集成运算放大器及其应用电路

合集下载

第11章 集成运算放大器及其应用

第11章  集成运算放大器及其应用

上式表明,差动放大电路的差模电压放大倍数和 单管放大电路的电压放大倍数相同。多用一个放大管 后,虽然电压放大倍数没有增加,但是换来了对零漂 的抑制。这正是差动放大电路的优点。
差动放大电路对共模输入信号的放大倍数叫做共 模电压放大倍数,用Auc表示,可以推出,当输入共 模信号时,Auc为
Au c u o u C1 u C 2 0 0 ui c ui1 ui1
由于集成运放的电压放大倍数Ao d和输入电阻Ri d 都非常大(理想情况下,两者约等于∞),于是可以 推得 u u
i i 0
注意:“虚短”和“虚断”是理想运放工作在线 性区时的两个重要特点。这两个特点常常作为今后分 析运放应用电路的出发点,因此必须牢固掌握。
(2)集成运放工作在非线性区的特性 如果运放的工作信号超出了线性放大范围,则输 出电压与输入电压不再满足式(11-1),即uo不再随 差模输入电压(u+ - u -)线性增长,uo将达到饱和。 此时集成运放的输出电压uo只有两种取值:或等于运 放的正向最大输出电压+UOM,或等于其负向最大输 出电压-UOM,具体为 当u + >u - 时,uo = +UOM 当u + <u - 时,uo = -UOM 另外,因为集成运放的输入电阻Ri d很大,故在 非线性区仍满足输入电流等于零,即式(11-3)对非 线性工作区仍然成立。
有时,为了简化起见,常常不把恒流源式差动放 大电路中恒流管T3的具体电路画出,而采用一个简化 的恒流源符号来表示,如图11-7所示。
二、输出级——功率放大电路 集成运放的输出级是向负载提供一定的功率,属 于功率放大,一般采用互补对称的功率放大电路。 1. 功率放大电路的特点 (1)因为信号的幅度放大在前置电路中已经完成, 所以功率放大电路对电压放大倍数并无要求。由于射 极输出器的输出电流较大,能使负载获得较大输出功 率,并且它的输出电阻小,带负载能力强,因此通常 采用射极输出器作为基本的功率放大电路。不过单个 的射极输出器对信号正负半周的跟随能力不同,在实 用的功率放大电路中大多采用双管的互补对称电路形 式。

运放典型应用电路

运放典型应用电路

运放典型应用电路一、什么是运放运放,即运算放大器,是一种集成电路芯片,主要用于放大、滤波、求导等信号处理方面。

它的特点是输入阻抗高、输出阻抗低,增益高、带宽宽广,可以通过外接电路改变其工作方式。

二、基本运放电路1. 非反馈式基本运放电路非反馈式基本运放电路由一个差动输入级和一个单端输出级组成。

其中差动输入级由两个晶体管组成,用于将输入信号转换为差模信号;单端输出级由一个共射极晶体管组成,用于将差模信号转换为单端输出信号。

2. 反馈式基本运放电路反馈式基本运放电路在非反馈式基本运放电路的基础上加入了反馈网络。

反馈网络可以改变增益、频率响应等特性,使得运放可以适应不同的应用场合。

三、典型应用电路1. 反相比例放大器反相比例放大器是一种常见的运放应用电路。

它的原理是将输入信号经过一个负反馈网络后再输入到非反相输入端口上。

这样可以实现对输入信号进行负反馈放大,从而达到比例放大的效果。

2. 非反相比例放大器非反相比例放大器与反相比例放大器类似,只是将输入信号输入到非反相输入端口上。

这样可以实现对输入信号进行正反馈放大,从而达到比例放大的效果。

3. 仪表放大器仪表放大器是一种高精度、高稳定性的运放应用电路。

它通过差分输入、高增益、低噪声等设计特点,实现对小信号的高精度测量和处理。

4. 滤波器滤波器是一种常见的运放应用电路。

它通过选择不同的电容和电感组合,可以实现不同类型的滤波功能,如低通滤波、高通滤波、带通滤波等。

5. 稳压电源稳压电源是一种常见的运放应用电路。

它通过反馈网络控制输出电压,使得输出电压保持稳定不变。

稳压电源广泛应用于各种电子设备中。

6. 正弦波振荡器正弦波振荡器是一种常见的运放应用电路。

它通过选择合适的RC组合和反馈网络,可以实现正弦波振荡输出。

正弦波振荡器广泛应用于各种信号发生器中。

四、总结运放是一种功能强大的集成电路芯片,可以应用于放大、滤波、求导等信号处理方面。

不同的运放应用电路具有不同的特点和功能,可以满足各种不同的应用需求。

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运放应用电路设计360例

集成运放应用电路设计360例

集成运放应用电路设计360例1. 引言集成运放是一种广泛应用于电子电路设计中的集成电路元件,它具有高增益、高输入阻抗、低输出阻抗等特点,常用于放大、滤波、比较、积分等各种电路应用。

