个方面进行阐述。
概述部分简要介绍了气相色谱仪的定义和作用。
通过对气相色谱仪的概况进行描述,读者可以对其有一个整体的了解。
文章结构部分还包括对文章的整体框架进行介绍。
通过明确的顺序和标题,读者可以更好地理解文章的组成部分和内容。
最后,文章结构部分还需明确阐述文章的目的。
即通过对气相色谱仪的拆解来深入了解其原理、组成部分、工作过程和应用领域。
并且,本文还将对气相色谱仪的重要性进行总结,展望其未来的发展,并提出进一步研究的方向。
通过清晰的文章结构,读者可以更好地理解本文的内容,并在阅读过程中能够有条理地掌握文章的主要观点和论证过程。
1.3 目的本文的目的是对气相色谱仪进行拆解,以帮助读者更深入地了解气相色谱仪的工作原理、组成部分、工作过程以及应用领域。
通过对气相色谱仪的拆解过程的详细描述,读者将能够全面了解气相色谱仪的各个方面,并对其性能和功能有更深入的认识。
通过拆解气相色谱仪,我们将深入了解其内部结构和组成部分的作用。
我们将详细描述气相色谱仪的主要组成部分,例如进样系统、色谱柱、检测器等,并解释它们在气相色谱分析中的功能和重要性。
GCMS工作原理
GCMS工作原理标题:GCMS工作原理引言概述:气相色谱-质谱联用仪(GCMS)是一种常用的分析仪器,它结合了气相色谱和质谱两种分析技术,能够快速、准确地分析复杂混合物。
GCMS的工作原理是基于气相色谱和质谱的原理相结合,通过气相色谱分离混合物中的化合物,再通过质谱对其进行鉴定和定量分析。
一、气相色谱原理:1.1 色谱柱:GCMS中的色谱柱是分离混合物的关键部分,通常采用毛细管柱或填充柱。
1.2 色谱载气:色谱柱中的载气在分离过程中起到推动混合物前进的作用,常用的载气有氮气、氢气等。
1.3 样品进样:样品通过进样口被引入色谱柱,经过分离后进入质谱进行分析。
二、质谱原理:2.1 离子化:在GCMS中,分离出的化合物被离子化,通常采用电子轰击或化学离子化等方法。
2.2 质谱分析:离子化后的化合物通过质谱进行分析,根据不同化合物的质荷比(m/z)进行鉴定和定量。
2.3 质谱检测:质谱检测器会将离子化的化合物进行检测,生成质谱图谱,通过比对数据库进行鉴定。
三、GCMS联用原理:3.1 联用技术:GCMS联用技术将气相色谱和质谱结合在一起,实现对复杂混合物的快速、准确分析。
3.2 分析流程:样品经过气相色谱分离后,进入质谱进行鉴定和定量分析,整个分析过程自动化、高效。
3.3 应用领域:GCMS联用技术广泛应用于环境监测、食品安全、药物分析等领域,具有重要的应用价值。
四、GCMS工作原理优势:4.1 高灵敏度:GCMS能够检测到极低浓度的化合物,对微量成分的分析具有很高的灵敏度。
4.2 高分辨率:通过GCMS联用技术,可以对复杂混合物进行高效分离和鉴定,具有很高的分辨率。
4.3 快速分析:GCMS联用技术能够实现对复杂混合物的快速分析,提高分析效率和准确性。
五、总结:GCMS是一种高效、准确的分析仪器,其工作原理基于气相色谱和质谱的联用技术。
通过色谱分离和质谱分析,GCMS能够对复杂混合物进行快速、准确的鉴定和定量分析,具有广泛的应用价值。
填充柱气相色谱仪的应用
填充柱气相色谱仪的应用色谱柱又称分离柱,是填充了色谱填料的内部抛光不锈钢柱管或塑料柱管。
色谱柱是实现分离的核心部件,要求色谱柱的柱效高、柱容量大和性能稳定。
分析型色谱柱的内径通常在4~8mm,柱长通常在50~250mm。
液相色谱填充柱内径通常在3~5mm,典型的柱内径是4mm。
气相色谱中所用毛细管柱的内径一般小于1mm。
微型柱是内径在1mm左右的填充型色谱柱,通常用于高灵敏的微量成分分离。
因为气相色谱的载气种类少,分离选择性主要依靠选择固定相。
色谱峰能否分离,首先取决于固定相,迄今已有数百上千种气相色谱固定相,常用的不过十几种。
第一节气-固色谱固定相-固体固定相气—固色谱法广泛应用于永久气体和低沸点烃类的分析。
常用的固定相种类有非极性的活性炭,弱极性的氧化铝,极性的分子筛,氢键型硅胶等。
