甘肃省武山县三中2018-2019学年高二上学期第一次月考数学试卷Word版含答案
2018-2019学年高二上学期第一次月考试卷数学(242)
宾县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .562. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥03. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1)4. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .5. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .06. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤07. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.8. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:乙校:则x,yA、12,7B、10,7C、10,8D、11,99.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①② B.②③ C.③D.③④10.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是()A.1 B.±2 C.或3 D.1或2。
2018_2019学年高二数学上学期第一次月考试题
2018——2019学年第一学期第一次月考试卷高二数学一、选择题(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中只有一项符合要求). 41.在△ABC 中,若B A sin sin >,则与的大小关系为( ) A .B A > B. B A < C. ≥D. 、的大小关系不能确定 2.在△ABC 中,已知a=7,b=10,c=6判断△ABC 的形状( ) A.锐角三角形 B.直角三角形 C.锐角或直角三角形 D.钝角三角形3.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+3944.已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°,则A ,C 两地的距离为( ).A .10kmB .10kmC .10kmD .10km5.若△ABC 中,sin A ∶sin B ∶sinC =2∶3∶4,那么cos C =( ) A .-14B.14C .-23D.236.△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为( ) A .19 B .14C .-18 D .-197.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和=( ) A .58 B .88C .143 D .1768.在等比数列{}n a 中,4510a a +=,6720a a +=,则89a a +=( )A.90B.30C.70D.409.设等差数列{}n a 的前n 项和为,若111a =-,466a a +=-,则当取最小值时,n 等于( )A .6B .7C .8D .910.设为等比数列{}n a 的前n 项和,2580a a -=,则42S S =( ) ……………………………………………………密…………………封…………………线……………………………………………………………A.5B.8C.-8D.1511.根据下列条件解三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9.那么,下面判断正确的是( ).A .①只有一解,②也只有一解.B .①有两解,②也有两解.C .①有两解,②只有一解.D .①只有一解,②有两解.12.△ABC 中,a ,b ,c 分别为∠A,∠B,∠C 的对边,如果a ,b ,c 成等差数列, ∠B=30°,△ABC 的面积为23,那么b =( ). A .231+B .1+C .232+D .2+ 二.填空题(本大题共4小题,每小题5分共20分).13.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =,b =1,∠B =30°,则∠A 的值是 .14.△ABC 中,若a cos A 2=b cos B 2=ccosC 2,则△ABC 的形状是________.15.已知等比数列{a n }的前10项和为32,前20项和为56,则它的前30项和为. 16.已知数列{}n a 的前项和n n S 23+=,则=___________.三.解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或计算步骤). 17.(本小题满分10分)在△ABC 中,BC =5,AC =3,sin C =2sin A.(1)求AB 的值; (2)求sin A 的值.18.(本小题满分12分)△ABC 中,D 在边BC 上,且BD=2,DC=1,∠B=60°, ∠ADC=150°,求AC 的长及△ABC 的面积.19.(本小题满分12分)在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边, 且a =4=33b ,解此三角形.20.(本小题满分12分)已知等差数列{}n a . (1)若12=31a ,32=151a 求; (2)若1=5,d=3,=2009n a a ,求.21.(本小题满分12分)数列{}n a 满足14a =,144n n a a -=-(2)n ≥,设=12n a -. (1)判断数列{}n b 是否为等差数列并试证明; (2)求数列{}n a 的通项公式.22.在数列{a n }中,S n +1=4a n +2,a 1=1.(1)设b n =a n +1-2a n ,求证数列{b n }是等比数列; (2)设c n =nna 2,求证数列{c n }是等差数列; (3)求数列{a n }的通项公式及前n 项和的公式.2018——2019学年第一学期第一次月考答案 高二 数学 ……………………………………………………密…………………封…………………线…级: 学号: 姓名:。
高二数学上学期第一次月考试题
2018年—2019年高二上学期第一次月考卷数学试卷一、选择题(本大题共12小题,共分)1.在中,,,,则A。
B、C、D、2.在中,,,,则A、B。
ﻩC。
ﻩD、或3.在等差数列中,,则A、 20ﻩB。
12 C。
10ﻩD。
364.在中,若,,,则边b等于A、B。
ﻩC。
D。
15.若的三个内角A,B,C满足:::12:13,则一定是A。
锐角三角形B、钝角三角形C、直角三角形ﻩD、无法确定6.已知数列满足,若,则等于A、 1 B、2ﻩC、 64ﻩD、1287.在中,,,,则a的值为A。
3 B。
23ﻩC、ﻩD、28.在中,,且的外接圆半径,则A、ﻩB。
C、D、9.已知等差数列中,,,则的前n项和的最大值是A、15 B。
20ﻩC、26ﻩD。
3010.已知数列满足,且,则A、B。
ﻩC。
ﻩD、 211.已知是等比数列,且,,那么的值等于A。
5ﻩB、 10ﻩC。
15 D。
2012.数列,前n项和为A。
B、ﻩC。
ﻩD、第II卷二、填空题(本大题共4小题,共分)13.在中,,,,则______、14.设等差数列的公差不为0,已知,且、、成等比数列,则______、15.如图所示,为测量一水塔AB的高度,在C处测得塔顶的仰角为,后退20米到达D处测得塔顶的仰角为,则水塔的高度为______米16.17.ﻭ18.数列前n项和为,则的通项等于______ 。
三、解答题(本大题共6小题,共分)19.已知等比数列,,20.求数列的通项公式、21.求的值、ﻭﻭ22.ﻭ23.24.ﻭ25.在三角形ABC中,角A,B,C所对的边为a,b,c,,,且、ﻭⅠ求b;26.Ⅱ求、ﻭ27.ﻭﻭﻭﻭﻭ28.已知等差数列满足:,,其前n项和为。
29.求数列的通项公式及;ﻭ若,求数列的前n项和为、ﻭ30.在中,角A,B,C所对的边分别为a,b,c,且、ﻭ求角A的值;31.若,求的面积S、ﻭ32.33.34.ﻭﻭﻭ35.设等差数列的前n项和满足,且,,成公比大于1的等比数列、36.求数列的通项公式;ﻭ设,求数列的前n项和、37.ﻭﻭ22、在海岸A处,发现北偏东方向,距离A为海里的B处有一艘走私船,在A处北偏西方向,距离A为2 海里的C处有一艘缉私艇奉命以海里时的速度追截走私船,此时,走私船正以10 海里时的速度从B处向北偏东方向逃窜Ⅰ问C船与B船相距多少海里?C船在B船的什么方向?Ⅱ问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间、ﻭﻭﻭ2018-2019上学期高二第一次月考数学答案和解析【答案】1、D2、Dﻩ3、C4。
武山县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
武山县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=,则f (0)=( )A .﹣1B .0C .1D .32. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个3. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .54. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件5. 执行如图所示的程序框图,若a=1,b=2,则输出的结果是( )A .9B .11C .13D .156. 如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若=+x +y ,则( )A .x=﹣B .x=C .x=﹣D .x=7. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=8. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 9. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A10.在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .011.设、是两个非零向量,则“(+)2=||2+||2”是“⊥”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件12.设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A.平行B.重合C.垂直D.相交但不垂直二、填空题13.已知1 sin cos3αα+=,(0,)απ∈,则sin cos7sin12ααπ-的值为.14.已知两个单位向量,a b满足:12a b∙=-,向量2a b-与的夹角为,则cosθ=.15.已知函数21()sin cos sin2f x a x x x=-+的一条对称轴方程为6xπ=,则函数()f x的最大值为___________.【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.16.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是.17.如图,在棱长为的正方体1111DABC A B C D-中,点,E F分别是棱1,BC CC的中点,P是侧面11BCC B内一点,若1AP平行于平面AEF,则线段1A P长度的取值范围是_________.18.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.三、解答题19.(本题满分14分)已知函数xaxxf ln)(2-=.(1)若)(xf在]5,3[上是单调递减函数,求实数a的取值范围;(2)记xbxaxfxg)1(2ln)2()()(--++=,并设)(,2121xxxx<是函数)(xg的两个极值点,若27≥b,求)()(21xgxg-的最小值.20.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.21.如图,在Rt△ABC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA 和正△CED.(Ⅰ)求线段AD的长;(Ⅱ)比较∠ADC和∠ABC的大小.22.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.23.已知函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P(0,1)(Ⅰ)求函数f(x)的解析式;(Ⅱ)设函数g(x)=f(x)+cos2x﹣1,将函数g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值.24.在△ABC中,cos2A﹣3cos(B+C)﹣1=0.(1)求角A的大小;(2)若△ABC的外接圆半径为1,试求该三角形面积的最大值.武山县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案) 一、选择题1. 【答案】B【解析】解:函数f (x )=,则f (0)=f (2)=log 22﹣1=1﹣1=0. 故选B .【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题.2. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 3. 【答案】C【解析】解:函数f (x )=+6x ﹣1,可得f ′(x )=x 2﹣8x+6,∵a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,∴a 2014,a 2016是方程x 2﹣8x+6=0的两实数根,则a 2014+a 2016=8.数列{a n }中,满足a n+2=2a n+1﹣a n , 可知{a n }为等差数列,∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16, 从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4. 故选:C .【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.4. 【答案】A【解析】解:∵sinB+sin (A ﹣B )=sinC=sin (A+B ), ∴sinB+sinAcosB ﹣cosAsinB=sinAcosB+cosAsinB , ∴sinB=2cosAsinB , ∵sinB ≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A5.