七年级数学上册《实数》测试题
浙教版七年级数学上册《第三章实数》单元测试卷(含答案)
第一学期七年级上数学第三章一.选择题1. 16的平方根是 ( C )A. 4B. -4C. 4±D. 162. 到原点距离为310个单位的点表示的数是 ( C )A. 310B. -310C.±310D.±103. 下列各式正确的是 ( D )A. 525±=B. 416=±C. 6-6-2=)(D. 18-93=4. 已知正数m 满足条件392=m ,则m 的整数部分 (D )A. 9B. 8C. 7D. 65. 如图,在数轴上表示实数10的点可能是 ( C )A. 点PB. 点QC.点MD.点N6. 下列说法错误的有 ( C )①任何实数的平方根有两个,且它们互为相反数②无理数就是带根号的数③数轴上所有的点都表示实数④负数没有立方根A. 1个B. 2个C. 3个D. 4个7. 如图,将一刻度尺放置在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“5cm ”分别对应数轴上的2-和x ,则x 的值是( B )A.5+2 B. 5-2 C. 2 D. 5B.10<x<11C.11<x<12D.12<x<138.如图所示的方格中,每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是(D )A.2B. 3C. 5D. 6二.填空题9.37-的绝对值是____37___10.已知一个数的一个平方根是-10,则另一个平方根是__10____11.64的立方根是___2____12.比较大小:3_<_ 2 , 5--__>__613.写出一个大于3,且小于4的无理数____10(答案不唯一)______14.立方根是本身的数有_-1,1,0_______15.已知a是20的整数部分,b是11的整数部分,则ba 的值__7__16.按如图所示的程序计算:若开始输入的x值为64时,输出的y值是__2_____三.解答题17. 计算(1)1691- 45- (2)22125+± 13±(3)3448-04.01-1-⨯++)( -0.4(4))()(23323-25-33+⨯⨯+⨯ -3.808 (取3≈1.732,5≈2.236,精确到0.01)18. 已知实数:中),之间一次多一个(两个,,,,,∙3.012.121121112.2,2-16-2202,37222 π(1)是整数的有:__22-16-0,,______(2)是分数的有:__∙3.0,722____ (3)是有理数的有:_______∙3.0,2-16-0,7222,,_______ (4)是无理数的有:_______________)之间依次多一个(两个,,12121121112.2,2223 π_________19. 请把下列各实数分别表示在数轴上,并比较它们的大小(用“<”连接):2,03.0-221-,,,20. 一个大正方体木块的体积是643cm ,其棱长的数值与另一各小正方体木块的一个侧面积的数值相等,求小正方体木块的体积。
2022-2023学年七年级数学上《实数》测试卷及答案解析
2022-2023学年七年级数学上《实数》一.选择题(共9小题)1.(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1 2.(2021秋•卧龙区期末)36的算术平方根是()A.6B.±6C.18D.±18 3.(2022•安徽)下列为负数的是()A.|﹣2|B.C.0D.﹣5 4.(2022春•长沙期中)81的平方根是()A.9B.9和﹣9C.3D.3和﹣3 5.(2022•陕西模拟)的平方根是()A.B.C.D.6.(2022春•岳麓区校级期中)若2m﹣4与3m﹣1是同一个正数的两个平方根,则这个正数为()A.1B.4C.±1D.±4 7.(2022•南山区模拟)若一个正方形的面积是28,则它的边长为()A.B.C.D.8.(2022春•仙居县期中)﹣2的最小值是()A.﹣2B.﹣1C.0D.2 9.(2020春•朝阳区期末)下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1二.多选题(共1小题)(多选)10.(2021春•安丘市期中)下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C.是3的平方根D.﹣3是的平方根三.填空题(共6小题)11.(2022春•惠城区月考)如果=1.08,那么x=.12.(2022春•天门校级月考)若,则x2018+y2019=.13.(2022•安徽模拟)的平方根为.14.(2022春•如皋市校级月考)2a﹣3与5﹣a是同一个正数x的平方根,则x=.15.(2021秋•零陵区期末)已知一个正数的平方根是3x+2和5x+14,则这个数是.16.(2022春•大兴区期中)若实数m的两个不相等的平方根是a+1和2a﹣7,则实数m 为.四.解答题(共4小题)17.(2022春•江汉区期中)(1)已知25x2﹣36=0,求x的值;(2)某正数a的两个不同的平方根分别是x+2和3x﹣10,求x和a的值.18.(2022春•浦北县校级月考)解方程:(1)4x2=16;(2)9x2﹣121=0.19.(2022春•潮安区校级月考)求x的值:(x+4)2=81.20.