气-固色谱与气-液色谱相比,有许多特点及不同之处,见表5-1。
气固色谱适合于分析永久气体,气态烃;热稳定性好,柱温上限高;一般情况下,吸附等温线不成线性,峰不对称;由于固定相表面结构不均匀,所以重现性不好。
吸附等温线气—固色谱法遵循了气体在吸附剂表面上的吸附规律。
气体在吸附剂表面上的吸附平衡可用“吸附等温线”来描述。
吸附等温线是在一定温度下气体在吸附剂表面上的浓度随气体在气相中的变化规律。
就是在一定温度下达吸附平衡时气体在吸附剂表面上的吸附量。
(1)线性吸附等温线如图5-1的(A)所示,被测组分在吸附剂上的浓度(Cs)与它在气相上的浓度(Cm)之比是常数,这就是线性吸附等温线,所对应的色谱峰是对称的高斯峰。
(2)朗格缪尔吸附等温线(向下弯曲的吸附等温线)朗格缪尔吸附等温线如图5-1的(B)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附量不随气相中物质浓度的增加而增加,即Cs/Cm不成常数,所对应的色谱峰是不对称的“拖尾峰”。
(3)向上弯的吸附等温线这种吸附等温线如图5-1的(C)所示,它的特点是当气相中被吸附物质的浓度高于M 时,吸附剂上的吸附的量随气相中物质浓度的增加而急剧增加,吸附等温线与其对应的色谱峰是不对称的“伸舌峰”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填充柱气相色谱仪的应用色谱柱又称分离柱,是填充了色谱填料的内部抛光不锈钢柱管或塑料柱管。
色谱柱是实现分离的核心部件,要求色谱柱的柱效高、柱容量大和性能稳定。
分析型色谱柱的内径通常在4~8mm,柱长通常在50~250mm。
液相色谱填充柱内径通常在3~5mm,典型的柱内径是4mm。
气相色谱中所用毛细管柱的内径一般小于1mm。
微型柱是内径在1mm左右的填充型色谱柱,通常用于高灵敏的微量成分分离。
因为气相色谱的载气种类少,分离选择性主要依靠选择固定相。
色谱峰能否分离,首先取决于固定相,迄今已有数百上千种气相色谱固定相,常用的不过十几种。
第一节气-固色谱固定相-固体固定相气—固色谱法广泛应用于永久气体和低沸点烃类的分析。
常用的固定相种类有非极性的活性炭,弱极性的氧化铝,极性的分子筛,氢键型硅胶等。
气-固色谱与气-液色谱相比,有许多特点及不同之处,见表5-1。
气固色谱适合于分析永久气体,气态烃;热稳定性好,柱温上限高;一般情况下,吸附等温线不成线性,峰不对称;由于固定相表面结构不均匀,所以重现性不好。
吸附等温线气—固色谱法遵循了气体在吸附剂表面上的吸附规律。
气体在吸附剂表面上的吸附平衡可用“吸附等温线”来描述。
吸附等温线是在一定温度下气体在吸附剂表面上的浓度随气体在气相中的变化规律。
就是在一定温度下达吸附平衡时气体在吸附剂表面上的吸附量。
(1)线性吸附等温线如图5-1的(A)所示,被测组分在吸附剂上的浓度(Cs)与它在气相上的浓度(Cm)之比是常数,这就是线性吸附等温线,所对应的色谱峰是对称的高斯峰。
(2)朗格缪尔吸附等温线(向下弯曲的吸附等温线)朗格缪尔吸附等温线如图5-1的(B)所示,它的特点是当气相中被吸附物质的浓度高于M时,吸附剂上的吸附量不随气相中物质浓度的增加而增加,即Cs/Cm不成常数,所对应的色谱峰是不对称的“拖尾峰”。
(3)向上弯的吸附等温线这种吸附等温线如图5-1的(C)所示,它的特点是当气相中被吸附物质的浓度高于M 时,吸附剂上的吸附的量随气相中物质浓度的增加而急剧增加,吸附等温线与其对应的色谱峰是不对称的“伸舌峰”。
图5-1 三类吸附等温线与其对应的色谱峰(Cs :物质在固定相上的浓度、Cm :物质在流动相上的浓度)一、吸附剂虽然吸附剂的种类很多,但是在气固色谱中作为固定相的却不多,一般仅限于活性炭、石墨化炭黑、碳多孔小球、硅胶、氧化铝,分子筛等。
由于吸附剂的性能与制备、活化条件等有很大关系,所以,不同来源的同种吸附剂,甚至于同一来源的非同批产品,其色谱分离效能均不重复。
(一) 活性炭--非极性。