本文将介绍360个集成运放应用电路设计例子,涵盖了各种常见的电路应用,帮助读者更好地理解和运用集成运放。

2. 非反相放大器2.1 原理非反相放大器是一种常见的集成运放应用电路,其基本原理是将输入信号与一个参考电压相比较,然后放大输出。

非反相放大器的输入信号与输出信号之间的相位关系相同,但是幅度不同。

2.2 设计例子以下是一些非反相放大器的设计例子:1.使用集成运放LM741设计一个非反相放大器,放大倍数为10。

2.使用集成运放LM358设计一个非反相放大器,放大倍数为100。

3.使用集成运放TL071设计一个非反相放大器,放大倍数可调。

3. 反相放大器3.1 原理反相放大器是另一种常见的集成运放应用电路,其基本原理是将输入信号与一个参考电压相比较,然后放大输出。

反相放大器的输入信号与输出信号之间的相位关系相反,但是幅度相同。

3.2 设计例子以下是一些反相放大器的设计例子:1.使用集成运放LM741设计一个反相放大器,放大倍数为10。

2.使用集成运放LM358设计一个反相放大器,放大倍数为100。

3.使用集成运放TL071设计一个反相放大器,放大倍数可调。

4. 比较器4.1 原理比较器是一种常见的集成运放应用电路,其基本原理是将输入信号与一个参考电压进行比较,然后输出一个高电平或低电平的信号。

比较器常用于电压比较、信号检测等应用。

4.2 设计例子以下是一些比较器的设计例子:1.使用集成运放LM741设计一个电压比较器,当输入电压大于参考电压时输出高电平,否则输出低电平。

2.使用集成运放LM358设计一个电压比较器,当输入电压小于参考电压时输出高电平,否则输出低电平。

3.使用集成运放TL071设计一个电压比较器,当输入电压与参考电压之差大于某个阈值时输出高电平,否则输出低电平。

电工与电子技术第三章 集成运算放大器及其应用

电工与电子技术第三章 集成运算放大器及其应用

各级工作点相互影响 适于放大直流或变化缓慢的信号 电压放大倍数为各级放大倍数之积 零点漂移
零点漂移---当输入信号为零时,输出端电压 偏离原来的起始电压缓慢地无规则的上下漂动, 这种现象叫零点漂移。
产生原因---温度变化、电源电压的波动、电 路元件参数的变化等等。
第一级产生的零漂对放大电路影响最大。
∴ i 1= i f
即 ui/R1=-uo/ Rf
uo、ui 符合比例关系,负号表示输出输入电 压变化方向相反。
电路中引入深度负反馈, 闭环放大倍数Auf 与运放的Au无关,仅与R1、Rf 有关。
当R1=Rf 时, uo=-ui ,该电路称为反相器。 R2--平衡电阻 同相端与地的等效电阻 。其作用是保持输入 级电路的对称性,以保持电路的静态平衡。
共模信号--极性相同,幅值相同的信号。
u i1= u i2
差模输入(信号)
ui1 ui2 ui 2
IC1 IC2
UCE1 UCE2 u0 UCE1 Δ UCE2 2 UCE1
Ad 2 UCE1 / ui 2 UCE1 / 2ui1 UCE1 / ui1
i3 ui3 R3
i f u0 Rf
ui1 R1 i1
Rf if
ui2 R2 i2 ui3 R3 i3
- + +∞
uo
RP
u0 ui1 ui 2 ui 3 R f R1 R2 R3
uo R f ( ui1 ui2 ui3 ) R1 R2 R3
若 R1 R2 R3 R f
AOUi
uo
I-≈I+ ≈0
二、Rf if
ui R1 i1 R2