(2022春•汉阴县月考)已知a﹣3是16的算术平方根,求a的值.2022-2023学年七年级数学上《实数》参考答案与试题解析一.选择题(共9小题)1.(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1【考点】平方根.【专题】实数;运算能力.【分析】根据平方根的被开方数不能是负数,可得答案.【解答】解:在﹣a,﹣a2+1,﹣a2,﹣a2﹣1中,﹣a2﹣1是负数,没有平方根.故选:D.【点评】本题考查了平方根,注意负数没有平方根.2.(2021秋•卧龙区期末)36的算术平方根是()A.6B.±6C.18D.±18【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义即可作答.【解答】解:∵62=36,∴36的算术平方根是6.故选:A.【点评】本题主要考查算术平方根的定义:一个正数的正的平方根,叫做这个正数的算术平方根,0的算术平方根是0.算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.3.(2022•安徽)下列为负数的是()A.|﹣2|B.C.0D.﹣5【考点】非负数的性质:算术平方根;有理数;绝对值.【专题】实数;数感.【分析】根据实数的定义判断即可.【解答】解:A.|﹣2|=2,是正数,故本选项不合题意;B.是正数,故本选项不合题意;C.0既不是正数,也不是负数,故本选项不合题意;D.﹣5是负数,故本选项符合题意.故选:D.【点评】本题考查了有理数,绝对值以及算术平方根,掌握负数的定义是解答本题的关键.4.(2022春•长沙期中)81的平方根是()A.9B.9和﹣9C.3D.3和﹣3【考点】平方根.【专题】实数;运算能力.【分析】根据正数的平方根有两个,且互为相反数即可解答.【解答】解:81的平方根是±9.故选:B.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.5.(2022•陕西模拟)的平方根是()A.B.C.D.【考点】平方根.【专题】实数;数感.【分析】根据平方根的定义解答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是解题关键.6.(2022春•岳麓区校级期中)若2m﹣4与3m﹣1是同一个正数的两个平方根,则这个正数为()A.1B.4C.±1D.±4【考点】平方根.【专题】二次根式;运算能力.【分析】根据平方根的性质即可求出答案.【解答】解:由题意可知:2m﹣4+3m﹣1=0,∴m=1,∴2m﹣4=﹣2,∴这个正数为4,故选:B.【点评】本题考查算术平方根,解题的关键是正确理解平方根的性质,本题属于基础题型.7.(2022•南山区模拟)若一个正方形的面积是28,则它的边长为()A.B.C.D.【考点】算术平方根.【专题】实数;运算能力.【分析】根据算术平方根的定义解答即可.【解答】解:∵正方形的面积是28,∴它的边长为=2.故选:B.【点评】此题主要考查了算术平方根,解题的关键是熟练掌握算术平方根的定义.算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.(2022春•仙居县期中)﹣2的最小值是()A.﹣2B.﹣1C.0D.2【考点】非负数的性质:算术平方根.【专题】实数;数感;运算能力.【分析】根据非负数的性质解答即可.【解答】解:=≥0,所以,﹣2的最小值是﹣2.故选:A.【点评】本题主要考查了非负数的性质,掌握非负数的性质是解题的关键.9.(2020春•朝阳区期末)下列说法错误的是()A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【考点】立方根;平方根;算术平方根.【专题】实数;运算能力.【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点评】此题考查了立方根、平方根、算术平方根.解题的关键是熟练掌握立方根的定义,平方根的定义,以及算术平方根的定义.二.多选题(共1小题)(多选)10.(2021春•安丘市期中)下列说法错误的是()A.1的平方根是1B.﹣1的立方根是﹣1C.是3的平方根D.﹣3是的平方根【考点】立方根;平方根;算术平方根.【专题】实数;运算能力.【分析】直接利用平方根和立方根的定义分别分析得出答案.【解答】解:A、1的平方根是±1,故此选项错误;B、﹣1的立方根是﹣1,正确;C、是3的平方根,正确;D、=3,则是的平方根,故此选项错误;故选:AD.【点评】此题主要考查了平方根和立方根,正确掌握平方根和立方根的定义是解题关键.三.填空题(共6小题)11.(2022春•惠城区月考)如果=1.08,那么x= 1.1664.【考点】算术平方根.【分析】被开方数的小数向左移动2n位,对应的算术平方根的小数点向左移动n位.【解答】解;∵,∴.∴x=1.1664.故答案为:1.1664.【点评】本题主要考查的是算术平方根,明确被开方数的小数向左移动2n位,对应的算术平方根的小数点向左移动n位是解题的关键.12.(2022春•天门校级月考)若,则x2018+y2019=0.【考点】非负数的性质:算术平方根.【专题】实数;数感.【分析】直接利用非负数的性质得出x,y的值,进而结合有理数的乘方得出答案.