2020届高考数学大二轮复习教师用书(理)

合集下载

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题二 函数、不等式、导数 1-2-2 Word版含答案.doc

限时规范训练五 不等式及线性规划限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分) 1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值9解析:选B.因为1a +4b =⎝ ⎛⎭⎪⎫1a +4b (a +b )=5+b a +4ab≥5+2b a ·4a b =9,当且仅当b a =4a b且a +b =1,即a =13,b =23时取“=”,所以1a +4b的最小值为9,故选B.3.对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ; ③若a >b ,c >d ,则ac >bd ; ④若a >b ,则1a >1b.其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B.①ac 2>bc 2,则c ≠0,则a >b ,①正确; ②由不等式的同向可加性可知②正确; ③需满足a 、b 、c 、d 均为正数才成立;④错误,如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B. 4.已知不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是( )A .{x |2<x <3}B .{x |x ≤2或x ≥3}C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >12解析:选B.∵不等式ax 2-bx -1>0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <-13, ∴ax 2-bx -1=0的解是x 1=-12和x 2=-13,且a <0.∴⎩⎪⎨⎪⎧-12-13=ba ,⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.则不等式x 2-bx -a ≥0即为x 2-5x +6≥0,解得x ≤2或x ≥3. 5.若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤-12,2C .[-1,2]D.⎣⎢⎡⎦⎥⎤-12,1 解析:选B.作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.6.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( ) A.92 B.72 C .22+12D .22-12解析:选A.∵a n =a 1+(n -1)d =n ,S n =n+n2, ∴S n +8a n=n+n2+8n=12⎝ ⎛⎭⎪⎫n +16n +1≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.∴S n +8a n 的最小值是92,故选A.7.一条长为2的线段,它的三个视图分别是长为3,a ,b 的三条线段,则ab 的最大值为( ) A. 5 B. 6 C.52D .3解析:选C.如图,构造一个长方体,体对角线长为2,由题意知a 2+x 2=4,b 2+y 2=4,x2+y 2=3,则a 2+b 2=x 2+y 2+2=3+2=5,又5=a 2+b 2≥2ab ,所以ab ≤52,当且仅当a =b 时取等号,所以选C.8.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( ) A .[1,5] B .[2,6] C .[3,11]D .[3,10]解析:选C.画出约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12的可行域如图阴影部分所示,则x +2y +3x +1=x +1+2y +2x +1=1+2×y +1x +1,y +1x +1的几何意义为过点(x ,y )和(-1,-1)的直线的斜率.由可行域知y +1x +1的取值范围为k MA ≤y +1x +1≤k MB ,即y +1x +1∈[1,5],所以x +2y +3x +1的取值范围是[3,11].9.设x ,y 满足不等式⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,若M =3x +y ,N =⎝ ⎛⎭⎪⎫12x-72,则M -N 的最小值为( )A.12 B .-12C .1D .-1解析:选A.作出不等式组所表示的平面区域,如图中阴影部分所示,易求得A (-1,2),B (3,2),当直线3x +y -M =0经过点A (-1,2)时,目标函数M =3x +y 取得最小值-1.又由平面区域知-1≤x ≤3,所以函数N =⎝ ⎛⎭⎪⎫12x-72在x =-1处取得最大值-32,由此可得M -N 的最小值为-1-⎝ ⎛⎭⎪⎫-32=12.10.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是( )A .a ≥43B .0<a ≤1C .1≤a ≤43D .0<a ≤1或a ≥43解析:选D.作出不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图中阴影部分所示.其中直线x -y =0与直线2x +y =2的交点是⎝ ⎛⎭⎪⎫23,23,而直线x +y =a 与x 轴的交点是(a,0).由图知,要使原不等式组表示的平面区域的形状为三角形,只需a ≥23+23或0<a ≤1,所以选D.11.已知不等式组⎩⎪⎨⎪⎧3x +4y -10≥0,x ≤4,y ≤3表示区域D ,过区域D 中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A 、B ,当∠APB 最大时,cos∠APB =( )A.32 B.12 C .-32D .-12解析:选B.画出不等式组表示的可行域如图中阴影部分所示,易知当点P 到点O 距离最小时,∠APB 最大,此时|OP |=|3×0+4×0-10|32+42=2,又OA =1,故∠OPA =π6, ∴∠APB =π3,∴cos∠APB =12.12.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9D .c >9解析:选C.由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3,由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0,① 由-1+a -b +c =-27+9a -3b +c ,得 4a -b -13=0,②由①②,解得a =6,b =11,∴0<c -6≤3, 即6<c ≤9,故选C.二、填空题(本题共4小题,每小题5分,共20分)13.函数f (x )=1+log a x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -2=0上,其中mn >0,则1m +1n的最小值为________.解析:因为log a 1=0,所以f (1)=1,故函数f (x )的图象恒过定点A (1,1). 由题意,点A 在直线mx +ny -2=0上,所以m +n -2=0,即m +n =2.而1m +1n =12⎝ ⎛⎭⎪⎫1m +1n ×(m +n ) =12⎝⎛⎭⎪⎫2+n m +m n ,因为mn >0,所以nm >0,m n>0. 由均值不等式,可得n m +m n ≥2×n m ×mn=2(当且仅当m =n 时等号成立), 所以1m +1n =12⎝ ⎛⎭⎪⎫2+n m +m n ≥12×(2+2)=2,即1m +1n 的最小值为2.答案:214.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2 215.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y的最大值是________.解析:作出不等式组表示的可行域如图阴影部分所示.w =4x ·2y =22x +y,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x·2y的最大值为29=512.答案:51216.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解析:由题意知,m 2-34m ≥f (x )max .当x >1时,f (x )=log 13x 是减函数,且f (x )<0;当x ≤1时,f (x )=-x 2+x ,其图象的对称轴方程是x =12,且开口向下,∴f (x )max =-14+12=14.∴m 2-34m ≥14,即4m 2-3m -1≥0,∴m ≤-14或m ≥1.答案:⎝ ⎛⎦⎥⎤-∞,-14∪[1,+∞)。

2020新课标高考数学(理)二轮总复习课件:1-3-2 锥体中的线面关系与计算

2020新课标高考数学(理)二轮总复习课件:1-3-2 锥体中的线面关系与计算

上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)求二面角 D-PC-B 的余弦值. 解析:(2)以 O 为原点,OC,OD,OP 为坐标轴,建立如图所示坐标系,可知 C(1,0,0), D(0,1,0),P(0,0, 3),B(1,-1,0),对于平面 PDC,设其法向量 m=(x,y,z), ∴D→P=(0,-1, 3),D→C=(1,-1,0). ∴x--yy+=03,z=0, 取 z=1,y= 3,x= 3. 则 m=( 3, 3,1).
3= 6
26,

Rt△ADG
中,sin∠ADG=AAGD=
6 4.

BC
与平面
PCD
所成角的正弦值为
6 4.
(12 分)
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
【知规则·规范解答】
——采点得分说明
直接由 EC∥FB,得出 CE∥平面 PAB,即无“BF⊂平面 PAB,EC⊄平面 PAB”
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
(2)若点 M 在棱 BC 上,且二面角 M-PA-C 为 30°,求 PC 与平面 PAM 所成角的 正弦值. 解析:(2)如图,以 O 为坐标原点,O→B的方向为 x 轴正方向,建立空间直角坐标系 O-xyz.
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
上一页
返回导航
下一页
新课标高考第二轮总复习•理科数学
所以 2
3a2-34|a2+-34a| 2+a2= 23,解得 a=-4(舍去),a=43,
所以 n=-83 3,433,-43.又P→C=(0,2,-2 3), 所以 cos〈P→C,n〉= 43,

2020版高三数学二轮复习(全国理)讲义:专题四 第一讲等差数列、等比数列

2020版高三数学二轮复习(全国理)讲义:专题四  第一讲等差数列、等比数列
(1)求{an}的通项公式.
(2)求Sn.并求Sn的最小值.
[解析](1)设等差数列{an}的公差为d.由题意得3a1+3d=-15.
由a1=-7得d=2.
所以{an}的通项公式为an=2n-9.
(2)由(1)得Sn=n2-8n=(n-4)2-16.
所以当n=4时.Sn取得最小值.最小值为-16.
例1 (1)已知等比数列{an}的前n项和为Sn.a1+a3=30.S4=120.设bn=1+log3an.那么数列{bn}的前15项和为( B )
6.(20xx·全国卷Ⅰ.14)记Sn为数列 的前n项和.若Sn=2an+1.则S6=-63..
[解析]依题意. 作差得an+1=2an.
所以数列{an}是公比为2的等比数列.
又因为a1=S1=2a1+1.
所以a1=-1.所以an=-2n-1.
所以S6= =-63.
7.(20xx·全国卷Ⅱ.16)记Sn为等差数列{an}的前n项和.已知a1=-7.S3=-15.
A.1B.2
C.4D.8
[解析]设{an}的公差为d.则由

解得d=4.
故选C.
4.(20xx·全国卷Ⅲ.9)等差数列{an}的首项为1.公差不为0.若a2.a3.a6成等比数列.则{an}的前6项和为( A )
A.-24B.-3
C.3D.8
[解析]由已知条件可得a1=1.d≠0.
由a =a2a6可得(1+2d)2=(1+d)(1+5d).
(3)注意整体思想.如在与等比数列前n项和有关的计算中.两式相除就是常用的计算方法.整体运算可以有效简化运算.
G
1.(20xx·邵阳模拟)等比数列{an}的前n项和为Sn.已知a2a3=2a1.且a4与2a7的等差中项为 .则S5=( B )

2020届数学(理)高考二轮专题复习与测试:第二部分 专题六 第2讲 基本初等函数、函数与方程 Word版含解析

2020届数学(理)高考二轮专题复习与测试:第二部分 专题六 第2讲 基本初等函数、函数与方程 Word版含解析

A 级 基础通关一、选择题1.(2019·北京卷)下列函数中,在区间(0,+∞)上单调递增的是( )A .y =x 12 B .y =2-x C .y =log 12xD .y =1x解析:易知y =2-x 与y =log 12x ,在(0,+∞)上是减函数,由幂函数性质,y =1x在(0,+∞)上递减,y =x 12在(0,+∞)上递增.答案:A2.已知定义在R 上的奇函数f (x )满足当x >0时,f (x )=2x +2x -4,则f (x )的零点个数是( )A .2B .3C .4D .5 解析:由于函数f (x )是定义在R 上的奇函数, 故f (0)=0.由于f ⎝ ⎛⎭⎪⎫12·f (2)<0,而函数f (x )在(0,+∞)上单调递增,故当x >0时有1个零点,根据奇函数的对称性可知, 当x <0时,也有1个零点.故一共有3个零点. 答案:B3.(2019·山东省实验中学联考)设实数a 、b 、c 满足a =2-log 23,b =a -13,c =ln a ,则a 、b 、c 的大小关系为( )A .c <a <bB .c <b <aC .a <c <bD .b <c <a解析:因为a =2-log 23=2log 23-1=13.所以c =ln a =ln 13<0,b =⎝ ⎛⎭⎪⎫13-13=313>1.因此b >a >c . 答案:A4.若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是()解析:由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a x 在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象大致为选项B.答案:B5.(2019·衡水质检)若函数f (x )=|log a x |-3-x (a >0,a ≠1)的两个零点是m ,n ,则( )A .mn =1B .mn >1C .mn <1D .无法判断解析:令f (x )=0,得|log a x |=13x ,则y =|log a x |与y =13x 的图象有2个交点,不妨设a >1,m <n ,作出两函数的图象(如图). 所以13m >13n ,即-log a m >log a n ,所以log a (mn )<0,则mn <1. 答案:C6.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b=log 0.32.所以1a +1b =log 0.30.2+log 0.32=log 0.30.4,则0<1a +1b <1,即0<a +b ab <1.又a >0,b <0,知ab <0, 所以ab <a +b <0. 答案:B 二、填空题7.(2018·浙江卷改编)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________.解析:令f (x )=0,当x ≥λ时,x =4. 当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合如图函数的图象知,1<λ≤3或λ>4.答案:(1,3]∪(4,+∞)8.将甲桶中的a 升水缓慢注入空桶乙中,t min 后甲桶剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4升,则m 的值为________.解析:因为5 min 后甲桶和乙桶的水量相等, 所以函数y =f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12,所以f (t )=a ·⎝ ⎛⎭⎪⎫12t5, 因此,当k min 后甲桶中的水只有a4L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12k5=14a ,即⎝ ⎛⎭⎪⎫12k5=14, 所以k =10,由题可知m =k -5=5. 答案:59.已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1,log 2(x -m ),x >1.若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.解析:作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又因为1<x 1+x 1+x 3<8,所以2<x 3<9.结合图象可知A 点坐标为(9,3),代入函数解析式得3=log 2(9-m ),解得m =1.答案:1 三、解答题10.经测算,某型号汽车在匀速行驶过程中每小时耗油量y (单位:升)与速度x (单位:千米/时)(50≤x ≤120)的关系可近似表示为:y =⎩⎪⎨⎪⎧175(x 2-130x +4 900),x ∈[50,80),12-x 60,x ∈[80,120].(1)该型号汽车速度为多少时,可使得每小时耗油量最低? (2)已知A ,B 两地相距120千米,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?解:(1)当x ∈[50,80)时, y =175(x 2-130x +4 900)=175[(x -65)2+675], 当x =65时,y 有最小值175×675=9.当x ∈[80,120]时,函数单调递减,故当x =120时,y 有最小值10.因为9<10,故当x =65时每小时耗油量最低. (2)设总耗油量为l ,由题意可知l =y ·120x.①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4 900x -130≥85⎝⎛⎭⎪⎫2x ×4 900x -130=16, 当且仅当x =4 900x ,即x =70时,l 取得最小值16.②当x ∈[80,120]时,l =y ·120x =1 440x -2为减函数,当x =120时,l 取得最小值10.因为10<16,所以当速度为120千米/时时,总耗油量最少.B 级 能力提升11.已知函数f (x )=⎩⎪⎨⎪⎧ln (x +1),x ≥0,x 3-3x ,x <0,若函数y =f (x )-k 有三个不同的零点,则实数k 的取值范围是( )A .(-2,2)B .(-2,1)C .(0,2)D .(1,3)解析:当x <0时,f (x )=x 3-3x ,则f ′(x )=3x 2-3,令f ′(x )=0,所以x =±1(舍去正根),故f (x )在(-∞,-1)上单调递增,在(-1,0)上单调递减,又f (x )=ln(x +1)在x ≥0上单调递增.则函数f (x )图象如图所示.f (x )极大值=f (-1)=-1+3=2,且f (0)=0.故当k ∈(0,2)时,y =f (x )-k 有三个不同零点.答案:C12.(2018·江苏卷节选)记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值. (1)证明:函数f (x )=x ,g (x )=x 2+2x -2, 则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎪⎨⎪⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”. (2)解:函数f (x )=ax 2-1,g (x )=ln x , 则f ′(x )=2ax ,g ′(x )=1x.设x 0为f (x )与g (x )的“S 点”,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得⎩⎨⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 20=1,(*) 得ln x 0=-12,即x 0=e -12,则a =12(e -12)2=e2.当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”. 因此,a 的值为e 2.。

2020高考数学(理)(课标II)大一轮复习(PDF版教师用书):第十三章 算法初步

2020高考数学(理)(课标II)大一轮复习(PDF版教师用书):第十三章 算法初步

由程序框图可得 S = 0,a = -1,K = 1≤6;
S = 0+( -1) ×1 = -1,a = 1,K = 2≤6;
S = -1+1×2 = 1,a = -1,K = 3≤6;
������������������������������������������������������������������������������������������������
答案 B
1-1
( 2018
吉林长春二中模拟,5) 如图给出的是计算
1 2

1 + 1 +…+ 1 值的程序框图,其中判断框内可填入的条件是
46
2 016
( )
2 016+2 = 2 018,i = 2 018,不满足条件,退出循环,输出 S 的值,
所以 i≤2 017 或 i<2 017.故选 C.
5分
选择题

程序框图与算法语句
程序框图
列举法
数学运算
命题规律与趋势
01 考查内容 条件结构、循环结构的程序框图及算法. 02 考频赋分 分值为 5 分. 03 题型难度 多以选择题形式出现, 位置较靠前, 难度 较小.
最新真题示例
04 命题特点 2019 年考查力度减弱,大多是写出程序输 出结果,简单地补全缺省内容.
b.IF—THEN—ELSE 格式
3.循环语句 ( 1) 算法中的循环结构是由循环语句来实现的. ( 2) 循环语句的格式及框图 a.UNTIL 语句
二、基本算法语句 1.三种语句的一般格式和功能
语句
一般格式
输入语句 INPUT“ 提示内容” ;变量
输出语句 PRINT“ 提示内容” ;表达式

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲
7.已知数列{an}的前 n 项和 Sn=3+2n,则数列{an}的通项公式为________. 解析 因为 Sn=3+2n,所以 n≥2 时,an=Sn-Sn-1=2n-1,而 n=1 时,a1=S1=5 不适
合上式,所以 an=Error!
答案 an=Error!
1
1
8.(2019·广东深圳适应性考试)在数列{an}中,a1=2 019,an+1=an+nn+1(n∈N*),
2n =n2+1-2n.故选 A
项.
3.1-4+9-16+…+(-1)n+1n2=( )
nn+1 A. 2
nn+1 B.- 2
nn+1 C.(-1)n+1 2
D.以上均不正确
C 解析 当 n 为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-
n 3+2n-1 2
nn+1
2 =- 2 ;当 n 为奇数时,1-4+9-16+…+(-1)
n-1 [3+2n-1-1]
2
nn+1
n+1n2=-3-7-…-[2(n-1)-1]+n2=-
2
+n2= 2 .综上可得,原
nn+1 式=(-1)n+1 2 .故选 C 项.
4.已知数列{an}的前 n 项和 Sn=an-1(a≠0),则{an}( )
2×3 3 4
n n+1
则 3Tn= 30 +30+31+…+3n-3+3n-2,②
1 1-
3n-1
( ) 1 1
1 n+1
1 n+1 15
1+ + +…+
1-
②-①得 2Tn=6+ 3 32
3n-2 -3n-1=6+ 3 -3n-1= 2 -
2n+5
2·3n-1.

高中数学二轮复习(理科)《优化探究》教师用书word版共481页

高中数学二轮复习(理科)《优化探究》教师用书word版共481页

[误区警示]
求解集合问题时易忽视的三个问题
1.集合中元素的形式,元素是数还是有序数对,是函数的定义域还是函数的值域等;
2.进行集合的基本运算时要注意对应不等式端点值的处理,尤其是求解集合补集的运算,
一定要搞清端点值的取舍,不能遗漏;
3.求解集合的补集运算时,要先求出条件中的集合,然后求其补集,不要直接转化条件而导
A.p∧q
B.(綈 p)∧(綈 q)
C.p∧(綈 q)
D.(綈 p)∧q
解析:对于命题 p:当 x=1 时,log4x=log8x=0,所以命题 p 是假命题;对于命题 q:当 x=0 时,tan x=1-3x=0,所以命题 q 是真命题.由于綈 p 是真命题,所以(綈 p)∧q 是真命题,故选 D.
[题组突破] 1.命题“若 a,b 都是偶数,则 a+b 是偶数”的否命题是( ) A.若 a,b 都是偶数,则 a+b 不是偶数 B.若 a,b 不都是偶数,则 a+b 不是偶数 C.若 a,b 都不是偶数,则 a+b 不是偶数 D.若 a,b 不都是偶数,则 a+b 是偶数 解析:因为“都是”的否定是“不都是”,所以“若 a,b 都是偶数,则 a+b 是偶数”的否命 题是“若 a,b 不都是偶数,则 a+b 不是偶数”.故选 B. 答案:B 2.(2017·湖北百所重点学校联考)已知命题 p:∀x∈(0,+∞),log4x<log8x,命题 q:∃x∈R,使 得 tan x=1-3x,则下列命题为真命题的是( )
授课提示:对应学生用书第 3 页
集合 [方法结论]
1.子集个数:含有 n 个元素的集合,其子集的个数为 2n;真子集的个数为(2n-1)(除集合本 身).
2.给出集合之间的关系,求解参数,要善于运用集合的性质进行灵活转化:如 A∪B=A⇔B ⊆A 和 A∩B=A⇔A⊆B.

高考数学(理)二轮复习(课件+跟踪训练):第一部分 专题二 三角函数、解三角形、平面向量(7份)专题

高考数学(理)二轮复习(课件+跟踪训练):第一部分 专题二 三角函数、解三角形、平面向量(7份)专题

专题跟踪训练(八)一、选择题1.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是直角三角形,也可能是锐角三角形[解析] 依题意得a sin A =b sin B ,sin B =b sin A a =100sin 30°80=58<32,因此0°<B <60°或120°<B <150°.若0°<B <60°,则C =180°-(B +30°)>90°,此时△ABC 是钝角三角形;若120°<B <150°,此时△ABC 仍是钝角三角形.因此,此三角形一定是钝角三角形,故选C.[答案] C2.(2015·贵州贵阳期末)已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235 B.235 C.45D .-45[解析] sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45,故选D.[答案] D3.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为()A.615 B .5 C.562D .5 6[解析] 在△ADC 中,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22·AD ·DC =25+9-492×5×3=-12,所以∠ADC =120°,则∠ADB =60°.在△ABD 中,由正弦定理可得AB =AD sin ∠ADB sin B =5×3222=562,故选C. [答案] C4.(2015·江西南昌一模)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c =1,B =45°,cos A =35,则b 等于( )A.53 B.107 C.57D.5214[解析] 因为cos A =35,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫352=45,所以sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45cos 45°+35sin 45°=7210.由正弦定理b sin B =c sin C ,得b =17210×sin 45°=57,故选C.[答案] C5.(2015·贵阳七校联盟)已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线y =2x 上,则sin ⎝⎛⎭⎪⎫2θ+π4的值为( )A .-7210 B.7210 C .-210D.210[解析] 由三角函数的定义得tan θ=2,cos θ=±55,所以tan 2θ=2tan θ1-tan 2θ=-43,cos 2θ=2cos 2θ-1=-35,所以sin 2θ=cos 2θtan 2θ=45,所以sin ⎝ ⎛⎭⎪⎫2θ+π4=22(sin 2θ+cos 2θ)=22×⎝ ⎛⎭⎪⎫45-35=210,故选D.[答案] D6.(2015·河南郑州质量预测)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin(B +A )+sin(B -A )=3sin 2A ,且c =7,C =π3,则△ABC 的面积是( )A.334B.736C.213D.334或736[解析] sin(B +A )=sin B cos A +cos B sin A ,sin(B -A )=sin B cos A -cosB sin A ,sin 2A =2sin A cos A ,sin(B +A )+sin(B -A )=3sin 2A ,即2sin B cos A =6sin A cos A .当cos A =0时,A =π2,B =π6,又c =7,得b =213.由三角形面积公式知S =12bc =736;当cos A ≠0时,由2sin B cos A =6sin A cos A 可得sin B =3sin A ,根据正弦定理可知b =3a ,再由余弦定理可知cos C =a 2+b 2-c 22ab =a 2+9a 2-76a 2=cos π3=12,可得a =1,b =3,所以此时三角形的面积为S =12ab sin C =334.综上可得三角形的面积为736或334,所以选D.[答案] D 二、填空题7.(2014·温州十校联考)已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α,则sin 2α等于________. [解析] 由cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α得,cos 2α-sin 2α=22cos α+22sin α,而α为锐角,∴cos α+sin α≠0,∴cos α-sin α=22,两边平方得,1-sin 2α=12,∴sin 2α=12.[答案] 128.(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] 由sin B =12得B =π6或5π6,因为C =π6,所以B ≠5π6,所以B =π6,于是A =2π3.由正弦定理,得3sin 2π3=b12,所以b =1. [答案] 19.(2015·贵阳质检)在△ABC 中,a ,b ,c 为∠A ,∠B ,∠C 的对边,若cos 2B +cos B +cos(A -C )=1,b =7,则a 2+c 2的最小值为____________.[解析] ∵cos 2B +cos B +cos(A -C )=1,∴-cos(A +C )+cos(A -C )=1-cos 2B,2sin A sin C =2sin 2B ,由正弦定理得ac =b 2,即7=ac ≤12(a 2+c 2)(当且仅当a =c 时等号成立),∴a 2+c 2的最小值为14.[答案] 14 三、解答题10.已知在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,且a =3,b =3,cos B =13.(1)求c 的值; (2)求cos(B -C )的值.[解] (1)因为b 2=a 2+c 2-2ac cos B ,且a =3,b =3,cos B =13,所以9=9+c 2-2×3c ×13, 解得c =2或0(舍去),故c =2. (2)在△ABC 中,sin B =1-cos 2B =223,由正弦定理,得sin C =c b sin B =23×223=429,因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =79,于是cos(B -C )=cos B cos C +sin B sin C =13×79+223×429=2327. 11.(2015·山西太原一模)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. [解] (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab , ∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4,联立⎩⎨⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎨⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∴B =π2.∵C =π3,∴A =π6.综上所述,A =π2或A =π6.12.(2015·辽宁五校期末)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合; (2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a 的取值范围.[解] (1)f (x )=2cos 2x -sin ⎝⎛⎭⎪⎫2x -7π6=(1+cos 2x )-⎝ ⎛⎭⎪⎫sin 2x cos 7π6-cos 2x sin 7π6=1+32sin 2x +12cos 2x =1+sin ⎝ ⎛⎭⎪⎫2x +π6. ∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数取最大值时x 的取值集合为 ⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z .(2)由题意,f (A )=sin ⎝⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝ ⎛⎭⎪⎪⎫b +c 22=1,即a 2≥1,当且仅当b =c =1时取等号. 又由b +c >a 得a <2,∴a 的取值范围是[1,2).。