【答案】C【解析】解:当a=1时,不满足退出循环的条件,故a=5,当a=5时,不满足退出循环的条件,故a=9,当a=9时,不满足退出循环的条件,故a=13,当a=13时,满足退出循环的条件,故输出的结果为13,故选:C【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.7.【答案】C【解析】解:A、函数f(x)的定义域为R,函数g(x)的定义域为{x|x≠0},定义域不同,故不是相同函数;B、函数f(x)的定义域为R,g(x)的定义域为{x|x≠﹣2},定义域不同,故不是相同函数;C、因为,故两函数相同;D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.故选:C.8.【答案】D9.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.10.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.11.【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”⇒(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2⇒a•b=0,即a⊥b;a⊥b⇒a•b=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“a⊥b”的充要条件.故选C.12.【答案】C 【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系.二、填空题13.【答案】3【解析】7sinsin sin coscos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭4=, sin cos 73sin 12ααπ-∴==,考点:1、同角三角函数之间的关系;2、两角和的正弦公式.14.【答案】7-. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 15.【答案】1 【解析】16.【答案】 2:1 .【解析】解:设圆锥、圆柱的母线为l ,底面半径为r ,所以圆锥的侧面积为: =πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1 故答案为:2:117.【答案】42⎡⎢⎣⎦, 【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.18.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内 三、解答题19.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,20.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.21.【答案】【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE与∠EBC的大小.在△ADE中,由正弦定理可得,∴sin∠ADE=<=sin30°,∴∠ADE<30°∴∠ADC<∠ABC.【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.22.【答案】【解析】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为.∵曲线C的极坐标方程是ρ=4,∴ρ2=16,∴曲线C的直角坐标系方程为x2+y2=16.(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,∴cos,∵0,∴,∴.23.【答案】【解析】解:(Ⅰ)∵函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,∴ω==2,又由函数f(x)的图象过点P(0,1),∴sinφ=0,∴φ=0,∴函数f(x)=sin2x+1;(Ⅱ)∵函数g(x)=f(x)+cos2x﹣1=sin2x+cos2x=sin(2x+),将函数g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin[2(x﹣)+]=sin(2x﹣),∵x∈(0,m),∴2x﹣∈(﹣,2m﹣),又由h(x)在区间(0,m)内是单调函数,∴2m﹣≤,即m≤,即实数m的最大值为.【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键.24.【答案】【解析】(本题满分为12分)解:(1)∵cos2A﹣3cos(B+C)﹣1=0.∴2cos2A+3cosA﹣2=0,…2分∴解得:cosA=,或﹣2(舍去),…4分又∵0<A<π,∴A=…6分(2)∵a=2RsinA=,…又∵a2=b2+c2﹣2bccosA=b2+c2﹣bc≥bc,∴bc≤3,当且仅当b=c时取等号,…∴S△ABC=bcsinA=bc≤,∴三角形面积的最大值为.…。
2019届高三数学上册第一次月考试卷3
2018-2019学年度第一次月考(文科)考试时间:120分钟 满分:150分 一.选择题(每小题5分,共50分)1.设{}2,1,0,1,2U =--,{1,1}A =-,{}0,1,2B =,则)(B C A U =( ) A .{1} B . ∅ C .{1}- D .{1,0}- 2.不等式032<-x x 的解集是( ) A .)0,(-∞ B .)3,0(C .(,0)(3,)-∞+∞D .),3(+∞3.下列四组函数中,两函数是同一函数的是: ( ) A. ƒ(x)=2x 与ƒ(x)=x B. ƒ(x)=2)x (与ƒ(x)=x C. ƒ(x)=x 与ƒ(x)=33x D. ƒ(x)= 2x 与ƒ(x)= 33x4."x=1"是“2x =1"的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数f (x +1)=3x +2,则f (x )的解析式是( )A .3x +2B .3x +1C .3x -1D .3x +4 6.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是( ).(A ),sin 1x R x ∃∈≥ (B ),sin 1x R x ∀∈≥(C ),sin 1x R x ∃∈> (D ),sin 1x R x ∀∈>7.函数32)(2--=ax x x f 在区间(–∞,2)上为减函数,则有 ( )A.]1,(-∞∈aB.),2[+∞∈aC.]2,1[∈aD.),2[]1,(+∞⋃-∞∈a8.已知函数)(x f y =定义域是]3,2[-,则)12(-=x f y 的定义域是( )A .[]052, B. []-14, C. ]2,21[- D. []-37, 9..设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A.3-B. 1-C.1D.310.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是A .)2()1()23(f f f <-<-B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f二.填空题(每小题4分,共20分)11.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则a ,b 的值为______ 12.函数y=|32|2--x x 的单调递减区间是 ; 13.已知{}a a ,0,12∈, 则 a = ;14.已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .15.已知函数8)(35+++=cx bx ax x f ,且10)2(=-f ,则函数)2(f 的值是 .三.解答题(共6小题,共80分)16.(本题满分13分)设集合A ={x |a ≤x ≤a +3},集合B ={x |x <-1或x >5},分别就下列条件求实数a 的取值范围:(1)A ∩B ≠∅,(2)A ∩B =A .17.(本题满分13分) 求函数5123223+--=x x x y 在[0,3]上的最大值与最小值18.(本题满分13分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围.19.(本题满分13分)若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()21f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭20.(本题满分14分)已知21()log .1xf x x+=- (1)求)(x f 的定义域 (2)判断)(x f 的奇偶性并予以证明 (3)求使)(x f >0的x 取值范围21.(本题满分14分)已知函数()32f x x ax b =++的图像在点P (1,0)处的切线与直线30x y +=平行(1)求常数a,b 的值 (2)求函数()f x 在区间[]0,m 上最小值和最大值()0m >2018-2019学年度第一次月考高三文科数学试题一、选择题:(每小题5分共60分)二、填空题:(每小题5分共20分)11._____________________;12._____________________;13._____________________;14._____________;15. ______;三、解答题:(本大题有5个小题,共70分)16.(本题满分13分)18.(本题满分13分)20. (本题满分13分)20.(本题满分13分)22.(本题满分10分)。
甘肃省武山县三中2018_2019学年高二数学上学期第一次月考试题
2018-2019学年第一学期第一次月考考试高二级数学试卷一、单选题(共12题;共24分)1.在等差数列 中, ,则 ( )A. 6B. 7C. 8D. 92.已知数列 的前前 项和 ,那么它的通项公式是( )A. B.C. D.3.已知数列 满足 ,若 ,则 等于( )A. 1B. 2C. 64D. 1284.设等差数列 的前n 项和为 ,已知 ,则 ( )A. -27B. 27C. -54D. 545.在 中, , , ,则 等于( )A. B.C.D.6.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.A. 98B. 99C. 100D. 1017.在等比数列{a n}中,已知a7a12=5,则a8a9a10a11=()A. 10B. 50C. 25D. 758.若数列{a n}为等差数列,a2, a10是方程x2﹣3x﹣5=0的两根,则a4+a8的值为()A. 3B. ﹣3 C. 5D. ﹣59.已知等差数列{a n}的公差d≠0,且a3=2a1,则的值为 ( )A. B.C.D.10. +1与﹣1的等差中项是()A. 1B. ﹣1C.D. ±111.在△ABC中,若a2+b2<c2,则△ABC的形状是()A. 锐角三角形B. 直角三角形 C. 钝角三角形 D. 不能确定12.在等比数列{a n}(n∈N*)中,若a1=1,a4= ,则该数列的前10项和为()A. B.C.D.二、填空题(共4题;共4分)13.△ABC的三个内角A,B,C的大小成等差数列,则B=________.14.在△ABC中,若B=30°,AB=2 ,AC=2,求△ABC的面积________.15.(2015湖南)设为等比数列的前项和,若,且成等差数列,则________ 。
16.等比数列{a n}中,a1+a2=30,a3+a4=60,则q=________.三、解答题(共6题;共50分)17.设数列满足,,.(Ⅰ)求的通项公式及前项和;(Ⅱ)已知是等差数列,且满足,,求数列的通项公式.18.已知等差数列和等比数列满足,,.(1)求的通项公式;(2)求和:.19.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且2cos(A+B)=1.求:(1)角C的度数;(2)AB的长度.20.设等差数列{a n}满足a3=5,a10=﹣9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n最大的序号n的值.21.已知数列的前项和满足且 .(1)求数列的通项公式;(2)求的值。
武山县高级中学2018-2019学年上学期高二数学12月月考试题含解析
武山县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设x ,y ∈R ,且满足,则x+y=( )A .1B .2C .3D .42. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④3. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.4. 设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 5. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.6. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .27. 已知一组函数f n (x )=sin n x+cos n x ,x ∈[0,],n ∈N *,则下列说法正确的个数是( )①∀n ∈N *,f n (x )≤恒成立②若f n (x )为常数函数,则n=2③f 4(x )在[0,]上单调递减,在[,]上单调递增.A .0B .1C .2D .38. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1 B-1 C0 D9. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( ) A .36种 B .18种 C .27种 D .24种 10.直径为6的球的表面积和体积分别是( )A .144,144ππB .144,36ππC .36,144ππD .36,36ππ 11.空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)12.与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)二、填空题13.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.14.等比数列{a n}的公比q=﹣,a6=1,则S6=.15.长方体ABCD﹣A1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm.16.