【解答】解:∵,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,则x2018+y2019=12018+(﹣1)2019=1﹣1=0.故答案为:0.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.13.(2022•安徽模拟)的平方根为±2.【考点】立方根;平方根.【专题】计算题.【分析】根据立方根的定义可知64的立方根是4,而4的平方根是±2,由此就求出了这个数的平方根.【解答】解:∵4的立方等于64,∴64的立方根等于4.4的平方根是±2,故答案为:±2.【点评】本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.14.(2022春•如皋市校级月考)2a﹣3与5﹣a是同一个正数x的平方根,则x=49或.【考点】平方根.【专题】实数;运算能力.【分析】根据正数的平方根有2个,且互为相反数,求出a的值,即可确定出x的值.【解答】解:∵2a﹣3与5﹣a是同一个正数x的平方根,∴2a﹣3+5﹣a=0或2a﹣3=5﹣a,解得:a=﹣2或a=,则x=49或.故答案为:49或.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.15.(2021秋•零陵区期末)已知一个正数的平方根是3x+2和5x+14,则这个数是16.【考点】平方根.【专题】实数;运算能力.【分析】根据正数的平方根有两个,且互为相反数列出方程,求出方程的解得到x的值,即可得到这个正数.【解答】解:根据题意得:3x+2+5x+14=0,解得:x=﹣2,所以3x+2=﹣4,5x+14=4,则这个数是16.故答案为:16.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.16.(2022春•大兴区期中)若实数m的两个不相等的平方根是a+1和2a﹣7,则实数m为9.【考点】平方根.【专题】实数;运算能力.【分析】一个正数有两个平方根,它们互为相反数,和为0,列出方程求出m即可.【解答】解:根据题意,得:a+1+2a﹣7=0,解得:a=2.则m=(a+1)2=32=9.故答案为:9.【点评】本题主要考查平方根的定义,解题的关键是要知道这两个平方根之间的关系.四.解答题(共4小题)17.(2022春•江汉区期中)(1)已知25x2﹣36=0,求x的值;(2)某正数a的两个不同的平方根分别是x+2和3x﹣10,求x和a的值.【考点】平方根.【专题】二次根式;运算能力.【分析】(1)方程变形后,开方即可求出解;(2)根据平方根的性质可得x的值,代入x+2即可得a的值.【解答】解:(1)25x2=36,,∴;(2)由题意知x+2+3x﹣10=0,解得x=2,则x+2=4,所以a=16.【点评】此题主要考查了平方根,解题的关键是熟练掌握平方根的定义和性质.18.(2022春•浦北县校级月考)解方程:(1)4x2=16;(2)9x2﹣121=0.【考点】平方根.【专题】实数;运算能力.【分析】(1)先化成x2=a的形式,然后再两边直接开方即可.(2)先移项,化成x2=a的形式,然后再两边直接开方即可.【解答】解:(1)4x2=16,x2=4,x=±2;(2)9x2﹣121=0,9x2=121,x2=,x=±.【点评】本题考查了平方根的知识,掌握开平方的定义是解题的关键.19.(2022春•潮安区校级月考)求x的值:(x+4)2=81.【考点】平方根.【专题】实数;运算能力.【分析】根据平方根的意义,进行计算即可解答.【解答】解:(x+4)2=81,x+4=±9,x+4=9或x+4=﹣9,x=5或x=﹣13,∴x的值为5或﹣13.【点评】本题考查了平方根,熟练掌握平方根的意义是解题的关键.20.(2022春•汉阴县月考)已知a﹣3是16的算术平方根,求a的值.【考点】算术平方根.【专题】实数;运算能力.【分析】根据算术平方根的定义即可求出答案.【解答】解:由题意可知:a﹣3=4,∴a=7.【点评】本题考查算术平方根,解题的关键是正确理解算术平方根的定义,本题属于基础题型.。
2020年鲁教版(五四制)七年级数学上学期第四章 《实数》测试卷及答案
鲁教版七年级数学上册《实数》测试题时间 120分钟分值 120分班级姓名一、选择题(共12小题,每小题4分,满分48分)1.下列各数:1.414,2,-13,0,其中是无理数的为()A.1.414 B.2 C.-13D.02.16的算术平方根的平方根是()A.4 B.±4 C.2 D.±23.﹣8的立方根是()A.2 B.﹣2 C.±2 D.-324.下列四个数中,最大的数是()A.0 B.2 C.-3 D.55.实数﹣2的绝对值是()A.2 B.2C.﹣2 D.﹣26.12017-的倒数的相反数是()A.﹣2017 B.12017C.2017 D.12017-7.下列计算中,结果一定是无理数的是()A.直角三角形的两直角边分别是3,4,,斜边的长是无理数B.直角三角形的两边分别是3,4,第三边长是无理数C.等腰三角形的腰长为5,底边为6,底边上的高是无理数D.边长为2的等边三角形的高是无理数8.实数a,b在数轴上的位置如图1所示,则|a|﹣|b|可化简为()A.a﹣b B.b﹣a C.a+b D.﹣a﹣b图 19.数轴上点A、B表示的数分别是5、-3,它们之间的距离可以表示为()A .-3+5 B. -3-5 C. |-3+5| D. |-3-5|10.