汽车电工电子技术第6章 集成运放

汽车电工电子技术第6章 集成运放

1.集成运算放大器特性与参数
2)主要特性
(2) 饱和区的特点 理想运放工作在饱和区时,“虚断”的概念依然成立,但
“虚短”的概念不再成立。这时
当u+>u-时,uO=+UOM 当u+<u-时,uO=-UOM
分析运放的应用电路时,首先将集成运放当作理想运 算放大器;然后判断其中的集成运放工作在线性区还是非 线性区。在此基础上分析具体电路的工作原理。
1)基本结构
集成运放的输入级有两 个输入端,其中一个输 入端的信号与输出信号 之间为反相关系,称为
反相输入端
u-
u+
同相输入端
_ ∞Ao 输出端
+
uO
+
反相输入端,另一个输入端的信号与输出信号之间为同相
关系,称为同相输入端,在图中用符号“+”标注。运放有 一个输出端。
1.集成运算放大器结构 2)封装形式
和“虚断”。即
u+≈u- i+= i-≈0 “虚短”表示集成运放的同相输入端与反相输入端的电 压近似相等,如同将该两点虚假短路一样。若运放其中一个 输入端接“地”,则有u+≈u-=0,这时称“虚地”。 “虚断”表示没有电流流入运放(因为理想运放的差模 输入电阻Rid→∞),如同运放的两个输入端被断开一样。
(7)电源电压UCC 一般都用对称的正、负电源同时供电
1.集成运算放大器特性与参数
2)主要特性
电压传输特性是指表示集成运放输出电压u0与输入电压ui之间关 系的特性曲线
线性区
饱和区
饱和区
1.集成运算放大器特性与参数
2)主线要特性性区
u0= A0 (u+-u-)= A0ui

集成运算放大器及应用

集成运算放大器及应用

由此可得:
uo
RC
dui dt
输 出电压与 输入电 压对时 间的微分 成正
比。
若 ui 为恒定电压 U,则在 ui 作用于电路 的 瞬间,微 分电路 输出一个 尖脉冲 电压,波
形如图所示。
2021/4/8
26
2.积分运算电路
由于反相输入端虚地,且 i i , 由图可得:
iR iC
iR
ui R
电路实现了中权减法运算。若取R1=R2=R3=RF时,则 u0=uI2-uI1
2021/4/8
24
例5.2.1 某理想集成运算放大器电路如图所
示。求输出电压u0。
解:由于集成运算放大器A1构成电压跟随器,所以
u01=2 V。集成运算放大器A2构成同相比例运算,由 式(5.2.2)可得
u02
1
2R 2R
, iC
C duC dt
C
duo dt
由此可得:
uo
(t)
1 RC
t
0 u1(t)dt
输 出电压 与输入 电压对 时间的 积分
成正比。
2021/4/8
27
例5.2.2 分析如图所示集成运算放大器应用电路中,
输出电压与输入电压的关系。
解:集成运算放大器A1实现了减法运算,由式
(5.2.8)可得
1.开环电压放大倍数Au0 , 104~107
2.最大A输u0 出 2电0 l压g UUUoiopp
dB
在一定电源电压下,集成运算放大器输出电压和输入
电压保持不失真关系的输出电压的峰-峰值。
3.最大差模输入电压Uid max 反向输入端和同相输入端之间所能承受的最大电压值。
4.最大共模输入电压Uic max 集成运算放大器所能承受的最大共模输入电压