2020年高考数学(理)二轮专项复习专题04 导数(含答案)

2020年高考数学(理)二轮专项复习专题04 导数(含答案)

2020年高考数学(理)二轮专项复习专题04 导数导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用.在本专题中,我们将复习导数的概念及其运算,体会导数的思想及其内涵;应用导数探索函数的单调性、极值等性质,感受导数在解决数学问题和实际问题中的作用.导数的相关问题主要围绕以下三个方面:导数的概念与运算,导数的应用,定积分与微积分基本定理.§4-1 导数概念与导数的运算【知识要点】1.导数概念:(1)平均变化率:对于函数y =f (x ),定义1212)()(x x x f x f --为函数y =f (x )从x 1到x 2的平均变化率.换言之,如果自变量x 在x 0处有增量∆x ,那么函数f (x )相应地有增量f (x 0+∆x )-f (x 0),则比值xx f x x f ∆-∆+)()(00就叫做函数y =f (x )从x 0到x 0+∆x 之间的平均变化率.(2)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率是xx f x x f x ∆-∆+→∆)()(lim000,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即xx f x x f x f x ∆-∆+='→∆)()(lim )(0000.(3)函数y =f (x )的导函数(导数):当x 变化时,f ′(x )是x 的一个函数,我们称它为函数y =f (x )的导函数(简称导数),即xx f x x f x f x ∆-∆+='→∆)()(lim)(0.2.导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0). 3.导数的运算:(1)几种常见函数的导数: ①(C )′=0(C 为常数);②(x n )′=nx n -1(x >0,n ∈Q *); ③(sin x )′=cos x ; ④(cos x )′=-sin x ; ⑤(e x )′=e x ;⑥(a x )′=a x ln a (a >0,且a ≠1);⑦x x 1)(ln =; ⑧e xx a a log 1)(log =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x );②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . (3)简单的复合函数(仅限于形如f (ax +b ))的导数:设函数y =f (u ),u =g (x ),则函数y =f (u )=f [g (x )]称为复合函数.其求导步骤是:x y '=u f '·x g ',其中u f '表示f 对u 求导,x g '表示g 对x 求导.f 对u 求导后应把u 换成g (x ). 【复习要求】1.了解导数概念的实际背景; 2.理解导数的几何意义;3.能根据导数定义求函数y =C ,y =x ,y =x 2,y =x 3,x y xy ==,1的导数; 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 5.理解简单复合函数(仅限于形如f (ax +b ))导数的求法. 【例题分析】例1 求下列函数的导数:(1)y =(x +1)(x 2-1);(2)11+-=x x y ; (3)y =sin2x ; (4)y =e x ·ln x .解:(1)方法一:y ′=(x +1)′(x 2-1)+(x +1)(x 2-1)′=x 2-1+(x +1)·2x =3x 2+2x -1.方法二:∵y =(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=(x 3+x 2-x -1)′=3x 2+2x -1.(2)方法一:⋅+=+--+=+'+--+'-='+-='222)1(2)1()1()1()1()1)(1()1()1()11(x x x x x x x x x x x y 方法二:∵12111.+-=+-=x x x y ,∴2)1(2)12()121('+='+-='+-=x x x y . (3)方法一:y'=(sin2x )'=(2sin x · cos x )'=2[(sin x )'·cos x +sin x ·(cos x )']=2(cos 2x -sin 2x )=2cos2x . 方法二:y'=(sin2x )'·(2x )'=cos2x ·2=2cos2x .(4))(ln e ln )e ('+'='⋅⋅x x y xx=xx xxx x x e )1(ln e ln e ⋅⋅+=+.【评析】理解和掌握求导法则和式子的结构特点是求导运算的前提条件.运用公式和求导法则求导数的基本步骤为:①分析函数y =f (x )的结构特征;②选择恰当的求导法则和导数公式求导数; ③化简整理结果.应注意:在可能的情况下,求导时应尽量减少使用乘法的求导法则,可在求导前利用代数、三角恒等变形等方法对函数式进行化简,然后再求导,这样可减少运算量.(如(1)(2)题的方法二较方法一简捷).对于(3),方法一是使用积的导数运算公式求解,即使用三角公式将sin2x 表示为sin x 和cos x 的乘积形式,然后求导数;方法二是从复合函数导数的角度求解.方法二较方法一简捷.对利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数要熟练、准确. 例2 (1)求曲线y =x 2在点(1,1)处的切线方程;(2)过点(1,-3)作曲线y =x 2的切线,求切线的方程.【分析】对于(1),根据导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,可求出切线的斜率,进而由直线方程的点斜式求得切线方程.对于(2),注意到点(1,-3)不在曲线y =x 2上,所以可设出切点,并通过导数的几何意义确定切点的坐标,进而求出切线方程.解:(1)曲线y =x 2在点(1,1)处的切线斜率为y ′=2x |x =1=2, 从而切线的方程为y -1=2(x -1),即2x -y -1=0.(2)设切点的坐标为),(20x x . 根据导数的几何意义知,切线的斜率为y '=2x |0x x ==2x 0,从而切线的方程为).(20020x x x x y -=- 因为这条切线过点(1,-3),所以有)1(23002x x x -=--, 整理得03202=--x x ,解得x 0=-1,或x 0=3. 从而切线的方程为y -1=-2(x +1),或y -9=6(x -3),即切线的方程为2x +y +1=0,或6x -y -9=0.【评析】用导数求曲线的切线方程,常依据的条件是:①函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率, 即k =f '(x 0);②切点既在切线上又在曲线上,即切点的坐标同时满足切线与曲线的方程.例3设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f '(x )的最小值为-12.求a ,b ,c 的值. 【分析】本题考查函数的奇偶性、二次函数的最值、导数的几何意义等基础知识,以及推理能力和运算能力.题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、b 、c 的值. 解:∵f (x )为奇函数, ∴f (-x )=-f (x ), 即-ax 3-bx +c =-ax 3-bx -c , ∴c =0.∵f '(x )=3ax 2+b 的最小值为-12, ∴b =-12. 又直线x -6y -7=0的斜率为61,因此,f '(1)=3a +b =-6, ∴a =2. 综上,a =2,b =-12,c =0. 例4 已知a >0,函数a x x f -=1)(,x ∈(0,+∞).设ax 201<<,记曲线y =f (x )在点M (x 1,f (x 1))处的切线为l .(1)求l 的方程;(2)设l 与x 轴的交点是(x 2,0),证明:ax 102≤<. 【分析】对于(1),根据导数的几何意义,不难求出l 的方程;对于(2),涉及到不等式的证明,依题意求出用x 1表示的x 2后,将x 2视为x 1的函数,即x 2=g (x 1),结合要证明的结论进行推理. 解:(1)对f (x )求导数,得21)(x x f -=',由此得切线l 的方程为: )(1)1(1211x x x a x y --=--. (2)依题意,切线方程中令y =0,得211112122)1(ax x x a x x x -=+-=.由ax 201<<,及)2(2112112ax x ax x x -=-=,有x 2>0; 另一方面,aa x a ax x x 1)1(2212112+--=-=,从而有ax 102≤<,当且仅当a x 11=时,a x 12=.【评析】本题考查的重点是导数的概念和计算、导数的几何意义及不等式的证明.涉及的基础知识都比较基本,题目难度也不大,但把导数的相关知识与不等式等内容有机整合,具有一定新意,体现了导数作为工具分析和解决一些函数性质问题的方法.本题中的(2)在证明ax 102≤<时,还可用如下方法: ①作法,.0)1(1211212112≥-=+-=-ax aax x a x a②利用平均值不等式,aax ax a ax ax a ax x x 1)22(1)2)((1)2(21111112=-+≤-=-=.例5 设函数),(1)('Z ∈++=b a bx ax x f ,曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f'(x )的解析式;(2)证明:曲线y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 解:(1)2)(1)('b x a x f +-=,于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,12122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a ,b ∈Z ,所以⋅-+=11)(x x x f(2)证明:已知函数y 1=x ,xy 12=都是奇函数, 所以函数xx x g 1)(+=也是奇函数,其图象是以原点为中心的中心对称图形. 而1111)(+-+-=x x x f , 可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点)11,(000-+x x x . 由200)1(11)('--=x x f 知,过此点的切线方程为)]()1(11[110200020x x x x x x y ---=-+--. 令x =1得1100-+=x x y ,切线与直线x =1交点为)11,1(00-+x x ; 令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1).直线x =1与直线y =x 的交点为(1,1); 从而所围三角形的面积为2|22||12|21|112||111|2100000=--=----+⋅⋅x x x x x . 所以,所围三角形的面积为定值2. 练习4-1一、选择题:1.(tan x )′等于( ) (A)x2sin 1(B)x2sin 1-(C)x 2cos 1(D)x2cos 1-2.设f (x )=x ln x ,若f '(x 0)=2,则x 0等于( ) (A)e 2(B)e(C)22ln (D)ln23.函数y =ax 2+1的图象与直线y =x 相切,则a 等于( ) (A)81 (B)41 (C)21 (D)14.曲线x y 21e =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )(A)2e 29 (B)4e 2(C)2e 2(D)e 2二、填空题: 5.f '(x )是1231)(3++=x x x f 的导函数,则f '(-1)=______. 6.若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f '(1)=______. 7.过原点作曲线y =e x 的切线,则切点的坐标为______;切线的斜率为______. 8.设函数f (x )=xe kx (k ≠0),则曲线y =f (x )在点(0,f (0))处的切线方程是______. 三、解答题:9.求下列函数的导数: (1)y =x -e x ; (2)y =x 3+cos x ; (3)y =(x +1)(x +2)(x +3);(4)⋅=xxy ln10.已知抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1),且该曲线在点B 处的切线方程为y =x -3,求a 、b 、c 的值.11.求曲线24121232-=-=x y x y 与在交点处的两条切线的夹角的大小.§4-2 导数的应用【知识要点】1.利用导数判断函数的单调性:(1)函数的单调性与其导函数的正负有如下关系:设函数f (x )在区间(a ,b )内可导, ①如果恒有f '(x )>0,那么函数f (x )在区间(a ,b )内单调递增; ②如果恒有f '(x )<0,那么函数f (x )在区间(a ,b )内单调递减.值得注意的是,若函数f (x )在区间(a ,b )内有f '(x )≥0(或f '(x )≤0),但其中只有有限个点使得f '(x )=0,则函数f (x )在区间(a ,b )内仍是增函数(或减函数).(2)一般地,如果一个函数在某一范围内的导数的绝对值越大,说明这个函数在这个范围内变化得快.这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就比较“平缓”.2.利用导数研究函数的极值:(1)设函数f (x )在点x 0附近有定义,如果对x 0附近所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,x 0是极大值点;如果对x 0附近所有的点,都有f (x )>f (x 0),就说f (x 0)是函数f (x )的一个极小值,x 0是极小值点.(2)需要注意,可导函数的极值点必是导数为零的点,但导数为零的点不一定是极值点.如y =x 3在x =0处的导数值为零,但x =0不是函数y =x 3的极值点.也就是说可导函数f (x )在x 0处的导数f '(x 0)=0是该函数在x 0处取得极值的必要但不充分条件.(3)函数f (x )在区间[a ,b ]上的最值:f (x )在区间[a ,b ]上的最大值(或最小值)是f (x )在区间(a ,b )内的极大值(或极小值)及f (a )、f (b )中的最大者(或最小者).(4)应注意,极值只是相对一点附近的局部性质,而最值是相对整个定义域内的整体性质. 【复习要求】1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次);3.会利用导数解决某些实际问题. 【例题分析】例1 求下列函数的单调区间: (1)f (x )=x 3-3x ; (2)f (x )=3x 2-2ln x ; (3)2)1(2)(--=x bx x f .解:(1)f (x )的定义域是R ,且f '(x )=3x 2-3,所以函数f (x )的减区间是(-1,1),增区间是(-∞,-1)和(1,+∞). (2)f (x )的定义域是(0,+∞),且xx x f 26)(-=', 令f ′(x )=0,得33,3321-==x x .列表分析如下:所以函数f (x )的减区间是)33,0(,增区间是),33(+∞. (3)f (x )的定义域为(-∞,1)∪(1,+∞),求导数得3342)1()1(2)1(222)1()1(2)2()1(2)(---=--+-=-----='⋅x x b x b x x x b x x x f .令f ′(x )=0,得x =b -1.①当b -1<1,即b <2时,f ′(x )的变化情况如下表:所以,当b <2时,函数f (x )在(-∞,b -1)上单调递减,在(b -1,1)上单调递增,在(1,+∞)上单调递减. ②当b -1>1,即b >2时,f ′(x )的变化情况如下表:所以,当b >2时,f (x )在(-∞,1)上单调递减,在(1,b -1)上单调递增,在(b -1,+∞)上单调递减. ③当b -1=1,即b =2时,12)(-=x x f ,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递减. 【评析】求函数f (x )的单调区间的步骤是:①确定f (x )的定义域(这一步必不可少,单调区间是定义域的子集); ②计算导数f ′(x );③求出方程f ′(x )=0的根;④列表考察f ′(x )的符号,进而确定f (x )的单调区间(必要时要进行分类讨论). 例2求函数44313+-=x x y 的极值. 解:y ′=x 2-4=(x +2)(x -2),令y ′=0,解得x 1=-2,x 2=2. 列表分析如下:所以当x =-2时,y 有极大值3;当x =2时,y 有极小值3-. 【评析】求函数f (x )的极值的步骤是:①计算导数f ′(x );②求出方程f ′(x )=0的根;③列表考察f ′(x )=0的根左右值的符号:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.例3 已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 解:(1)f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3.所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ′(x )>0,所以f (x )在[-1,2]上单调递增,又由于f (x )在[-2,-1]上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值.于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.【评析】求函数f (x )在闭区间[a ,b ]上最值的方法: ①计算导数f ′(x );②求出方程f ′(x )=0的根x 1,x 2,…;③比较函数值f (x 1),f (x 2),…及f (a )、f (b )的大小,其中的最大(小)者就是f (x )在闭区间[a ,b ]上最大(小)值. 例4 设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)【分析】本题给出的信息量较大,并且还都是抽象符号函数.解答时,首先要标出重要的已知条件,从这些条件入手,不断深入研究.由f ′(x )g (x )+f (x )g ′(x )>0你能产生什么联想?它和积的导数公式很类似,整理可得[f (x )g (x )]′>0.令h (x )=f (x )g (x ),则当x <0时,h (x )是增函数.再考虑奇偶性,函数h (x )是奇函数.还有一个已知条件g (-3)=0,进而可得h (-3)=f (-3)g (-3)=0,这样我们就可以画出函数h (x )的示意图,借助直观求解.答案:D.例5 求证:当x >0时,1+x <e x .分析:不等式两边都是关于x 的函数,且函数类型不同,故可考虑构造函数f (x )=1+x -e x ,通过研究函数f (x )的单调性来辅助证明不等式.证明:构造函数f (x )=1+x -e x ,则f ′(x )=1-e x . 当x >0时,有e x >1,从而f ′(x )=1-e x <0,所以函数f (x )=1+x -e x 在(0,+∞)上单调递减, 从而当x >0时,f (x )<f (0)=0, 即当x >0时,1+x <e x .【评析】通过构造函数,利用函数的单调性证明不等式是常用方法之一,而借助导数研究函数单调性辅助证明不等式突出了导数的工具性作用.例6用总长14.8 m 的钢条制作一个长方体容器的框架,如果容器底面的长比宽多0.5 m ,那么长和宽分别为多少时容器的容积最大?并求出它的最大容积.解:设容器底面长方形宽为x m ,则长为(x +0.5)m ,依题意,容器的高为x x x 22.3)]5.0(448.14[41-=+--.显然⎩⎨⎧>->,022.3,0x x ⇒0<x <1.6,即x 的取值范围是(0,1.6).记容器的容积为y m 3,则y =x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x x ∈(0,1.6). 对此函数求导得,y ′=-6x 2+4.4x +1.6.令y ′>0,解得0<x <1;令y ′<0,解得1<x <1.6.所以,当x =1时,y 取得最大值1.8,这时容器的长为1+0.5=1.5.答:容器底面的长为1.5m 、宽为1m 时,容器的容积最大,最大容积为1.8m 3.【评析】解决实际优化问题的关键在于建立数学模型(目标函数),通过把题目中的主要关系(等量和不等量关系)形式化,把实际问题抽象成数学问题,再选择适当的方法求解.例7 已知f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2. (1)求f (x )的解析式;(2)证明对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.【分析】对于(1)题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、c 、d 的值;对于(2)可通过研究函数f (x )的最值加以解决.解:(1)由f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,知f (0)=0,解得d =0, 所以f (x )=ax 3+cx (a ≠0),f ′(x )=3ax 2+c (a ≠0).由当x =1时,f (x )取得极值-2,得f (1)=a +c =-2,且f ′(1)=3a +c =0,解得 a =1,c =-3, 所以f (x )=x 3-3x .(2)令f ′(x )>0,解得x <-1,或x >1;令f ′(x )<0,解得-1<x <1,从而函数f (x )在区间(-∞,-1)内为增函数,(-1,1)内为减函数,在(1,+∞)内为增函数. 故当x ∈[-1,1]时,f (x )的最大值是f (-1)=2,最小值是f (1)=-2, 所以,对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<2-(-2)=4.【评析】使用导数判断函数的单调性,进而解决极值(最值)问题是常用方法,较为简便. 例8 已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x .令f ′(x )>0,解得e 1>x ; 令f ′(x )<0,解得e 10<<x . 从而f (x )在)e 1,0(单调递减,在),e 1(+∞单调递增.所以,当e 1=x 时,f (x )取得最小值e1-.(2)解法一:令g (x )=f (x )-(ax -1),则g ′(x )=f ′(x )-a =1-a +ln x ,①若a ≤1,当x >1时,g ′(x )=1-a +ln x >1-a ≥0, 故g (x )在(1,+∞)上为增函数,所以,x ≥1时,g (x )≥g (1)=1-a ≥0,即f (x )≥ax -1.②若a >1,方程g ′(x )=0的根为x 0=e a -1,此时,若x ∈(1,x 0),则g ′(x )<0,故g (x )在该区间为减函数. 所以,x ∈(1,x 0)时,g (x )<g (1)=1-a <0, 即f (x )<ax -1,与题设f (x )≥ax -1相矛盾. 综上,满足条件的a 的取值范围是(-∞,1].解法二:依题意,得f (x )≥ax -1在[1,+∞)上恒成立,即不等式x x a 1ln +≤对于x ∈[1,+∞)恒成立. 令xx x g 1ln )(+=,则)11(111)(2x x x x x g -=-='.当x >1时,因为0)11(1)(>-='xx x g ,故g (x )是(1,+∞)上的增函数,所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1]. 例9 已知函数)1ln()1(1)(-+-=x a x x f n,其中n ∈N *,a 为常数. (1)当n =2时,求函数f (x )的极值;(2)当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1. 解:(1)由已知得函数f (x )的定义域为{x |x >1},当n =2时,)1ln()1(1)(2-+-=x a x x f ,所以32)1()1(2)('x x a x f ---=. ①当a >0时,由f (x )=0得121,12121<-=>+=ax a x , 此时321)1())(()(x x x x x a x f ----='. 当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0,f (x )单调递增. ②当a ≤0,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时, 当a >0时,f (x )在ax 21+=处取得极小值,极小值为)2ln 1(2)21(a a a f +=+. 当a ≤0时,f (x )无极值.(2)证法一:因为a =1,所以)1ln()1(1)(-+-=x x x f n. 当n 为偶数时,令)1ln()1(11)(-----=x x x x g n,则)2(0)1(1211)1(1)(11≥>-+--=---+='++x x nx x x x n x g n n .所以当x ≥2时,g (x )单调递增,又g (2)=0, 因此0)2()1ln()1(11)(=≥-----=g x x x x g n恒成立,所以f (x )≤x -1成立.当n 为奇数时,要证f (x )≤x -1,由于0)1(1<-nx ,所以只需证ln(x -1)≤x -1, 令h (x )=x -1-ln(x -1), 则)2(012111)(≥≥--=--='x x x x x h . 所以,当x ≥2时,h (x )=x -1-ln(x -1)单调递增,又h (2)=1>0, 所以,当x ≥2时,恒有h (x )>0,即ln(x -1)<x -1成立. 综上所述,结论成立. 证法二:当a =1时,)1ln()1(1)(-+-=x x x f n.当x ≥2时,对任意的正整数n ,恒有1)1(1≤-nx ,故只需证明1+ln(x -1)≤x -1.令h (x )=x -1-[1+ln(x -1)]=x -2-ln(x -1),x ∈[2,+∞), 则12111)(--=--='x x x x h , 当x ≥2时,h ′(x )≥0,故h (x )在[2,+∞)上单调递增,因此当x ≥2时,h (x )≥h (2)=0,即1+ln(x -1)≤x -1成立. 故当x ≥2时,有1)1ln()1(1-≤-+-x x x n, 即f (x )≤x -1.练习4-2一、选择题:1.函数y =1+3x -x 3有( ) (A)极小值-2,极大值2 (B)极小值-2,极大值3 (C)极小值-1,极大值1(D)极小值-1,极大值32.f '(x )是函数y =f (x )的导函数,y =f '(x )图象如图所示,则y =f (x )的图象最有可能是( )3.函数f (x )=ax 3-x 在R 上为减函数,则a 的取值范围是( ) (A)a <0(B)a ≤0(C)31<a (D)31≤a 4.设a ∈R ,若函数f (x )=e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是( ) (A)a <-1 (B)a >-1(C)e1-<a (D)e1->a 二、填空题:5.函数f (x )=x 3-3ax 2+2bx 在x =1处取得极小值-1,则a +b =______. 6.函数y =x (1-x 2)在[0,1]上的最大值为______.7.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上的最小值为-37,则实数a =______.8.有一块边长为6m 的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器,为使其容积最大,截下的小正方形边长为______m . 三、解答题:9.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象过点P (1,2),且在点P 处的切线斜率为8. (1)求a ,b 的值;(2)求函数f (x )的单调区间;(3)求函数f (x )在区间[-1,1]上的最大值与最小值.10.当)2π,0( x 时,证明:tan x >x .11.已知函数f (x )=e x -e -x .(1)证明:f (x )的导数f '(x )≥2;(2)若对所有x ≥0都有f (x )≥ax ,求a 的取值范围.专题04 导数参考答案练习4-1一、选择题:1.C 2.B 3.B 4.D二、填空题:5.3 6.4 7.(1,e);e 8.y =x 三、解答题:9.(1)y '=1-e x ;(2)y '=3x 2-sin x ;(3)y '=3x 2+12x +11;(4)2ln 1xxy -=10.略解:因为抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1)两点,所以a +b +c =1.① 4a +2b +c =-1.②因为y '=2ax +b ,所以y '|x =2=4a +b .故4a +b =1.③ 联立①、②、③,解得a =3,b =-11,c =9.11.解:由01622412122332=-+⇒⎪⎪⎩⎪⎪⎨⎧-=-=x x x y x y ,所以(x -2)(x 2+4x +8)=0,故x =2,所以两条曲线只有一个交点(2,0).对函数2212x y -=求导数,得y ′=-x , 从而曲线2212x y -=在点(2,0)处切线的斜率是-2.对函数2413-=x y 求导数,得243'x y =,从而曲线2413-=x y 在点(2,0)处切线的斜率是3.设两条切线的夹角为α ,则1|3)2(132|tan =⨯-+--=α,所以两条切线的夹角的大小是45°. 练习4-2一、选择题:1.D 2.C 3.B 4.A 二、填空题: 5.61-6.932 7.3 8.1三、解答题:9.解:(1)a =4,b =-3.(2)函数f (x )的单调增区间为(-∞,-3),),31(+∞;减区间为)31,3(-. (3)函数f (x )在[-1,1]上的最小值为2714-,最大值为6. 10.证明:设f (x )=tan x -x ,)2π,0(∈x .则0tan 1cos 11)'cos sin ()(2.2>=-=-='x xx x x f ,所以函数f (x )=tan x -x 在区间)2π,0(内单调递增. 又f (0)=0,从而当)2π,0(∈x 时,f (x )>f (0)恒成立, 即当)2π,0(∈x 时,tan x >x . 11.解:(1)f (x )的导数f '(x )=e x +e -x .由于2e e 2ee =≥+--⋅x x xx ,故f '(x )≥2,当且仅当x =0时,等号成立.(2)令g (x )=f (x )-ax ,则g '(x )=f '(x )-a =e x +e -x -a ,①若a ≤2,当x >0时,g '(x )=e x +e -x -a >2-a ≥0, 故g (x )在(0,+∞)上为增函数,所以,x ≥0时,g (x )≥g (0),即f (x )≥ax .②若a >2,方程g '(x )=0的正根为24ln 21-+=a a x ,此时,若x ∈(0,x 1),则g ′(x )<0,故g (x )在该区间为减函数.所以,x ∈(0,x 1)时,g (x )<g (0)=0,即f (x )<ax ,与题设f (x )≥ax 相矛盾. 综上,满足条件的a 的取值范围是(-∞,2].习题4一、选择题:1.B 2.B 3.A 4.D 5.C 二、填空题:6.1 7.-2 8.5;-15 9.y =-3x 10.61 三、解答题:11.(1)f '(x )=(1+kx )e kx ,令(1+kx )e kx =0,得)0(1=/-=k kx . 若k >0,则当)1,(k x --∞∈时,f '(x )<0,函数f (x )单调递减;当),1(+∞-∈kx 时,f '(x )>0,函数f (x )单调递增.若k <0,则当)1,(kx --∞∈时,f '(x )>0,函数f (x )单调递增;当),1(+∞-∈kx 时,f '(x )<0,函数f (x )单调递减.(2)若k >0,则当且仅当11-≤-k,即k ≤1时,函数f (x )在区间(-1,1)内单调递增;若k <0,则当且仅当11≥-k ,即k ≥-1时,函数f (x )在区间(-1,1)内单调递增.综上,函数f (x )在区间(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 12.解:(1)f '(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2取得极值,则有f '(1)=0,f '(2)=0.即⎩⎨⎧=++=++.031224,0366b a b a 解得a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f '(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f '(x )>0;当x ∈(1,2)时,f '(x )<0;当x ∈(2,3)时,f '(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以 9+8c <c 2,解得c <-1或c >9,因此c 的取值范围为(-∞,-1)∪(9,+∞).13.解:对函数f (x )求导得:f '(x )=e ax (ax +2)(x -1).(1)当a =2时,f '(x )=e 2x (2x +2)(x -1). 令f '(x )>0,解得x >1或x <-1; 令f '(x )<0,解得-1<x <1.所以,f (x )单调增区间为(-∞,-1),(1,+∞);f (x )单调减区间为(-1,1).(2)令f '(x )=0,即(ax +2)(x -1)=0,解得ax 2-=,或x =1. 由a >0时,列表分析得:当a x -<时,因为0,,02>>->a a x x ,所以02>--a x x ,从而f (x )>0. 对于a x 2-≥时,由表可知函数在x =1时取得最小值01)1(<-=a e af ,所以,当x ∈R 时,a af x f e 1)1()(min -==.由题意,不等式03)(≥+ax f 对x ∈R 恒成立,所以得031≥+-ae a a ,解得0<a ≤ln3.14.(1)解:对函数f (x )求导数,得x a x x f 21)('++=.依题意有f '(-1)=0,故23=a .从而23)1)(12(23132)(2+++=+++='x x x x x x x f . f (x )的定义域为),23(+∞-,当123-<<-x 时,f '(x )>0; 当211-<<-x 时,f '(x )<0; 当21->x 时,f ′(x )>0. 从而,f (x )分别在区间),21(),1,23(+∞---内单调递增,在区间)21,1(--内单调递减.(2)解:f (x )的定义域为(-a ,+∞),ax ax x x f +++=122)(2.方程2x 2+2ax +1=0的判别式∆=4a 2-8. ①若∆<0,即22<<-a ,在f (x )的定义域内f '(x )>0,故f (x )无极值.②若∆=0,则2=a 或.2-=a若⋅++='+∞-∈=2)12()(),,2(,22x x x f x a 当22-=x 时,f '(x )=0, 当)22,2(--∈x 或),22(+∞-∈x 时,f '(x )>0,所以f (x )无极值.若),2(,2+∞∈-=x a ,f '(x )2)12(2--=x x >0,f (x )也无极值.③若∆>0,即2>a 或2-<a ,则2x 2+2ax +1=0有两个不同的实数根22,222221-+-=---=a a x a a x .当2-<a 时,x 1<-a ,x 2<-a ,从而f ′(x )在f (x )的定义域内没有零点,故f (x )无极值. 当2>a 时,x 1>-a ,x 2>-a ,f '(x )在f (x )的定义域内有两个不同的零点,所以f (x )在x =x 1,x =x 2处取得极值.综上,f (x )存在极值时,a 的取值范围为),2(+∞. f (x )的极值之和为f (x 1)+f (x 2)=ln(x 1+a )+x 12+ln(x 2+a )+x 22 =ln[(x 1+a )(x 2+a )]+(x 1+x 2)2-2x 1x 2=ln21+a 2-1>1-ln2=ln 2e.。