估计7+1的值 ( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间11.如图2,数轴上点A ,B 分别对应1,2,过点B 作PQ ⊥AB ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是 ( ) A .3 B. 5 C .6 D .7图 212.如图3,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是 ( ) A .p B .q C .m D .n图 3二、填空题(共5小题,每小题4分,满分20分)13.在数轴上表示实数a 的点如图4所示,化简2(5)2a a -+-的结果为___ _.图 4314.如图5,是边长为1的小正方形构成的8×6长方形网格,则格点三角形ABC 的周长 为 .图 515.已知实数a,b 2017b -2(1)a -=0,则a+b 的值为 .16.已知a 与b 互为相反数,c 与d 互为倒数,e 是绝对值最小的数,f 是立方根等于自身的数,则2017a b++2017e+cd-f 的值为 . 1727a,b 之间,则a-b 的值为 . 三、解答题(共7小题,满分52分) 18.(5分)把下列各数填入相应的集合中.-3144 1.732,2π,-364,0.10100100010001…(相邻两个1之间0的个数逐次加1) (1)整数集合:{ … } (2)无理数集合:{ … }19.(5分)已知1的平方根为±1,16的平方根为±2,81的平方根为±3,256的平方根为±4,……….(1)写出第七个结论为 . (2)第n个结论为 .20.(8分)已知一个正数m 的两个平方根为2a-3和6-3a. (1)求出m 的两个平方根;(2)求m 的值.21.(8分)观察下列各式中的规律,回答后面的问题:已知1=1,121=11,12321=111,1234321=1111,……… (1)请你根据上面的规律,直接写出第6个等式为 ;(2)计算21111111)(= 。
七年级数学实数测试题及答案
七年级数学实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333(无限循环小数)D. 1/32. 以下哪个表达式的结果不是实数?A. √(-1)B. √(9)C. √(16)D. √(4)3. 两个实数相除,结果为实数的条件是:A. 两个数都是正数B. 两个数都是负数C. 除数不为零D. 被除数不为零4. 如果a和b是实数,且a > b,那么下列哪个表达式一定大于0?A. a - bB. b - aC. a * bD. a / b5. 下列哪个数是实数?A. 5.6C. √(-4)D. 0.333...(无限循环小数)6. 如果a是一个正实数,那么下列哪个表达式的结果也是正实数?A. 1/aB. -1/aC. a^2D. -a^27. 以下哪个数是实数的平方根?A. √3B. √(-3)C. -√3D. √98. 如果a是一个实数,那么下列哪个表达式的结果不是实数?A. a + 1B. a - 1C. a / aD. a * a9. 下列哪个数是实数的立方根?A. ³√8B. ³√(-1)C. ³√(-8)D. ³√110. 如果a是一个实数,那么下列哪个表达式的结果总是实数?A. √aB. a^2D. a^3二、填空题(每题2分,共20分)11. √25的值是______。
12. 一个数的立方根是2,那么这个数是______。
13. 两个实数相除,如果除数是正数,结果的符号与______相同。
14. 如果一个数的平方根是5,那么这个数是______。
15. 一个数的绝对值是3,那么这个数可以是______或______。
16. √(-1)的值是______。
17. 一个数的平方是16,那么这个数是______或______。
18. 如果a是一个实数,那么1/a的值是实数的条件是a不等于______。
浙教版七年级数学上册第3章《实数》测试题含答案(PDF版)
9 2 3 11,3, 196,0.4, 2 ,…}; 2 9 3 11,0,3, 196,-π,0.4, 2 ,…}.
实数:{-11, 5,3, 16. (12 分)计算: 3 (1) 81- 125. 【解】
原式=9-5=4.
3 (2) 9-(- 3)2+ (-8)2- (-2)2. 【解】 3 原式=3-3+ 64- 4
10. 用“>”或“<”填空: (1)- 16__>__-4.2. (2) 3 2 1-4__<__3.
11. 已知 10404=102, a=10.2,则 a 的值为 104.04. 12. 如果一个数的算术平方根为 2m-6,它的平方根为±(m-2),那么这个数为__4__. 【解】 当 2m-6=m-2 时,m=4,此时 2m-6=2>0,符合题意;当 2m-6=-(m 8 2 -2)时,m=3,此时 2m-6=-3<0,不符合题意,舍去.∴m=4,这个数为 22=4. 3 13. 设 a,b 都是有理数,定义运算 a*b= a+ b,则(4*8)*[9*(-64)]=__1__. 【解】 3 3 原式=( 4+ 8)*( 9+ -64)
三、解答题(共 44 分) 15. (8 分)把下列各数填入相应的括号里: -11, 5,3,
2 9 3 11,0,3, 196,-π,0.4, 2 .