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________ 18.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.三、解答题19.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.20.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.21.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y 的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.22.(本小题满分12分)椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,B是C 的长轴上的两个顶点,已知|PF |=1,k P A ·k PB =-12.(1)求椭圆C 的方程;(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.23.(本小题满分12分)某市拟定2016年城市建设,,A B C 三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对,,A B C 三项重点工程竞标成功的概率分别为a ,b ,14()a b >,已知三项工程都竞标成功的概率为124,至少有一项工程竞标成功的概率为34. (1)求a 与b 的值;(2)公司准备对该公司参加,,A B C 三个项目的竞标团队进行奖励,A 项目竞标成功奖励2万元,B 项目竞标成功奖励4万元,C 项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.24.(本小题满分12分)已知在ABC ∆中,角C B A ,,所对的边分别为,,,c b a 且 )3(s i n ))(sin (sin c b C a b B A -=-+. (Ⅰ)求角A 的大小;(Ⅱ) 若2a =,ABC ∆c b ,.武山县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.2.【答案】D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.MN的中点坐标为(﹣,0),MN斜率为=∴MN的垂直平分线为y=﹣2(x+),∵①4x+2y﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x2+y2=3与y=﹣2(x+),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D3. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .4. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.5. 【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .6. 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P (3,0)到平面区域的最短距离d min =,∴(x ﹣3)2+y 2的最小值是:.故选:A .【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.7. 【答案】 D【解析】解:①∵x∈[0,],∴f(x)=sin n x+cos n x≤sinx+cosx=≤,因此正确;n②当n=1时,f1(x)=sinx+cosx,不是常数函数;当n=2时,f2(x)=sin2x+cos2x=1为常数函数,当n≠2时,令sin2x=t∈[0,1],则f n(x)=+=g(t),g′(t)=﹣=,当t∈时,g′(t)<0,函数g(t)单调递减;当t∈时,g′(t)>0,函数g(t)单调递增加,因此函数f n(x)不是常数函数,因此②正确.③f4(x)=sin4x+cos4x=(sin2x+cos2x)2﹣2sin2xcos2x=1﹣==+,当x∈[0,],4x∈[0,π],因此f4(x)在[0,]上单调递减,当x∈[,],4x∈[π,2π],因此f4(x)在[,]上单调递增,因此正确.综上可得:①②③都正确.故选:D.【点评】本题考查了三角函数的图象与性质、倍角公式、平方公式、两角和差的正弦公式,考查了推理能力与计算能力,属于中档题.8.【答案】B【解析】由题意,可取,所以9.【答案】 C【解析】排列、组合及简单计数问题.【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,④,P船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P船乘1个大人和2个小孩共3人,Q船乘1个大人,R船乘1个大1人,有A33=6种情况,②,P船乘1个大人和1个小孩共2人,Q船乘1个大人和1个小孩,R船乘1个大1人,有A33×A22=12种情况,③,P船乘2个大人和1个小孩共3人,Q船乘1个大人和1个小孩,有C32×2=6种情况,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,有C 31=3种情况,则共有6+12+6+3=27种乘船方法,故选C .【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式. 10.【答案】D 【解析】考点:球的表面积和体积. 11.【答案】C【解析】解:设C (x ,y ,z ),∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,∴,解得x=4,y=﹣3,z=1,∴C (4,﹣3,1). 故选:C .12.【答案】C【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C .【点评】本题考查了向量共线定理的应用,属于基础题.二、填空题13.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 14.【答案】 ﹣21 .【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,∴a 1(﹣)5=1,解得a 1=﹣32,∴S 6==﹣21故答案为:﹣2115.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB 1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.16.【答案】 【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.17.【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:18.【答案】[0,2].【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).∵q是p的充分不必要条件,∴q⊊p,∴,解得0≤a≤2,则实数a的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题三、解答题19.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),.…(1分)由x∈(0,+∞),令f′(x)=0,得.xf′(x)﹣0 +f(x)↘极小值↗故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m <1﹣m 即m <时,需或,得0≤m <或∅,即0≤m <,综上知m ≥0.即实数m 的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.21.【答案】 22.【答案】 【解析】解:(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2b2=1, ∴m =±b 2a ,∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k P A ·k PB =-12得b 2ac +a ·b 2a c -a=-12,即b 2=12a 2,②由①②解得a =2,b =2,∴椭圆C 的方程为x 24+y 2=1.(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =12×22×2=2.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±21+2k2,∴y =±2k 1+2k 2, 即M (21+2k2,2k 1+2k2),N (-21+2k2,-2k 1+2k2),∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭⎪⎫4k 1+2k 22 =41+k 21+2k 2,点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =12·41+k 21+2k 2·|2k -1|k 2+1=2·|2k -1|1+2k 2=22k 2+1-22k1+2k 2=21-22k 1+2k 2, 当k >0时,22k 1+2k 2≤22k22k =1,此时S ≥0显然成立, 当k =0时,S =2.当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1, 当且仅当2k 2=1,即k =-22时,取等号. 此时S ≤22,综上所述0≤S ≤2 2.即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-22x .23.【答案】【解析】(1)由题意,得11424131(1)(1)(1)44ab a b ⎧=⎪⎪⎨⎪----=⎪⎩,因为a b >,解得1213a b ⎧=⎪⎪⎨⎪=⎪⎩.…………………4分(Ⅱ)由题意,令竞标团队获得奖励金额为随机变量X , 则X 的值可以为0,2,4,6,8,10,12.…………5分而41433221)0(=⨯⨯==X P ;1231(2)2344P X ==⨯⨯=;1131(4)2348P X ==⨯⨯=; 1211135(6)23423424P X ==⨯⨯+⨯⨯=;1211(8)23412P X ==⨯⨯=; 1111(10)23424P X ==⨯⨯=;1111(12)23424P X ==⨯⨯=.…………………9分所以X 的分布列为:于是,11()012345644824122424E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯12=.……………12分24.【答案】解:(Ⅰ)由正弦定理及已知条件有2223c bc a b -=-, 即bc a c b 3222=-+. 3分由余弦定理得:232cos 222=-+=bc a c b A ,又),0(π∈A ,故6π=A . 6分(Ⅱ) ABC ∆3sin 21=∴A bc ,34=∴bc ①, 8分又由(Ⅰ)2223c bc a b -=-及,2=a 得1622=+c b ,② 10分 由 ①②解得32,2==c b 或2,32==c b . 12分。
2018-2019学年上学期甘肃省兰州市第一中学高二第一次月考试卷 数学
第1页(共8页) 第2页(共8页)2018-2019学年上学期甘肃省兰州市第一中学高二第一次月考试卷数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写.....在答题卷上.....) 1.设n S 是等差数列{}n a 的前n 项和,()5283S a a =+,则53a a 的值为( ) A .56B .13C .35D .162.已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则91078a a a a +=+( )A.2B.2C.3-D.3+3.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且()cos2cos cos 1B B C A ++-=,则( ) A .,,a b c 成等比数列 B .,,a b c 成等差数列 C .,,a c b 成等比数列D .,,a c b 成等差数列4.在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为( )A .14B .15C .16D .175.ABC △中,tan A 是以-4为第三项,-1为第七项的等差数列的公差,tan B 是以12为第三项,4为第六项的等比数列的公比,则该三角形的形状是( )A .锐角三角形B .钝角三角形C .等腰直角三角形D .以上均错6.已知等比数列{}n a 为递增数列,262,3a a --为偶函数()()2212f x x a x a =-++的两个零点,若123n n T a a a a =⋅⋅⋅⋅,则7T =( )A .128B .-128C .128或-128D .64或-647. 数列{}n a 满足1111,12n n a a a +==-,则2010a 等于( ) A .12B .-1C .2D .38.已知函数()a f x x =的图象过点()4,2,令()()1,1n a n f n f n =∈++*N ,记{}n a 的前n 项为n S ,则2016S =( ) A1B.1C1 D19.如果满足60B =︒,AC =12,BC =k 的△ABC 恰有一个,那么k 的取值范围是( ) A .k =B .C .12k ≥D .012k <≤或k =10.已知数列{}n a 满足()*21102,4n n a a a n n N +=-=∈,则数列n a n ⎧⎫⎨⎬⎩⎭的最小项的值为( ) A .25B .26C .27D .2811.数列{}n a 的前n 项和为()21n n S n =-∈*N ,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 12.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若231n n S n T n =+,则4637a ab b +=+( ) A .23B .149C .914D .32第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........) 13.△ABC 中,A =60,b= 1, ABCS,则sin sin sin a b cA B C++=++ .此卷只装订不密封班级 姓名 准考证号 考场号 座位号第3页(共8页) 第4页(共8页)14.