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2

2020新课标高考数学(理)二轮总复习(课件+专题限时训练)1-6-2

专题限时训练 (小题提速练)(建议用时:45分钟)一、选择题1.若∀x 1,x 2∈⎝ ⎛⎭⎪⎫0,π2,x 2>x 1,y 1=sin x 1x 1,y 2=sin x 2x 2,则( ) A .y 1=y 2 B .y 1>y 2 C .y 1<y 2D .y 1,y 2的大小关系不能确定 答案:B解析:设y =sin x x ,则y ′=(sin x )′·x -sin x ·(x )′x 2=x cos x -sin x x 2.因为在⎝ ⎛⎭⎪⎫0,π2上x <tan x ,所以x cos x -sin x <0,所以y ′<0,所以y =sin x x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以y 1>y 2.2.若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,2) C.⎣⎢⎡⎭⎪⎫1,32 D .⎣⎢⎡⎭⎪⎫32,2答案:C解析:f ′(x )=4x -1x =(2x -1)(2x +1)x .∵x >0,∴由f ′(x )=0得x =12.令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12.由题意得⎩⎨⎧k -1≥0,k -1<12<k +1⇒1≤k <32.3.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .[0,1)B .(-1,1) C.⎝ ⎛⎭⎪⎫0,12 D .(0,1)答案:D解析:f ′(x )=3x 2-3a =3(x 2-a ). 当a ≤0时,f ′(x )>0,∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增, 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值.4.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案:D解析:∵2x (x -a )<1,∴a >x -12x . 令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞).5.(2019·曲靖二模)已知偶函数f (x )的定义域是(-∞,0)∪(0,+∞),其导函数为f ′(x ),对定义域内的任意x ,都有2f (x )+xf ′(x )>0成立,若f (2)=1,则不等式x 2f (x )<4的解集为( ) A .{x |x ≠0,±2} B .(-2,0)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-2)∪(0,2) 答案:B解析:令g (x )=x 2f (x )-4,g (2)=0. ∵g (-x )=x 2f (-x )-4=x 2f (x )-4=g (x ),∴g (x )在定义域(-∞,0)∪(0,+∞)上为偶函数.当x >0时,g ′(x )=2xf (x )+x 2f ′(x )=x [2f (x )+xf ′(x )]>0成立. ∴函数g (x )在(0,+∞)上为增函数. ∴不等式x 2f (x )<4⇔g (|x |)<g (2). ∴|x |<2,x ≠0.解得x ∈(-2,0)∪(0,2).6.已知f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ) A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b ) D .bf (b )≤f (a )答案:A解析:因为xf ′(x )≤-f (x ),f (x )≥0, 所以⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2≤-2f (x )x 2≤0,则函数f (x )x 在(0,+∞)上单调递减. 由于0<a <b ,则f (a )a ≥f (b )b ,即af (b )≤bf (a ).7.(2019·甘肃模拟)若点(m ,n )在函数f (x )=13x 3-x (x >0)的图象上,则n -m +22的最小值是( ) A.13 B .23 C.223 D .2 2答案:C解析:∵点(m,n)在函数f(x)=13x3-x(x>0)的图象上,∴n=13m3-m,则n-m+22=13m3-2m+2 2.令g(m)=13m3-2m+22(m>0),则g′(m)=m2-2,可得g(m)在(0,2)递减,在(2,+∞)递增,∴g(m)的最小值是g(2)=223.8.定义在R上的函数f(x)的导函数为f′(x),已知f(x+1)是偶函数,且(x-1)f′(x)<0.若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.不确定答案:C解析:由(x-1)f′(x)<0可知,当x>1时,f′(x)<0,函数单调递减.当x<1时,f′(x)>0,函数单调递增.因为函数f(x+1)是偶函数,所以f(x+1)=f(1-x),f(x)=f(2-x),即函数f(x)图象的对称轴为x=1.所以,若1≤x1<x2,则f(x1)>f(x2);若x1<1,则x2>2-x1>1,此时有f(x2)<f(2-x1),又f(2-x1)=f(x1),所以f(x1)>f(x2).综上,必有f(x1)>f(x2).9.已知函数f(x)=ax-1+ln x,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是()A.a>2 B.a<3 C.a≤1 D.a≥3 答案:C解析:函数f(x)的定义域是(0,+∞),不等式ax-1+ln x≤0有解,即a≤x-x ln x在(0,+∞)上有解,令h(x)=x-x ln x,可得h′(x)=1-(ln x+1)=-ln x.令h′(x)=0,可得x=1,当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,可得当x=1时,函数h (x )=x -x ln x 取得最大值1,要使不等式a ≤x -x ln x 在(0,+∞)上有解,只要a 小于等于h (x )的最大值即可,即a ≤1.10.直线y =a 分别与直线y =2(x +1),曲线y =x +ln x 交于点A ,B ,则|AB |的最小值为( ) A .3 B .2 C.324 D .32答案:D解析:解方程2(x +1)=a ,得x =a2-1.设方程x +ln x =a 的根为t (t >0),则t +ln t =a , 则|AB |=⎪⎪⎪⎪⎪⎪t -a 2+1=⎪⎪⎪⎪⎪⎪t -t +ln t 2+1=⎪⎪⎪⎪⎪⎪t 2-ln t 2+1. 设g (t )=t 2-ln t2+1(t >0), 则g ′(t )=12-12t =t -12t (t >0).令g ′(t )=0,得t =1.当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为32.11.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]答案:C解析:当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x ,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)·(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6.同理,当x ∈[-2,0)时,得a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立, 故实数a 的取值范围为[-6,-2].12.设函数f (x )=3sin πm x ,若存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2.则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案:C解析:由正弦函数的图象知,f (x )的极值点x 0满足f (x 0)=±3. ∴πx 0m =k π+π2,k ∈Z .∴x 0=⎝ ⎛⎭⎪⎫k +12·m .∴不等式x 20+f 2(x 0)<m 2⇔⎝ ⎛⎭⎪⎫k +122m 2+3<m 2(k ∈Z )⇔m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3(k ∈Z ). 存在f (x )的极值点x 0满足x 20+f 2(x 0)<m 2⇔存在整数k 使不等式m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3成立.当k ≠0且k ≠-1时,必有⎝ ⎛⎭⎪⎫k +122>1,此时不等式显然不成立.∴k =0或-1时,m 2·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫k +122>3⇔34m 2>3⇔m >2或m <-2. 二、填空题13.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是__________. 答案:⎝ ⎛⎭⎪⎫-22,0解析:作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0.解得-22<m <0.14.(2019春·潍坊期中)已知函数f (x )的定义域为R ,f (-2)=-2,若对∀x ∈R ,f ′(x )<3,则不等式f (x )>3x +4的解集为________. 答案:(-∞,-2)解析:根据题意,设g (x )=f (x )-3x -4,则g ′(x )=f ′(x )-3.由对∀x ∈R ,f ′(x )<3,则g ′(x )<0,即g (x )在R 上为减函数. 又由f (-2)=-2,则g (-2)=f (-2)+6-4=0, 则f (x )>3x +4⇒f (x )-3x -4>0⇒g (x )>g (-2), 即不等式的解集为(-∞,-2).15.(2019·南开区二模)已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)<0,则实数a 的取值范围为________. 答案:⎝ ⎛⎭⎪⎫-32,1解析:∵f (x )=e x -1e x -2sin x ,∴f (-x )=e -x -e x +2sin x =-f (x ), ∵f (x )′=e x +1e x -2cos x ≥2e x ·e -x -2cos x ≥0,∴f (x )在R 上单调递增且为奇函数.由f (2a 2)+f (a -3)<0,可得f (2a 2)<-f (a -3)=f (3-a ), ∴2a 2<-a +3,解得-32<a <1. 16.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案:⎣⎢⎡⎭⎪⎫94,+∞解析:由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立.令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min .又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.专题限时训练 (大题规范练)(建议用时:30分钟)1.(2019·河南模拟)已知函数f (x )=x ln x +e. (1)若f (x )≥ax 恒成立,求实数a 的最大值; (2)设函数F (x )=e x -1f (x )-x 2-2x +1,求证:F (x )>0. 解析:(1)函数f (x )=x ln x +e 的定义域为(0,+∞), f (x )≥ax 恒成立⇔a ≤x ln x +e x .令φ(x)=x ln x+ex,则φ′(x)=x-ex2,可得φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)min=φ(e)=2,∴a≤2.故实数a的最大值为2.(2)由(1)可知f(x)≥2x,只需证明2x≥x2+2x-1e x-1.令g(x)=2x-x2+2x-1e x-1,则g′(x)=2-3-x2e x-1=2e x-1+x2-3e x-1.令h(x)=2e x-1+x2-3,h′(x)=2e x-1+2x>0在(0,+∞)恒成立.注意到h(1)=0,所以当x∈(0,1)时,h(x)<0,g′(x)<0,x∈(1,+∞)时,h(x)>0,g′(x)>0,∴g(x)在(0,1)单调递减,在(1,+∞)单调递增,∴g(x)min=g(1)=0.∴2x≥x2+2x-1e x-1.当且仅当x=1时取等号,而f(x)≥2x,当且仅当x=e时取等号,∴F(x)>0.2.(2019·蓉城名校联盟联考)已知函数f(x)=ax2-2(a+1)x+2ln x,a∈R.(1)讨论函数f(x)的单调性;(2)是否存在最大整数k,当a≤k时,对任意的x≥2,都有f(x)<e x(x-1)-ax-ln x成立?(其中e为自然对数的底数,e=2.718 28…),若存在,求出k的值;若不存在,请说明理由.解析:(1)f (x )的定义域为(0,+∞), f ′(x )=2ax -2(a +1)+2x =2(ax -1)(x -1)x,所以当a ∈(-∞,0]时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a ∈(0,1)时,f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,f (x )在(0,+∞)上单调递增;当a ∈(1,+∞)时,f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单凋递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.(2)ax 2-2(a +1)x +2ln x <e x (x -1)-ax -ln x 对x ≥2恒成立⇔ax 2-(a +2)x +3ln x <e x (x -1). ①当x =2时,得4a -(a +2)×2+3ln 2<e 2, 所以2a <e 2+4-ln 8<8+4-2=10, 所以a <5,则整数k 的最大值不超过4.下面证明:当a ≤4时,不等式①对于x ≥2恒成立, 设g (x )=ax 2-(a +2)x +3ln x -e x (x -1)(x ≥2), 则g ′(x )=2ax -(a +2)+3x -x e x . 令h (x )=2ax -(a +2)+3x -x e x .则h ′(x )=2a -3x 2-(x +1)e x <2a -(x +1)e x ≤2a -3e 2≤8-3e 2<0,所以h (x )在[2,+∞)上单调递减,所以h (x )=2ax -(a +2)+3x -x e x ≤h (2)=3a -12-2e 2≤232-2e 2<0. 即当x ∈[2,+∞)时,g ′(x )<0, 所以g (x )在[2,+∞)上单调递减,所以g(x)=ax2-(a+2)x+3ln x-e x(x-1)≤g(2)=2a-4+3ln 2-e2<8-4+3-e2=7-e2<0.所以a≤4时,不等式①恒成立,所以k的最大值为4.。

2020届高考数学(理)二轮专题复习: 专题六 解析几何 1-6-1 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题六 解析几何 1-6-1 Word版含答案.doc

限时规范训练十五 直线与圆限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.(2017·山东省实验中学二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C.由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin Aa,bx -sin B ·y +sin C=0的斜率k 2=bsin B ,故k 1k 2=-sin A a ·bsin B=-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.2.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:选D.点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或-34.3.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选 C.圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 4.两个圆C 1:x 2+y 2+2x +2y -2=0,C 2:x 2+y 2-4x -2y +1=0的公切线的条数为( ) A .1条 B .2条 C .3条D .4条解析:选 B.C 1:(x +1)2+(y +1)2=4,C 2:(x -2)2+(y -1)2=4.圆心距d =|C 1C 2|=+2++2=13.|r 1-r 2|<d <r 1+r 2,∴两圆C 1与C 2相交,有两条公切线,故选B.5.圆C :x 2+y 2-4x +8y -5=0被抛物线y 2=4x 的准线截得的弦长为( ) A .6 B .8 C .10D .12解析:选B.依题意,圆的标准方程为(x -2)2+(y +4)2=25,圆心为(2,-4),半径为5,抛物线y 2=4x 的准线为x =-1,故弦长为252-+2=8,故选B.6.(2017·吉林长春三模)直线kx -3y +3=0与圆(x -1)2+(y -3)2=10相交所得弦长的最小值为( )A .2 5 B. 5 C .210D.10解析:选A.由题意易知直线kx -3y +3=0恒过圆内的定点(0,1),则圆心(1,3)到定点(0,1)的距离为5,当圆心到直线kx -3y +3=0的距离最大时(即圆心(1,3)到定点(0,1)的距离),所得弦长最小,因此最短弦长为2×10-5=2 5.故选A.7.若两直线l 1:3x +4y +a =0与l 2:3x +4y +b =0都与圆x 2+y 2+2x +4y +1=0相切,则|a -b |=( )A. 5 B .2 5 C .10D .20解析:选D.由题意知直线l 1与l 2平行,且它们间的距离等于d =|a -b |5;又直线l 1,l 2均与题中的圆相切,因此它们间的距离等于该圆的直径4,即有|a -b |5=4,即|a -b |=20,故选D.8.(2017·山东潍坊模拟)圆C :(x -1)2+y 2=25,过点P (2,-1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911解析:选C.因为圆的方程为(x -1)2+y 2=25,所以圆心坐标为C (1,0),半径r =5,因为P (2,-1)是该圆内一点,所以经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.因为|PC |=-2+-2=2,所以与PC 垂直的弦长为225-2=223.因此所求四边形的面积S =12×10×223=1023.9.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA 是圆C :x 2+y 2-2y =0的一条切线,A 是切点,若线段PA 长度最小值为2,则k 的值为( )A .3B.212C .2 2D .2解析:选D.圆C :x 2+(y -1)2=1,圆心C (0,1),半径r =1,圆心到直线的最小距离d =5k 2+1=22+12,解得k =2或k =-2(舍去),故选D.10.(2017·河北石家庄二检)若圆(x -5)2+(y -1)2=r 2(r >0)上有且仅有两点到直线4x +3y +2=0的距离等于1,则实数r 的取值范围为( )A .[4,6]B .(4,6)C .[5,7]D .(5,7)解析:选B.因为圆心(5,1)到直线4x +3y +2=0的距离为|20+3+2|5=5,又圆上有且仅有两点到直线4x +3y +2=0的距离为1,则4<r <6,故选B.11.若曲线C 1:x 2+y 2-2x =0与曲线C 2:x (y -mx -m )=0有三个不同的公共点,则实数m 的取值范围是( )A .(0,3)B .(-3,0)∪(0,3) C.⎝ ⎛⎭⎪⎫0,33 D.⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 解析:选D.由x (y -mx -m )=0可知x =0,y =m (x +1),当直线y =m (x +1)与圆x 2+y 2-2x =0相切时,m =±33,当m =0时,只有两个公共点,因此m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33,故选D. 12.已知两点M (-1,0),N (1,0),若直线y =k (x -2)上存在点P ,使得PM ⊥PN ,则实数k 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-13,0∪⎝ ⎛⎦⎥⎤0,13B.⎣⎢⎡⎭⎪⎫-33,0∪⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎦⎥⎤-13,13 D .[-5,5]解析:选B.因为直线y =k (x -2)上存在点P ,使PM ⊥PN ,即以MN 为直径的圆x 2+y 2=1与y =k (x -2)相交或相切,即|-2k |k 2+1≤1且k ≠0,解得k ∈⎣⎢⎡⎭⎪⎫-33,0∪⎝⎛⎦⎥⎤0,33. 二、填空题(本题共4小题,每小题5分,共20分)13.圆心在直线x =2上的圆与y 轴交于A (0,-4),B (0,-2)两点,则该圆的标准方程是________.解析:根据题意,设圆的方程为(x -2)2+(y -a )2=r 2,则⎩⎪⎨⎪⎧-2+-4-a 2=r 2,-2+-2-a2=r 2,解得⎩⎪⎨⎪⎧a =-3,r 2=5,所以所求圆的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=514.与直线x -y -4=0和圆A :x 2+y 2+2x -2y =0都相切的半径最小的圆的标准方程是________.解析:如图,易知所求圆C 的圆心在直线y =-x 上,故设其坐标为C (c ,-c )半径为r ,又其直径为圆A 的圆心A (-1,1)到直线x -y-4=0的距离减去圆A 的半径2,即2r =62-2=22⇒r =2,即圆心C 到直线x -y -4=0的距离等于2, 故有|2c -4|2=2⇒c =3或c =1,当c =3时圆C 在直线x -y -4=0下方,不符合题意,故所求圆的方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=215.(2017·山东威海模拟)抛物线y 2=12x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,△FPM 的外接圆的方程为________.解析:据题意知,△PMF 为等边三角形,PF =PM ,∴PM ⊥抛物线的准线,F (3,0).设M (-3,m ),则P (9,m ),等边三角形边长为MP =2MA =2×6=12,如图.在直角△APF 中,PF =12,FQ =23FA =23×PF 2-PA 2=23×122-62=43,外心Q 的坐标为(3,±43),则△FPM的外接圆的半径为FQ =4 3.∴△FPM 的外接圆的方程为(x -3)2+(y ±43)2=48. 答案:(x -3)2+(y ±43)2=4816.(2017·山东青岛模拟)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:圆C :(x -4)2+y 2=1,如图,直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需保证圆心C 到y =kx -2的距离小于等于2即可,∴|4k -2|1+k2≤2⇒0≤k ≤43. ∴k max =43.答案:43。