电子课件电子技术基础第六版第三章集成运算放大器及其应用

电子课件电子技术基础第六版第三章集成运算放大器及其应用
1. 组成框图 集成运算放大器的组成框图如图所示,通常包括输入级、 中间级、输出级和偏置电路。
集成运算放大器的组成框图
(1)输入级 通常是具有较大输入电阻和一定放大倍数的差动放大电路 ,利用它可以使集成运算放大器获得尽可能高的共模抑制比 。 (2)中间级 中间级的作用是使集成运算放大器具有较强的放大能力, 通常由多级共射极放大器构成。
一、零点漂移
放大直流信号和缓慢变化的信号必须采用直接耦合方式, 但简单的直接耦合放大器,常会发生输入信号为零输出信号 不为零的现象。产生这种现象的原因很多,如温度的变化、 电源电压的波动、电路元件参数的变化等,都会使静态工作 点发生缓慢变化,该变化量被逐级放大,便会使放大器输出 端出现不规则的输出量,这种现象称为“零点漂移”,简称“零 漂”。
三、集成运算放大器的主要参数
为了表征集成运算放大器的性能,生产厂家制定了很多参 数,作为合理选择和正确使用集成运算放大器的依据。下面 介绍几项主要的参数,见表。
集成运算放大器的主要参数
集成运算放大器的主要参数
§3-3 集成运算放大器的基本电路
学习目标
1. 了解理想集成运算放大器的基本概念。 2. 了解集成运算放大器线性工作区和非线性工作区的 特性及工作特点。 3. 理解集成运算放大器“虚短”“虚断”的概念。 4. 了解集成运算放大器电路直流平衡电阻的配置。
2. 消除自激振荡 集成运算放大器是多级放大器,具有极高的电压放大倍数 ,但它极易产生自激振荡,使运算放大器不能正常工作。为 了防止自激振荡的产生,通常按产品手册要求,在补偿端子 上接指定的补偿电容或 RC 移相网络,以便消除自激振荡现 象。
四、集成运算放大器的保护 电路
1. 防止电源极性接反 为了防止电源极性接反而损坏集 成运算放大器,可利用二极管的单向 导电特性来控制,如图所示,二极管 V1、V2 串入集成电路直流电源电路 中,当电源极性接反时,相应的二极 管便截止,从而保护了集成电路。 防止电源极性接反保护电路

集成运算放大器基本运算电路

集成运算放大器基本运算电路

集成运算放大器的基本运算电路集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路(1)反相比例运算电路电路如图1所示,对于理想运放,该电路的输出电压与输入电压之间的关系为uO=-ui图1 反相比例运算电路为了减小输入偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1||RF。

(2)同相比例运算电路图2是同相比例运算电路,它的输出电压与输入电压之间的关系为)ui当R1→∞时,uO=ui,即得到如图3所示的电压跟随器。

图中R2=RF,用以减小漂移和起保护作用。

一般RF取10KΩ,RF太小起不到保护作用,太大则影响跟随性。

图2 同相比例运算电路图3 电压跟随器(3)反相加法电路电路如图4所示。

图4 反相加法运算电路输出电压与输入电压之间的关系为uO=()R3=R1||R2||RF (4) 减法运算电路对于图5所示的减法运算电路,当R1=R2,R3=RF时,有如下关系式uO=(ui2-ui1)图5 减法运算电路(5)积分运算电路反相积分电路如图6所示。

在理想化条件下,输出电压uo等于uo(t)= —式中“—”号表示输出信号与输入信号反相。

uc(o)是t=0时刻电容C两端的电压值,即初始值。

图6 积分运算电路如果ui(t)是幅值为E的阶跃电压,并设uc(o)=0,则—即输出电压uo(t)随时间增长而线性下降。

显然时间常数R1C的数值大,达到给定的uo值所需的时间就长。

积分输出电压所能达到的最大值受集成运放最大输出范围的限制。

在进行积分运算之前,首先应对运放调零。

为了便于调节,将图中K1闭合,通过电阻R2的负反馈作用帮助实现调零。

但在完成调零后,应将K1打开,以免因R2的接入造成积分误差。

K2的设置一方面为积分电容放电提供通路,同时可实现积分电容初始电压uc(o)=0。

集成运算放大器(压控电流源)运用电路及详细解析

集成运算放大器(压控电流源)运用电路及详细解析

微分器的电路结构与积分器类似,包括集成运算放大器、 电容和反馈电阻。
微分器在信号处理、控制系统和电子测量等领域有广泛 的应用。
06 结论与展望
结论总结
01
集成运算放大器(压控电流源)在电路中具有重要作用,能够实现信号的放大、运 算和处理等功能。
02
通过对不同类型集成运算放大器(压控电流源)的特性、应用和电路设计进行比较 ,可以更好地选择适合特定需求的集成运算放大器(压控电流源)。
差分输入电路
总结词
差分输入电路是一种较为特殊的集成运算放大器应用电路,其输出电压与两个输 入电压的差值呈线性关系。
详细描述
差分输入电路的输出电压与两个输入电压的差值呈线性关系,适用于信号比较、 差分信号放大等应用。这种电路具有高输入阻抗和低输出阻抗的特点,能够有效 地减小外界干扰对信号的影响。
03 压控电流源的应用电路
详细描述
反相输入电路的输出电压与输入电压呈反相关系,即当输入 电压增加时,输出电压减小,反之亦然。这种电路具有高输 入阻抗和低输出阻抗的特点,适用于信号放大、减法运算等 应用。
同相输入电路
总结词
同相输入电路是一种较为简单的集成运算放大器应用电路,其输出电压与输入 电压呈同相关系。
详细描述
同相输入电路的输出电压与输入电压保持一致,适用于信号跟随、缓冲等应用。 这种电路具有低输入阻抗和低输出阻抗的特点,能够提高信号的驱动能力。
积分器可以将输入的电压信号 转换成电流信号,再通过负载 电阻转换成电压信号,实现信 号的积分运算。
案例三:微分器的应用
微分器是集成运算放大器的另一种应用可以将输入的电压信号转换成电流信号,再通过 负载电阻转换成电压信号,实现信号的微分运算。