在公差不为0的等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项, 则5a =______.15.ABC △三内角A B C 、、的对边分别为,,a b csin cos 20A a B a --=, 则B ∠=_______.16.已知数列{}n a 中,1160,3n n a a a +=-=+,则12330a a a a ++++=___________.三、解答题(本题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演...................算步骤,请把答案写在答题卷上..............)17.(10分)在ABC ∆中,4,a c ==sin 4sin A B =, (1)求b 边的长; (2)求角C 的大小.18.(12分)已知数列{}n a 满足11a =,()()2*11n n na n a n n n N +=+++∈.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭为等差数列;(2)若数列{}n b 满足121n n n n b a a ++=,求数列{}n b 的前n 项和n S .第5页(共8页) 第6页(共8页)19.(12分)在ABC ∆中,角A B C 、、所对的边分别是,,a b c ,已知cos 2cos 2cos A C c aB b--=.(1)求sin sin CA的值; (2)若1cos ,24B b ==,求ABC S ∆.20.(12分)n S 为数列{}n a 的前n 项和,已知0n a >,2243n n n a a S +=+. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和.21.(12分)在△ABC中,a,b,c分别为内角A,B,C的对边,且2a sin A=(2b+c)sin B +(2c+b)sin C.(1)求A的大小;(2)求sin sinB C+的最大值.22.(12分)已知递增等差数列{}n a中的25,a a是函数2()710f x x x=-+的两个零点.数列{}n b满足,点(,)n nb S在直线1y x=-+上,其中nS是数列{}n b的前n项和.(1)求数列{}n a和{}n b的通项公式;(2)令n n nc a b=⋅,求数列{}n c的前n项和n T.第7页(共8页)第8页(共8页)2017-2018学年上学期甘肃省兰州市第一中学高二第一次月考试卷数学答案第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分,只有一个选项正确,请把答案写.....在答题卷上.....)第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分,请把答案写在答题卷上..........)1314.13 15.23π16.765三、解答题(本题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演...................算步骤,请把答案写在答题卷上..............)17.【答案】(1)1b=;(2)60C︒=.【解析】(1)依正弦定理sin sina bA B=有sin sinb A a B=…………………………3分又4a=,sin4sinA B=,∴1b=.…………………………5分(2)依余弦定理有222161131cos22412a b cCab+-+-===⨯⨯,………………8分又0<C<180︒︒,∴60C=︒.…………………………………………10分18.【答案】(1)见解析;(2)()2111nSn=-+.【解析】(1)证明:()()111111n nn nna n aa an n n n++-+-==++,nan⎧⎫∴⎨⎬⎩⎭是以1为首项,1为公差的等差数列.(2)由(1)得:2nnan a nn=⇒=,()()2222211111nnbnn n n+∴==-++,()2111nSn=-+.19.【答案】(1)sin2sinCA=;(2)ABCS∆=.【解析】(1)∵cos2cos2cosA C c aB b--=,∴cos2cos2sin sincos sinA C C AB B--=,∴cos sin2cos sinB2sinCcosB sinAcosBA B C-=-,∴()()sin2sinA B B C+=+,∴sin2sinC A=,∴sin2sinCA=.………………………………6分(2)4ABCS∆=.…………………………………12分20.【答案】(1)21na n=+;(2)()323nnTn=+.【解析】(1)由2243n n na a S+=+,知2111243n n na a S++++=+,得221112()4n n n n na a a a a+++-+-=,即2211112()()()n n n n n n n na a a a a a a a+++++=-=-+,由于0na>,可得12n na a+-=,又2111243a a a+=+,解得11a=-(舍去),13a=,所以{}n a是首项为3,公差为2的等差数列,通项公式为21na n=+.………6分(2)由21na n=+,知111(21)(23)nn nba a n n+==++111()22123n n=-++.设数列{}n b的前n项和为n T,则12n nT b b b=+++…1111111()()()235572123n n⎡⎤=-+-++-⎢⎥++⎣⎦…3(23)nn=+.…12分21.【答案】(1)A=120°;(2)1.【解析】(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.由余弦定理得cosA=2222b c abc+-,故cosA=-21,A=120°.…………6分(2)由(1)得:sinB+sinC=sinB+sin(60°-B+12sinB=sin(60°+B).故当B=30°时,sinB+sinC取得最大值1.…………………………12分第1页(共4页)第2页(共4页)22.【答案】(1),;(2).【解析】(1)∵,是函数的两个零点,则,解得:或.又等差数列递增,则,∴………………………………………3分∵点在直线上,则.当时,,即.当时,,即.…………………………………………………………5分∴数列为首项为,公比为的等比数列,即.…………6分(2)由(1)知:且,则………………………………7分∴①②①-②得:……10分∴.(或).…………………12分第3页(共4页)第4页(共4页)。
高二数学上学期第一次月考试题 人教版 新版.doc
2019学年高二数学上学期第一次月考试题本卷共150分,考试时间120分钟, 班级 姓名一、选择题(本题共12小题每小题5分共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项公式a n 可能是( )A .2nB .2n +1C .2n -1D .2n -1 2.若a <1,b >1,那么下列不等式中正确的是( )A.1a >1b B .ba >1 C .a 2<b 2 D .ab <a +b 3.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3 4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±155.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( ) A .5 2 B .5 3 C .2 5 D .3 5 6,已知命题p :∀x ∈R ,sin x ≤1,则( ).A .¬p :∃x 0∈R ,sin x 0≥1B .¬p :∀x ∈R ,sin x ≥1C .¬p :∃x 0∈R ,sin x 0>1D .¬p :∀x ∈R ,sin x >17.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .78.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .49.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6B .5C .4D .310.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,则三角形△F 1MF 2的面积= ( ).A. 16B. 8C. 6 D .1211. 已知椭圆:E )0(12222>>=+b a by a x 的右焦点)0,3(F ,过点F 的直线交E 于A ,B两点,若AB 的中点坐标为)1,1(-,则E 的方程为( )A. 1364522=+y xB. 1273622=+y xC. 1182722=+y xD. 191822=+y x12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn 取最大值时,n 的值为( )A .8B .9C .8或9D .17二、填空题(本大题共4小题每小题5分共20分,把正确答案填在题中的横线上) 13.不等式752>+x 的解集为________.14.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.则双曲线C 的方程为_________.15. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =18(a n +2)2.若b n =12a n -30. 则数列{b n }的前n 项和的最小值为_________.16.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. 则2211b a +的值为_________. 三、解答题(本大题有6题共70分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分10分)已知函数f (x )=ax 2-4ax -3.(1)当a =-1时,求关于x 的不等式f (x )>0的解集;(4分)(2)若对于任意的x ∈R ,均有不等式f (x )≤0成立,求实数a 的取值范围.(6分)18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(6分)(2)若p 是q 的必要不充分条件,求实数a 的取值范围.(6分)19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列.(1)若b =23,c =2,求△ABC 的面积;(6分)(2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.(6分)20.(本小题满分12分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=4 2.过椭圆焦点F 1作一直线,交椭圆于两点M ,N . (1)求椭圆的方程;(5分)(2)当∠F 2F 1M =π4时,求|MN |.(7分)21.(本小题满分12分) 已知n S 是数列{n a }的前n 项和,并且1a =1, 对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(5分) (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .(7分)22.(本小题满分12分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (1)求椭圆C 的离心率;(5分)(2)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.(7分)高二年级数学教学质量第一次月考检测(10.8)本卷共150分,考试时间120分钟, 班级 姓名 一、选择题(本题共12小题每小题5分共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项公式a n 可能是( )A .2nB .2n +1C .2n -1D .2n -1 解析:取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 选C. 2.若a <1,b >1,那么下列不等式中正确的是( )A.1a >1b B .ba >1 C .a 2<b 2 D .ab <a +b解析:利用特值法,令a =-2,b =2,则1a <1b ,A 错;ba <0,B 错;a 2=b 2,C 错.选D. 3.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3 解析:因为f (x )=-x 2+mx -1有正值,所以Δ=m 2-4>0,所以m >2或m <-2. 选A. 4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±15解析:因为a 24+a 27+2a 4a 7=(a 4+a 7)2=9,所以a 4+a 7=±3,所以a 1+a 10=±3,所以S 10=10(a 1+a 10)2=±15. 选D. 5.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( ) A .5 2 B . 5 3 C .2 5 D .3 5解析:依题意,知三角形的最大边为b .由于A =30°,根据正弦定理bsin B =asin A ,得b =a sin B sin A =5sin 135°sin 30°=5 2.选A.6,已知命题p :∀x ∈R ,sin x ≤1,则( ).A .¬p :∃x 0∈R ,sin x 0≥1B .¬p :∀x ∈R ,sin x ≥1C .¬p :∃x 0∈R ,sin x 0>1D .¬p :∀x ∈R ,sin x >1解: 命题p 是全称命题,全称命题的否定是特称命题. 答C7.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .7解析:在坐标平面内画出题中的不等式组表示的平面区域及直线3x +y =0,平移该直线,当平移到经过该平面区域内的 点B (2,1)时,相应直线在x 轴上的截距达到最大,此时z =3x +y 取得最大值,最大值是7.答案:D8.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -2×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3, 即a =3.答 C9.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6B .5C .4D .3解:据椭圆定义知△AF 1B 的周长为4a =16,所求的第三边的长度为16-10=6.答案:A10.