2020届江苏高考数学(理)二轮复习微专题教师用书:微专题12 与圆有关的定点、定值、最值、范围问题

2020届江苏高考数学(理)二轮复习微专题教师用书:微专题12 与圆有关的定点、定值、最值、范围问题

微专题12与圆有关的定点、定值、最值、范围问题真题感悟(2019·全国Ⅰ卷)已知点A,B关于坐标原点O对称,AB=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,MA-MP为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.连接MA,由已知得AO=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得MA-MP为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,AO=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2, 化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以MP=x+1.因为MA-MP=r-MP=x+2-(x+1)=1,所以存在满足条件的定点P.考点整合1.最值与范围问题(1)研究与圆有关的最值问题时,可借助圆的性质,利用数形结合求解.(2)常见的最值问题有以下几种类型:①形如μ=y-bx-a的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by的最值问题,可转化为动直线截距的最值问题;③形如μ=(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的平方的最值问题.(3)对于圆的方程也可以利用三角代换,转化为三角函数问题:对于圆(x -a )2+(y -b )2=r 2,可设x =a +r cos θ,y =b +r sin θ.2.定点问题的求解步骤(1)选参变量:需要证明过定点的动直线(曲线)往往随着某一个量的变化而变化,可以选择这个量为参变量.(2)求动直线(曲线)方程:求出含上述参变量的动直线(曲线)方程,通过消元或整体思想,使得方程只含有一个参量(当根据几何条件建立的等式中含有多个参量时,要注意区别对待,与动点、动直线、动圆有关的参量是主要参量,其他参量可看作系数).(3)定点:求出定点坐标.利用方程ax +b =0恒成立来处理定点问题.在处理时也可以用从特殊到一般的思想,先求出一个特殊点,再代入进行验证.3.定值问题的处理(1)可以直接求出相关等式,再论证该等式与参数无关,类似于三角化简求值.(2)也可以用从特殊到一般的思想,先让参数取特殊值来论证性质,再将性质推广至一般情形.热点一 最值与范围问题【例1】 已知圆M 的圆心M 在x 轴上,半径为1,直线l :y =43x -12被圆M 所截的弦长为3,且圆心M 在直线l 的下方.(1)求圆M 的方程;(2)设A (0,t ),B (0,t +6)(-5≤t ≤-2),若圆M 是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.解 (1)设圆心M (a ,0),由已知得圆心M 到l :8x -6y -3=0的距离为12-⎝ ⎛⎭⎪⎫322=12,∴|8a -3|82+(-6)2=12,又∵M (a ,0)在l 的下方,∴8a -3>0,∴8a -3=5,a =1.故圆M 的方程为(x -1)2+y 2=1.(2)由已知可设AC 的斜率为k 1,BC 的斜率为k 2(k 1>k 2),则直线AC 的方程为y =k 1x +t ,直线BC 的方程为y =k 2x +t +6.由方程组⎩⎨⎧y =k 1x +t ,y =k 2x +t +6, 得C 点的横坐标为x 0=6k 1-k 2. ∵AB =t +6-t =6,∴S =12⎪⎪⎪⎪⎪⎪6k 1-k 2×6=18k 1-k 2. ∵圆M 与AC 相切,∴1=|k 1+t |1+k 21,∴k 1=1-t 22t , 同理,k 2=1-(t +6)22(t +6),∴k 1-k 2=3(t 2+6t +1)t 2+6t, ∴S =6(t 2+6t )t 2+6t +1=6⎝ ⎛⎭⎪⎫1-1t 2+6t +1. ∵-5≤t ≤-2,∴-2≤t +3≤1,∴-8≤t 2+6t +1≤-4,∴S max =6×⎝ ⎛⎭⎪⎫1+14=152,S min =6×⎝ ⎛⎭⎪⎫1+18=274, ∴△ABC 的面积S 的最大值为152,最小值为274.探究提高 直线与圆中的最值问题主要包含两个方面(1)参量的取值范围:由直线和圆的位置关系或几何特征,引起的参量如k ,b ,r 的值变化.此类问题主要是根据几何特征建立关于参量的不等式或函数.(2)长度和面积的最值:由于直线或圆的运动,引起的长度或面积的值变化.此类问题主要是建立关于与参数如k 或(x ,y )的函数,运用函数或基本不等式求最值.【训练1】 已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求y -x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.解 由x 2+y 2-4x +1=0得(x -2)2+y 2=3,它表示以(2,0)为圆心,3为半径长的圆.(1)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6. 所以y -x 的最大值为-2+6,最小值为-2- 6.(2)x 2+y 2表示圆上的点与原点距离的平方,由平面几何知识知,过原点和圆心的直线与圆有两个交点,在这两个交点处x 2+y 2取得最值.因为圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.热点二 与圆有关的定点问题【例2】 (2019·北京卷)已知抛物线C :x 2=-2py (p >0)经过点(2,-1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.(1)解 由抛物线C :x 2=-2py 经过点(2,-1)得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1.(2)证明 抛物线C 的焦点为F (0,-1).设直线l 的方程为y =kx -1(k ≠0).由⎩⎨⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则解方程得 x 1,2=-2k ±2k 2+1,从而x 1x 2=-4.直线OM 的方程为y =y 1x 1x . 令y =-1,得点A 的横坐标x A =-x 1y 1, 同理得B 的横坐标x B =-x 2y 2.所以A ⎝ ⎛⎭⎪⎫-x 1y 1,-1,B ⎝ ⎛⎭⎪⎫-x 2y 2,-1. 设点D (0,n ),则DA →=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB →=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB →=x 1x 2y 1y 2+(n +1)2=x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2=-4+(n +1)2. 令DA →·DB→=0,即-4+(n +1)2=0,得n =1或n =-3. 故以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).探究提高 圆锥曲线中的定值与定点问题是高考的常考题型,运算量较大,题目逻辑性较强.解决这类问题一般有两种方法:一是根据题意求出相关的表达式,再根据已知条件列出方程组,消去参数,求出定值或定点坐标;二是先利用特殊情况确定定值或定点坐标,再从一般情况进行验证.【训练2】 已知圆x 2+y 2=9的圆心为P ,点Q (a ,b )在圆P 外,以PQ 为直径作圆M 与圆P 相交于A ,B 两点.(1)试判断直线QA 与圆P 的位置关系;(2)若QA =QB =4,试问点Q 在什么曲线上运动?(3)若点Q 在直线x +y -9=0上运动,问:直线AB 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.解 (1)因为以PQ 为直径的圆M 与圆P 相交于A ,B ,所以P A ⊥QA ,又AP 为圆P 的半径,所以AQ 为圆P 的切线,从而直线QA 与圆P 相切.(2)因为P A ⊥QA ,AP =3,AQ =4,所以PQ =32+42=5,故点Q 在以P 为圆心,5为半径的圆上运动.(3)因为点Q (a ,b )在直线x +y -9=0上,所以点Q (a ,9-a ),所以,以PQ 为直径的圆M 的方程为x 2+y 2-ax -(9-a )y =0,又AB 为圆P 与圆M 的公共弦,所以直线AB 的方程为ax +(9-a )y -9=0,即a(x-y)-9y-9=0,从而此直线过x-y=0与9y-9=0的交点,即过定点(1,1).热点三与圆有关的定值问题【例3】(2018·高邮调研)如图,已知圆O的方程为x2+y2=1,直线l的方程为x-y+22=0,点P是直线l上的动点,过点P作圆O的切线P A,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)在(1)的条件下,对于圆O上任意一点M,平面内是否存在一定点R,使MR MP为定值?如果存在,求出点R的坐标;如果不存在,请说明理由.解(1)连接OP,OA,OB,因为P A,PB为过点P的圆O的切线,切点为A,B,所以OA⊥P A,OB⊥PB.因为∠APB=60°,∠APO=30°,在Rt△APO中,OA=1,所以OP=2.设点P的坐标为(t,t+22),则t2+(t+22)2=4,t2+22t+2=0,即(t+2)2=0,解得t=-2,所以点P的坐标为(-2,2).(2)假设存在符合条件的定点R.设点M(x,y),R(x0,y0),MR2MP2=λ,则x2+y2=1,即(x-x0)2+(y-y0)2=λ[(x+2)2+(y-2)2],整理得-2x0x-2y0y+x20+y20+1=λ(22x-22y+5),上式对任意x,y∈R,且x2+y2=1恒成立,则⎩⎨⎧-2x 0=22λ,-2y 0=-22λ,x 20+y 20+1=5λ,解得⎩⎪⎨⎪⎧λ=14,x 0=-24,y 0=24或⎩⎨⎧λ=1,x 0=-2,(舍去)y 0=2.所以R 的坐标为⎝ ⎛⎭⎪⎫-24,24, 经检验,符合条件MR MP =12,所以对于圆O 上任意一点M ,平面内存在一定点R ,使MR MP 为定值,且R 的坐标为⎝ ⎛⎭⎪⎫-24,24. 探究提高 本题考查直线与圆相切问题以及定值问题.相切问题的基本处理方法是将切点与圆心连接,从而它与切线相互垂直,利用这一直角来进行转化研究问题;第(2)问是探索性问题,在研究探索性问题时,先假设存在是一般性的处理方法,其次将所要研究的问题转化为关于点M 的坐标为元的方程问题,利用该方程的解与点M 的坐标无关来研究问题.【训练3】 (2019·泰州中学检测)已知圆O :x 2+y 2=4与坐标轴交于点A 1,A 2,B 1,B 2(如图).(1)点Q 是圆O 上除A 1,A 2外的任意点(如图1),A 2Q ,A 1Q 与直线y +3=0交于不同的两点M ,N ,求MN 的最小值;(2)点P 是圆O 上除A 1,A 2,B 1,B 2外的任意点(如图2),直线B 2P 交x 轴于点F ,直线A 1B 2交A 2P 于点E .设A 2P 的斜率为k ,EF 的斜率为m ,求证:2m -k 为定值.(1)解 由题意可设直线A 2Q 的方程为y =k ′(x -2),直线A 1Q 的方程为y =-1k ′(x+2),k ′≠0.由⎩⎨⎧y =k ′(x -2),y +3=0,解得⎩⎪⎨⎪⎧x =2-3k ′,y =-3,由⎩⎪⎨⎪⎧y =-1k ′(x +2),y +3=0,解得⎩⎨⎧x =3k ′-2,y =-3. 所以直线A 2Q 与直线y +3=0的交点为M ⎝ ⎛⎭⎪⎫2-3k ′,-3, 直线A 1Q 与直线y +3=0的交点为N (3k ′-2,-3),所以MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4. 当k ′>0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥6-4=2,当且仅当k ′=1时等号成立; 当k ′<0时,MN =⎪⎪⎪⎪⎪⎪3k ′+3k ′-4≥|4-(-6)|=10,当且仅当k ′=-1时等号成立. 故线段MN 长度的最小值是2.(2)证明 由题意可知点A 1(-2,0),A 2(2,0),B 1(0,-2),B 2(0,2),A 2P 的斜率为k ,所以直线A 2P 的方程为y =k (x -2),由⎩⎨⎧y =k (x -2),x 2+y 2=4,得P ⎝ ⎛⎭⎪⎫2k 2-2k 2+1,-4k k 2+1, 则直线B 2P 的方程为y =-k +1k -1x +2, 令y =0,则x =2(k -1)k +1,即F ⎝ ⎛⎭⎪⎫2(k -1)k +1,0. 因为直线A 1B 2的方程为x -y +2=0,由⎩⎨⎧x -y +2=0,y =k (x -2),解得⎩⎪⎨⎪⎧x =2k +2k -1,y =4k k -1,所以E ⎝ ⎛⎭⎪⎫2k +2k -1,4k k -1, 所以EF 的斜率m =4kk -12k +2k -1-2(k -1)k +1=k +12, 所以2m -k =2·k +12-k =1(定值).【新题感悟】 (2019·苏北七市高三一模)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x -4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围是________.解+析 直线l 的斜率k 不存在或为0时均不成立,设直线l 的方程为kx -y -km =0,则圆心O (0,0)到直线l 的距离d 1=|km |k 2+1,圆心C (4,0)到直线l 的距离d 2=|4k -km |k 2+1.因为l 被两圆截得的弦长相等,所以21-d 21=24-d 22,即d 22-d 21=3,所以16k 2+k 2m 2-8k 2m -k 2m 2k 2+1=3,化为:16k 2-8k 2m =3k 2+3,k 2=313-8m>0,得:m <138.又d 21=k 2m 2k 2+1=m 21+1k 2=m 21+13-8m 3=3m 216-8m <1,即3m 2+8m -16<0,解得:-4<m <43.综上,-4<m <43.答案 ⎝ ⎛⎭⎪⎫-4,43一、填空题1.(2015·江苏卷)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.解+析直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r=(1-2)2+(0+1)2= 2.故所求圆的标准方程为(x-1)2+y2=2.答案(x-1)2+y2=22.(2019·靖江调研)已知圆C:x2+y2-2x-2y+1=0,直线l:3x+4y-17=0.若在直线l上任取一点M作圆C的切线MA,MB,切点分别为A,B,则AB的长度取最小值时直线AB的方程为________.解+析圆C的标准方程为(x-1)2+(y-1)2=1,当AB的长度最小时,圆心角∠ACB最小,设为2θ,则由cos θ=ACCM=1CM,知当θ最小时,cos θ最大,即CM最小,那么CM⊥l,所以k AB=k l=-34.设直线AB的方程为3x+4y=m.又由CM=|3+4-17|5=2,此时cos θ=12,则点C到直线AB的距离为AC cos θ=12,即1 2=|3+4-m|5,解得m=192或m=92,经检验m=192,则直线AB的方程为6x+8y-19=0.答案6x+8y-19=03.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.解+析由题意可知以线段AB为直径的圆C过原点O,要使圆C的面积最小(D 为切点),只需圆C的半径或直径最小,又圆C与直线2x+y-4=0相切,所以由平面几何知识,当OC所在直线与直线2x+y-4=0垂直时,OD最小(D为切点),即圆C的直径最小,此时OD=|2×0+0-4|5=45,所以圆的半径为25,圆C的面积的最小值为S=πr2=4 5π.答案4 5π4.(2018·全国Ⅲ卷改编)直线x+y+2=0分别与x轴、y轴交于A,B两点,点P 在圆(x-2)2+y2=2上,则△ABP面积的取值范围是________.解+析由题意知圆心的坐标为(2,0),半径r=2,圆心到直线x+y+2=0的距离d=|2+2|1+1=22,所以圆上的点到直线的最大距离是d+r=32,最小距离是d-r= 2.易知A(-2,0),B(0,-2),所以AB=22,所以2≤S△ABP≤6. 答案[2,6]5.(2019·常州调研)在平面直角坐标系xOy中,若圆(x-2)2+(y-2)2=1上存在点M,使得点M关于x轴的对称点N在直线kx+y+3=0上,则实数k的最小值为________.解+析圆(x-2)2+(y-2)2=1关于x轴的对称圆的方程为(x-2)2+(y+2)2=1,由题意得圆心(2,-2)到直线kx+y+3=0的距离d=|2k-2+3|k2+1≤1,解得-43≤k≤0,所以实数k的最小值为-4 3.答案-4 36.(2019·南京、盐城模拟)在平面直角坐标系xOy中,已知点P为函数y=2ln x的图象与圆M:(x-3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为________.解+析设P(x0,2ln x0),x0>0,则函数y=2ln x在点P处的切线斜率为2x0,则2x0·2ln x0x0-3=-1,即4ln x0=-x0·(x0-3)①.由二次函数y=f(x)的图象经过点O和M可设f (x )=ax (x -3),代入点P (x 0,2ln x 0),x 0>0,得2ln x 0=ax 0(x 0-3) ②.由①②比较可得a =-12,则f (x )=-12x (x -3),则f (x )max =f ⎝ ⎛⎭⎪⎫32=-12×32×⎝ ⎛⎭⎪⎫-32=98.答案 987.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最小值为________.解+析 根据题意画出图形,如图所示,过点O 作OC ⊥AB 于C ,因为△AOB 为等腰直角三角形,所以C 为弦AB 的中点,又OA =OB =1,根据勾股定理得AB =2, ∴OC =12AB =22.∴圆心(0,0)到直线2ax +by =1的距离为12a 2+b 2=22,即2a 2+b 2=2,即a 2=-12b 2+1≥0.∴-2≤b ≤ 2.则点P (a ,b )与点(0,1)之间的距离d =(a -0)2+(b -1)2=a 2+b 2-2b +1=12b 2-2b +2.设f (b )=12b 2-2b +2=12(b -2)2,此函数图象为对称轴为b =2的开口向上的抛物线,∴当-2≤b ≤2<2时,函数为减函数.∴f (b )min =f (2)=12(2-2)2, ∴d 的最小值为12(2-2)2=(2-1)2=2-1.答案2-18.(2019·南京师大附中模拟)已知直线x -y +b =0与圆x 2+y 2=9交于不同的两点A ,B .若O 是坐标原点,且|OA →+OB →|≥22|AB →|,则实数b 的取值范围是________. 解+析 设AB 的中点为D ,则OA→+OB →=2OD →,故|OD →|≥24|AB →|,即|OD →|2≥18|AB →|2.再由直线与圆的弦长公式可得,AB =2r 2-d 2(d 为圆心到直线的距离),又直线与圆相交,故d <r ,得|b |2<3,所以-32<b <32,根据|OD→|2≥18|AB →|2,|AB →|2=4(9-OD →2),得|OD →|2≥3.由点到直线的距离公式可得|OD →|2=b 22,即b 22≥3,所以b ≥6或b ≤- 6.综上可得,b 的取值范围是(-32,-6]∪[6,32). 答案 (-32,-6]∪[6,32) 二、解答题9.如果实数x ,y 满足(x +2)2+y 2=3. (1)求yx 的最大值; (2)求2x -y 的最小值.解 (1)问题可转化为求圆(x +2)2+y 2=3上任意一点到原点连线的斜率k =yx 的最大值,由图形性质可知,由原点向圆(x +2)2+y 2=3作切线,其中切线斜率的最大值即为yx 的最大值.设切线方程为y =kx ,即kx -y =0,由|-2k -0|k 2+1=3,解得k =3或k =-3,所以yx 的最大值为 3.(2)将2x -y 看作直线y =2x +b 在y 轴上的纵截距的相反数,当直线y =2x +b 与圆(x +2)2+y 2=3相切时,纵截距b 取得最大值或最小值.此时|-4+b |22+1=3,所以b =4±15,所以2x -y 的最小值为-4-15. 10.(2019·扬州模拟)已知圆O :x 2+y 2=4.(1)直线l 1:3x +y -23=0与圆O 相交于A ,B 两点,求弦AB 的长度; (2)如图,设M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,点M关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,如果直线PM 1,PM 2与y 轴分别交于(0,m )和(0,n ),问mn 是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)由于圆心(0,0)到直线l 1:3x +y -23=0的距离d =|-23|2= 3.圆的半径r =2,所以AB =2r 2-d 2=2.(2)由于M (x 1,y 1),点M 关于原点的对称点为M 1,点M 关于x 轴的对称点为M 2,可得M 1(-x 1,-y 1),M 2(x 1,-y 1), 由M (x 1,y 1),P (x 2,y 2)是圆O 上的两个动点,可得x 21+y 21=4,x 22+y 22=4.直线PM 1的方程为y +y 1y 2+y 1=x +x 1x 2+x 1,令x =0,求得y =m =x 1y 2-x 2y 1x 2+x 1.直线PM 2的方程为y +y 1y 2+y 1=x -x 1x 2-x 1,令x =0,求得y =n =-x 1y 2-x 2y 1x 2-x 1.所以mn =x 22y 21-x 21y 22x 22-x 21=x 22(4-x 21)-x 21(4-x 22)x 22-x 21=4. 故mn 为定值.11.如图所示,已知圆A 的圆心在直线y =-2x 上,且该圆上存在两点关于直线x +y -1=0对称,又圆A 与直线l 1:x +2y +7=0相切,过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当MN =219时,求直线l 的方程;(3)(BM →+BN →)·BP→是否为定值?如果是,求出此定值;如果不是,请说明理由.解 (1)由圆上存在两点关于直线x +y -1=0对称知圆心A 在直线x +y -1=0上.由⎩⎨⎧y =-2x ,x +y -1=0,得A (-1,2). 设圆A 的半径为R ,∵圆A 与直线l 1:x +2y +7=0相切,∴R =|-1+4+7|5=25, ∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,易知x =-2符合题意; 当直线l 与x 轴不垂直时, 设直线l 的方程为y =k (x +2),即kx -y +2k =0,连接AQ ,则AQ ⊥MN , ∵MN =219,∴AQ =20-19=1. 由AQ =|k -2|k 2+1=1,得k =34, ∴直线l 的方程为y =34(x +2),即3x -4y +6=0, ∴所求直线l 的方程为x =-2或3x -4y +6=0. (3)∵AQ ⊥BP ,∴AQ →·BP→=0,∴(BM →+BN →)·BP →=2BQ →·BP →=2(BA →+AQ →)·BP →=2BA →·BP →; 当直线l 与x 轴垂直时,得P ⎝ ⎛⎭⎪⎫-2,-52,则BP →=⎝ ⎛⎭⎪⎫0,-52,又BA →=(1,2), ∴(BM →+BN →)·BP →=2BA →·BP→=-10;当直线l 的斜率存在时,设直线l 的方程为y =k (x +2), 由⎩⎨⎧y =k (x +2),x +2y +7=0,解得P ⎝ ⎛⎭⎪⎫-4k -71+2k ,-5k 1+2k , ∴BP →=⎝⎛⎭⎪⎫-51+2k ,-5k 1+2k , ∴(BM →+BN →)·BP →=2BA →·BP→=2⎝ ⎛⎭⎪⎫-51+2k -10k 1+2k =-10. 综上所述,(BM →+BN →)·BP→为定值-10.。

专题 数列-2020年高考数学(理)二轮专项复习

专题   数列-2020年高考数学(理)二轮专项复习

n
m
n
p
q
等比数列{a }中,若 m+n=p+q,则 a ·a =a ·a ;
n
m
n
p
q
【复习要求】
1.理解等差数列、等比数列的概念.
2.掌握等差数列、等比数列的通项公式与前 n 项和公式.
3.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相
应的问题.
4.了解等差数列与一次函数、等比数列与指数函数的关系.
10
1
∴S
1 2 10 10 95 .选 C.
(∵2等)等1差0差数数列a列{a{aa}n各}中项a均4+为a正8=数2a,6,
n
5
∴由均值不等式
a 4
a 8
(
a 4
2
a 8
)2
a2 6
,当且仅当
a
=a
4
时等号成立
8
aa 即: a4 a6 ,选 B.
6
8
【评析】本题中涉及到等差数列中的重要性质:若 m+n=p+q,则a +a =a +a ,(1)
n
1
A.
(1)n1
B. (1)n
C. (1)n 3n 2
2.若数列的前四项是 3,12,30,60,则此数列的一个通项公式是( )
A. n(n 1)(n 2) 2
B.5n2-6n+4
C.
3
9n(n 1) 2
1ln2 7n12
D.
2
3.数列{a }中,若 a =1,a =1,a =a +a ,则 a =( )
【分析】本题需要观察每一项与项数之间存在的函数关系,猜想出一个通项公式.这种
通过特殊的元素得到一般的规律是解决问题的常用方法,但得到的规律不一定正确,可经过

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

2020版高三数学二轮复习(全国理)讲义:专题三第二讲三角恒等变换与解三角形

[解析] 由题意S △ABC =12ab sin C =a2+b2-c24.即sin C =a2+b2-c22ab .由余弦定理可知sin C =cos C .即tan C =1.又C ∈(0.π).所以C =π4.3.(20xx·全国Ⅰ卷.11)已知角α的顶点为坐标原点.始边与x 轴的非负半轴重合.终边上有两点A ()1,a .B ()2,b .且cos2α=23.则||a -b =( B )A .15B .55C .255D .1[解析] 由cos2α=2cos 2α-1=23可得cos 2α=56=cos2αsin2α+cos2α=1tan2α+1.化简可得tan α=±55;当tan α=55时.可得a 1=55.b 2=55.即a =55.b =255.此时|a -b |=55;当tan α=-55时.仍有此结果.故|a -b |=55. 4.(20xx·天津卷.6)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.所得图象对应的函数( A )A .在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增 B .在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减 C .在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增 D .在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减 [解析] 选A .因为将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度.得到函数y =sin2x 的图象. 用五点法作出草图.如图:从图中可以看出选项A 正确.其他都不正确.⎝ ⎛4-α=5.sin22+=4.+c=.则△7.(20xx·淮北二模)在△ABC 中.角A .B .C 的对边分别为a .b .c .若a 2=3b 2+3c 2-23bc sin A .则C 等于π6.[解析] 由余弦定理得a 2=b 2+c 2-2bc cos A . 所以b 2+c 2-2bc cos A =3b 2+3c 2-23bc sin A .3sin A -cos A =b2+c2bc .2sin(A -π6)=b2+c2bc ≥2.因此b =c .A -π6=π2⇒A =2π3.所以C =π-2π32=π6. 8.(20xx·长沙三模)在锐角△ABC 中.D 为BC 的中点.满足∠BAD +∠C =90°.则角B .C 的大小关系为B =C .(填“B <C ”“B =C ”或“B >C ”)[解析] 设∠BAD =α.∠CAD =β.因为∠BAD +∠C =90°.所以α=90°-C .β=90°-B . 因为D 为BC 的中点. 所以S △ABD =S △ACD . 所以12c ·AD sin α=12b ·AD sin β.所以c sin α=b sin β.所以c cos C =b cos B . 由正弦定理得.sin C cos C =sin B cos B .即sin2C =sin2B .所以2B =2C 或2B +2C =π. 因为△ABC 为锐角三角形.所以B =C .9.为了竖起一块广告牌.要制造三角形支架.如图.要求∠ACB =60°.BC 的长度大于1米.且AC 比AB 长0.5米.为了稳定广告牌.要求AC 越短越好.则AC 最短为2+3.[解析] 由题意设BC =x (x >1)米. AC =t (t >0)米.依题设AB =AC -0.5 =(t -0.5)米.在△ABC 中.由余弦定理得: AB 2=AC 2+BC 2-2AC ·BC cos60°.所以sin2A =2sin A cos A =1213. cos2A =1-2sin 2A =-513. 所以sin(2A +π4)=sin2A cos π4+cos2A sin π4=7226.B 组1.(20xx·福州三模)已知a .b .c 分别是△ABC 的内角A .B .C 所对的边.点M 为△ABC 的重心.若a MA →+b MB →+33c MC →=0.则C =( D )A .π4B .π2 C .5π6D .2π3[解析] ∵M 为△ABC 的重心.则MA →+MB →+MC →=0. ∴MA →=-MB →-MC →. ∵a MA →+b MB →+33c ·MC →=0.∴a ·(-MB →-MC →)+b MB →+33c ·MC →=0.即(b -a )·MB →+(33c -a )·MC →=0.∵MB →与MC →不共线. ∴b -a =0.32c -a =0.得a b33c =111.令a =1.b =1.c =3.则cos C =a2+b2-c22ab =1+1-32×1×1=-12.∴C =2π3.故选D .2.(20xx·××市一模)若sin(π6-α)=13.则cos(2π3+2α)=( A )。