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)

集成运算放大器及应用—集成运放的非线性应用(电子技术课件)
集成运放的内部结构。无论是输入信号的正向电压或负向电压超过二极管导通电压, 则V1或V2中就会有一个导通,从而限制了输入信号的幅度,起到了保护作用。
(a)反相输入
(b)同相输入
图3.3.9 输入保护电路
(3)输出保护 利用稳压管V1和V2接成反向串联电路。若输出端出现过高电压,集成运放输
出端电压将受到稳压管稳压值的限制,从而避免了损坏。
由于大部分集成运放内部电路的改进,已不需要外加补偿网络。
3.保护电路 (1)电源极性的保护 利用二极管的单向导电特性防止由于电源极性接反而造成的损坏。当
电源极性错接成上负下正时,两二极管均不导通,等于电源断路,从而起 到保护作用。
图3.3.8 电源极性保护电路
(2)输入保护 利用二极管的限幅作用对输入信号幅度加以限制,以免输入信号超过额定值损坏
由图可见,他们之间存在差值称为回差电 压或迟滞宽度u,用 表示,即:
图3.3.7 滞回电压比较器的传输特性
u Uth1 Uth2
三、集成运放使用常识 1.零点调整 方法:将输入端短路接地,调整调零电位器,使输出电压为零。 2.消除自激振荡 方法:加阻容补偿网络。具体参数和接法可查阅使用说明书。目前,
滞回比较器具有两个不同的阈值,且相差较大(通常称我电压 滞回特性),即惯性,因而也就具有一定的抗干扰能力。
(1)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相
输入端的电位为:
u
R1 R1 R2
F
Uth1
(2)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相输入端
的电位为:
u

《模拟电子技术基础》第6章 集成运算放大器

《模拟电子技术基础》第6章 集成运算放大器

RF R RF [ R1 (R2 // R ')uI1 R2 (R1 // R ')uI2 ] RF R R1 R1 (R2 // R ') R2 R2 (R1 // R ')
RF Rn
( RP R1
uI1
RP R2
uI2 )
当 R1 R2 R Rp Rn
uO
RF R
(uI1
uI2 )
t /ms
-2
0
-2
12 34 5
t /ms
uO /V
uO /V
12345 0 -1
t /ms
12345
0
t /ms
-2
-1
-2
输入方波不完全对称,导致输出偏移,以致饱和。 旁路电阻只对直流信号起作用,对交流信号影响要尽量小。
积分电路应采用失调电压、偏置电流和失调电流较小的运放,并在同相输 入端接入可调平衡电阻;选用泄漏电流小的电容,可以减少积分电容的漏电流 产生的积分误差。
iR
iD
uI R
uO uD
由二极管的伏安特性方程:
uo
iD
ISexp
uD UT
对数运算电路
uO
UTln
iD IS
U T ln
uI RI S
只有uI>0时,此对数函数关系才成立。
6.6 对数和指数运算电路
6.6.2 指数运算电路
将对数运算电路中的二极管VD和电阻R互换,可得指数运算电路。
uP
A
uN
uO
UoM 非线性区
uo
+Uom
uO
O
uId =uP -uN
非线性区 uId
非线性区 0