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,则三角形△F 1MF 2的面积= ( ).A. 16B. 8C. 6D .12[解析]:由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5),由双曲线定义得:621=-MF MF ,联立3221=⋅MF MF 得21MF +22MF=100=221F F , 所以△F 1MF 2是直角三角形,从而其面积为S =162121=⋅MF MF 答案:A 11. 已知椭圆:E )0(12222>>=+b a by a x 的右焦点)0,3(F ,过点F 的直线交E 于A ,B两点,若AB 的中点坐标为)1,1(-,则E 的方程为( )A. 1364522=+y xB. 1273622=+y xC. 1182722=+y xD. 191822=+y x【解析】由椭圆12222=+by a x 得,222222b a y a x b =+,因为过F 点的直线与椭圆)0(12222>>=+b a by a x 交于A ,B 两点,设),(11y x A ,),(22y x B ,则1221=+x x ,1221-=+y y 则22212212b a y a x b =+ ①22222222b a y a x b =+ ② 由①-②得0)()(2221222212=-+-y y a x x b ,化简得0))(())((2121221212=+-++-y y y y a x x x x b .0)(2)(2212212=---y y a x x b ,222121a b x x y y =--又直线的斜率为0(1)1312k --==-, 即2122=a b .因为92222-=-=a c a b ,所以21922=-a a ,解得182=a ,92=b . 故椭圆方程为191822=+y x .选D.12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn 取最大值时,n 的值为( )A .8B .9C .8或9D .17解析:因为a 2·a 6=a 3·a 5=4,且a 3+a 5=5,所以a 3,a 5是方程x 2-5x +4=0的 两个根.又因为等比数列{a n }各项均为正数且q ∈(0,1),所以a 3=4,a 5=1.所以q 2=a 5a 3=14,所以q =12.所以a n =4·⎝ ⎛⎭⎪⎫12n -3,所以b n =log 2a n =5-n .所以S n =(9-n )·n 2, 所以S n n =9-n 2.T n =S 11+S 22+…+S n n =14(-n 2+17n )=14⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫n -1722+2894.所以当n =8或9时,T n 取得最大值.选C.二、填空题(本大题共4小题每小题5分共20分,把正确答案填在题中的横线上) 13.不等式752>+x 的解集为________.解:由原不等式可得752-<+x ,或752>+x .整理,得6-<x ,或1>x .∴原不等式的解集是{}1,6>-<x x x 或.答案:{}1,6>-<x x x 或 14.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.则双曲线C 的方程为_________.解:设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,∴b 2=1,∴双曲线C 的方程为x 23-y 2=1.答案:x 23-y 2=115. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =18(a n +2)2.若b n =12a n -30. 则数列{b n }的前n 项和的最小值为_________.解:当n =1时,S 1=a 1=18(a 1+2)2,∴(a 1-2)2=0,∴a 1=2.当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,∴a n -a n -1=4,∴{a n }为等差数列. a n =a 1+(n -1)4=4n -2,由b n =12a n -30=2n -31≤0得n ≤312. ∴{b n }的前15项之和最小,且最小值为-225.16.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. 则2211ba +的值为_________. [解析]:设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得:Θ 又将代入x y -=112222=+by a x 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221b a a x x +=+∴>∆Θ222221)1(b a b a x x +-=代入①化简得 21122=+b a . 三、解答题(本大题有6题共70分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分10分)已知函数f (x )=ax 2-4ax -3. (1)当a =-1时,求关于x 的不等式f (x )>0的解集;(4分)(2)若对于任意的x ∈R ,均有不等式f (x )≤0成立,求实数a 的取值范围.(6分) 解:(1)当a =-1时,不等式ax 2-4ax -3>0,即-x 2+4x -3>0.可化为x 2-4x +3<0, 即(x -1)(x -3)<0,解得1<x <3,故不等式f (x )>0的解集为(1,3). (2)①当a =0时,不等式ax 2-4ax -3≤0恒成立; ②当a ≠0时,要使得不等式ax 2-4ax -3≤0恒成立;只需⎩⎪⎨⎪⎧a <0,Δ≤0,即⎩⎪⎨⎪⎧a <0,-4a 2-4a -3≤0,解得⎩⎪⎨⎪⎧a <0,-34≤a ≤0,即-34≤a <0,综上所述,a 的取值范围为⎣⎢⎡⎦⎥⎤-34,0.18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(6分)(2)若p 是q 的必要不充分条件,求实数a 的取值范围.(6分)解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是2<x <3. (2)p 是q 的必要不充分条件,即q ⇒p 且p q ,设A ={x |p (x )},B ={x |q (x )},则AB ,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a ).所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是1<a ≤2.19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , 且A ,B ,C 成等差数列.(1)若b =23,c =2,求△ABC 的面积;(6分) (2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.(6分) 解:因为A ,B ,C 成等差数列,所以2B =A +C .又A +B +C =π,所以B =π3.(1)法一:因为b =23,c =2,所以由正弦定理得b sin B =csin C ,即b sin C =c sin B , 即23sin C =2×32,得sin C =12.因为b >c ,所以B >C ,即C 为锐角,所以C =π6, 从而A =π2.所以S △ABC =12bc =2 3.法二:由余弦定理得b 2=a 2+c 2-2ac cos B , 即a 2-2a -8=0,得a =4.所以S △ABC =12ac sin B =12×4×2×32=2 3.(2)因为sin A ,sin B ,sin C 成等比数列,所以sin 2B =sin A ·sin C .由正弦定理得b 2=ac ;由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac .所以ac =a 2+c 2-ac ,即(a -c )2=0,即a =c .又因为B =π3,所以△ABC 为等边三角形.20.(本小题满分12分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=4 2. 过椭圆焦点F 1作一直线,交椭圆于两点M ,N .(1)求椭圆的方程;(5分) (2)当∠F 2F 1M =π4时,求|MN |.(7分)解 (1)由题意知:2a =6,2c =42,∴b 2=a 2-c 2=9-8=1,且焦点在x 轴上,∴椭圆的方程为x 29+y 2=1.(2)当∠F 2F 1M =π4时,直线MN 的斜率k =1.又F 1(-22,0),∴直线MN 的方程为y =x +2 2.由⎩⎨⎧x29+y 2=1,y =x +22得:10x 2+362x +63=0.若M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1825,x 1x 2=6310. ∴|MN |=1+k 2·|x 1-x 2|=2·x 1+x 22-4x 1x 2=65.即|MN |的长为65.21.(本小题满分12分) 已知n S 是数列{n a }的前n 项和,并且1a =1, 对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(5分) (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .(7分) 解:(I )),2(24,2411≥+=∴+=-+n a S a S n n n n Θ两式相减:),2(4411≥-=-+n a a a n n n *),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+,21=∴+nn b b }{n b ∴是以2为公比的等比,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而Θ*)(231N n b n n ∈⋅=∴-(II ),231-==n nn b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n Λ22.(本小题满分12分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(1)求椭圆C 的离心率;(5分)(2)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.(7分)【解析】(1)由椭圆定义知,2a =|PF 1|+|PF 2|=(43+1)2+(13)2+(43−1)2+(13)2=22,所以a =2,又由已知,c =1,所以椭圆的离心率e =c a =12=22.(2)由(1)知,椭圆C 的方程为x 22+y 2=1, 设点Q 的坐标为(x ,y ).(ⅰ) 当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,,此时点Q 的坐标为(0,2−355).(ⅱ) 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,因为M,N 在直线l 上,可设点M,N的坐标分别为1122(x ,kx +2),(x ,kx +2) 则|AM |2=(1+k 2)x 12, |AN |2=(1+k 2)x 22,又|A Q|2=(1+k 2)x 2,由2|AQ |2=1|AM |2+1|AN |2,得2 (1+k 2)x 2=1(1+k 2)x 12+1(1+k 2)x 22,即2x 2=1x 12+1x 22=(x 1+x 2)2−2 x 1x 2 x 12x 12, ① 将y =kx +2代入x 22+y 2=1中,得(2k 2+1)x 2+8kx +6=0.② 由=(8k )2−4(2k 2+1)6>0,得k 2>32. 由②可知,x 1+x 2=−8k 2k 2+1,x 1x 2=62k 2+1, 代入①并化简得x 2=21810k 3-. ③因为点Q 在直线y =kx +2上, 所以k =y −2x , 代入③并化简,得10(y −2)2−3x 2=18.由③及k 2>32,可知0<x 2<32,即x(−62,0)∪(0,62).又(0,2−355)满足10(y −2)2−3x 2=18, 故x (−62,62).由题意,Q(x ,y )在椭圆C 内,所以−1y 1,又由10(y −2)2=3x 2+18 有(y −2)2[95,94) 且−1y 1, 则y(12,2−355]. 所以点Q 的轨迹方程为10(y −2)2−3x 2=18,其中x(−62,62), y(12,2−355].。
2018_2019学年高二数学上学期第一次月考试题理(10)word版本