2020届高考数学(理)二轮专题复习: 专题一 集合、常用逻辑用语、平面向量、复数 1-1-2 Word版含答案.doc

2020届高考数学(理)二轮专题复习: 专题一 集合、常用逻辑用语、平面向量、复数 1-1-2 Word版含答案.doc

限时规范训练二 平面向量、复数运算限时45分钟,实际用时分值80分,实际得分一、选择题(本题共12小题,每小题5分,共60分)1.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3解析:选C.a +i 2-i =2a -1+a +5,由题意知2a -1=a +2,解之得a =3.2.若复数z 满足(1+2i)z =(1-i),则|z |=( ) A.25 B.35 C.105D.10解析:选C.z =1-i 1+2i =-1-3i 5⇒|z |=105.3.已知复数z =1+i(i 是虚数单位),则2z-z 2的共轭复数是( )A .-1+3iB .1+3iC .1-3iD .-1-3i 解析:选B.2z -z 2=21+i -(1+i)2=-+--2i =1-i -2i =1-3i ,其共轭复数是1+3i ,故选B.4.若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1解析:选C.∵z 为纯虚数,∴a =2,∴a +i 71+a i =2-i 1+2i=2--2i +2-2=-3i 3=-i.5.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:选B.∵复数z =11-i=1+i -+=12+12i ,∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.6.若复数z 满足z (1-i)=|1-i|+i ,则z 的实部为( ) A.2-12B.2-1C .1D.2+12解析:选A.由z (1-i)=|1-i|+i ,得z =2+i1-i=2++-+=2-12+2+12i ,z 的实部为2-12,故选A. 7.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =( ) A .2 B .3 C .4D .5解析:选B.由MA →+MB →+MC →=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),所以AB →+AC →=3AM →,故m =3,故选B. 8.已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y的最小值是( )A .24B .8 C.83D.53解析:选B.∵a ∥b ,∴-2x -3(y -1)=0,即2x +3y =3, ∴3x +2y =⎝ ⎛⎭⎪⎫3x +2y ×13(2x +3y )=13⎝ ⎛⎭⎪⎫6+9y x +4x y +6≥13⎝ ⎛⎭⎪⎫12+29y x·4x y =8,当且仅当2x =3y=32时,等号成立. ∴3x +2y的最小值是8.故选B.9.在平行四边形ABCD 中,AC =5,BD =4,则AB →·BC →=( ) A.414B .-414C.94D .-94解析:选C.因为BD →2=(AD →-AB →)2=AD →2+AB →2-2AD →·AB →,AC →2=(AD →+AB →)2=AD →2+AB →2+2AD →·AB →,所以AC →2-BD →2=4AD →·AB →,∴AD →·AB →=AB →·BC →=94.10.在△ABC 中,已知向量AB →=(2,2),|AC →|=2,AB →·AC →=-4,则△ABC 的面积为( ) A .4 B .5 C .2D .3解析:选C.∵AB →=(2,2),∴|AB →|=22+22=2 2. ∵AB →·AC →=|AB →|·|AC →|cos A =22×2cos A =-4, ∴cos A =-22,∵0<A <π,∴sin A =22, ∴S △ABC =12|AB →|·|AC →|sin A =2.故选C.11.△ABC 的外接圆的圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在BC →方向上的投影为( )A.12B.32 C .-12D .-32解析:选A.由2AO →=AB →+AC →可知O 是BC 的中点,即BC 为△ABC 外接圆的直径,所以|OA →|=|OB →|=|OC →|,由题意知|OA →|=|AB →|=1,故△OAB 为等边三角形,所以∠ABC =60°.所以向量BA →在BC →方向上的投影为|BA →|cos∠ABC =1×cos 60°=12.故选A.12.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM →·AN →的最大值为( )A .3B .2 3C .6D .9解析:选D.由平面向量的数量积的几何意义知,AM →·AN →等于AM →与AN →在AM →方向上的投影之积,所以(AM →·AN →)max =AM →·AC →=⎝ ⎛⎭⎪⎫12AB →+AD →·(AB →+AD →)=12AB 2→+AD 2→+32AB →·AD →=9. 二、填空题(本题共4小题,每小题5分,共20分) 13.已知复数z =3+i -32,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i -32=3+i-2-23i =3+i -+3=3+-3-+3-3=23-2i -8=-34+14i ,∴z ·z =⎝ ⎛⎭⎪⎫-34+14i ⎝ ⎛⎭⎪⎫-34-14i =316+116=14. 答案:1414.已知向量a ,b 满足|a |=2,|b |=1,且对一切实数x ,|a +x b |≥|a +b |恒成立,则a ,b 夹角的大小为________.解析:|a +x b |≥|a +b |恒成立⇒a 2+2x a ·b +x 2b 2≥a 2+2a·b +b 2恒成立⇒x 2+2a ·b x -1-2a ·b ≥0恒成立,∴Δ=4(a·b )2-4(-1-2a·b )≤0⇒(a·b +1)2≤0,∴a·b =-1,∴cos〈a ,b 〉=a·b |a |·|b |=-12,又〈a ,b 〉∈[0,π],故a 与b 的夹角的大小为2π3.答案:23π15.已知在△ABC 中,AB =4,AC =6,BC =7,其外接圆的圆心为O ,则AO →·BC →=________.解析:如图,取BC 的中点M ,连OM ,AM ,则AO →=AM →+MO →, ∴AO →·BC →=(AM →+MO →)·BC →.∵O 为△ABC 的外心,∴OM ⊥BC ,即OM →·BC →=0,∴AO →·BC →=AM →·BC →=12(AB →+AC →)·(AC →-AB →)=12(AC 2→-AB 2→)=12(62-42)=12×20=10.答案:1016.已知非零向量a ,b ,c 满足|a |=|b |=|a -b |,〈c -a ,c -b 〉=2π3,则|c ||a |的最大值为________.解析:设OA →=a ,OB →=b ,则BA →=a -b . ∵非零向量a ,b ,c 满足|a |=|b |=|a -b |, ∴△OAB 是等边三角形. 设OC →=c ,则AC →=c -a ,BC →=c -b .∵〈c -a ,c -b 〉=2π3,∴点C 在△ABC 的外接圆上,∴当OC 为△ABC 的外接圆的直径时,|c ||a |取得最大值,为1cos 30°=233.答案:233。