2 有理数:-11,3,0,3, 196,0.4,…; 无理数: 5,
9 3 ; ,-π, ,… 11 2
正实数:{ 5,3,
(2)原式= 2-1+ 3- 2+ 4- 3+…+ 2017- 2016= 2017-1.
第 3 章测试题
一、选择题(每小题 4 分,共 32 分) 1. 下列式子正确的是(D) A. 36=±6 B.- 3.6=-0.6 3 3 D. -5=- 5
鲁教版数学七年级上册-----第四章-实数---单元测试卷
鲁教版七年级上册第四章《实数》单元测试卷一、选择题:1.下列四个数中,最大的一个数是()A.1-B.πC D.2-2的相反数是()D.2A.B C3.满足x<x是()A.-2,-1,0,1,2,3 B.-1,0,1,2 C.-2,-1,0,1,2 D.-1,0,1,2,34)A.±8 B.8 C.﹣8 D5.下列说明错误的是()A.4的平方根是±2 BD是无理数C6.如果a,b是2019的两个平方根,那么a+b﹣2ab=()A.0B.2019C.﹣4038D.40387.下列说法正确的是( )A.绝对值等于它本身的有理数只有0 B.相反数等于它本身的有理数只有0 C.倒数等于它本身的有理数有1 D.平方根等于它本身的有理数为0和+1 8.如图,数轴上的A、B、C、D四点中,与表示数( )A.点A B.点B C.点C D.点D9.满足x<)A.-1 B.0 C.1 D.210.按如图所示的程序计算,若开始输入的值为9,则最后输出的y值是()A B C .3 D .±3二、填空题:11.在2-、π62195个数中,无理数有______个. 12.比较下列两数的大小,2_______ |-3| -3.14__________π- 13.2﹣1的相反数是_____________.14.28y x =-,且y 的立方根是2,求x 的值_________.15.a b 3a b -=_______; 16.若一个正数的两个平方根是x-5和x+1,则x=________.17.已知正数x 的两个不等的平方根分别是2a ﹣14和a +2,b +1的立方根为﹣3,c 是的整数部分,则2a ﹣b +5c 的平方根是 . 18.对于正数a ,b ,现用“☆”定义一种运算:22a b a b =-☆,根据这个定义,有下列结论:①()a b a b =-☆☆;②()b a a b =-☆☆;③若a b =,则a b b a =☆☆;④若=-a b ,则22a b a b =+☆,其中正确结论的序号是______.三、解答题:19.计算:(1 (21.20.解方程:(1)2(21)3x -= (2)(x-1)3+27=0.21.已知2a ﹣1的立方根是3,3a +b ﹣1的一个平方根是﹣6,求a +2b 的平方根.22.已知a,b为实数,且满足关系式:|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a,b的值;(25的平方根.23.我们以前学过完全平方公式()2222a b a ab b±=±+,现在又学习了二次根式,那么所有的非负数都可以看作是一个数的平方,如:223,5==。
浙教版初中数学七年级上册第三单元《实数》单元测试卷(较易)(含答案解析)
浙教版初中数学七年级上册第三单元《实数》单元测试卷考试范围:第三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列各数中没有平方根的是( )A. 0B. −82C. (−14)2 D. −(−3)2.平方根是±14的数是( )A. 14B. 18C. 116D. ±1163.下列说法中,错误的是( )A. 0.01是0.1的算术平方根B. 4是16的算术平方根C. −3是9的一个平方根D. 25的平方根是±54.下列四个数中,其中最小的数是( )A. 0B. −4C. −πD. √25.如图,数轴上A,B,C,D四点中,与数−√3的对应点最接近的是( )A. 点AB. 点BC. 点CD. 点D6.下列各数中,属于无理数的是( )A. 12B. 1.414C. √2D. √47.√−273的值是( )A. 3B. −3C. 13D. −138.下列说法中,正确的是( )A. 512的立方根是8,记做√5123=8B. 49的平方根是−7C. 8是16的算术平方根D. 如果一个数有立方根,那么这个数一定有平方根9. 有下列说法: ①平方根是它本身的数有1,0; ②算术平方根是它本身的数有1,0; ③立方根是它本身的数有±1,0; ④如果一个数的平方根等于它的立方根, 那么这个数是1或0.其中正确的个数是( )A. 1B. 2C. 3D. 410. 已知√20n 是整数,则满足条件的最小正整数n 为( ) A. 2B. 3C. 4D. 511. √293的小数部分是( ) A. 0.07B. √293−3C. √293−4D. √293−512. 下列各组数中互为相反数的是( ) A. 3和√(−3)2 B. −13和−3 C. −3和√−273D. |−3|和−(−√3)2 第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 平方根等于本身的数是 ,算术平方根等于本身的数是 . 14. 一个数的一个平方根是−9,那么这个数为 . 15. 实数−32,√18,−|−6|,√643中最大的数为______ . 16. 不大于√5的所有正整数的和是________.三、解答题(本大题共9小题,共72.0分。
七年级数学-实数习题精选(含答案)