第6章 集成运算放大器及其应用

第6章 集成运算放大器及其应用

6.3 .
一、比例运算电路
集成运算放大器的线性应用
1.反相比例运算电路 反相比例运算电路如下图所示
根据理想运放在线性区“虚短”和“虚断”的特点,有 输入电压ui 通过电阻R1作用于集成运放的反相输入端,故输出电压uo与ui 反 相;电阻Rf 跨接在集成运放的输出端和反相输入端,引入了电压并联负反馈; 同相输入端通过电阻R’ 接地,R’ 为补偿电阻,以保证集成运放输入级差分放 大电路的对称性,其值为ui =0时反相输入端总等效电阻,即R’=R1∥ Rf 。 集成运放两个输入端的电位均为零,但由于它们并没有接地,故称为“虚 地”。节点N的电流方程为 该电路的闭环电路放大倍数为 由于N点虚地(u-=0),整理得出 A= uo /ui = -Rf/ R1 若Rf= R1 ,则A=1,即uo =-ui ,这时电路为倒相器。 uo 与ui 成比例关系,比例系数为-Rf/ R1负号表示uo 与ui 反相。 1
6.2 放大电路中的负反馈 .
一、反馈的基本概念 所谓反馈,就是指连接放大电路输入回路和放大电路输出回路的电路(或元 件),利用反馈元件将输出信号(电压或电流,全部或部分)引回到放大电路输入 回路中,来影响或改变受控元件的净输入信号(电压或电流)的大小或波形,从 而控制输出信号的大小及波形。将放大电路输出端的电压或电流,通过一定的 方式返回到放大器的输入端,对输入端产生作用或影响,称为反馈。 反馈放大电路的方框图如下图所示。

• 放大器的输出信号为 由上式可知,放大器一旦引入深度负反馈,其闭环放大倍数仅与反馈系数 F 有关,而与放大器本身的参数无关。 反馈放大器的放大倍数At(又称为闭环增益)为
其中, 称为反馈深度,是描述反馈强弱的物理量。可见,放大器引 入负反馈后,放大器的放大倍数下降。如果 >>1,则一般认为反馈 已经加得很深,这时的反馈称为深度负反馈,此时上式可简化为

第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用

第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用

差动放大电路及集成运算放大器
3.3.3.4 差模输入电阻rid
是指运放在输入差模信号时的输入电阻。对信号源来说,
差模输入电阻rid的值越大,对其影响越小。理想运放的rid
为无穷大。
3.3.3.5 开环输出电阻ro
运放在开环状态且负载开路时的输出电阻。其数值越小,
带负载的能力越强。理想运放的ro = 0。
i11
ui1 R11
;i12
ui 2 R12
该参数表示运放两个输入端之间所能承受的最大差模电 压值,输入电压超过该值时,差动放大电路的对管中某侧的 三极管发射结会出现反向击穿,损坏运放电路。运放μA741 的最大差模输入电压为30V。
差动放大电路及集成运算放大器
3.3.3.2 最大共模输入电压Uicmax
这是指运算放大器输入端能承受的最大共模输入电压。 当运放输入端所加的共模电压超过一定幅度时,放大管将退 出放大区,使运放失去差模放大的能力,共模抑制比明显下 降。运放μA741在电源电压为±15V时,输入共模电压应在 ±13V以内。
如果输入信号从同相输入端引入,运放电路就成了同相 比例运算放大电路。如图3-20所示。根据理想运算放大器的 特性:u u ui i1 i f 得:
i1
u R1
ui R1
if
u uo RF
ui uo RF
因而: uo
1
RF R1
ui
Auf
uo ui
1
RF R1
差动放大电路及集成运算放大器
该电路的反馈类型为串联电.3.4.3 反相加法器 如果在反相输入比例运算电路的输入端增加若干输入支
路,就构成反相加法运算电路,也称求和电路,如图3-22所 示。

集成运算放大器及其应用

集成运算放大器及其应用

集成运算放⼤器及其应⽤第5章集成运算放⼤器及其应⽤在半导体制造⼯艺的基础上,把整个电路中的元器件制作在⼀块硅基⽚上,构成具有特定功能的电⼦电路,称为集成电路。

集成电路具有体积⼩,重量轻,引出线和焊接点少,寿命长,可靠性⾼,性能好等优点,同时成本低,便于⼤规模⽣产,因此其发展速度极为惊⼈。

⽬前集成电路的应⽤⼏乎遍及所有产业的各种产品中。

在军事设备、⼯业设备、通信设备、计算机和家⽤电器等中都采⽤了集成电路。

集成电路按其功能来分,有数字集成电路和模拟集成电路。

模拟集成电路种类繁多,有运算放⼤器、宽频带放⼤器、功率放⼤器、模拟乘法器、模拟锁相环、模/数和数/模转换器、稳压电源和⾳像设备中常⽤的其他模拟集成电路等。

在模拟集成电路中,集成运算放⼤器(简称集成运放)是应⽤极为⼴泛的⼀种,也是其他各类模拟集成电路应⽤的基础,因此这⾥⾸先给予介绍。

5.1 集成电路与运算放⼤器简介5.1.1 集成运算放⼤器概述集成运放是模拟集成电路中应⽤最为⼴泛的⼀种,它实际上是⼀种⾼增益、⾼输⼊电阻和低输出电阻的多级直接耦合放⼤器。