2020届高考数学二轮教师用书:下篇 指导六 手热心稳·实战演练

2020届高考数学二轮教师用书:下篇 指导六 手热心稳·实战演练

Ⅰ:高考客观题(12+4)·提速练(一)限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合M ={x |x +3<2x 2},N ={x |-2≤x <1},则M ∩N =( ) A.⎝⎛⎭⎫-32,1 B.⎣⎡⎭⎫-2,-32 C .[-2,-1)D .[-2,3)解析:C [解法一 由x +3<2x 2,得2x 2-x -3>0,即(x +1)(2x -3)>0,得x <-1或x >32.所以M =(-∞,-1)∪⎝⎛⎭⎫32,+∞.又N =[-2,1),所以M ∩N =[-2,-1).故选C. 解法二 因为1∉N ,所以排除D 项;因为0+3<2×02不成立,所以0∉M ,所以排除A 项;因为-32+3<2×⎝⎛⎭⎫-322成立,所以-32∈M ,又-32∈N ,所以-32∈M ∩N ,故排除B.综上,选C.]2.已知复数z =(a 2-3a +2)+(a 2-a )i(a ∈R )为纯虚数,则z1+3i =( )A.35+15iB.35-15i C .3-iD .3+i解析:A [由已知可得⎩⎪⎨⎪⎧a 2-3a +2=0,a 2-a ≠0,解得a =2,所以z =2i ,故z 1+3i =2i1+3i =2i (1-3i )(1+3i )(1-3i )=6+2i 10=35+15i.故选A.]3.2019年全国两会(即中华人民共和国第十三届全国人民代表大会第二次会议和中国人民政治协商会议第十三届全国委员会第二次会议)于3月份在北京召开.代表们提交的议案都是经过多次修改.为了解代表们的议案修改次数,某调查机构采用随机抽样的方法抽取了120份议案进行调查,并进行了统计,将议案的修改次数分为6组:[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],得到如图所示的频率分布直方图.则这120份议案中修改次数不低于15次的份数为( )A .40B .60C .80D .100解析:B [由频率分布直方图可知,议案修改次数不低于15次的频率为(0.06+0.03+0.01)×5=0.5,所以这120份议案中修改次数不低于15次的份数为120×0.5=60.故选B.]4.已知角α的顶点在坐标原点O ,始边与x 轴的正半轴重合,将终边按逆时针方向旋转π4后经过点P (2,1),则cos 2α=( ) A.23B .-223C .-23D.223解析:D [由题意,将角α的终边按逆时针方向旋转π4后所得角为α+π4.因为|OP |=(2)2+12=3,所以sin ⎝⎛⎭⎫π4+α=13=33,cos ⎝⎛⎭⎫π4+α=23=63.故cos 2α=sin ⎝⎛⎭⎫2α+π2=sin 2⎝⎛⎭⎫α+π4=2sin ⎝⎛⎭⎫α+π4cos ⎝⎛⎭⎫α+π4=2×33×63=223.故选D.] 5.(多选题)已知π为圆周率,e 为自然对数的底数,则( ) A .πe <3e B .3e -2π<3πe -2 C .log πe<log 3eD .πlog 3e>3log πe解析:CD [本题考查利用函数的单调性比较大小.已知π为圆周率,e 为自然对数的底数,∴π>3>e>2,∴⎝⎛⎭⎫π3e >1,πe >3e ,故A 错误;∵0<3π<1,1>e -2>0,∴⎝⎛⎭⎫3πe -2>3π,∴3e -2π>3πe-2,故B 错误;∵π>3,∴log πe<log 3e ,故C 正确;由π>3,可得log 3e>log πe ,则πlog 3e>3log πe ,故D 正确.故选CD.]6.如图是以AB 为直径的半圆,且AB =8,半径OB 的垂直平分线与圆弧交于点P ,PQ →+DQ →=0,则AQ →·BQ →=( )A .9B .15C .-9D .-15解析:C [通解 连接OP ,由已知,得OD =DB =14AB =2,所以DP =OP 2-OD 2=42-22=2 3.由PQ →+DQ →=0可得Q 为线段PD 的中点,故DQ =12DP = 3.因为AQ →=AD →+DQ →,BQ →=BD →+DQ →,所以AQ →·BQ →=(AD →+DQ →)·(BD →+DQ →)=AD →·BD →+AD →·DQ →+DQ →·BD →+DQ →·DQ →=6×2cos π+0+0+(3)2=-9.优解 以O 为坐标原点,建立如图所示的平面直角坐标系,则A (-4,0),B (4,0),由PQ →+DQ →=0,设Q (2,m ),则有P (2,2m ),22+(2m )2=42,m 2=3,又AQ →=(6,m ),BQ →=(-2,m ),所以AQ →·BQ →=(6,m )·(-2,m )=-12+m 2=-9.]7.函数f (x )=cos (πx )e x -e-x 的大致图象有( )解析:C [由e x -e -x ≠0,解得x ≠0,所以函数f (x )的定义域为(-∞,0)∪(0,+∞),故排除B 项.因为f (-x )=cos[π(-x )]e -x -e -(-x )=cos (πx )-(e x -e -x )=-f (x ),所以函数f (x )为奇函数,又f (1)=cos πe 1-e -1=-1e 1-e-1<0,故排除A 项.设g (x )=e x-e -x ,显然该函数单调递增,故当x >0时,g (x )>g (0)=0,则当x ∈⎝⎛⎭⎫0,12时,y =cos(πx )>0,故f (x )>0,当x ∈⎝⎛⎭⎫12,32时,y =cos(πx )<0,故f (x )<0,所以排除D 项.综上,选C.]8.已知函数f (x )=sin ωx cos φ+cos ωx sin φ⎝⎛⎭⎫ω>0,|φ|<π2的图象经过点⎝⎛⎭⎫0,-12,将该函数的图象向右平移π3个单位长度后所得函数g (x )的图象关于原点对称,则ω的最小值是( )A.52 B .2 C .3D.83解析:A [由已知得f (x )=sin(ωx +φ),f (0)=-12,得sin φ=-12,因为|φ|<π2,所以φ=-π6,所以f (x )=sin ⎝⎛⎭⎫ωx -π6.将该函数图象向右平移π3个单位长度后得函数g (x )=f ⎝⎛⎭⎫x -π3=sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x -π3-π6=sin ⎣⎡⎦⎤ωx -⎝⎛⎭⎫ωπ3+π6的图象.由已知得函数g (x )为奇函数,所以ωπ3+π6=k π(k ∈Z ),解得ω=3k -12(k ∈Z ).因为ω>0,所以ω的最小值为52.]9.某几何体的正视图和侧视图为如图所示的相同的图形,俯视图为同心圆,则该几何体的表面积为( )A .14π B.523π C .36πD.803π 解析:C [由几何体的三视图可知,该几何体的上部分是一个半球,下部分为一个大圆柱的内部挖去了一个小圆柱,所以该几何体的表面积为2π×2×4+π×22+4π×22×12+2π×1×4=36π.]10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则△ABC 的面积为( )A .10 3B .6 3C .5 3D .2 3解析:B [∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin(B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12,∴C =60°.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,∴△ABC 的面积S =12ab sin C =12×8×3×32=6 3.] 11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线交双曲线的左支于点M ,交双曲线的右支于点N ,且MF 2⊥NF 2,|MF 2|=|NF 2|,则该双曲线的离心率是( )A. 3B. 2C. 5D.2+1解析:A [由题意可设|MF 2|=|NF 2|=m ,由点M 在双曲线的左支上,得|MF 2|-|MF 1|=2a ,所以|MF 1|=m -2a .由点N 在双曲线的右支上,得|NF 1|-|NF 2|=2a ,所以|NF 1|=m +2a .因为MF 2⊥NF 2,所以|MN |=2m ,由|NF 1|=|MF 1|+|MN |,得m +2a =m -2a +2m ,所以m =22a .解法一 如图,在△MF 1F 2中,|MF 1|=m -2a =(22-2)a ,|MF 2|=m =22a .易知|F 1F 2|=2c ,∠F 1MF 2=135°,所以由余弦定理得4c 2=8a 2+(22-2)2a 2-2×22a ×(22-2)a ×cos 135°,得c 2=3a 2,所以e =ca= 3.故选A.解法二 在△NF 1F 2中,|NF 1|=m +2a =(22+2)a ,|NF 2|=22a ,|F 1F 2|=2c ,∠F 1NF 2=45°,所以由余弦定理得4c 2=8a 2+(22+2)2a 2-2×22a ×(22+2)a ×cos 45°,得c 2=3a 2,所以e =ca= 3.故选A.]12.已知函数f (x )=1+ln xe x,若方程[f (x )]2+(1-a )f (x )-a =0有两个不同的实数根,则实数a 的取值范围是( )A .(-∞,0]∪⎩⎨⎧⎭⎬⎫1eB .(-∞,-1)∪(]-1,0∪⎩⎨⎧⎭⎬⎫1eC .(-∞,0]D .(-∞,-1)∪(-1,0]解析:B [设t =f (x ),则方程为t 2+(1-a )t -a =0,即(t -a )(t +1)=0,解得t =a 或t =-1.函数f (x )的定义域为(0,+∞),f ′(x )=1x ·e x -e x (1+ln x )(e x )2=1x -1-ln x e x .设g (x )=1x -1-ln x ,显然该函数在(0,+∞)上单调递减,且g (1)=0,故当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,函数f (x )单调递减,且当x →0时,f (x )→-∞,当x →+∞时,f (x )→0.如图,作出函数f (x )的大致图象.作出直线y =t ,由图可知当t >1e 时,直线y =t 与函数f (x )的图象没有交点;当t =1e 或t ≤0时,直线y =t 与函数f (x )的图象只有一个交点;当0<t <1e 时,直线y =t 与函数f (x )的图象有两个交点.所以方程f (x )=-1只有一个解,若a =-1,则原方程有两个相同的实数根,不符合题意,则a ≠-1,故由题意可得方程f (x )=a 只有一个解,所以a =1e或a ≤0,且a ≠-1,故实数a 的取值范围为(-∞,-1)∪(-1,0]∪⎩⎨⎧⎭⎬⎫1e .]二、填空题(本大题共4小题,每小题5分,共20分)13.(理)已知二项式⎝⎛⎭⎫x 2-12x n 的展开式中所有项的系数之和为132,则展开式中x 的系数为____.解析:根据题意,令x =1,得⎝⎛⎭⎫1-12n =132,即⎝⎛⎭⎫12n =132,解得n =5,故展开式的通项公式为C r 5(x 2)5-r ⎝⎛⎭⎫-12x r =C r 5⎝⎛⎭⎫-12r x 10-3r .令10-3r =1,得r =3,则展开式中x 的系数为C 35×⎝⎛⎭⎫-123=-54. 答案:-5413.(文)设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列,则数列{a n }的通项为________.解析:由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2.解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.又得q 1=2,q 2=12.由题意得q >1,∴q =2.∴a 1=1. 故数列{a n }的通项公式为a n =2n -1. 答案:2n -114.已知P 是圆C :x 2+y 2+4x -25y +8=0上一动点,P 关于y 轴的对称点为M ,关于直线y =x 的对称点为N ,则|MN |的取值范围是________.解析:由题可得,圆C :(x +2)2+(y -5)2=1,圆心为C (-2,5),半径r =1.设P (x ,y ),则M (-x ,y ),N (y ,x ).|MN |=(x +y )2+(x -y )2=2·x 2+y 2=2|OP |,易知|OC |-r ≤|OP |≤|OC |+r ,|OC |=3,所以2≤|OP |≤4,22≤|MN |≤42,所以|MN |的取值范围是[22,42].答案:[22,42]15.如图,四棱台A 1B 1C 1D 1-ABCD 的底面是正方形,DD 1⊥底面ABCD ,DD 1=AB =2A 1B 1,则异面直线AD 1与BC 1所成角的余弦值为________.解析:设AB 的中点为E ,连接ED 1,则易知BE ∥C 1D 1,BE =C 1D 1,∴四边形EBC 1D 1是平行四边形,∴BC 1∥ED 1,∴∠AD 1E 为异面直线AD 1与BC 1所成的角.∵四边形ABCD 是正方形,∴BA ⊥AD ,∵DD 1⊥底面ABCD ,∴BA ⊥DD 1,∴BA ⊥平面AA 1D 1D ,∴BA ⊥AD 1,△AED 1是直角三角形.设DD 1=AB =2A 1B 1=2a ,则AD 1=AD 2+DD 21=(2a )2+(2a )2=22a ,ED 1=AD 21+AE 2=(22a )2+a 2=3a ,∴cos ∠AD 1E =AD 1ED 1=223.答案:22316.一个口袋中装有编号分别为1,2,3,…,9的小球,甲、乙、丙三人从口袋中一次性各摸出三个小球.甲说:“我摸到的一个球的编号为9.”乙说:“我抽到的一个球的编号为8.”丙说:“我们三人摸到的三个小球编号之和相等,但我没有摸到编号为2的小球.”已知三个人说的都正确,则丙摸出的三个小球的编号分别为________、________、________.(每答错一个扣2分,最低为0分)解析:由丙的说法可知,三人摸到的三个小球的编号之和相等,所以每个人摸出的三个小球的编号之和为13×(1+2+…+9)=13×9×(1+9)2=15.设甲摸到的另外两个小球的编号分别为a1,a2,乙摸到的另外两个小球的编号分别为b1,b2,则由题意可得a1+a2=6,b1+b2=7.所以a1,a2的取值只有1与5,2与4两种情况.若a1,a2的取值为1,5,则由b1+b2=7可得,b1,b2只能取3与4,则剩余的三个数为2,6,7.若a1,a2的取值为2,4,则由b1+b2=7可得,b1,b2只能取1与6,则剩余的三个数为3,5,7.由题意知,丙没有摸到编号为2的小球,所以丙摸到的小球编号只能为3,5,7.答案:357高考客观题(12+4)·提速练(二) 限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={-1,2},B ={0,2},则A ∪B 的子集个数为( ) A .5 B .6 C .7D .8解析:D [由题意知A ∪B ={-1,0,2},所以A ∪B 的子集个数为23=8.故选D.] 2.已知复数z =21-i+2i 3,则z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:A [z =21-i +2i 3=2(1+i )(1-i )(1+i )-2i =1+i -2i =1-i ,∴z =1+i ,∴复数z 在复平面内对应点的坐标为(1,1),位于第一象限.故选A.]3.某频道每天11:30~12:00播放“中国梦”主题的纪录片,在此期间会随机播出4分钟完整的有关中国梦的歌曲,小刘11:43开始观看该频道,则他听到完整的有关中国梦歌曲的概率是( )A.13B.1730C.215D.12解析:D [由题可知,该电视台开始播放有关中国梦的歌曲的时间是11:30~11:56,时长26分钟,小刘能听到完整歌曲的时间为11:43~11:56,共13分钟,所以所求概率为1326=12.故选D.] 4.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -2y ≥1,4x -y ≤8,x +y ≥2,则z =x -2y 的最小值为( )A .-6B .-5C .-4D .-3解析:B [作出可行域如图中阴影部分所示,作出直线x -2y =0,平移该直线,数形结合知当平移后的直线过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧3x -2y =1,4x -y =8,得A (3,4).所以z 的最小值为3-2×4=-5.故选B.]5.已知△ABC 中,E 为中线BD 的中点,AE →=xBC →+yBA →,则3x +y =( ) A .0B .1C .2D .-1解析:A [依题意可得,AE →=BE →-BA →=12BD →-BA →=14(BC →+BA →)-BA →=14BC →-34BA →,所以x =14,y =-34,所以3x +y =0.故选A.]6.若正整数N 除以正整数m 后的余数为n ,则记N =n (mod m ),例如10=4(mod 6).如图所示的程序框图表示的算法源于我国古代《孙子算经》中的“孙子定理”,执行该程序框图,若输入的a =2,b =3,c =11,则输出的N =( )A .6B .9C .12D .21解析:C [N =0,N =0+1=1,1=1(mod 2);N =1+1=2,2=0(mod 2),2=2(mod 3);N =2+1=3,3=1(mod 2);N =3+1=4,4=0(mod 2),4=1(mod 3);N =4+1=5,5=1(mod 2);N =5+1=6,6=0(mod 2),6=0(mod 3),6=6(mod 11);N =6+1=7……由此发现满足题意的N 应该含有因数2和3,且被11除余1,所以可知当N =12时,结束循环,输出的N =12.故选C.]7.已知函数f (x )=23sin ⎝⎛⎭⎫ωx +π3(ω>0)在平面直角坐标系中的部分图象如图所示,若平行四边形ABCD 的面积为323,则函数f (x )的图象在y 轴右侧且离y 轴最近的一条对称轴的方程为( )A .x =23B .x =43C .x =2D .x =83解析:A [设函数f (x )的最小正周期为T .因为平行四边形ABCD 的面积为323,结合三角函数图象可知2×23×T =323,得T =8,所以ω=2πT =π4,所以f (x )=23sin ⎝⎛⎭⎫π4x +π3,令π4x +π3=π2+k π,k ∈Z ,得x =23+4k ,k ∈Z .故选A.] 8.如图所示的几何体是从棱长为2的正方体中截去到正方体的某个顶点的距离均为2的几何体后的剩余部分,则该几何体的表面积为( )A .24-3πB .24-πC .24+πD .24+5π解析:B [由题意知该几何体是从棱长为2的正方体中截去以正方体某个顶点为球心,2为半径的18球后的剩余部分,则其表面积S =6×22-3×14×π×22+18×4×π×22=24-π.故选B.]9.(多选题)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -x C .f (x )=ln xD .f (x )=tan x解析:AC [本题考查导数的运算法则.若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,得x =0或x =2,方程显然有解,故A 符合要求;若f (x )=e -x ,则f ′(x )=-e -x ,令e -x =-e -x ,此方程无解,故B 不符合要求;若f (x )=ln x ,则f ′(x )=1x ,令ln x =1x ,在同一直角坐标系内作出函数y =ln x 与y =1x 的图象(作图略),可得两函数的图象有一个交点,所以方程f (x )=f ′(x )存在实数解,故C 符合要求;若f (x )=tan x ,则f ′(x )=⎝⎛⎭⎫sin x cos x ′=1cos 2x ,令tan x =1cos 2x ,化简得sin x cos x =1,变形可得sin 2x =2,无解,故D 不符合要求,故选AC.]10.在△ABC 中,若a cos A =b cos B ,且c =2,sin C =35,则△ABC 的面积为( )A .3B.23C .3或13D .6或23解析:C [由a cos A =b cos B 得sin A cos A =sin B cos B ,即sin 2A =sin 2B .∵A ,B ∈(0,π),∴2A =2B 或2A +2B =π,即A =B 或A +B =π2,又sin C =35,∴△ABC 只能是等腰三角形.当C 为锐角时,∵sin C =35,∴cos C =45,∴sin C 2=1010=c 2a =c2b ,由c =2得b =a =10,∴△ABC 中AB 边上的高为3,∴△ABC 的面积为12×2×3=3.当C 为钝角时,∵sin C =35,∴cos C =-45,∴sin C 2=31010=c 2a =c2b ,由c =2得b =a =103,∴△ABC 中AB 边上的高为13,∴△ABC 的面积为12×2×13=13.综上,△ABC 的面积为3或13.故选C.]11.已知P 为双曲线y 23-x 2=1上一点,若以OP (O 为坐标原点)为直径的圆与双曲线的两条渐近线分别相交于A ,B 两点,则|AB |的最小值为( )A.52 B .2 C.32D .1 解析:C [由题意知,双曲线y 23-x 2=1的渐近线方程为y =±3x ,O ,P ,A ,B 四点共圆,设该圆的半径为R ,易知∠AOB =π3,可得|AB |sin π3=2R ,故|AB |=3R ,故要求|AB |的最小值,只需求R 的最小值即可,显然当点P 位于双曲线的顶点时,|OP |最小,即R 最小,且R min =|OP |2=32,故|AB |min =3R min =32.故选C.] 12.已知函数f (x )=e x +e -x +2cos x ,其中e 为自然对数的底数,则对任意a ∈R ,下列不等式一定成立的是( )A .f (a 2+1)≥f (2a )B .f (a 2+1)≤f (2a )C .f (a 2+1)≥f (a +1)D .f (a 2+1)≤f (a )解析:A [本题主要考查函数的奇偶性、单调性以及导数与函数的关系,考查考生转化问题的能力和计算能力,考查的核心素养是数学运算和逻辑推理.依题意可知,f (x )=e x +e -x +2cos x =f (-x ),所以f (x )是偶函数,f ′(x )=e x -e -x -2sin x ,且f ′(0)=0,令h (x )=f ′(x ),则h ′(x )=e x +e -x -2cos x ,当x ∈[0,+∞)时,h ′(x )=e x +e -x -2cos x ≥0恒成立,所以f ′(x )=e x -e -x -2sin x 在[0,+∞)上单调递增,所以f ′(x )≥0在x ∈[0,+∞)上恒成立,所以f (x )在[0,+∞)上单调递增,又函数f (x )是偶函数,(a 2+1)2-4a 2=(a 2-1)2≥0,所以f (a 2+1)≥f (2a ),故选A.]二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.解析:通解:令x >0,则-x <0. ∴f (-x )=-2x 3+x 2.又∵f (x )是R 上的奇函数,∴f (-x )=-f (x ). ∴f (x )=2x 3-x 2(x >0). ∴f (2)=2×23-22=12.优解:f (2)=-f (-2)=-[2×(-2)3+(-2)2]=12. 答案:1214.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=________.解析:∵a 3·a 9=a 26,∴a 26=2a 25,设等比数列{a n }的公比为q ,因此q 2=2,由于q >0,解得q =2,∴a 1=a 2q =12=22.答案:2215.已知三棱锥S ABC ,△ABC 是直角三角形,其斜边AB =8,SC ⊥平面ABC ,SC =6,则三棱锥S ABC 的外接球的表面积为________.解析:将三棱锥S ABC 放在长方体中(图略),易知三棱锥S ABC 所在长方体的外接球,即为三棱锥S ABC 的外接球,所以三棱锥S ABC 的外接球的直径2R =AB 2+SC 2=10,即三棱锥S ABC 的外接球的半径R =5,所以三棱锥S ABC 的外接球的表面积S =4πR 2=100π.答案:100π16.已知拋物线C :y 2=2px 的焦点是F ,过F 且斜率为1的直线l 1与拋物线交于A ,B 两点,分别从A ,B 两点向直线l 2:x =-4作垂线,垂足分别是D ,C ,若四边形ABCD 的周长为36+82,则拋物线的标准方程为________.解析:易知F ⎝⎛⎭⎫p 2,0,则直线l 1的方程为y =x -p2.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0,∴x 1+x 2=3p , ∴|AB |=x 1+x 2+p =4p .∵|AD |=x 1+4,|BC |=x 2+4,∴|AD |+|BC |=x 1+x 2+8=3p +8.又|CD |=|AB |sin 45°=4p ·22=22p ,且四边形ABCD的周长为36+82,∴4p +3p +8+22p =36+82,∴p =4,故拋物线的方程为y 2=8x .答案:y 2=8x高考客观题(12+4)·提速练(三) 限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合A ={x |y =lg(x +1)},B ={x ||x |<2},则A ∩B 等于( ) A .(-2,0) B .(0,2) C .(-1,2)D .(-2,-1)解析:C [由x +1>0,得x >-1,∴A =(-1,+∞), B ={x ||x |<2}=(-2,2),∴A ∩B =(-1,2).故选C.]2.已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2等于( )A .-2iB .2iC .-2D .2 解析:A [解法一 z =1+i i =(1+i )(-i )i (-i )=1-i ,z 2=(1-i)2=-2i.解法二 (z i)2=(1+i)2,-z 2=2i ,z 2=-2i.故选A.]3.( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x解析:D [x =ln π>1,y =22<33=12,z ==1π∈⎝⎛⎭⎫12,1.] 4.过圆锥顶点的平面截去圆锥一部分,所得几何体的三视图如图所示,则原圆锥的体积为( )A .1 B.2π3 C.4π3 D.8π3解析:D [由三视图可得底面圆的半径为3+1=2,圆锥的高为5-1=2,∴原圆锥的体积为13π·22·2=8π3,故选D.]5.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x =0,则一开始输入的x 的值为( )A.34B.78C.1516D .4解析:B [i =1时,x =2x -1,i =2时,x =2(2x -1)-1=4x -3, i =3时,x =2(4x -3)-1=8x -7,i =4时,退出循环,此时8x -7=0,解得x =78,故选B.]6.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≤0,x -y ≥0,若z =(x -1)2+y 2,则z 的最小值为( )A .1 B. 2 C .2 D.52解析:C [绘制不等式组表示的平面区域如图所示,目标函数的几何意义为可行域内的点与点(1,0)之间距离的平方,如图所示数形结合可得,当目标函数过点P (2,1)时取得最小值,z min =(x -1)2+y 2=(2-1)2+12=2.]7.函数f (x )=ln ⎝⎛⎭⎫x -1x 的图象是( )解析:B [因为f (x )=ln ⎝⎛⎭⎫x -1x ,所以x -1x =(x +1)(x -1)x >0,解得-1<x <0或x >1,所以函数的定义域为(-1,0)∪(1,+∞),可排除A ,D.因为函数u =x -1x 在(-1,0)和(1,+∞)上单调递增,函数y =ln u 在(0,+∞)上单调递增,根据复合函数的单调性可知,函数f (x )在(-1,0)和(1,+∞)上单调递增.]8.《周髀算经》是中国古代的天文学和数学著作.其中一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至之后的节气(小暑)晷长为( )A .五寸B .二尺五寸C .三尺五寸D .一丈二尺五寸解析:A [设晷长为等差数列{a n },公差为d ,a 1=135,a 13=15,则135+12d =15,解得d =-10.∴a 14=135-10×13=5,∴夏至之后的节气(小暑)的晷长是5寸.故选A.] 9.已知函数f (x )=32sin ⎝⎛⎭⎫2x +π3-cos 2x +12(x ∈R ),则下列说法正确的是( ) A .函数f (x )的最小正周期为π2B .函数f (x )的图象关于y 轴对称C .点⎝⎛⎭⎫π6,0为函数f (x )图象的一个对称中心D .函数f (x )的最大值为12解析:D [函数f (x )=32sin ⎝⎛⎭⎫2x +π3-cos 2x +12=32⎝⎛⎭⎫sin 2x cos π3+cos 2x sin π3-1+cos 2x 2+12 =34sin 2x +14cos 2x =12sin ⎝⎛⎭⎫2x +π6(x ∈R ), 由ω=2知,f (x )的最小正周期为π,A 错误; ∵f (0)=12sin π6=14不是最值,∴f (x )的图象不关于y 轴对称,B 错误; ∵f ⎝⎛⎭⎫π6=12sin π2=12≠0,∴点⎝⎛⎭⎫π6,0不是函数f (x )图象的一个对称中心,C 错误; ∵sin ⎝⎛⎭⎫2x +π6∈[-1,1], ∴f (x )的最大值是12,D 正确.故选D.]10.如图是2017年第一季度五省GDP 情况图,则下列陈述正确的是( )①2017年第一季度GDP 总量和增速均居同一位的省只有1个; ②与去年同期相比,2017年第一季度五个省的GDP 总量均实现了增长; ③去年同期的GDP 总量前三位是江苏、山东、浙江; ④2016年同期浙江的GDP 总量也是第三位.A .①②B .②③④C .②④D .①③④解析:B [总量排序为:江苏,山东,浙江,河南,辽宁;增速排序为:江苏,辽宁,山东,河南,浙江;则总量和增速均居同一位的省有河南,江苏两省,说法①错误;与去年同期相比,2017年第一季度五个省的GDP 总量均实现了增长,说法②正确;去年同期的GDP 总量前三位是江苏,山东,浙江,说法③正确;2016年的GDP 总量计算为: 浙江:4 632.11+3.3%,江苏:6 653.21+10.2%,河南:4 067.41+6.6%,山东:6 469.31+7%,辽宁:2 642.21+9.6%,据此可知,2016年同期浙江的GDP 总量也是第三位,说法④正确.]11.过双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1作曲线C 2:x 2+y 2=a 2的切线,切点为M ,延长F 1M 交曲线C 3:y 2=2px (p >0)于点N ,其中C 1,C 3有一个共同的焦点,若|MF 1|=|MN |,则曲线C 1的离心率为( )A. 5B.5-1C.5+1D.5+12解析:D [设双曲线x 2a 2-y 2b 2=1的右焦点为F 2(c,0),因为曲线C 1,C 3有一个共同的焦点,所以y 2=4cx .因为O 为F 1F 2的中点,M 为F 1N 的中点,所以OM 为△F 1F 2N 的中位线,即OM ∥NF 2,且|OM |=12|NF 2|,因为|OM |=a ,所以|NF 2|=2a ,因为OM ⊥NF 1,所以NF 2⊥NF 1,又|F 1F 2|=2c ,所以|NF 1|=2b .设N (x ,y ),过点F 1作x 轴的垂线,则由拋物线的定义得x +c =2a ,即x =2a -c , 过点N 作NP ⊥x 轴于点P ,则在Rt △NPF 1中,由勾股定理,得y 2+4a 2=4b 2,即4c (2a -c )+4a 2=4(c 2-a 2),即e 2-e -1=0,且e >1,解得e =1+52.故选D.]12.以区间(0,m )内的整数(m >1,且m ∈N )为分子,以m 为分母的分数组成集合A 1,其所有元素之和为a 1;以区间(0,m 2)内的整数(m >1,且m ∈N )为分子,以m 2为分母组成不属于A 1的分数集合A 2,其所有元素之和为a 2……以此类推,以区间(0,m n )内的整数(m >1,且m ∈N )为分子,以m n 为分母组成不属于集合A 1,A 2,…,A n -1的分数集合A n ,其所有元素之和为a n ,则a 1+a 2+a 3+…+a n =( )A.m n +12B.m n -12C.m n 2D.n 2解析:B [由题意得a 1=1m +2m +…+m -1m ,a 2=1m 2+2m 2+…+m 2-1m 2-a 1,a 3=1m 3+2m 3+…+m 3-1m3-a 2-a 1,所以a n =1m n +2m n +…+m n -1mn -a n -1-a n -2-…-a 2-a 1,a 1+a 2+a 3+…+a n =1m n +2m n +…+m n -1m n=1m n [1+2+…+(m n -1)]=1m n ·(m n -1)(1+m n -1)2=m n -12.故选B.] 二、填空题(本大题共4小题,每小题5分,共20分)13.为了解高三年级2 000名学生的学习情况,在期中考试结束后,随机抽取100名及格的学生的分数进行统计,得到如图所示的频率分布直方图,则该校高三年级分数在[130,140)的学生估计有________人.解析:由频率分布直方图知(0.035+0.025+0.015+0.008+0.005+x )×10=1,解得x =0.012,所以该校高三年级分数在[130,140)的学生估计有2 000×0.012×10=240人.答案:24014.(文)一个三位数,个位、十位、百位上的数字依次为x ,y ,z ,当且仅当y >x ,y >z 时,称这样的数为“凸数”(如243),现从集合{1,2,3,4}中取出三个不相同的数组成一个三位数,则这个三位数是“凸数”的概率为________.解析:在{1,2,3,4}的4个整数中任取3个不同的数组成三位数,有24种情况,在{1,2,3,4}的4个整数中任取3个不同的数,将最大的放在十位上,剩余的2个数字分别放在百、个位上,有8种情况,则这个三位数是“凸数”的概率是824=13. 答案:1314.(理)箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖(每人一次),则恰好有3人获奖的概率是________.(用数字作答)解析:由题意得任取两球有C 26种情况,取出两球号码之积是4的倍数的情况为(1,4),(2,4),(3,4),(2,6),(4,6),(4,5)共6种情况,故每人摸球一次中奖的概率为6C 26=25,故4人中有3人中奖的概率为C 34⎝⎛⎭⎫253×35=96625. 答案:9662515.甲、乙两人玩报数游戏,其规则是:两人从1开始轮流连续报数,每人每次最少报2个,最多可以报5个(如第一个人先报“1,2”,则另一个人可以有“3,4”“3,4,5”“3,4,5,6”“3,4,5,6,7”“3,4,5,6,7,8”五种报数方法).抢先报到“110”的人获胜.如果从甲开始,那么甲要想必胜,第一次报的数应该是________.解析:因为110=7×15+5,所以只要甲先报“1,2,3,4,5”,之后不管乙报几个数,甲报的数的个数与乙报的数的个数的和为7即可保证甲必胜.所以甲要想必胜,第一次报的数应该是1,2,3,4,5. 答案:1,2,3,4,516.(双空填空题)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,-2x ,x <0.若f (x )≤1,则实数x 的取值范围是________;若方程f (x )-kx =3有三个相异的实根,则实数k 的取值范围是________.解析:本题考查利用数形结合思想研究函数的零点.当x ≥0时,f (x )≤1即-x 2+2x ≤1,即(x -1)2≥0,则x ≥0成立;当x <0时,f (x )≤1即-2x ≤1,解得-12≤x <0.综上,实数x 的取值范围为⎣⎡⎭⎫-12,+∞.由题意,方程f (x )-kx =3即f (x )=kx +3有三个相异的实根,则函数y =f (x )和y =kx +3的图象有三个不同的交点.作出函数y =f (x )的图象如图所示.由题意知直线y =kx +3和y =-2x (x <0)的图象必有一个交点,所以-2<k <0,则y =kx +3与y =-x 2+2x (x ≥0)的图象必有两个交点.联立⎩⎪⎨⎪⎧y =kx +3,y =-x 2+2x (x ≥0),整理得x 2+(k -2)x +3=0,由⎩⎪⎨⎪⎧Δ=(k -2)2-12>0,2-k >0,解得k <2-2 3.所以实数k 的取值范围是(-2,2-23).答案:⎣⎡⎭⎫-12,+∞ (-2,2-23)高考客观题(12+4)·提速练(四) 限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.设集合A ={-2,-1,1,2},B ={-3,-1,0,2},则A ∩B 的元素的个数为( ) A .2 B .3 C .4D .1解析:A [A ={-2,-1,1,2},B ={-3,-1,0,2}, 则A ∩B ={-1,2},含有2个元素,故选A.]2.i 是虚数单位,若2+i1+i =a +b i(a ,b ∈R ),则lg(a +b )的值是( )A .2B .1C .0D.12解析:C [因为2+i 1+i =(2+i )(1-i )(1+i )(1-i )=3-i 2=a +b i ,所以a =32,b =-12.所以lg(a +b )=lg1=0.故选C.]3.已知a >b ,则“c ≥0”是“ac >bc ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:B [当⎩⎪⎨⎪⎧ a =2>b =1,c =0时,ac >bc 不成立,所以充分性不成立,当⎩⎪⎨⎪⎧ac >bc ,a >b时,c >0成立,c ≥0也成立,所以必要性成立,所以“c ≥0”是“ac >bc ”的必要不充分条件.]4.要得到函数y =cos ⎝⎛⎭⎫2x +π6的图象,只需将函数y =sin ⎝⎛⎭⎫2x +π3的图象( ) A .向右平移π6个单位B .向左平移π6个单位C .向右平移π3个单位D .向左平移π3个单位解析:B [y =sin ⎝⎛⎭⎫2x +π3=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π3= cos ⎝⎛⎭⎫2x -π6,将其图象向左平移π6个单位,可得y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=cos ⎝⎛⎭⎫2x +π6的图象,故选B.]5.(理)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:C [(x 2+x +y )5=[(x 2+x )+y ]5的展开式中只有C 25(x 2+x )3y 2中含x 5y 2,易知x 5y2的系数为C 25C 13=30,故选C.]5.(文)一个样本a,3,4,5,6的平均数为b ,且方程x 2-6x +c =0的两个根为a ,b ,则该样本的方差为( )A .1B .2 C. 2D. 3解析:B [因为一个样本a,3,4,5,6的平均数为b ,且方程x 2-6x +c =0两个根为a ,b , 所以a +a +3+4+5+65=6,解得a =2,b =a +3+4+5+65=4,所以该样本的方差为:s 2=15[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2.故选B.]6.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的“孙子口诀”:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数n 被3除余2,被5除余3,被7除余4,求n 的最小值.按此口诀的算法如图,则输出n 的结果为( )A .53B .54C .158D .263解析:A [正整数n 被3除余2, 得n =3k +2,k ∈N ;被5除余3,得n =5l +3,l ∈N ; 被7除余4,得n =7m +4,m ∈N ; 求得n 的最小值是53.]7.设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB →+AC →等于( )A .-2AD →B .2AD →C .-3AD →D .3AD →解析:C [因为A (0,1),B (1,3),C (-1,5),D (0,-1), 所以AB →=(1,2),AC →=(-1,4),AD →=(0,-2), 所以AB →+AC →=(0,6)=-3(0,-2)=-3AD →,故选C.]8.已知正项等差数列{a n }的前n 项和为S n (n ∈N *),a 5+a 7-a 26=0,则S 11的值为( ) A .11 B .12 C .20D .22解析:D [设等差数列的公差为d (d >0),则由(a 1+4d )+(a 1+6d )-(a 1+5d )2=0,得(a 1+5d )(a 1+5d -2)=0,所以a 1+5d =0或a 1+5d =2,又a 1>0,所以a 1+5d >0,则a 1+5d =2,则S 11=11a 1+11×102d =11(a 1+5d )=11×2=22,故选D.]9.设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线分别交双曲线左、右两支于点M ,N ,连接MF 2,NF 2,若MF 2→·NF 2→=0,|MF 2→|=|NF 2→|,则双曲线C 的离心率为( )A. 2B. 3C. 5D. 6解析:B [由MF 2→·NF 2→=0,知MF 2→⊥NF 2→.又|MF 2→|=|NF 2→|,则|MF 2→|=|NF 2→|=22|MN →|,且∠F 1NF 2=45°.由双曲线的定义得⎩⎪⎨⎪⎧|MF 2→|-|MF 1→|=2a |NF 1→|-|NF 2→|=2a ,两式相加,得|MF 2→|-|NF 2→|+|MN →|=4a ,即|MN →|=4a ,则|NF 2→|=22a ,所以|NF 1→|=2a +|NF 2→|=(2+22)a .在△NF 1F 2中,由余弦定理,得|F 1F 2→|2=|NF 1→|2+|NF 2|2-2|NF 1→|·|NF 2→|cos ∠F 1NF 2,即4c 2=(22a )2+(2+22)2a 2-2×22a ×(2+22)a ×22,整理,得c 2=3a 2,所以e 2=3,即e =3,故选B.] 10.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧-3≤3x -y ≤-1,-1≤x +y ≤1,若z =ax +y 有最大值52,则实数a 的值是( )A .2 B.52 C .-2D .-52解析:C [约束条件⎩⎪⎨⎪⎧-3≤3x -y ≤-1,-1≤x +y ≤1,对应的平面区域如图所示,是平行四边形区域.z =ax +y 变形为y =-ax +z ,其中z 表示直线在y 轴上的截距. ①当a <0时,由可行域可知直线ax +y =z 经过可行域的A 时,z 取得最大,由⎩⎪⎨⎪⎧-3=3x -y ,x +y =1, 解得A ⎝⎛⎭⎫-12,32,代入ax +y =52,得a =-2. ②当a >0时,由图可知当直线ax +y =z 经过B (0,1)时,z 取得最大值1,与已知矛盾. ③当a =0时,z =y 最大为32,不合题意,综上可知a =-2.故选C.]11.已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 将△ABC 折成直二面角B -AD -C ,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π解析:C [如图,连接BC ,设四面体ACBD 外接球的球心为O ,AB 的中点为M ,连接MD ,OM ,OD ,∵AD ⊥BD ,∴△ABD 外接圆的圆心为AB 的中点M .∵二面角B -AD -C 为直二面角,且平面ABD ∩平面ACD =AD ,CD ⊥AD ,∴CD ⊥平面ABD ,易知OM ⊥平面ABD ,∴OM ∥CD ,OM ⊥MD .连接OC ,在直角梯形OMDC 中,易得CD =2OM .设该外接球的半径为R ,则R 2=MD 2+OM 2=MD 2+⎝⎛⎭⎫12CD 2=54,∴该外接球的表面积为4πR 2=5π,故选C.]12.已知x ∈(0,2),关于x 的不等式x e x <1k +2x -x 2恒成立,则实数k 的取值范围为( )A .[0,e +1)B .[0,2e -1)C .[0,e)D .[0,e -1)解析:D [依题意,k +2x -x 2>0,即k >x 2-2x 对任意x ∈(0,2)都成立, 所以k ≥0,因为x e x <1k +2x -x 2,所以k <e x x+x 2-2x ,令f (x )=e x x +x 2-2x ,f ′(x )=e x (x -1)x 2+2(x -1)=(x -1)⎝⎛⎭⎫e x x 2+2, 令f ′(x )=0,解得x =1,当x ∈(1,2)时,f ′(x )>0,函数递增, 当x ∈(0,1)时,f ′(x )<0,函数递减, 所以f (x )的最小值为f (1)=e -1, 所以0≤k <e -1,故选D.]二、填空题(本大题共4小题,每小题5分,共20分)13.(理)某企业的4名职工参加职业技能考核,每名职工均可从4个备选考核项目中任意抽取一个参加考核,则恰有一个项目未被抽中的概率为________.解析:由题意得,所有的基本事件总数为44=256,若恰有一个项目未被抽中,则说明4名职工总共抽取了3个项目,符合题意的基本事件数为C 34·C 13·C 24·A 22=144,故所求概率p =144256=916. 答案:91613.(文)不透明盒子里装有大小质量完全相同的2个黑球,3个红球,从盒子中随机摸取两球,颜色相同的概率为________.解析:记两个黑球为a ,b,3个红球为x ,y ,z ,随机取出两个球, 基本事件为ab ,ax ,ay ,az ,bx ,by ,bz ,xy ,xz ,yz 共10个,其中取到的球颜色相同包含的基本事件有4个,所以取到的球颜色相同的概率p =410=0.4.答案:0.414.已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在点(1,f (1))处的切线方程为2x -y =0,则a +b =________.解析:f (x )=ax ln x +b 的导数为f ′(x )=a (1+ln x ), 由f (x )的图象在(1,f (1))处的切线方程为2x -y =0, 易知f (1)=2,即b =2, f ′(1)=2,即a =2,则a +b =4. 答案:415.在海岛A 上有一座海拔1千米的山,山顶上有一个观察站P .上午11时,测得一轮船在岛的北偏东30°,俯角30°的B 处,到11时10分又测得该船在岛的北偏西60°,俯角60°的C 处,则轮船的航行速度是________千米/时.解析:P A ⊥平面ABC ,∠BAC =90°,∠APB =60°,∠APC =30°,P A =1(千米),AC =33千米, AB =3千米 从而BC =303(千米), 于是速度v =BC ÷16=230(千米/时).答案:23016.已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2a -b 的最小值等于________.解析:作出函数f (x )的草图,如图所示,若f (a )=f (b ),a >b >0, 则0<b <1,a >1,则f (a )=|lg a |=lg a ,f (b )=|lg b |=-lg b , 因为f (a )=f (b ), 所以lg a =-lg b , 即lg a +lg b =lg(ab )=0, 解得ab =1. 因为a >b >0, 所以a -b >0,所以a 2+b 2a -b =(a -b )2+2ab a -b =a -b +2a -b≥2(a -b )·2a -b=22,当且仅当a -b =2a -b ,即a -b =2时取等号.故a 2+b 2a -b 的最小值等于2 2. 答案:2 2Ⅱ:高考中档大题(3+2选1)·满分练(一)限时45分钟 满分46分解答题(本大题共4小题,共46分)1.(12分)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个等差数列,a n =a 1+(n -1)d =2n -1. (2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1,数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 即3n -12≤n 2,又n ∈N *,所以n =1或2.2.(文)(12分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面BDE ; (3)求四面体B -DEF 的体积. 解:(1)设BD 与AC 交于点O ,连接OE ,OH . 因为O ,H 分别为AC ,BC 的中点,所以OH ∥AB ,OH =12AB ,又因为EF ∥AB ,EF =12AB ,所以OH ∥EF ,又因为OH =EF ,所以四边形OEFH 为平行四边形,所以FH ∥OE , 又因为FH ⊄平面BDE ,OE ⊂平面BDE , 所以FH ∥平面BDE . (2)因为EF ∥AB ,EF ⊥FB ,所以AB ⊥FB ,又因为AB ⊥BC ,FB ∩BC =B , 所以AB ⊥平面BCF ,又因为FH ⊂平面BCF , 所以FH ⊥AB ,又FH ⊥BC ,BC ∩AB =B , 所以FH ⊥平面ABCD ,又因为FH ∥OE , 所以OE ⊥平面ABCD ,所以OE ⊥AC , 又AC ⊥BD ,BD ∩OE =O ,所以AC ⊥平面BDE . (3)V B -DEF =13×S △DEF ×BF =13×12×1×2×2=13.2.(理)(12分)如图1,在等腰梯形PDCB 中,PB ∥DC ,PB =3,DC =1,∠DPB =45°,DA ⊥PB 于点A ,将△P AD 沿AD 折起,构成如图2所示的四棱锥P -ABCD ,点M 在棱PB 上,且PM =12MB .。