江西省赣州厚德外国语学校(高中部)2018-2019学年高二数学上学期第一次月考试题 理时间:120分钟 考试满分:150分选择题(每小题5分,共60分)1.圆心是(4,-1),且过点(5,2)的圆的标准方程是 ( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)2=102.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足 ( )A .是圆心B .在圆上C .在圆内D .在圆外3、已知直线a 与直线b 垂直,a 平行于平面α,则b 与α的位置关系是( )A.b ∥αB.b αC.b 与α相交D.以上都有可能4.已知圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于点(2,1)对称,则圆C 2的方程是( )A .(x -3)2+(y -5)2=25B .(x -5)2+(y +1)2=25C .(x -1)2+(y -4)2=25D .(x -3)2+(y +2)2=255.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相外切,则动圆圆心的轨迹方程是( )A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=9C .(x -5)2+(y +7)2=15D .(x +5)2+(y -7)2=256.下列四个几何体中,几何体只有主视图和左视图相同的是( )A .①②B .①③C .①④D .②④7.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a = ( ) A .-43 B .-34C . 3D .2 8.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 ( )(A )正三棱锥 (B )正三棱柱 (C )圆锥 (D )正四棱锥9.已知两圆相交于两点A (1,3),B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值是 ( )A .-1B .2C .3D .010.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行A .①③B .①②C .②③D .③④11.若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( )A .k =12,b =-4B .k =-12,b =4C .k =12,b =4D .k =-12,b =-412.方程1-x2=x +k 有惟一解,则实数k 的范围是 ( )A .k =- 2B .k ∈(-2,2)C .k ∈[-1,1)D .k =2或-1≤k <1二、填空题(每小题5分, 共20分)13.圆心是(-3,4),经过点M (5,1)的圆的一般方程为__ __.14.圆x 2+y 2+6x -7=0和圆x 2+y 2+6y -27=0的位置关系是15.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④16.过点P (12,1)的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为三、 解答题(共70分 )17.圆过点A (1,-2)、B (-1,4),求(1)周长最小的圆的方程; (2)圆心在直线2x -y -4=0上的圆的方程.18.求满足下列条件的圆x2+y2=4的切线方程:(1)经过点P(3,1);(2)斜率为-1;19.如图,正三棱柱的底面边长是2,侧棱长是3,D是AC的中点. 求证:平面.20.四边形ABCD与ABEF是两个全等正方形,且AM=FN,其中,,求证:MN∥平面BCE21.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)若直线l与圆C交于A、B两点,当|AB|=17时,求m的值.AB CA1B1 C1DMFNCEAD BH22.已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程.高二第一次月考理科试卷答案一、选择题1.A2.C3.D4.B5.A6.D7.A8.B9.C 10.A 11.A 12.D填空题13.x²+y²+6x-8y-48=014.相交15.①③16.二、简答题17.(1)∵圆过点A(1,-2),B(-1,4),且周长最小∴所求的圆是以A B为直径的圆,方程为(x-1)(x+1)+(y+2)(y-4)=0,化简得x2+(y-1)2=10;(2)线段AB的中垂线方程为:y= x+1,与直线2x-y-4=0交点为C(3,2)∴圆心在直线2x-y-4=0上的圆,圆心坐标为C(3,2)半径r= =2可得所求圆的方程为(x-3)2+(y-2)2=2018.19.设与相交于点P,连接PD,则P为中点,D为AC中点,PD//.又PD平面D,//平面 D20. 21.22.(1)设过点Q 的圆M 的切线方程为x =my +1,则圆心M 到切线的距离为1,∴|2m +1|m2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1.(2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ|2-|MA|2=|MQ|2-1≥|MO|2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ ,∴|MP |= 1-⎝ ⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |,即1=13|MQ |,∴|MQ |=3,∴x 2+(y -2)2=9. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0),∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.。
甘肃省2018-2019学年高二学业水平模拟考试数学试题Word版含答案
甘肃省2018-2019学年学业水平模拟考试高二数学试题本试题满分100分,考试时间90分钟.一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
将此选项的代号涂在答题卡上。
1.已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则(C U A )∩B= ( ) A .{2} B .{3,4} C .{1,4,5} D .{2,3,4 ,5}2.设,1log ,3log ,225.0ππ===c b a 则a ,b ,c 的大小关系是 ( )A.a>b>cB.b>a>cC.c>a>bD.b>c>a 3.已知(,3)a x =, (3,1)b =, 且a b ⊥, 则x 等于 ( )A .-1B .-9C .9D .14.已知1sin cos 3αα+=,则sin 2α= ( )A .21B .21-C .89D .89-5.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]6. 某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、,中年人、青年人分别各抽取的人数是( )A.6, 12 ,18B. 7,11,19C.6,13,17D. 7,11,187.直线L 过点(-1,2)且与直线2x-3y+9=0垂直,则L 的方程是( ) A .3x+2y-1=0 B .3x+2y+7=0 C .2x-3y+5=0 D .2x-3y+8=0 8.55A.+22∞∞∞∞(,) B.(3,+) C.(-,) D.(-,2)9.某程序框图如右图所示,该程序运行后输出的最后一个数是 A .1617 B .89 C .45 D .23开始a=3n=1输出an=n+1n>5a=0.5a+0.510.几何体的三视图如图所示,则这个几何体的直观图可以是( )A. B.C. D.二、填空题:本大题共5小题,每小题4分,共20分。
最新-2018学年度第一学期武山三中月考试题[原创]-人教
2018-2018学年度第一学期武山三中月考试题高二数学一、选择题(下列各题有且仅有一个正确答案,选出后填入答案表中,每题5分,共50分)1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(C U N )= A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥ ,则x=A. –3B. –1C. 1 D . 3 3.若θθθ则角且,02sin ,0cos <>的终边所在象限是A .第一象限B .第二象限C .第三象限D .第四象限4.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于A .160B .180C .200D .2205. 命题p :若a 、b ∈R ,则|a|+|b|>1是|a+b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则 A.“p 或q ”为假 B.“p 且q ”为真 C.p 真q 假 D.p 假q 真 6.若函数y=f(x)的图象与函数y=lg(x+1)的图象关于直线x-y=0对称,则f(x)= A 10x -1. B 1-10x . C 1-10-x . D 10-x -1. 7.不等式03)2(<-+x x x 的解集为A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或8.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数9.在ABC 中,3=AB ,13=BC ,4=AC ,则AC 边上的高为A223 B 23 C 233 D 3310.设a >0, b >0,则以下不等式中不恒成立....的是 A )11)((ba b a ++≥4 B 33b a +≥22ab C 222++b a ≥b a 22+ D b a -≥b a -二、填空题(把结果直接填在线上,每题4分,共16分) 11.函数)1(log 21-=x y 的定义域是12.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = . 13.不等式|x +2|≥|x |的解集是 . 14.向量a 、b 满足(a -b )·(2a+b )=-4,且|a |=2,|b |=4,则a 与b 夹角的余弦值等于 .三、解答题(请写出详细过程,共34分)15(8分).已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.16(8分).设{}n a 是一个公差为)0(≠d d 的等差数列,它的前10项和11010=S 且1a ,2a ,4a 成等比数列。
高二数学上学期第一次月考 试题 (2)(共9页)
铁一中09-10学年(xuénián)高二上学期第一次月考数学试题认真审题!细心答题!一、选择题〔每一小题5分,一共55分.请将每一小题唯一正确答案前的代码填入答题卡的相应位置,错选、不选、多项选择均得零分〕1、一组数据为20、30、40、50、60、60、70,那么这组数据的众数、中位数、平均数的大小关系为〔〕A.中位数 >平均数 >众数 B.众数 >中位数 >平均数C.众数 >平均数 >中位数 D.平均数 >众数 >中位数2.357与459的最大公约数是〔〕A.3 B.7 C.17 D.513.用折半插入排序法,数据列的“中间位置〞的数据是指〔〕A.10B.8 C4.要从已编号〔1—50〕的50件产品中随机抽取5件进展检验,用系统抽样方法确定所选取的5件产品的编号可能是〔〕A.5,10,15,20,25 B.2,4,8,16,22C.1,2,3,4,5 D.3,13,23,33,43图1 5.某程序框图如图1所示,该程序运行后输出的的值是 ( )A .B .C .D .6.以下两个变量之间的关系哪个不是函数关系〔〕A、角度和它的正弦值B、人的右手一柞长和身高C、正方体的棱长和外表积D、真空中自由落体运动(yùndòng)物体的下落间隔和下落时间是7.图2是判断闰年的流程图,以下年份是闰年的为〔〕S=1i=1For j =1 To 10图2图38.图3描绘的程序是用来 ( )×9的值10×2×3×…×10的值9.从2021名学生中选取50名学生参加某项活动,假设采用下面的方法选取:先用简单随机抽样从2021人中剔除8人,剩下的2000人再按系统抽样的方法抽取50人,那么在2021人中,每人入选的概率〔〕A.不全相等 B.均不相等C .都相等,且为D .都相等,且为10.〔理科题〕一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色〞的概率是〔〕3 C〔文科题〕?新课程HY?规定,那些希望在人文、社会科学等方面开展的学生,除了修完必修内容和选修系列一的全部内容外,根本要求是还要在系列三的6个专题中选修2个专题,高中阶段一共获得16个学分。
2018-2019甘肃省高二上学期期中考试数学试题 解析版
绝密★启用前甘肃省临夏中学2018-2019学年高二上学期期中考试数学试题评卷人得分一、单选题1.在中, 则等于( )A.B.C.D.【答案】C【解析】【分析】将等式化简,代入关于角A的余弦定理,可求得A的余弦值,进而求得角度.【详解】由等式可得:,代入关于角A的余弦定理:.所以.故选C.【点睛】本题考查余弦定理,由于等式中为三边平方关系,所以利用余弦定理,由等式得到关系,整体代入即可.2.在数列1,2,,中,是这个数列的A.第16项B.第24项C.第26项D.第28项【答案】C【解析】数列可化为,所以,所以,解得,所以是这个数列的第项,故选C.3.不等式的解集是()A.B.C.D.分析: 根据一元二次不等式的解法求解详解: 由,得, 或.所以选D.点睛:本题考查一元二次不等式的解法,考查基本求解能力.4.若,则不等式的解集是( )A .B .C .D .【答案】C【解析】 分析:先根据a 的范围确定a 与 的大小关系,然后根据不等式的解法直接求出不等式的解集.详解:∵0<a <1,∴a <, 而是开口向上的二次函数,大于零的解集在两根之外 ∴的解集为{x |}故选:C . 点睛:(1)解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函 数的图象写出不等式的解集.(2)解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即判别式的符号进行分类,最后当根存在时,再根据根的大小进行分类.5. 等差数列{}n a 的前n 项和为n S ,若532S =,则3a =( )A .325B .2C .42D .532试题分析:根据等差数列的性质,535S a =,所以533255S a ==. 考点:等差数列的概念,等差数列的通项公式,等差数列的前n 项和,等差数列的性质. 6.在三角形中,内角所对的边分别为,若 ,则角A .B .C .D .【答案】A 【解析】分析:利用正弦定理列出关系式,将a ,sinB ,b 的值代入求出sinA 的值,即可确定出A 的度数.详解:在三角形中,知 ,∴由正弦定理得:, ∵,∴,∴点晴:三角形正弦定理余弦定理的选取上注意观察,另外在算出正弦值的基础上判断角,需要注意角的范围7.不等式表示的区域在直线的A . 右上方B . 右下方C . 左上方D . 左下方【答案】B【解析】试题分析:易知点(0,0)在直线的右下方,且点(0,0)满足不等式x-2y+6>0,所以不等式表示的平面区域在直线x-2y+6=0的右下方.故选B .考点:如何确定不等式表示的平面区域,即直线定界点定域.8.下列函数中,最小值为2的是A.B.C.D.【答案】B【解析】分析:利用基本不等式的性质依次分析4个选项函数的最小值即可得到答案详解:根据基本不等式可得A: 由于lg x≠0, ⩾2或⩽−2,舍去B: 由于2x>0,则⩾2,故B正确C: ⩾2,当且仅当方程无解D: 由0<x<可得,0<sin x<1,y=,当且仅当sin x=1时取最小值,故无最小值故选B点晴:运用均值不等式注意三个条件:1正,2定,3相等9.在中,,则一定是A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形【答案】C【解析】此题考查解三角形解:由sin(A+B)=sin(A-B)得,所以,又因为为三角形的内角,故,因此,,所以是直角三角形.选C.答案:C10.已知a,,且,则下列不等式一定成立的是A.B.C.D.【答案】B【解析】分析:利用不等式性质,指数函数的单调性,特值法逐一判断即可.详解:a,b∈R,且,a2﹣b2=(a+b)(a﹣b),若a<0,b<0,则a+b<0,a﹣b>0,a2﹣b2<0,A不一定成立;函数y=2x在R上递增,且,∴,即,B正确;若a=2π,b=0,则cos2π=cos0=1,B不一定成立;若a<0,b>0,则<,C不一定成立;若a=0,b=2π,则cos2π=cos0=1,D不一定成立;故选:B.