实数单元练习题1填空题:(本题共10小题,每小题2分,共20分)1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________.4、实数a,b,c 在数轴上的对应点如图所示 化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0.8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的整数有__________________________。
选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个B 、2个C 、3个D 、4个12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、21 C 、2 D 、不能确定 14、下列说法中,错误的是( ). A 、4的算术平方根是2 B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-115、64的立方根是( )。
A 、±4B 、4C 、-4D 、1616、已知04)3(2=-+-b a ,则ba 3的值是( )。
A 、 41 B 、- 41 C 、433 D 、43 17、计算33841627-+-+的值是( )。
A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
浙教版七年级上册数学第3章实数单元测试(含答案)
七年级上册数学《第3章 实数》单元测试一、单选题(本题有10小题,每小题3分,共30分)1.19的平方根是( ) A .181 B .13 C .-13 D .±132.在16,-3.141,π2,-0.5,2,0.585 885 888 5…(两个“5”之间依次多一个“8”),227中,无理数有( )A .4个B .3个C .2个D .1个3.下列各组数中互为相反数的一组是( )A .-|-2|与3-8 B .-4与-42C .-32与|3-2|D .-2与124.下列各式中,计算正确的是( )A .±916=±34 B .±916=34 C .±916=±38 D .916=±34 5.实数a 在数轴上对应点的位置如图所示,则(a -1)2=( )A .1B .-1C .1-aD .a -16.下列数中,小于-2的是( )A .- 5B .- 3C .- 2D .-17.下列说法正确的是( )A .125的平方根是15B .-8是64的一个平方根C .16的算术平方根是4D .81=±98.在5与26之间,整数有( )A .2个B .3个C .4个D .5个9.下列说法中,正确的是( )①0.027的立方根是0.3; ②3a 不可能是负数; ③如果a 是b 的立方根,那么ab ≥0;④若一个数的平方根与这个数的立方根相同,则这个数是1.A .①③B .②④C .①④D .③④10.如图,数轴上点C ,B 表示的数分别为2,5,点C 到点A 的距离与点C到点B 的距离相等,则点A 表示的数是( )A .- 5B .2- 5C .4- 5D .5-2二、填空题(本题有6小题,每小题4分,共24分)11.一个数的立方等于它本身,这个数是______________.12.-5的相反数是________,绝对值是________.13.3-125=________;1-925=________.14.若x -1+(y +2)2=0,则(x +y )2 023=________.15.如图,数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C 表示的数是________.16.规定用[a ]表示不超过a 的最大整数,例如:[2]=2,[3.7]=3.现对72进行如下操作:72――→第一次[]72=8――→第二次[] 8=2――→第三次[] 2=1,这样对72只需进行3次操作后就可变为1.类似地,对85只需进行________次操作后就可变为1.三、解答题(本题有8小题,共66分)17.(6分)计算:(1)1+169; (2)5+|5-3|.18.(6分)计算下列各题.(1)-32×19-(-3)2÷(-1)2;(2)(-2)2×3-8÷⎝ ⎛⎭⎪⎫14-12.19.(6分)比较大小. (1)24与5.1; (2)3-15与15.20.(6分)求下列各式中未知数x的值.(1)16x2-25=0; (2)(x-1)3=8.21.(10分)将下列各数在数轴上(如图)表示出来,并用“<”号把它们连接起来.-312,0,-2,94,|-3|.22.(10分)请根据如图所示的对话内容回答下列问题.(1)求正方体纸盒的棱长;(2)求长方体纸盒的长.23.(10分)已知36=x,y=3,z是16的平方根,求3x+y-5z的值.24.(12分)如图,每个小正方形的边长为1,阴影部分是一个正方形.(1)图中阴影正方形的面积是________,边长是________.(2)已知x为阴影正方形的边长的小数部分,y为15的整数部分.求:①x,y的值;②(x+y)2的算术平方根.答案一、1.D 2.B 3.C 4.A 5.C 6.A7.B 8.B 9.A 10.C二、11.0或±1 12.5; 5 13.-5;45 14.-1 15.2+ 216.3三、17.解:(1)原式=259=53.(2)原式=5+3-5=3.18.解:(1)原式=-9×19-3÷1=-1-3=-4. (2)原式=2×(-2)÷⎝ ⎛⎭⎪⎫-14=2×(-2)×(-4)=16. 19.解:(1)∵5.12=26.01,24<26.01,∴24<5.1.(2)∵3-1<1,∴3-15<15.20.