2020版高考理科数学突破二轮复习新课标 教师用书:第4讲 不等式与合情推理

2020版高考理科数学突破二轮复习新课标 教师用书:第4讲 不等式与合情推理

第4讲 不等式与合情推理不等式的解法 [考法全练]1.设a >b ,a ,b ,c ∈R ,则下列结论正确的是( ) A .ac 2>bc 2 B.a b >1 C .a -c >b -cD .a 2>b 2解析:选C.当c =0时,ac 2=bc 2,所以选项A 错误;当b =0时,ab 无意义,所以选项B 错误;因为a >b ,所以a -c >b -c 恒成立,所以选项C 正确;当a ≤0时,a 2<b 2,所以选项D 错误.故选C.2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12D.12解析:选B.根据一元二次不等式与其对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 3.设[x ]表示不超过x 的最大整数(例如:[5.5]=5,[-5.5]=-6),则不等式[x ]2-5[x ]+6≤0的解集为( )A .(2,3)B .[2,4)C .[2,3]D .(2,3]解析:选B.不等式[x ]2-5[x ]+6≤0可化为([x ]-2)·([x ]-3)≤0,解得2≤[x ]≤3,即不等式[x ]2-5[x ]+6≤0的解集为2≤[x ]≤3.根据[x ]表示不超过x 的最大整数,得不等式的解集为2≤x <4.故选B.4.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含2个整数,则实数a 的取值范围是( )A .(-3,5)B .(-2,4)C .[-3,5]D .[-2,4]解析:选D.由x 2-(a +1)x +a <0得(x -1)(x -a )<0,当a =1时,不等式的解集为∅,符合题意;当a>1时,不等式的解集为(1,a);当a<1时,不等式的解集为(a,1).要使不等式的解集中至多包含2个整数,则a≤4且a≥-2,所以实数a的取值范围是[-2,4].故选D.解不等式的策略(1)一元二次不等式:先化为一般形式ax2+bx+c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解.(3)有函数背景的不等式:灵活利用函数的性质(单调性、奇偶性、对称性等)与图象求解.[注意]求解含参数的不等式的易错点是不清楚对参数分类讨论的标准导致求解出错.基本不等式及其应用[考法全练]1.设x ≥0,则函数y =x +1x +1-32的最小值为________. 解析:y =x +1x +1-32=(x +1)+1x +1-52≥2-52=-12.当且仅当x +1=1x +1,即x =0时等号成立.答案:-122.(2019·高考天津卷)设x >0,y >0,x +2y =5,则(x +1)(2y +1)xy 的最小值为________.解析:(x +1)(2y +1)xy=2xy +2y +x +1xy=2xy +6xy=2xy +6xy.由x +2y =5得5≥22xy ,即xy ≤524,即xy ≤258,当且仅当x =2y =52时等号成立.2xy +6xy≥22xy ·6xy =43,当且仅当2xy =6xy,即xy =3时取等号,结合xy ≤258可知,xy可以取到3,故(x +1)(2y +1)xy的最小值为4 3.答案:4 33.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.解析:一年购买600x 次,则总运费与总存储费用之和为600x×6+4x =4⎝⎛⎭⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.答案:304.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的取值范围是________.解析:由题意可知x +y +3=xy (x >0,y >0),所以x +y +3=xy ≤⎝ ⎛⎭⎪⎫x +y 22,即4(x +y )+12≤(x +y )2,(x +y -6)(x +y +2)≥0,所以x +y ≥6.答案:[6,+∞)5.已知向量a =(x -1,3),b =(1,y ),其中x ,y 都为正实数.若a ⊥b ,则1x +13y 的最小值为________.解析:因为a ⊥b ,所以a ·b =x -1+3y =0,即x +3y =1.又x ,y 为正实数,所以1x +13y=(x +3y )·⎝⎛⎭⎫1x +13y =2+3y x +x 3y≥2+23y x ·x 3y =4,当且仅当x =3y =12时取等号.所以1x +13y的最小值为4.答案:4利用不等式求最值的4个解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,可以通过凑系数后得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用基本不等式求最值.即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.(4)“1”的代换:先把已知条件中的等式变形为“1”的表达式,再把“1”的表达式与所求最值的表达式相乘求积,通过变形构造和或积为定值的代数式求其最值.[注意] 运用基本不等式时,一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指“正数”;“二定”指应用基本不等式求最值时,和或积为定值;“三相等”是指满足等号成立的条件.若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.简单的线性规划问题[考法全练]1.(一题多解)(2019·高考天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z=-4x +y 的最大值为( )A. 2B. 3C. 5D. 6解析:选C.法一:作出可行域如图中阴影部分所示.由z =-4x +y 得y =4x +z ,结合图形可知当直线y =4x +z 过点A 时,z 最大,由⎩⎪⎨⎪⎧x -y +2=0,x =-1,得A (-1,1),故z max =-4×(-1)+1=5.故选C.法二:易知目标函数z =-4x +y 的最大值在可行域的顶点处取得,可行域的四个顶点分别是(-1,1),(0,2),(-1,-1),(3,-1).当直线y =4x +z 经过点(-1,1)时,z =5;当直线y =4x +z 经过点(0,2)时,z =2;当直线y =4x +z 经过点(-1,-1)时,z =3;当直线y =4x +z 经过点(3,-1)时,z =-13.所以z max =5,故选C.2.(2019·洛阳市统考)如果点P (x ,y )满足⎩⎪⎨⎪⎧2x -y +2≥0x -2y +1≤0x +y -2≤0,点Q 在曲线x 2+(y +2)2=1上,则|PQ |的取值范围是( )A .[5-1,10-1]B .[5-1,10+1]C .[10-1,5]D .[5-1,5]解析:选D.作出点P 满足的线性约束条件表示的平面区域(如图中阴影部分所示),因为点Q 所在圆的圆心为M (0,-2),所以|PM |取得最小值的最优解为(-1,0),取得最大值的最优解为(0,2),所以|PM |的最小值为5,最大值为4,又圆M 的半径为1,所以|PQ |的取值范围是[5-1,5],故选D.3.(2019·郑州市第二次质量预测)设实数x ,y 满足⎩⎪⎨⎪⎧x -3y +10≤0x +2≥0x +2y -5≤0,则z =y x的取值范围为________.解析:画出不等式组表示的平面区域,如图中阴影部分所示.z =yx 表示平面区域内的点与坐标原点O 的连线的斜率.由⎩⎪⎨⎪⎧x +2y -5=0x -3y +10=0,得⎩⎪⎨⎪⎧x =-1y =3,即A (-1,3). 由⎩⎪⎨⎪⎧x =-2x -3y +10=0,得⎩⎪⎨⎪⎧x =-2y =83,即B (-2,83).所以z max =k OB =83-2=-43,z min =k OA =3-1=-3,所以z =yx的取值范围为⎣⎡⎦⎤-3,-43.答案:⎣⎡⎦⎤-3,-43 4.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,则a =________.解析:变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z 取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:3简单的线性规划问题的解题策略在给定约束条件的情况下,求线性目标函数的最优解,其主要解题策略为: (1)根据约束条件作出可行域.(2)根据所要求的目标函数的最值,令目标函数z =0,将所得直线平移,得到可行解,并确定最优解.(3)将取得最优解时的点的坐标确定,并求出此时的最优解.合情推理 [考法全练]1.(2019·高考全国卷Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙解析:选A.依题意,若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A.2.观察下列等式: 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 …照此规律,第n 个等式为________________.解析:观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)23.祖暅(公元5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆y 2a 2+x 2b 2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(如图),称为椭球体,课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积,其体积等于________.解析:椭圆的长半轴长为a ,短半轴长为b ,现构造两个底面半径为b ,高为a 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积V =2(V 圆柱-V 圆锥)=2⎝⎛⎭⎫π×b 2×a -13π×b 2a =43πb 2a . 答案:43πb 2a合情推理的解题思路(1)在进行归纳推理时,要根据已知的部分个体,适当变形,找出它们之间的联系,从而归纳出一般结论.(2)在进行类比推理时,要充分考虑已知对象性质的推理过程,然后通过类比,推导出类比对象的性质.(3)归纳推理关键是找规律,类比推理关键是看共性.一、选择题1.用反证法证明命题:“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根解析:选A.依据反证法的要求,即至少有一个的反面是一个也没有,直接写出命题的否定.方程x 3+ax +b =0至少有一个实根的反面是方程x 3+ax +b =0没有实根,故应选A.2.若a <b <0,则下列不等式错误的是( ) A.1a >1bB.1a -b >1aC .|a |>|b |D .a 2>b 2解析:选B.因为a <b <0,所以1a >1b ,故A 对,因为a <b <0,所以0<-b ,a <a -b <0, 所以1a >1a -b,故B 错.因为a <b <0,所以-a >-b >0,即|-a |>|-b |, 所以|a |>|b |,故C 对. 因为a <b <0,所以-a >-b >0, 所以(-a )2>(-b )2,即a 2>b 2,故D 对.3.已知集合M ={x |x -3x -1≤0},N ={x |y =log 3(-6x 2+11x -4)},则M ∩N =( )A.⎣⎡⎦⎤1,43B.⎝⎛⎦⎤12,3 C.⎝⎛⎭⎫1,43 D.⎝⎛⎭⎫43,2解析:选C.因为集合M ={x |x -3x -1≤0}={x |1<x ≤3},N ={x |y =log 3(-6x 2+11x -4)}={x |-6x 2+11x -4>0}=⎩⎨⎧⎭⎬⎫x |12<x <43.所以M ∩N ={}x |1<x ≤3∩{x |12<x <43}=⎝⎛⎭⎫1,43. 4.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -3≥0,x -y +1≥0,x ≤3,则z =2x +y 的最小值与最大值的和为( )A .7B .8C .13D .14解析:选D.作出不等式组⎩⎨⎧x +y -3≥0,x -y +1≥0,x ≤3表示的平面区域,如图中阴影部分所示,作出直线2x +y =0,平移直线2x +y =0,当直线经过点A (1,2)时,z =2x +y 取得最小值4,当直线经过点B (3,4)时,z =2x +y 取得最大值10,故z 的最小值与最大值的和为4+10=14.故选D.5.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日 C .6日和11日D .2日和11日解析:选C.由题意,1至12的和为78, 因为三人各自值班的日期之和相等, 所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日.6.(2019·郑州市第二次质量预测)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x +y ≥1x -y ≤1,则目标函数z =⎝⎛⎭⎫133x +y的最大值为( )A.⎝⎛⎭⎫1311B.⎝⎛⎭⎫133C .3D .4解析:选C.可行域如图中阴影部分所示,目标函数z =⎝⎛⎭⎫133x +y,设u =3x +y ,欲求z =⎝⎛⎭⎫133x +y的最大值,等价于求u =3x +y 的最小值.u =3x +y 可化为y =-3x +u ,该直线的纵截距为u ,作出直线y =-3x 并平移,当直线y =-3x +u 经过点B (-1,2)时,纵截距u 取得最小值u min =3×(-1)+2=-1,所以z =⎝⎛⎭⎫133x +y的最大值z max =⎝⎛⎭⎫13-1=3.故选C.7.设f (x )是定义在[-2b ,3+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≥f (3)的解集为( )A .[-3,3]B .[-2,4]C .[-1,5]D .[0,6]解析:选B.根据题意,-2b +3+b =0; 所以b =3;所以f (x )的定义域为[-6,6],在[-6,0]上为增函数; 所以f (x )在[0,6]上为减函数; 所以由f (x -1)≥f (3)得,f (|x -1|)≥f (3);所以⎩⎪⎨⎪⎧-6≤x -1≤6,|x -1|≤3;解得-2≤x ≤4;所以原不等式的解集为[-2,4].8.已知x >1,y >1,且lg x ,2,lg y 成等差数列,则x +y 有( ) A .最小值,为20 B .最小值,为200 C .最大值,为20D .最大值,为200解析:选B.因为x >1,y >1,且lg x ,2,lg y 成等差数列,所以4=lg x +lg y ,所以lg 104=lg(xy ),所以xy =10 000,所以x +y ≥2xy =200,当且仅当x =y =100时取等号,所以x +y 有最小值,为200.故选B.9.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时,生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元解析:选B.设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,x ,y ∈N *,z=2x +y ,作出⎩⎨⎧2x +3y ≤480,6x +y ≤960,x >0,y >0的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线经过直线2x +3y =480与直线6x +y =960的交点(150,60)时,z 取得最大值,为360.10.设函数f (x )=mx 2-mx -1,若对于x ∈[1,3],f (x )<-m +4恒成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫-∞,57 B.⎝⎛⎦⎤-∞,57 C.⎝⎛⎭⎫57,+∞D.⎣⎡⎭⎫57,+∞解析:选A.由题意,f (x )<-m +4, 可得m (x 2-x +1)<5.因为当x ∈[1,3]时,x 2-x +1∈[1,7], 所以m <5x 2-x +1.因为当x =3时,5x 2-x +1的最小值为57,所以若要不等式m <5x 2-x +1恒成立,则必须m <57,因此,实数m 的取值范围为⎝⎛⎭⎫-∞,57. 11.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x +y -a ≥0,2x -y -4≤0,若z =y +1x +1的最小值为-14,则正数a的值为( )A.76 B .1 C.34D.89解析:选D.实数x ,y 满足的约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x +y -a ≥0,2x -y -4≤0的可行域如图:因为z =y +1x +1表示过点(x ,y )与(-1,-1)连线的斜率,易知a >0,所以可作出可行域,可知可行域的点A 与(-1,-1)连线的斜率最小,由⎩⎪⎨⎪⎧2x +y -a =0,2x -y -4=0,解得A ⎝⎛⎭⎫1+a 4,a2-2. z =y +1x +1的最小值为-14,即⎝ ⎛⎭⎪⎫y +1x +1min =a2-2+1a 4+1+1=2a -4a +8=-14⇒a =89. 12.已知a n =⎝⎛⎭⎫13n,把数列{a n }的各项排列成如下的三角形状:记A (m ,n )表示第m 行的第n 个数,则A (11,2)=( ) A.⎝⎛⎭⎫1367B.⎝⎛⎭⎫1368C.⎝⎛⎭⎫13101D.⎝⎛⎭⎫13102解析:选D.由A (m ,n )表示第m 行的第n 个数可知,A (11,2)表示第11行的第2个数,根据图形可知:每一行的最后一项的项数为行数的平方,所以第10行的最后一项的项数为102=100,即为a 100,所以第11行第2项的项数为100+2=102,所以A (11,2)=a 102=⎝⎛⎭⎫13102,故选D. 二、填空题13.不等式|x -3|<2的解集为________.解析:不等式|x -3|<2,即-2<x -3<2,解得1<x <5. 答案:(1,5)14.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.解析:因为x >2,m >0,所以y =x -2+mx -2+2≥2(x -2)·mx -2+2=2m +2,当x =2+m 时取等号,又函数y =x +mx -2(x >2)的最小值为6,所以2m +2=6,解得m =4.答案:415.(2019·洛阳尖子生第二次联考)已知x ,y 满足⎩⎪⎨⎪⎧x ≥2x +y ≤42x -y -m ≤0.若目标函数z =3x +y的最大值为10,则z 的最小值为________.解析:作出可行域,如图中阴影部分所示.作出直线3x +y =0,并平移可知当直线过点A 时,z 取得最大值,为10,当直线过点B 时,z 取得最小值.由⎩⎪⎨⎪⎧x +y =42x -y -m =0得⎩⎪⎨⎪⎧x =4+m3y =8-m 3,即A ⎝ ⎛⎭⎪⎫4+m 3,8-m 3,所以3×4+m 3+8-m 3=10,解得m =5,可得点B 的坐标为(2,-1),所以z min =3×2-1=5.答案:516.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第57个数对是________.解析:(1,1)两数的和为2,共1个,(1,2),(2,1),两数的和为3,共2个,(1,3),(2,2),(3,1),两数的和为4,共3个,(1,4),(2,3),(3,2),(4,1),两数的和为5,共4个,…因为1+2+3+4+5+6+7+8+9+10=55,所以第57个数对在第11组之中的第2个数,从而两数之和为12,应为(2,10).答案:(2,10)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题强化突破专题一集合、常用逻辑用语、向量、复数、算法、推理与证明、不等式及线性规划第一讲集合与常用逻辑用语高考考点考点解读集合的概念及运算1.以函数的定义域、值域、不等式的解集为背景考查集合的交、并、补的基本运算2.利用集合之间的关系求解参数的值或取值范围3.以新定义集合及集合的运算为背景考查集合关系及运算命题及逻辑联结词1.命题的四种形式及命题的真假判断2.复合命题的真假判断,常与函数、三角、解析几何、不等式相结合考查充要条件的判断1.充要性的判定多与函数、不等式、三角、直线间关系、平面向量等易混易错的概念、性质相结合考查2.利用充要性求参数值或取值范围本部分内容在备考时应注意以下几个方面:(1)紧紧抓住集合的代表元素的实际意义,掌握集合问题的常见解法,活用数学思想解决问题.(2)明确命题的条件和结论之间的关系,关注逻辑联结词和命题,明确命题的否定和否命题的区别.(3)掌握必要条件、充分条件与充要条件的概念及应用.预测2019年命题热点为:(1)集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、值域、方程的解集等知识结合在一起考查.(2)与函数、数列、三角函数、不等式、立体几何、解析几何、概率统计等知识结合在一起考查.Z知识整合hi shi zheng he1.集合的概念、关系及运算(1)集合元素的特性:确定性、互异性、无序性.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C.(3)空集是任何集合的子集.(4)含有n个元素的集合的子集有2n个,真子集有2n-1个,非空真子集有2n-2个.(5)重要结论:A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.充要条件设集合A={x|x满足条件p},B={x|x满中条件q},则有从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒/ p)A Bp是q的必要不充分条件(q⇒p,p⇒/ q)B Ap是q的充要条件(p⇔q)A=B p是q的既不充分也不必要条件(p⇒/ q,q⇒/ p)A与B互不包含(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;綈p和p为真假对立的命题.(2)命题p∨q的否定是(綈p)∧(綈q);命题p∧q的否定是(綈p)∨(綈q).4.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x).它的否定綈p:∀x∈M,綈p(x).,Y易错警示i cuo jing shi1.忽略集合元素互异性:在求解与集合有关的参数问题时,一定要注意集合元素的互异性,否则容易产生增根.2.忽略空集:空集是任何集合的子集,是任何非空集合的真子集,在分类讨论时要注意“空集优先”的原则.3.混淆命题的否定与否命题:在求解命题的否定与否命题时,一定要注意命题的否定是只对命题的结论进行否定,而否命题既对命题的条件进行否定,又对命题的结论进行否定.1.(文)(2018·全国卷Ⅰ,1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( A ) A.{0,2}B.{1,2}C.{0} D.{-2,-1,0,1,2}[解析]A∩B={0,2}∩{-2,-1,0,1,2}={0,2}.故选A.(理)(2018·全国卷Ⅰ,2)已知集合A={x|x2-x-2>0},则∁R A=( B )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}[解析]∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.2.(文)(2018·全国卷Ⅲ,1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( C )A .{0}B .{1}C .{1,2}D .{0,1,2}[解析] ∵ A ={x |x -1≥0}={x |x ≥1},∴ A ∩B ={1,2}.故选C .(理)(2018·全国卷Ⅱ,2)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( A )A .9B .8C .5D .4[解析] 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A .3.(文)(2018·天津卷,3)设x ∈R ,则“x 3>8”是“|x |>2”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 由x 3>8⇒x >2⇒|x |>2,反之不成立,故“x 3>8”是“|x |>2”的充分不必要条件.故选A .(理)(2018·天津卷,4)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( A ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 由“⎪⎪⎪⎪x -12<12”得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”;由“x 3<1”得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”/⇒“⎪⎪⎪⎪x -12<12”.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A .4.(2018·浙江卷,6)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] ∵ 若m ⊄α,n ⊂α,且m ∥n ,则一定有m ∥α,但若m ⊄α,n ⊂α,且m ∥α,则m 与n 有可能异面,∴ “m ∥n ”是“m ∥α”的充分不必要条件.故选A .5.(文)(2018·北京卷,4)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( B )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] a ,b ,c ,d 是非零实数,若a <0,d <0,b >0,c >0,且ad =bc ,则a ,b ,c ,d 不成等比数列(可以假设a =-2,d =-3,b =2,c =3).若a ,b ,c ,d 成等比数列,则由等比数列的性质可知ad =bc .所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B .(理)(2018·北京卷,6)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( C )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b .又a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10,能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件.故选C .6.(文)(2017·全国卷Ⅰ,1)已知集合A ={x |x <2},B ={x |3-2x >0},则( A )A .A ∩B ={x |x <32} B .A ∩B =∅ C .A ∪B ={x |x <32} D .A ∪B =R[解析] 由3-2x >0,得x <32, ∴B ={x |x <32},∴A∩B={x|x<2}∩{x|x<32}={x|x<32},故选A.(理)(2017·全国卷Ⅰ,1)已知集合A={x|x<1},B={x|3x<1},则( A )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅[解析]由3x<1,得x<0,∴B={x|3x<1}={x|x<0}.∴A∩B={x|x<1}∩{x|x<0}={x|x<0},故选A.7.(2017·全国卷Ⅱ,2)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B={1},则B =( C )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}[解析]∵A∩B={1},∴1∈B,∴1是方程x2-4x+m=0的根,∴1-4+m=0,∴m=3.由x2-4x+3=0,得x1=1,x2=3,∴B={1,3}.8.(文)(2017·山东卷,5)已知命题p:∃x∈R,x2-x+1≥0;命题q:若a2<b2,则a<b.下列命题为真命题的是( B )A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)[解析]∵一元二次方程x2-x+1=0的判别式Δ=(-1)2-4×1×1<0,∴x2-x+1>0恒成立,∴p为真命题,綈p为假命题.∵当a=-1,b=-2时,(-1)2<(-2)2,但-1>-2,∴q为假命题,綈q为真命题.根据真值表可知p∧(綈q)为真命题,p∧q,(綈p)∧q,(綈p)∧(綈q)为假命题.故选B.(理)(2017·山东卷,3)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是( B )A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)[解析]∵x>0,∴x+1>1,∴ln(x+1)>ln 1=0.∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.命题方向1集合的概念及运算例1 (1)(文)设集合M={x|x2+x-6<0},N={x|1≤x≤3},则M∩N=( A ) A.[1,2)B.[1,2]C.(2,3] D.[2,3][解析]∵M={x|-3<x<2},N={x|1≤x≤3},∴M∩N={x|1≤x<2},故选A.(理)已知集合A={x|x>2},B={x|x<2m},且A⊆∁R B,那么m的值可以是( A )A.1 B.2C.3 D.4[解析]∵B={x|x<2m},∴∁R B={x|x≥2m},又∵A⊆∁R B,∴有2m≤2,即m≤1.由选项可知选A.(2)(文)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( B )A.1 B.2C.3 D.4[解析]A∩B={1,2,3,4}∩{2,4,6,8}={2,4},∴A∩B中共有2个元素,故选B.(理)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( B ) A.3 B.2C.1 D.0[解析]集合A表示以原点O为圆心,半径为1的圆上的所有点的集合,集合B表示直线y=x上的所有点的集合.结合图形可知,直线与圆有两个交点,所以A∩B中元素的个数为2.故选B.(3)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为( C ) A.77 B.49C.45 D.30[解析]由题得A={(-1,0),(0,0),(1,0),(0,1),(0,-1)},如下图所示:因为B={(x,y)||x|≤2,|y|≤2,x,y∈Z},由A⊕B的定义可得,A⊕B相当于将A集合中各点上下平移或左右平移0,1,2个单位,如下图所示:所以A⊕B中的元素个数为7×7-4=45.故选C.『规律总结』(1)对于集合问题,抓住元素的特征是求解的关键,要注意集合中元素的三个特征的应用,要注意检验结果.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.G 跟踪训练en zong xun lian1.(文)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是( C ) A.3B.4C.5D.6[解析]由集合A={x|-2≤x≤2},易知A∩Z={-2,-1,0,1,2},故选C.(理)设集合M ={x |-2<x <3},N ={x |2x +1≤1}则M ∩(∁R N )=( D )A .(3,+∞)B .(-2,-1]C .[-1,3)D .(-1,3) [解析] 集合N ={x |2x +1≤1}={x |x +1≤0}={x |x ≤-1}.故∁R N ={x |x >-1},故M ∩∁R N={x |-1<x <3}.故选D .2.(文)已知集合U =R ,A ={x |x ≤1},B ={x |x ≥2},则集合∁U (A ∪B )=( A )A .{x |1<x <2}B .{x |1≤x ≤2}C .{x |x ≤2}D .{x |x ≥1}[解析] A ∪B ={x |x ≤1}∪{x |x ≥2}={x |x ≤1或x ≥2},所以∁U (A ∪B )={x |1<x <2}. (理)已知集合A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A ∩B =( A )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}[解析] 由题意知B ={x |-2<x <1},所以A ∩B ={-1,0},故选A .3.(文)已知M ={a ||a |≥2},A ={a |(a -2)(a 2-3)=0,a ∈M },则集合A 的子集共有( B )A .1个B .2个C .4个D .8个[解析] |a |≥2⇒a ≥2或a ≤-2.又a ∈M ,(a -2)(a 2-3)=0⇒a =2或a =±3(舍),即A 中只有一个元素2,故A 的子集只有2个.