点睛:不等式的性质及其应用:(1)判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.(2)在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题11.的三个内角A,B,C的大小成等差数列,则______.【答案】【解析】因为三角形三内角成等差数列,所以,故答案为 .12.在锐角中,角所对的边分别为若则角等于______.【答案】.【解析】由,正弦定理,可得:,,13.不等式的解集为______.【答案】【解析】试题分析:由,解得:,所以不等式的解集为.考点:一元二次不等式.14.函数的最小值为______.【答案】,当且仅当时取等号,此时,即函数的最小值是,故答案为.评卷人得分三、解答题15.求的最大值,使式中的x、y满足约束条件.【答案】【解析】【分析】作出可行域,可知当目标直线过直线与直线的交点时取最大值,代入点的坐标计算可得结果.【详解】作出约束条件所对应的区域,如图中的阴影部分所示.由得.平移直线,结合图形可得当直线经过图中的点A时,直线在y轴上的截距最大,此时取得最大值.由,可得,所以点A的坐标为,所以,故的最大值为3.本题考查简单的线性规划,属中档题,解题的关键有两个:一是准确作出不等式组表示的平面区域,二是利用数形结合求解,此时需要准确判断出目标函数中的几何意义.16.若,,,比较,,的大小.【答案】.【解析】分析:利用作差法比较大小即可.详解:∵,,,∴,即,,即,综上可得:.点睛:作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.17.设集合,,求.【答案】.【解析】【分析】首先通过解不等式得到集合A、B,再根据交集定义可得结果.【详解】由题意得,,∴.【点睛】此题考查交集及其运算,熟练掌握交集的定义是解本题的关键,属于简单题.18.在等比数列中已知,,求;已知,,求【答案】(1);(2).【解析】【分析】直接利用等比数列的通项公式,代入可求;结合等比数列的通项公式可求q,,代入等比数列的求和公式可求.【详解】在等比数列中,,;,,,解得,.【点睛】本题主要考查了等比数列的通项公式及求和公式的简单应用,考查计算能力和公式的运用,属于基础试题.19.在中,角所对的边分别为,满足.(1)求角的大小;(2)若,且,求的面积.【答案】(Ⅰ )(Ⅱ)【解析】分析:(Ⅰ)由,利用正弦定理可得,从而得,进而可得结果;(Ⅱ)结合(Ⅰ)由余弦定理可得,,即,.详解:(I)由题意得:.,即又,(Ⅱ),,即点睛:以三角形为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.。
武山县实验中学2018-2019学年上学期高二数学12月月考试题含解析
武山县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 椭圆=1的离心率为( ) A .B .C .D .2. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .3. 函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,(2)b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<4. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e5. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 6. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )A .3B .C .±D .以上皆非7. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人8. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(甲 乙 丙 丁 平均环数x 8.3 8.8 8.8 8.7 方差s s3.53.62.25.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是()A.甲B.乙C.丙D.丁10.已知向量||=,•=10,|+|=5,则||=()A.B. C.5 D.2511.函数y=x+xlnx的单调递增区间是()A.(0,e﹣2)B.(e﹣2,+∞)C.(﹣∞,e﹣2)D.(e﹣2,+∞)12.已知函数f(x)=log2(x2+1)的值域为{0,1,2},则满足这样条件的函数的个数为()A.8 B.5 C.9 D.27二、填空题13.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).14.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.15.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为km.16.在(2x+)6的二项式中,常数项等于(结果用数值表示).17.在△ABC中,a=4,b=5,c=6,则=.18.如图:直三棱柱ABC﹣A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B﹣APQC的体积为.三、解答题19.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.20.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.21.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.22.如图,直四棱柱ABCD﹣A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.(1)证明:平面MNE⊥平面D1DE;(2)证明:MN∥平面D1DE.23.已知函数.(1)求f(x)的周期.(2)当时,求f(x)的最大值、最小值及对应的x值.24.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.武山县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D .【点评】本题考查椭圆的基本性质:a 2=b 2+c 2,以及离心率的计算公式,注意与双曲线的对应性质的区分.2. 【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.3. 【答案】C 【解析】考点:函数的对称性,导数与单调性.【名师点睛】函数的图象是研究函数性质的一个重要工具,通过函数的图象研究问题是数形结合思想应用的不可或缺的重要一环,因此掌握函数的图象的性质是我们在平常学习中要重点注意的,如函数()f x 满足:()()f a x f a x +=-或()(2)f x f a x =-,则其图象关于直线x a =对称,如满足(2)2()f m x n f x -=-,则其图象关于点(,)m n 对称. 4. 【答案】C【解析】解:由积分运算法则,得=lnx=lne ﹣ln1=1因此,不等式即即a >1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.5. 【答案】D 【解析】考点:命题的真假.6. 【答案】C【解析】解:∵a 3,a 9是方程3x 2﹣11x+9=0的两个根, ∴a 3a 9=3,又数列{a n }是等比数列,则a62=a 3a 9=3,即a 6=±.故选C7. 【答案】A【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,则这样的样本容量是n==20.故选A .【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键.8. 【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10aa ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.9. 【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大, 甲、乙、丙、丁四人的射击环数的方差中丙最小, ∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛, 最佳人选是丙.故选:C.【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.10.【答案】C【解析】解:∵;∴由得,=;∴;∴.故选:C.11.【答案】B【解析】解:函数的定义域为(0,+∞)求导函数可得f′(x)=lnx+2,令f′(x)>0,可得x>e﹣2,∴函数f(x)的单调增区间是(e﹣2,+∞)故选B.12.【答案】C【解析】解:令log2(x2+1)=0,得x=0,令log2(x2+1)=1,得x2+1=2,x=±1,令log(x2+1)=2,得x2+1=4,x=.2则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C.【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.二、填空题13.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.14.【答案】.【解析】解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.15.【答案】【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==海里,则这时船与灯塔的距离为海里.故答案为.16.【答案】240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.17.【答案】1.【解析】解:∵△ABC中,a=4,b=5,c=6,∴cosC==,cosA==∴sinC=,sinA=,∴==1.故答案为:1.【点评】本题考查余弦定理,考查学生的计算能力,比较基础.18.【答案】V【解析】【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:故答案为:三、解答题19.【答案】(1)证明见解析;(2)250x y --=. 【解析】试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.1111](2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由12AM k =-得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系. 20.【答案】【解析】【命题意图】本题考查等差数列通项与前n 项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.21.【答案】【解析】解:(Ⅰ)由从而C的直角坐标方程为即θ=0时,ρ=2,所以M(2,0)(Ⅱ)M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.22.【答案】【解析】证明:(1)由等腰梯形ABCD中,∵AB=CD=AD=1,BC=2,N是AB的中点,∴NE⊥DE,又NE⊥DD1,且DD1∩DE=D,∴NE⊥平面D1DE,又NE⊂平面MNE,∴平面MNE⊥平面D1DE.…(2)等腰梯形ABCD中,∵AB=CD=AD=1,BC=2,N是AB的中点,∴AB∥DE,∴AB∥平面D1DE,又DD1∥BB1,则BB1∥平面D1DE,又AB∩BB1=B,∴平面ABB1A1∥平面D1DE,又MN⊂平面ABB1A1,∴MN∥平面D1DE.…23.【答案】【解析】解:(1)∵函数.∴函数f(x)=2sin(2x+).∴f(x)的周期T==π即T=π(2)∵∴,∴﹣1≤sin(2x+)≤2最大值2,2x=,此时,最小值﹣1,2x=此时【点评】本题简单的考察了三角函数的性质,单调性,周期性,熟练化为一个角的三角函数形式即可.24.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.。
武山县高中2018-2019学年上学期高二数学12月月考试题含解析
武山县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?2. 设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111]3. 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A .<,乙比甲成绩稳定B .<,甲比乙成绩稳定C .>,甲比乙成绩稳定D .>,乙比甲成绩稳定4. 复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i5. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞6. 已知函数f (x )=,则=( )A .B .C .9D .﹣97. 已知集合A={4,5,6,8},B={3,5,7,8},则集合A ∪B=( ) A .{5,8}B .{4,5,6,7,8}C .{3,4,5,6,7,8}D .{4,5,6,7,8}8. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或109. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x 10.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )A .B .18C .D .11.已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )A .﹣2B .2 C.﹣ D. 12.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个二、填空题13.设函数f (x )=,则f (f (﹣2))的值为 .14.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.16.设,则17.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年第一学期第一次月考考试高二级数学试卷
一、单选题(共12题;共24分)
1.在等差数列中,,则()
A. 6
B. 7
C. 8
D. 9
2.已知数列的前前项和,那么它的通项公式是()