解:(1)16x 2-25=0,整理,得x 2=2516,所以x =±54. (2)(x -1)3=8,两边开立方,得x -1=2,所以x =3.21.解:94=32,|-3|=3.将-312,0,-2,94,|-3|表示在数轴上如图.-312<-2<0<94<|-3|.22.解:(1)设正方体纸盒的棱长为x cm,根据题意,得x3=216,解得x=6.答:正方体纸盒的棱长为6 cm.(2)设长方体纸盒的长为y cm,根据题意,得6y2=600,解得y=10(负值舍去).答:长方体纸盒的长为10 cm.23.解:∵36=x,∴x=6.∵y=3,∴y=9.∵z是16的平方根,∴z=±4.当z=4时,3x+y-5z=3×6+9-5×4=7;当z=-4时,3x+y-5z=3×6+9-5×(-4)=47.综上所述,3x+y-5z的值为7或47.24.解:(1)13;13(2)①∵9<13<16,9<15<16,∴3<13<4,3<15<4.∵x为阴影正方形的边长的小数部分,y为15的整数部分,∴x=13-3,y=3.②由①可知x=13-3,y=3,∴(x+y)2=(13-3+3)2=13,∴(x+y)2的算术平方根是13.。
新浙教版七年级数学上册《实数》测试卷
《实数》测试卷一、填空题:(每题3分,共30分) 1、下列各数中是无理数的是( )A 、71B -2C 、16D 、3.14 2、121的平方根是( )A 、11B 、-11C 、±11D 、121 3、下列各式表示正确的是( )A 、525±=B 525=±C 、525±=±D 、552-=-±)(4、9的算术平方根为( )A 、3B 、 -3C 、±3D 、81 5、-27的立方根为( )A 、±3B 、 3C 、-3D 、没有立方根 6、与无理数80最接近的整数是( )A 、8B 、9C 、10D 、7 7、下列说法正确的是( )A 、4的平方根是2B 、-4的平方根是-2C 、22)(- 没有平方根 D 、2是4的一个平方根 8、如右图所示,以数轴上的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )A 、211B 、 1.4C 、3D 、29、81 的算术平方根是( ) -1 0 1 A 2 A 、9 B 、±9 C 、3 D 、±3 10、如图是正方形纸盒的展开图,若在三个正方形A、B、C内分别填入适当的实数,使得它们折成正方体后相对面上的两个数互为相反数, A 则填入三个正方形A、B、C内的三个实数依次为( ) B A 、π-,2,0 B 、2,π-,0 C 2- 0 C 、π-,0,2 D 、2,0,π-π二、填空题:(共28分)11、实数-5的绝对值是_________ , 相反数是____________. 12、写出两个大于-3且小于0的无理数 ___________13、已知某数的一个平方根是52,则它的另一个平方根是___________ 14、比较大小:-2_______-315、用科学计算器进行计算,按键顺序2 5 -6 4 = 的结果是________16、数轴上两点A 、B 分别表示实数3+1和3-1,则A 、B 两点之间的距离是________ 17、若一个数的立方根是4,则这个数是_______,它的算术平方根是_______ 18、一个数的平方根与立方根相等,则这个数是_______19、大于-π且小于3的所有整数的和是____________ 20、图中正方形ABCD 的边长是______________ 三、解答题:21、计算(每题3分,共12分)(1) 0001.0± (2)(3) 364-38- (4) 322510+22、利用计算器进行计算(精确到0.01,每题3分,共6分)(1) (2)9 - 2×(4-2)2549-6321⨯+ ABC23、(本题5分)将下列各数在数轴上表示出来,并 用“﹤”连接起来 2- , 0 ,323 , +5 ,21-24、(本题6分)将下列数的序号填写在相应数的横线上:①654.0 、② 23π 、③ 0 、④ + 34 、 ⑤78- 、 ⑥ 1625 、 ⑦ 1010010001.0(每两个1之间多一个0)、 ⑧7- ⑨14.3 有理数:____________________________________________ 无理数:____________________________________________实 数:___________________________________________25、(本题6分)一个圆柱形容器的半径为10cm,里面盛有一定高度的水。
_鲁教版七年级数学上册 第4章 实数 单元测试题
第4章 《实数》 单元测试题一、选择题:1.在下列实数中:0,,﹣3.1415,, , ,,,﹣0.010010001,0.343343334…无理数有( )A .3个 B .4个 C .5个 D .6个2.(﹣2)2的平方根是( ) A .2 B .﹣2 C .±2 D .3.=( ) A .2 B .3 C .4 D .5 4.的平方根是( )A .﹣3 B .±3 C .±9 D .﹣95.下列说法正确的是( ) A .是无理数 B .的平方根是±4 C .0的相反数是0 D .﹣0.5的倒数是26.实数21-的相反数是( ) A .﹣1﹣ B . C .1﹣ D .7.下列关于实数a 说法正确的是( ) A .a 的相反数是﹣a B .a 的倒数是﹣a C .a 的绝对值是±a D .a 的平方是正数8.下列等式中,正确的是( )A .93164±=B .93164=C .93168±=±D .93164=± 9.若27a ab m +=+,29b ab m +=-.