(理)已知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( D ) A .A ⊆BB .B ⊆AC .A ∩∁R B =RD .A ∩B =∅[解析] 因为x 2-3x +2<0,所以1<x <2,又因为log 4x >12=log 42, 所以x >2,所以A ∩B =∅.命题方向2 命题及逻辑联结词例2 (1)原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( B )A .真,假,真B .假,假,真C .真,真,假D .假,假,假 [解析] 若z 1=a +b i ,则z 2=a -b i.∴|z 1|=|z 2|,故原命题正确、逆否命题正确.其逆命题为:若|z 1|=|z 2|,则z 1,z 2互为共轭复数,若z 1=a +b i ,z 2=-a +b i ,则|z 1|=|z 2|,而z 1,z 2不为共轭复数.∴逆命题为假,否命题也为假.(2)已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论: ①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是假命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是假命题.其中正确的结论是( A )A .②③B .②④C .③④D .①②③ [解析] ∵52>1,∴命题p 是假命题. ∵x 2+x +1=(x +12)2+34≥34>0, ∴命题q 是真命题,由真值表可以判断“p ∧q ”为假,“p ∧(綈q )”为假,“(綈p )∨q ”为真,“(綈p )∨(綈q )”为真,所以只有②③正确,故选A .『规律总结』(1)一般命题p 的真假由涉及的相关知识辨别.(2)四种命题真假的判断依据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无关.(3)形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(4)全称命题与特称(存在性)命题真假的判定:①全称命题:要判定一个全称命题为真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;②特称(存在性)命题:要判定一个特称(存在性)命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可,否则,这一特称(存在性)命题就是假命题.G 跟踪训练en zong xun lian1.设a ,b ,c 是非零向量.已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( A )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )[解析] 由题意知命题p 为假命题,命题q 为真命题,所以p ∨q 为真命题.故选A . 2.以下四个命题中,真命题的个数是( C )①“若a +b ≥2,则a ,b 中至少有一个不小于1”的逆命题;②存在正实数a ,b ,使得lg(a +b )=lg a +lg b ;③“所有奇数都是素数”的否定是“至少有一个奇数不是素数”;④在△ABC 中,A <B 是sin A <sin B 的充分不必要条件.A .0B .1C .2D .3[解析] 对于①,原命题的逆命题为:若a ,b 中至少有一个不小于1,则a +b ≥2,而a =2,b =-2满足a ,b 中至少有一个不小于1,但此时a +b =0,故①是假命题;对于②,根据对数的运算性质,知当a =b =2时,lg(a +b )=lg a +lg b ,故②是真命题;对于③,易知“所有奇数都是素数”的否定就是“至少有一个奇数不是素数”,故③是真命题;对于④,根据题意,结合边角的转换,以及正弦定理,可知A <B ⇔a <b (a ,b 为角A ,B 所对的边)⇔2R sin A <2R sin B (R 为△ABC 外接圆的半径)⇔sin A <sinB ,故A <B 是sin A <sin B 的充要条件,故④是假命题,选C .3.(2018·北京卷,1)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( A )A .{0,1}B .{-1,0,1}C .{-2,0,1,2}D .{-1,0,1,2}[解析] ∵ A ={x ||x |<2}={x |-2<x <2},∴ A ∩B ={0,1}.故选A .命题方向3 充要条件的判断例3 (1)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( A ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 [解析] ∵|θ-π12|<π12, ∴-π12<θ-π12<π12,即0<θ<π6. 显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A .(2)若p 是q 的充分不必要条件,则下列判断正确的是( C )A .綈p 是q 的必要不充分条件B .綈q 是p 的必要不充分条件C .綈p 是綈q 的必要不充分条件D .綈q 是綈p 的必要不充分条件[解析] 由p 是q 的充分不必要条件可知p ⇒q ,q ⇒ / p ,由互为逆否命题的两命题等价可得綈q ⇒綈p ,綈p ⇒ / 綈q ,∴綈p 是綈q 的必要不充分条件,故选C .(3)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件[解析] 设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q )<0,即q <-1,故q <0是q <-1的必要而不充分条件.故选C .(4)已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( A ) A .[2,+∞)B .[1,+∞)C .(2,+∞)D .(-∞,-1][解析] 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2.『规律总结』1.判定充分条件与必要条件的3种方法(1)定义法:正、反方向推,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q ,且q ⇒/ p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件):若A =B ,则是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.提醒:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ,而“A 是B的充分不必要条件”则是指A 能推出B ,且B 不能推出A .G 跟踪训练en zong xun lian1.(文)(2018·娄底二模)“a <-1”是“直线ax +y -3=0的倾斜角大于π4”的( A ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 设直线ax +y -3=0的倾斜角为θ,则tan θ=-a ,若a <-1,得θ角大于π4,由倾斜角θ大于π4得-a >1,或-a <0即a <-1或a >0. (理)“a 2=1”是“函数f (x )=lg(21-x+a )为奇函数”的( B ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] a 2=1⇒a =±1,f (x )=lg(21-x +a )为奇函数等价于f (x )+f (-x )=0,即lg(21-x+a )+lg(21+x +a )=0⇔(21-x +a )(21+x+a )=1化简得a =-1,故选B . 2.(文)若集合A ={x |x 2-x -2<0},B ={x |-2<x <a },则“A ∩B ≠∅”的充要条件是( C )A .a >-2B .a ≤-2C .a >-1D .a ≥-1[解析] 由x 2-x -2<0知-1<x <2,即A ={x |-1<x <2}.又B ={x |-2<x <a }及A ∩B ≠∅知a >-1.(理)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( B )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 [解析] 由3a >3b >3,知a >b >1,所以log 3a >log 3b >0,所以1log 3a <1log 3b,即log a 3<log b 3,所以“3a >3b >3”是“log a 3<log b 3”的充分条件;但是取a =13,b =3也满足log a 3<log b 3,不符合a >b >1.所以“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.A 组1.(文)(2018·天津卷,1)设集合A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R |-1≤x <2},则(A ∪B )∩C =( C )A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}[解析] ∵ A ={1,2,3,4},B ={-1,0,2,3},∴ A ∪B ={-1,0,1,2,3,4}.又C ={x ∈R |-1≤x <2},∴ (A ∪B )∩C ={-1,0,1}.故选C .(理)(2018·天津卷,1)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( B )A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2}[解析] 全集为R ,B ={x |x ≥1},则∁R B ={x |x <1}.∵集合A ={x |0<x <2},∴ A ∩(∁R B )={x |0<x <1}.故选B .2.(2018·蚌埠三模)设全集U ={x |e x >1},函数f (x )=1x -1的定义域为A ,则∁U A =( A ) A .(0,1]B .(0,1)C .(1,+∞)D .[1,+∞) [解析] 全集U ={x |x >0},f (x )的定义域为{x |x >1},所以∁U A ={x |0<x ≤1}.3.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( C )A .∀x ∈(-∞,0),x 3+x <0B .∀x ∈(-∞,0),x 3+x ≥0C .∃x 0∈[0,+∞),x 30+x 0<0D .∃x 0∈[0,+∞),x 30+x 0≥0[解析] 全称命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是特称命题“∃x 0∈[0,+∞),x 30+x 0<0”.4.设有下面四个命题 p 1:若复数z 满足1z∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2;p 4:若复数z ∈R ,则z ∈R .其中的真命题为( B )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4[解析] 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ).对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R , 则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/ a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.5.已知命题p :在等差数列{a n }中,若a m +a n =a p +a q (m ,n ,p ,q ∈N *),则有m +n =p +q ,命题q :∃x 0>0,2-x 0=e x 0,则下列命题是真命题的是( C )A .p ∧qB .p ∧綈qC .p ∨qD .p ∨綈q[解析] 命题p 是假命题,因为当等差数列{a n }是常数列时显然不成立,根据两个函数的图象可得命题q 是真命题,∴p ∨q 是真命题,故选C .6.设集合M ={x |x 2+3x +2<0},集合N ={x |(12)x ≤4},则M ∪N =( A ) A .{x |x ≥-2}B .{x |x >-1}C .{x |x ≤-1}D .{x |x ≤-2}[解析] 因为M ={x |x 2+3x +2<0}={x |-2<x <-1},N =[-2,+∞),所以M ∪N =[-2,+∞),故选A .7.设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( D )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 取a =-b ≠0,则|a |=|b |≠0,|a +b |=|0|=0,|a -b |=|2a |≠0,所以|a +b |≠|a -b |,故由|a |=|b |推不出|a +b |=|a -b |.由|a +b |=|a -b |,得|a +b |2=|a -b |2,整理得a·b =0,所以a ⊥b ,不一定能得出|a |=|b |,故由|a +b |=|a -b |推不出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D .8.下列四个命题中正确命题的个数是( A )①对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1>0; ②m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充要条件;③已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5),则线性回归方程为y ^=1.23x +0.08;④若实数x ,y ∈[-1,1],则满足x 2+y 2≥1的概率为π4. A .1B .2C .3D .4[解析] ①错,应当是綈p :∀x ∈R ,均有x 2+x +1≥0;②错,当m =0时,两直线也垂直,所以m =3是两直线垂直的充分不必要条件;③正确,将样本点的中心的坐标代入,满足方程;④错,实数x ,y ∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x 2+y 2<1所表示的平面区域的面积为π,所以满足x 2+y 2≥1的概率为4-π4. 9.(文)已知全集U =R ,集合A ={x |0<x <9,x ∈R }和B ={x |-4<x <4,x ∈Z }关系的Venn 图如图所示,则阴影部分所求集合中的元素共有( B )A .3个B .4个C .5个D .无穷多个[解析] 由Venn 图可知,阴影部分可表示为(∁U A )∩B .由于∁U A ={x |x ≤0或x ≥9},于是(∁U A )∩B ={x |-4<x ≤0,x ∈Z }={-3,-2,-1,0},共有4个元素.(理)设全集U =R ,A ={x |x (x -2)<0},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( B )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 分别化简两集合可得A ={x |0<x <2},B ={x |x <1},故∁U B ={x |x ≥1},故阴影部分所示集合为{x |1≤x <2}.10.下列命题的否定为假命题的是( D )A .∃x ∈R ,x 2+2x +2≤0B .任意一个四边形的四顶点共圆C .所有能被3整除的整数都是奇数D .∀x ∈R ,sin 2x +cos 2x =1[解析] 设命题p :∀x ∈R ,sin 2x +cos 2x =1,则綈p :∃x ∈R ,sin 2x +cos 2x ≠1,显然綈p 是假命题.11.已知全集U =R ,设集合A ={x |y =ln(2x -1)},集合B ={y |y =sin(x -1)},则(∁U A )∩B 为( C )A .(12,+∞) B .(0,12] C .[-1,12] D .∅[解析] 集合A ={x |x >12}, 则∁U A ={x |x ≤12}, 集合B ={y |-1≤y ≤1},所以(∁U A )∩B ={x |x ≤12}∩{y |-1≤y ≤1} =[-1,12]. 12.给定命题p :函数y =ln[(1-x )(1+x )]为偶函数;命题q :函数y =e x -1e x +1为偶函数,下列说法正确的是( B )A .p ∨q 是假命题B .(綈p )∧q 是假命题C .p ∧q 是真命题D .(綈p )∨q 是真命题 [解析] 对于命题p :y =f (x )=ln[(1-x )(1+x )],令(1-x )(1+x )>0,得-1<x <1.所以函数f (x )的定义域为(-1,1),关于原点对称,因为f (-x )=ln[(1+x )(1-x )]=f (x ),所以函数f (x )为偶函数,所以命题p 为真命题;对于命题q :y =f (x )=e x -1e x +1,函数f (x )的定义域为R ,关于原点对称,因为f (-x )=e -x -1e -x +1=1e x -11e x+1=1-e x1+e x =-f (x ),所以函数f (x )为奇函数,所以命题q 为假命题,所以(綈p )∧q 是假命题.13.已知命题p :x ≥1,命题q :1x<1,则綈p 是q 的既不充分也不必要条件. [解析] 由题意,得綈p 为x <1,由1x<1,得x >1或x <0,故q 为x >1或x <0,所以綈p 是q 的既不充分也不必要条件.14.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.[解析] 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.15.已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于3.[解析] A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3},集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}.故A ∩Z 中所有元素之和为0+1+2=3.16.已知命题p :∀x ∈R ,x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p 且q ”是真命题,则实数a 的取值范围为(-∞,-2].[解析] 由已知条件可知p 和q 均为真命题,由命题p 为真得a ≤0,由命题q 为真得a ≤-2或a ≥1,所以a ≤-2.00B 组1.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =( C )A .{-1}B .{0}C .{-1,0}D .{0,1}[解析] 本题主要考查一元二次不等式的解法与集合的表示方法、集合间的基本运算. 依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0},选C .2.已知全集U =R ,集合A ={x |y =lg(x -1)},集合B ={y |y =x 2+2x +5},则A ∩B =( C )A .∅B .(1,2]C .[2,+∞)D .(1,+∞)[解析] 由x -1>0,得x >1,故集合A =(1,+∞),又y =x 2+2x +5=(x +1)2+4≥4=2,故集合B =[2,+∞),所以A ∩B =[2,+∞),故选C .3.给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立;②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >c b”的逆否命题; ④若p 且q 为假命题,则p ,q 均为假命题.其中真命题的是( A )A .①②③B .①②④C .①③④D .②③④[解析] ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一个为假,④不正确.4.设x 、y ∈R ,则“|x |≤4且|y |≤3”是“x 216+y 29≤1”的( B ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] “|x |≤4且|y |≤3”表示的平面区域M 为矩形区域,“x 216+y 29≤1”表示的平面区域N 为椭圆x 216+y 29=1及其内部,显然N M ,故选B .5.(文)若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 当a =1时,B ={x |-2<x <1},∴A ∩B =∅,则“a =1”是“A ∩B =∅”的充分条件;当A ∩B =∅时,得a ≤2,则“a =1”不是“A ∩B =∅”的必要条件,故“a =1”是“A ∩B =∅”的充分不必要条件.(理)设x ,y ∈R ,则“x ≥1且y ≥1”是“x 2+y 2≥2”的( D )A .既不充分又不必要条件B .必要不充分条件C .充要条件D .充分不必要条件[解析] 当x ≥1,y ≥1时,x 2≥1,y 2≥1,所以x 2+y 2≥2;而当x =-2,y =-4时,x 2+y 2≥2仍成立,所以“x ≥1且y ≥1”是“x 2+y 2≥2”的充分不必要条件,故选D .6.已知集合A ={1,2,3,4},B ={2,4,6,8},定义集合A ×B ={(x ,y )|x ∈A ,y ∈B },则集合A ×B 中属于集合{(x ,y )|log x y ∈N }的元素个数是( B )A .3B .4C .8D .9[解析] 用列举法求解.由给出的定义得A ×B ={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)}.其中log 22=1,log 24=2,log 28=3,log 44=1,因此,一共有4个元素,故选B .7.(2018·东北三省四市一模)已知命题p :函数y =lg(1-x )在(-∞,1)内单调递减,命题q :函数y =2cos x 是偶函数,则下列命题中为真命题的是( A )A .p ∧qB .(綈p )∨(綈q )C .(綈p )∧qD .p ∧(綈q )[解析] 命题p :函数y =lg(1-x )在(-∞,1)上单调递减,是真命题;命题q :函数y =2cos x 是偶函数,是真命题.则p ∧q 是真命题.故选A .8.已知条件p :x 2-2x -3<0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围为( D )A .a >3B .a ≥3C .a <-1D .a ≤-1 [解析] 由x 2-2x -3<0得-1<x <3,设A ={x |-1<x <3},B ={x |x >a },若p 是q 的充分不必要条件,则A B ,即a ≤-1.9.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的a 的取值范围为( D )A .(1,9)B .[1,9]C .[6,9)D .(6,9] [解析] 依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧ 2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].10.下列说法正确的是( D )A .命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018<0”B .两个三角形全等是这两个三角形面积相等的必要条件C .函数f (x )=1x在其定义域上是减函数D .给定命题p ,q ,若“p 且q ”是真命题,则綈p 是假命题[解析] 对于A ,特称命题的否定为全称命题,所以命题“存在x 0∈R ,x 20+x 0+2 018>0”的否定是“任意x ∈R ,x 2+x +2 018≤0”,故A 不正确.对于B ,两个三角形全等,则这两个三角形面积相等;反之,不然.即两个三角形全等是这两个三角形面积相等的充分不必要条件,故B 不正确.对于C ,函数f (x )=1x 在(-∞,0),(0,+∞)上分别是减函数,但在定义域(-∞,0)∪(0,+∞)内既不是增函数,也不是减函数,如取x 1=-1,x 2=1,有x 1<x 2,且f (x 1)=-1,f (x 2)=1,则f (x 1)<f (x 2),所以函数f (x )=1x 在其定义域上不是减函数,故C 不正确.对于D ,因为“p 且q ”是真命题,则p ,q 都是真命题,所以綈p 是假命题,故D 正确.11.如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B ={0,6}.[解析] 由题意可知,-2x =x 2+x , 所以x =0或x =-3,而当x =0时,不符合元素的互异性,舍去; 当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.12.命题“∀x ∈[1,2],使x 2-a ≥0”是真命题,则a 的取值范围是(-∞,1]. [解析] 命题p :a ≤x 2在[1,2]上恒成立,y =x 2在[1,2]上的最小值为1, 所以a ≤1.13.设p :(x -a )2>9,q :(x +1)(2x -1)≥0,若綈p 是q 的充分不必要条件,则实数a 的取值范围是(-∞,-4]∪[72,+∞).[解析] 綈p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12,因为綈p 是q 的充分不必要条件, 所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.14.给出下列结论:①若命题p :∃x 0∈R ,x 20+x 0+1<0,则綈p :∀x ∈R ,x 2+x +1≥0;②“(x -3)(x -4)=0”是“x -3=0”的充分而不必要条件;③命题“若b =0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是偶函数”的否命题是“若b ≠0,则函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)是奇函数”;④若a >0,b >0,a +b =4,则1a +1b 的最小值为1.其中正确结论的序号为①④.[解析] 由特称命题的否定知①正确;(x -3)(x -4)=0⇒x =3或x =4,x =3⇒(x -3)(x -4)=0,所以“(x -3)·(x -4)=0”是“x -3=0”的必要而不充分条件,所以②错误;函数可能是偶函数,奇函数,也可能是非奇非偶的函数,结论③中“函数是偶函数”的否定应为“函数不是偶函数”,故③不正确;因为a >0,b >0,a +b =4,所以1a +1b =a +b 4·(1a +1b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1,当且仅当a =b =2时取等号,所以④正确.第二讲向量运算与复数运算、算法、推理与证明高考考点考点解读平面向量的运算及运用1.以平面图形为载体,借助向量考查数量关系与位置关系、向量的线性运算及几何意义2.以平面向量基本定理为出发点,与向量的坐标运算、数量积交汇命题3.直接利用数量积运算公式进行运算,求向量的夹角、模或判断向量的垂直关系复数的概念及运算1.复数的概念、纯虚数、复数相等、共轭复数等2.复数的几何意义及四则运算,重点考查复数的乘除运算程序框图1.主要考查程序框图的应用及基本算法语句,尤其是含循环结构的程序框图2.与分段函数的求值、数列求和或求积、统计等有规律的重复计算问题放在一起综合考查合情推理1.主要考查合情推理和演绎推理,重点考查归纳推理和类比推理2.以数表、数阵、图形等为背景与数列、周期性等数学知识相结合考查归纳推理本部分内容在备考时应注意以下几个方面:(1)加强对向量加法、减法的平行四边形法则与三角形法则的理解、掌握两向量共线与垂直的条件,熟记平面向量的相关公式,掌握求模、夹角的方法.(2)掌握复数的基本概念及运算法则,在备考时注意将复数化为代数形式再进行求解,同时注意“分母实数化”的运用.(3)关注程序框图和基本算法语句的应用与判别,尤其是含循环结构的程序框图要高度重视.(4)掌握各种推理的特点和推理过程,同时要区分不同的推理形式,对归纳推理要做到归纳到位、准确;对类比推理要找到事物的相同点,做到类比合,对演绎推理要做到过程严密.预测2019年命题热点为:(1)利用平面向理的基本运算解决数量积、夹角、模或垂直、共线等问题,与三角函数、解析几何交汇命题.(2)单独考查复数的四则运算,与复数的相关概念、复数的几何意义等相互交汇考查. (3)程序框图主要是以循环结构为主的计算、输出、程序框图的补全,与函数求值、方程求解、不等式求解数列求和、统计量的计算等交汇在一起命题.(4)推理问题考查归纳推理和类比推理,主要与数列、立体几何、解析几何等结合在一起命题.Z 知识整合hi shi zheng he1.重要公式(1)两个非零向量平行、垂直的充要条件 若a =(x 1,y 1),b =(x 2,y 2),则①a ∥b ⇔a =λb (b ≠0,λ∈R )⇔x 1y 2-x 2y 1=0. ②a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. (2)复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i(a ,b ,c ,d ∈R ). (a +b i)(c +d i)=(ac -bd )+(bc +ad )i(a ,b ,c ,d ∈R ). (a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -ad c 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0).2.重要性质及结论(1)若a 与b 不共线,且λa +μb =0,则λ=μ=0.(2)已知OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.. (3)平面向量的三个性质①若a =(x ,y ),则|a |=a ·a =x 2+y 2.②若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2③设θ为a 与b (a ≠0,b ≠0)的夹角,且a =(x 1,y 1),b =(x 2,y 2),则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22(4)复数运算中常用的结论: ①(1±i)2=±2i ;②1+i 1-i =i ;③1-i 1+i=-i ;④-b +a i =i(a +b i);⑤i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,其中n ∈N *3.推理与证明 (1)归纳推理的思维过程实验、观察→概括、推广→猜测一般性结论 (2)类比推理的思维过程实验、观察→联想、类推→猜测新的结论 (3)(理)数学归纳法证题的步骤①(归纳奠基)证明当n 取第一个值n =n 0(n 0∈N *)时,命题成立;②(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时,命题也成立. 只要完成了这两个步骤,就可以断定命题对于任何n ≥n 0的正整数都成立. Y 易错警示i cuo jing shi1.忽略复数的定义:在解决与复数概念有关的问题时,在运用复数的概念时忽略某一条件而致误. 2.不能准确把握循环次数解答循环结构的程序框图(流程图)问题,要注意循环次数,防止多一次或少一次的错误. 3.忽略特殊情况:两个向量夹角为锐角与向量的数量积大于0不等价;两个向量夹角为钝角与向量的数量积小于0不等价.1.(2018·全国卷Ⅰ,1)设z =1-i1+i+2i ,则|z |=( C ) A .0 B .12C .1D . 2[解析] ∵ z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =-2i2+2i =i ,∴ |z |=1. 故选C .2.(2018·全国卷Ⅱ,1)1+2i1-2i =( D )A .-45-35iB .-45+35iC .-35-45iD .-35+45i[解析] 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i 1-(2i )2=-3+4i 5=-35+45i.故选D .3.(2018·全国卷Ⅱ,4)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( B )A .4B .3C .2D .0[解析] a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵ |a |=1,a ·b =-1,∴ 原式=2×12+1=3. 故选B .4.(2018·全国卷Ⅰ,6)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( A ) A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 故选A .5.(2018·北京卷,2)在复平面内,复数11-i 的共轭复数对应的点位于( D )A .第一象限B .第二象限C .第三象限D .第四象限 [解析]11-i =12+i 2,其共轭复数为12-i2,对应点位于第四象限.故选D .6.(2018·全国卷Ⅱ,7)为计算S =1-12+13-14+…+199-1100,设计了如图所示的程序框图,则在空白框中应填入( B )。

相关文档
最新文档