有较大的比表面积,吸附性较强。
可用于惰性气体、永久气体,气态烃的分析等分析。
由于活性炭表面活性大而不均匀,会造成色谱峰拖尾,现在很少使用权了。
(二) 石墨化炭黑(Cabopack 系列):非极性。
为克服活性炭的缺点,把炭黑进行高温处理,如加热到3000℃,表面均匀、使活性点大为减少。
所以大大改善了色谱峰形,提高了分析重现性。
据有关研究认为石墨化炭黑的表面没有官能团,没有π键,它的吸附性主要靠色散力起作用,因而石墨化炭黑的极性比角鲨烷还小。
(三) 碳分子筛(碳多孔小球;TDX 系列)--非极性。
是用偏聚氯乙稀小球进行热裂解,得到固体多孔状的炭。
碳多孔小球的国外商品名为Carbosieve ,国内叫TDX ,具体牌号有TDX-01、TDX-02。
碳多孔小球特点是非极性很强,表面活性点少,疏水性强,可使水峰在甲烷前或后洗脱出;柱效高;耐腐蚀、耐辐射;寿命长。
TDX 可用于分析H 2、、O 2、N 2、CO 、CO 2、CH 4、C 2H 2、C 2H 4、C 2H 6、以及C 3的烃类和SO 2等气体的分析;氮肥厂的半水煤气分析;金属热处理气氛的分析;低碳烃中水分的分析等。
图5-1是碳分子筛分离含硫化合物的色谱图。
图中各峰的组分依次是1.空气;2.硫化氢;3.氧硫化碳;4.三氧化硫;5.甲基硫醇;6.二硫化碳。
图5-2碳分子筛分离含硫化合物(四) 活性氧化铝--有较大的极性。
热稳定性好,机械强度高,适用于常温下O 2、N 2、CO 、CH 4、C 2H 6、C 2H 4等气体的分离。
CO 2能被活性氧化铝强烈吸附,因此不能用这种固定相进行分析。
(五) 硅胶S i O 2 xH 2O (Porasil 系列等)--强极性。
分离能力决定于孔径大小及含水量,一般用来分离C 2—C 4烃类及某些含硫气体:H 2S 、CO 2、N 2O 、NO 、NO 2、、N 2O 、SO 2,有与活性氧化铝大致相同的分离性能,且能够分离臭氧。
(六) 分子筛--有特殊吸附活性。
碱及碱土金属的硅铝酸盐(沸石),多孔性。
人工合成的泡沸石,化学组成为MOAl 2O 3 xS i O 2yH 2O 其中M是金属离子N a +、K +、 C a 2+等,合成的泡沸石加热时,结构水就从空隙中逸出,留下一定大小均匀的孔穴。
当样品分子经过分子筛时,比孔径小的分子被吸进去,比孔径大的分子通过分子筛出来,故分子筛实际是个反筛子。
分子筛的种类很多,分析用的有4A 、5A 、13X 等,其中前面的数字代表孔径,A 、X 表示类型,A 、X 化学组成不同。
用于分析气样中N 2和O 2有特效。
分子筛可用来分离永久气体、H 2、H 2S 、O 2、CH 4、CO 气态烃分析等。
特点是能在高温下使用,但重复性好的吸附剂很难制备,往往使峰拖尾。
图5-3表示活性炭吸附剂(13X 分子筛)分离永久气体的色谱图,柱温22℃,He 气流速20ml/min 。
图5-3 活性炭吸附剂(13X 分子筛)分离永久气体的色谱图二、分子多孔微球(Porapak , Chropmosorb 等)高分子多孔微球是新型的有机合成固定相,是用苯乙烯与二乙烯苯共聚所得到的交联多孔共聚物。
既可做固定相,又可做载体。
Hollis 所研究的PorapakQ 是一种色谱分离性能很好的气-固色谱固定相。
我国天津化学试剂二厂的GDX 系列分为非极性,弱极性,中等极性的相当于美国的Parapak ,chromosorb 系列,型号有GDX-101、GDX-102、GDX-103、GDX-104、GDX-105、GDX-201、GDX-301、GDX-501等。
适用于水、气体及低级醇的分析。
高分子多孔微球的特点是:(一) 表面积大,机械强度好。
(二) 疏水性很强,可快速测定有机物中的微量水分。
如顺丁橡胶合成中要求单体丁二稀含水量在3×10-5g/mL 以下,可用1M ×4㎜ 的GDX-105色谱柱,120℃柱温下,载气流速33mL/min 很好分离测定。
(三) 耐腐性好。