A. B. C. D.
3.已知数列满足,若,则等于()
A. 1
B. 2
C. 64
D. 128
4.设等差数列的前n项和为,已知,则()
A. -27
B. 27
C. -54
D. 54
5.在中,,,,则等于()
A. B. C. D.
6.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.
A. 98
B. 99
C. 100
D. 101
7.在等比数列{a n}中,已知a7a12=5,则a8a9a10a11=()
A. 10
B. 50
C. 25
D. 75
8.若数列{a n}为等差数列,a2,a10是方程x2﹣3x﹣5=0的两根,则a4+a8的值为()
A. 3
B. ﹣3
C. 5
D. ﹣5
9.已知等差数列{a n}的公差d≠0,且a3=2a1,则的值为( )
A. B. C. D.
10.+1与﹣1的等差中项是()
A. 1
B. ﹣1
C.
D. ±1
11.在△ABC中,若a2+b2<c2,则△ABC的形状是()
A. 锐角三角形
B. 直角三角形
C. 钝角三角形
D. 不能确定
12.在等比数列{a n}(n∈N*)中,若a1=1,a4= ,则该数列的前10项和为()
A. B. C. D.
二、填空题(共4题;共4分)
13.△ABC的三个内角A,B,C的大小成等差数列,则B=________.
14.在△ABC中,若B=30°,AB=2 ,AC=2,求△ABC的面积________.
15.(2015湖南)设为等比数列的前项和,若,且成等差数列,则
________ 。
16.等比数列{a n}中,a1+a2=30,a3+a4=60,则q=________.
三、解答题(共6题;共50分)
17.设数列满足,,.
(Ⅰ)求的通项公式及前项和;
(Ⅱ)已知是等差数列,且满足,,求数列的通项公式.
18.已知等差数列和等比数列满足,,.
(1)求的通项公式;
(2)求和:.
19.在△ABC中,BC=a,AC=b,a,b是方程的两个根,且2cos(A+B)=1.求:
(1)角C的度数;
(2)AB的长度.
20.设等差数列{a n}满足a3=5,a10=﹣9.
(1)求{a n}的通项公式;
(2)求{a n}的前n项和S n及使得S n最大的序号n的值.
21.已知数列的前项和满足且.
(1)求数列的通项公式;
(2)求的值。
22.已知公差不为零的等差数列的前项和为,若,且成等比数
列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足,求数列的前项和
答案解析部分
一、单选题
1.【答案】B
【考点】等差数列
【解析】【解答】,故,
故答案为:B.
【分析】由a3是a1、a5的等差中项可以得出a5的值.
2.【答案】C
【考点】数列的概念及简单表示法,数列的函数特性
【解析】【解答】分类讨论:当时,,
当时,,
且当时:
据此可得,数列的通项公式为:.
故答案为:C.
【分析】利用当n=1时,a1=S1,当n≥2时,a n=S n-S n-1即可得出.
3.【答案】C
【考点】等比数列,等比数列的通项公式
【解析】【解答】因为数列满足,所以该数列是以为公比的等比数列,
又,所以,即;
故答案为:C.【分析】由a n+1=a n⇒⇒数列{a n}是以为公比的等比数列,从而可求得数列a1的通项公式.
4.【答案】A
【考点】等差数列,等差数列的前n项和
【解析】【解答】等差数列的前n项和为,,
故答案为:A
【分析】结合等差数列的性质,从题目所给等式可得公差d,代入前n项和公式中,即可求得S9的值。
5.【答案】D
【考点】正弦定理的应用
【解析】【解答】由正弦定理,得 ,则 ;
故答案为:D.【分析】根据题意,利用正弦定理求得sinC 的值.正弦定理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.
6.【答案】C
【考点】等差数列的性质
【解析】【解答】解:等差数列﹣5,﹣9,﹣13…中,a 1=﹣5,d=﹣9﹣(﹣5)=﹣4 ∴a n =﹣5+(n ﹣1)×(﹣4)=﹣4n ﹣1
令﹣401=﹣4n ﹣1,得n=100
∴﹣401是这个数列的第100项.
故答案为:C .
【分析】由等差数列的通项公式可得﹣401是这个数列的第100项。
7.【答案】C
【考点】等比数列的通项公式
【解析】【解答】解:∵a 7a 12=a 8a 11=a 9a 10=5,
∴a 8a 9a 10a 11=52=25.
故答案为:C .
【分析】由等比数列项与项数的关系可得。
8.【答案】A
【考点】等差数列的通项公式
【解析】【解答】解:∵等差数列{a n }中,a 2 , a 10是方程x 2﹣3x ﹣5=0的两根, ∴由韦达定理可得a 2+a 10=3,
∴由等差数列的性质可得a 4+a 8=a 2+a 10=3,
故答案为:A .
【分析】根据等差数列的项之间的性质可求出结果。
9.【答案】C
【考点】等差数列的性质
【解析】【解答】 , ,所以 , 故答案为:C .
【分析】根据等差数列的公差d≠0,且a 3=2a 1 , 求出a 1与d 等量关系,再根据通项公式代入式子,即可求出答案.
10.【答案】C
【考点】等差数列
【解析】【解答】解:设x 为 +1与 ﹣1的等差中项, 则 ﹣1﹣x=x ﹣ +1,
即x=
=
故选:C
【分析】由等差中项的定义易得答案.
11.【答案】C
【考点】余弦定理
【解析】【解答】解:由余弦定理:a2+b2﹣2abcosC=c2,因为a2+b2<c2,所以2abcosC <0,所以C为钝角,钝角三角形.
故答案为:C.
【分析】利用余弦定理可得出cosC<0在△ABC中可判断C为钝角故三角形为钝角三角形。
12.【答案】B
【考点】等比数列的前n项和
【解析】【解答】解:由,
所以.
故选B.
【分析】先由等比数列的通项公式求出公比q,再根据等比数列前n项和公式求前10项和即可.
二、填空题
13.【答案】60°
【考点】等差数列的通项公式
【解析】【解答】解:∵在△ABC中,角A、B、C的大小成等差数列,
∴2B=A+C,再由A+B+C=180°可得A+C=120°,B=60°,
故答案是:60°.
【分析】根据题意再由A+B+C=180°可求出B=60°。
14.【答案】或2
【考点】正弦定理
【解析】【解答】解:在△ABC中,设BC=x,由余弦定理可得4=12+x2﹣4 xcos30°,
x2﹣6x+8=0,∴x=2,或x=4.
当x=2 时,△ABC的面积为= ×2 •x• = ,
当x=4 时,△ABC的面积为= ×2 •x• =2 ,
故答案为或2 .
【分析】由余弦定理可得BC=2或4.分两种情况求面积。
15.【答案】
【考点】等差数列的性质,等比数列的性质
【解析】【解答】成等差数列,所以。