2014年考研数一真题及答案解析(完整版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年考研数一真题与答案解析
数学一试题答案
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项
符合题目要求的,请将所选项前的字母填在答题纸
...指定位置上.
(1)B
(2)D
(3)D
(4)B
(5)B
(6)A
(7)(B)
(8)(D)
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...
指定位置上. (9)012=---z y x
(10)11=-)(f
(11)12+=x x
y ln (12)π
(13)[-2,2]
(14)25n
三、解答题:15—23小题,共94分.请将解答写在答题纸...
指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)【答案】
2
1211111111102
0221
121
2112=-=--=--=--=--=+
--++→→+∞→+∞
→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,x
u x )e (x lim x
tdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x x
x x x x x 则令
(16)【答案】
20
20
2232222=+=+='++'⋅++')x y (y xy y y x xy y y x y y y
x y )(y 20-==或舍。
x y 2-=时,
2
110
660
62480
62480
633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y
04914
190
141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。
(17)【答案】
y cos e )y cos e (f x
E x x '=∂∂ )y cos (e )y cos e (f y sin e )y cos e (f y E )y sin (e )y cos e (f y
E y cos e )y cos e (f y cos e )y cos e (f x
E x x x x x x x x x x -'+''=∂∂-'=∂∂'+''=∂∂22222222
y
cos e )y cos e (f )y cos e (f e )y cos e E (e )y cos e (f y E x E x x x x x x x +=''+=''=∂∂+∂∂44222
222 令u y cos e x =,
则u )u (f )u (f +=''4, 故)C ,C (,u e C e C )u (f u u 为任意常数2122214
-+=- 由,)(f ,)(f 0000='=得
4
161622u e e )u (f u u --=- (18)【答案】 补{}∑=1
1z )z ,y ,x (:的下侧,使之与∑围成闭合的区域Ω,
π
ρρρρπρθρθρρρθρθρθρρθρπρπ41732766311313113131
23122220101222010222
2
1
1-=-+-=+---=+-+--=+-+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
∑∑+∑d ))((dz
]sin cos [d d dz
])sin ()cos ([d d dxdydz
])y ()x ([
(19)【答案】
(1)证}a {n 单调 由20π
< →存在, 设a a lim n n =∞→,由∑∞=1n n b 收敛,得0=∞ →n n b lim , 故由n n n b cos a a cos =-,两边取极限(令∞→n ),得10==-cos a a cos 。 解得0=a ,故0=∞ →n n a lim 。 (20)【答案】①()1,2,3,1T - ②123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫ ⎪--+ ⎪= ⎪--+ ⎪⎝⎭ ()123 ,,k k k R ∈ (21)【答案】利用相似对角化的充要条件证明。 (22)【答案】(1)()0,0,3,01,4111,12,221, 2. Y y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎛⎫⎪+≤< ⎪⎪⎝⎭⎪≥⎩ (2)34 (23)【答案】(1)21,2EX EX πθθ= = (2)21 1ˆn i i X n θ==∑ (3)存在