之所以被称为运算放⼤器,是因为该器件最初主要⽤于模拟计算机中实现数值运算的缘故。

实际上,⽬前集成运放的应⽤早已远远超出了模拟运算的范围,但仍沿⽤了运算放⼤器(简称运放)的名称。

集成运放的发展⼗分迅速。

通⽤型产品经历了四代更替,各项技术指标不断改进。

同时,发展了适应特殊需要的各种专⽤型集成运放。

第⼀代集成运放以µA709(我国的FC3)为代表,特点是采⽤了微电流的恒流源、共模负反馈等电路,它的性能指标⽐⼀般的分⽴元件要提⾼。

主要缺点是内部缺乏过电流保护,输出短路容易损坏。

第⼆代集成运放以⼆⼗世纪六⼗年代的µA741型⾼增益运放为代表,它的特点是普遍采⽤了有源负载,因⽽在不增加放⼤级的情况下可获得很⾼的开环增益。

电路中还有过流保护措施。

但是输⼊失调参数和共模抑制⽐指标不理想。

第三代集成运放代以⼆⼗世纪七⼗年代的AD508为代表,其特点使输⼊级采⽤了“超β管”,且⼯作电流很低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 6 章 集成运算放大器及其应用电路
非线性应用电路
vI
组成特点:运放开环工作。
VREF
-
vO
A
+
由于开环工作时运放增益很大,因此较小的输入电压, 即可使运放输出进入非线区工作。例如电压比较器。
6.1.1 集成运放理想化条件下两条重要法则
Avd

Rid

Rod 0
推论

v
v
vo Avd
0
则 v v
运 放
KCMR
BW

Rid
失调和漂移0

i 0
集成运算放大器及其应用电路
第 6 章 集成运算放大器及其应用电路
说明:
v v 相当于运放两输入端“虚短路”。
虚短路不能理解为两输入端短接,只是 (v– v+) 的值小到 了可以忽略不计的程度。实际上,运放正是利用这个极其微小 的差值进行电压放大的。
叠加原理进行分析。
例如
令 vs2 = 0 令 vs1 = 0

vo1
Rf R1
vs1
集则成运算放vo大2 器及其RR应2f用v电s2路
vo vo1 vo2
第 6 章 集成运算放大器及其应用电路
▪ 同相加法器
利用叠加原理:
Rf
v
R2vs1 R1 R2
R1vs2 R1 R2

vo
(1
Rf R3
C
vo
(
s)
Zf (s) Z1(s)
vs
(s)
vs+-
-
A
vo
+
R 1/(sC )
vs ( s)
sRCvs (s)
拉氏反变换得
vo
RC
dvs dt
方法二:利用运算法则
vo
iR
dQ dt
R
d vsC
dt
R
RC
dvs dt
集成运算放大器及其应用电路
▪ 波形变换
C
R
vs+-
-
A
vo
+
R
C
vs+-
-
A
vo
+
积分电路
微分电路
▪ 波形变换
vs
输入方波
O
t
积分输出三角波
vo
O
t
微分输出尖脉冲
vo
O
t
集成运算放大器及其应用电路
第 6 章 集成运算放大器及其应用电路
对数、反对数变换器
▪ 对数变换器
R
vs+-
-
A
vo
+
利用运算法得:
(1 Rf ) R3 vs2 Rf 集成运R算1 放R大2器及R其3应用电路R1
vs1
第 6 章 集成运算放大器及其应用电路
C
积分和微分电路
▪ 有源积分器
方法一:利用运算法则
R
vs+-
-
A
vo
+
vs C d(vo )
R
dt
方法二:利用拉氏变换
1t
vo RC 0 vsdt
vo
(
s)
Zf (s) Z1(s)
vs
(s)
1 /(sC ) R vs(s)
1 sRC
vs ( s)
拉氏反变换得
vo
1 RC
t
0 vsdt
方法三:利用运算法则
vo
Q C
1 C
idt
1 vs t dt 1
集成运算放大器及C其应用电R路
RC
vs (t)dt
第 6 章 集成运算放大器及其应用电路
▪ 有源微分器
R
方法一:利用拉氏变换:
6.1.2 运算电路
加、减运算电路 ▪ 反相加法器
因 v v 则
v 0
i1
vs1+vs2+-
R1 i2
R2
if Rf
A
+
vo
因 i0
则 i1 i2 if