可分析HCI 、NH 3、HCN 、Cl 2、SO 2等活性气体。
有机溶剂和氯化氢中的微量水分可用GDX-104色谱柱测定。
[见文献]。
(四) 不存在固定液流失问题。
图5-4是Porapak Q(150-200目)填充柱、TC=220℃、载气He 37ml/min 、TCD 检测器测定溶剂中水分的色谱图。
图5-4 Poropak Q 测定溶剂中水三、化学键合相化学键合相的优点是防止固定液流失,提高柱效。
将在以后章节中讨论。
第二节气液色谱固定相气液色谱固定相是固定液均匀地涂在载体上,载体是化学惰性的固体微粒,用来支持固定液的,气液色谱固定相中的固定液大多数是高沸点的有机化合物,在气相色谱工作条件下呈液态,所以叫固定液。
在气—液色谱柱内,被测物质中各组分的分离是基于各组分在固定液中溶解度的不同。
当载气携带被测物质进入色谱柱,和固定液接触时,气相中的被测组分就溶解到固定液中去。
载气连续进入色谱柱,溶解在固定液中的被测组分会从固定液中挥发到气相中去。
随着载气的流动,挥发到气相中的被测组分分子又会溶解到固定液中。
这样反复多次溶解、挥发、再溶解、再挥发。
由于各组分在固定液中溶解能力不同。
溶解度大的组分就较难挥发,停留在柱中的时间长些,往前移动得就慢些。
而溶解度小的组分,往前移动得快些,停留在柱中的时间就短些。
经过一定时间后,各组分就彼此分离。
固定液配比一般是3-25%,配比指固定液在固定相中所占重量,色谱柱起分离决定作用的是固定液。
载体作用是提供一个大的惰性表面,以便涂上固定液。
一、气液色谱载体载体是一种化学惰性、多孔性的颗粒,它的作用是提供一个大的惰性表面,用以承担固定液,使固定液以薄膜状态分布在其表面上。
(一)对载体的要求1.载体表面应是化学惰性的,即表面没有吸附性或和吸附性很弱,更不能与被测物质起化学反应。
2.足够大的表面积。
多孔性,即表面积较大,使固定液与试样的接触面较大。
3.热稳定性好,有一定的机械强度,不易破碎。
4.形状规则、大小均匀。
对担体粒度的要求,一般希望均匀、细小,这样有利于提高柱效。
(二)载体的分类气—液色谱中所用担体可分为硅藻土型和非硅藻土型两大类。
1.硅藻土类载体:由天然硅藻土煅烧而成的。
常用此类担体,主要成分无机盐。
根据制造工艺和助剂不同,又可分为红色担体和白色担体两种。
(1)红色载体:孔径较小,表面孔穴密集,比表面积较大(4 m2/g),机械强度好。
适宜分离非极性或弱极性化合物。
缺点是表面存有活性吸附中心点。
常见的有201、202系列、6201系列等(2)白色载体:白色担体是在煅烧时加Na2CO3之类的助熔剂,使氧化铁转化为白色的铁硅酸钠。
白色载体颗粒疏松,孔径较大。
表面积较小(1 m2/g),机械强度较差。
但吸附性显著减小,适宜分离极性化合物。
常见的有101、102系列。
2.非硅藻土载体(1)玻璃微球:是小玻璃珠,颗粒规则,涂渍困难。
(2)聚四氟乙烯:吸附性小,耐腐蚀,分析SO2、Cl2、HCl等气体。
(3)高分子多孔微球 GDX既可做G S C固定相,又可做G L C载体GDX-101、102、103、104、105--201、202--301--401--501(GDX系列产品)。
前面的数字表示极性,后面的数字是不同的稀釋剂(汽油、甲苯等)用量。
(三)硅藻土类载体的表面处理普通硅藻土类载体表面并非惰性,含有≡Si-OH,Si-O-Si,=Al-O-,=Fe-O-等基团,故既有吸附活性又有催化活性。
若涂渍上极性固定液,会造成固定液分布不均匀;分析极性试样时,由于活性中心的存在,会造成色谱峰拖尾,甚至发生化学反应。
因此,载体使用前应进行钝化处理,方法如下:会造成色谱峰拖尾,甚至发生化学反应。
因此,使用前应进行钝化处理,钝化处理方法如下:1.酸洗、碱洗(除去酸性基团):用浓HCl、KOH的甲醇溶液分别浸泡,以除去铁等金属氧化物及表面的氧化铝等酸性作用点。
2.硅烷化:(消除氢键结合力)用硅烷化试剂(二甲基二氯硅烷等)与载体表面的硅醇、硅醚基团反应,以消除担体表面的氢键结合力。