vs1 vs2 vo
R1 R2
Rf
整理得
vo
Rf R1
vs1
Rf R2
vs2
说明:线性电路除可以采用“虚短、虚断”概念外,还可采用
线性应用电路
Zf
组成:集成运放外加深度负反馈。
因负反馈作用,使运放小信
vs1
Z1 i -
vo
A
号工作,故运放处于线性状态。
vs2
+
Z1 或 Zf 采用线性器件(R、C),则可构成加、减、积分、 微分等运算电路。
Z1 或 Zf 采用非线性器件(如三极管),则可构成对数、反 对数、乘法、除法等运集算成电运算路放大。器及其应用电路
vs -
归纳与推广
当 R1 、Rf 为线性电抗元件时,在复频域内:
反相放大器
vo ( s)
Zf (s) Z1(s)
vs ( s)
拉氏反变换
同相放大器
vo ( s)
[1
Zf Z1
( (
s) s)
]vs
(
s)
注:拉氏反变换时
d
1
s
dt
集成运算放大d器t 及其应用电s 路
得 vo(t)
第 6 章 集成运算放大器及其应用电路
i 0 相当于运放两输入端“虚断路”。
同样,虚断路不能理解为输入端开路,只是输入电流小到 了可以忽略不计的程度。
实际运放低频工作时特性接近理想化,因此可利用“虚短 、虚断”运算法则分析运放应用电路。此时,电路输出只与外 部反馈网络参数有关,而不涉及运放内部电路。
集成运算放大器及其应用电路
第 6 章 集成运算放大器及其应用电路
输出电阻
集成运算放大器及其应用电路
Ro
0
第 6 章 集成运算放大器及其应用电路
▪ 同相放大器
类型:电压串联负反馈
因 v v 则 v vs
注:同相放大器不存在“f
if Rf
i1
-
R1
A
vo
+
+
vs -
由图
i1
0 v R1
vs R1
if
v vo Rf
vs vo Rf
集成运放基本应用电路
▪ 反相放大器
if Rf
类型:电压并联负反馈
因 v v 则 v 0
反相输入端“虚地”。
因 i0
则 i1 if
i1
vs+-
R1
A
+
vo
由图
i1
vs v R1
vs R1
if
v vo Rf
vo Rf
输出电压表达式:
vo
Rf R1
vs
因 v 0 因深度电压负反馈
输入电阻 Ri R1
)v
(1 Rf )( R2vs1 R1vs2 )
R3 R1 R2 R1 R2
R3
R1
vs1+- +
R2
vs-2
A
+
vo
▪ 减法器
Rf
令 vs2 = 0,
vo1
Rf R1
vs1
令 vs1 = 0,
vo2
(1
Rf R1
)
R3 vs2 R2 R3
vs1
R1
vs2
R2
R3
A
+
vo

vo vo1 vo2
输出电压表达式:
vo
(1
Rf R1
)vs
(1
Rf R1
)v
因 i0
因深度电压负反馈
输入电阻 Ri
输出电阻
集成运算放大器及其应用电路
Ro 0
第 6 章 集成运算放大器及其应用电路
▪ 同相跟随器
因 v v
由图得 vo v vs
-
A
vo
由于
Avf 1 Ri Ro 0
++
所以,同相跟随器性能优于射随器。
第 6 章 集成运算放大器及其应用电路
6.1 集成运放应用电路的组成原理 6.2 集成运放性能参数及对应用电路的影响 *6.3 高精度和高速宽带集成运放 6.4 集成电压比较器
集成运算放大器及其应用电路
第 6 章 集成运算放大器及其应用电路
6.1 集成运放应用电路的组成原理
根据集成运放自身所处的工作状态,运放应用电路分: 线性应用电路和非线性应用电路两大类。
相关文档
最新文档