则a b +的值为( )A .4±B .4C .2±D .210.设面积为7的正方形边长为m ,下列关于m 的四种说法:①m 是无理数;②m 可用数轴上的一个点来表示;③3<m <4;④m 是49的算术平方根,其中正确的个数为( )A .1 B .2 C .3 D .411.在数组1,2,3,…,2021中,有理数的个数是( )A .43B .44C .45D .4612.如图,矩形内有两个相邻的正方形,面积分别是x 2(x >0)和4,那么阴影部分的面积为( )A .2x +4B .2x ﹣4C .x 2﹣4D .2x﹣2二.填空题:13.实数﹣27的立方根是.14.计算的结果是.15.在数轴上,与表示的点距离最近的整数点所表示的数是__________. 16.的算术平方根是.364_____.17. 的平方根为18.若则的平方根是+=+x x22,25_____.三.解答题:19.计算:(1);(2).20.如果一个正整数a的两个平方根是7和3﹣2x(1)求这个a、x的值;(2)求22﹣3a的立方根.21.已知2a+3的立方根是3,a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值.(2)求a﹣4b+3c的平方根.22.先计算下列各式:=1,=2,=,=,=.(1)通过观察并归纳,请写出:=.(2)计算:.23.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)实数m的值是;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.。
鲁教版七年级数学上册《第四章实数》单元检测卷(附带答案)
鲁教版七年级数学上册《第四章实数》单元检测卷(附带答案)一、单选题(本大题共12小题,每小题3分,共36分) 1.在-2,0,-2,1,-1这五个数中,最大的数和最小的数的和是( ) A .0B .-2C .-2D .-1 2.已知12.34 3.512123.411.108==,,则123400= ( )A .35.12B .351.2C .111.08D .1110.83.如图,下列各数中,数轴上点A 可能表示的是( )A .8的立方根B .|1﹣22|C .5的算术平方根D .18﹣24.若25.36=5.036,253.6=15.906,则253600=( )A .50.36B .503.6C .159.06D .1.5906 5.下列数中:﹣9,3.4,﹣223,0.3333…,0,3.1415926,9.181181118…(每两个8之间多一个1)无理数的有( )A .0个B .1个C .2个D .3个6.在6与23、1.8、π4这4个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个7.下列说法,其中错误的有( )①2(9)-的平方根是±9;①3是3的算术平方根;①8-的立方根为-2;①42=± A .1个B .2个C .3个D .4个 8.要使()3333k k -=-,k 的取值范围是( )A .k≤3B .k≥3C .0≤k≤3D .一切实数27,0.2,1.010010001…增加一个0)中,其中无理数有()A.5个B.4个C.3个D.2个10.按如图所示的程序进行计算,若输入x的值为6,则输出y的值为()数的个数是()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分)13.阅读材料:设a→,=(x1,y1),b→,=(x2,y2),如果a→,①b→,,则x1·y2=x2·y1.根据该2x的平方根是.定义一种新运算:如果.我们把a cb d称为二阶行列式,且)计算:26=20.观察规律并填空.(1)21133(1)2224-=⨯= (2)221113242(1)(1)2322333--=⨯⨯⨯= (3)2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯ 2222211111(1)(1)(1)(1)(1)2345n -----= (用含n 的代数式表示,n 是正整数,且 n ≥ 2)三、解答题(本大题共5小题,每小题8分,共40分) 21.已知:2x的平方根为2±,27x y ++的立方根为4,求:x y -的值.22.已知a 是77-的整数部分,b 是7的小数部分,求()27a b -的平方根.23.观察下列等式:第1个等式:311414-=⨯; 第2个等式:1312727-=⨯; 第3个等式:131310310-=⨯; 第4个等式:131413413-=⨯; …根据你观察到的规律,解决下列问题:(1)请写出第5个等式:_________;(2)请写出第n 个等式________(用含n 的等式表示),并证明.参考答案:20.12n n+ 21.-3922.4±23.(1)131516516-=⨯ (2)()1313+131n n n n -=⨯+24.-2825.(1)79.(2)11(3)m 的最小值是64,m 的最大值是80。
七年级数学实数测试题及答案
七年级数学实数测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. -3B. √2C. πD. i(虚数单位)2. 实数a和b满足a < b,那么a + 1与b + 1的大小关系是:A. a + 1 < b + 1B. a + 1 > b + 1C. a + 1 = b + 1D. 不能确定3. 以下哪个表达式表示的是实数的乘方?A. √9B. 3^2C. 1/2^3D. -2^34. 实数x满足|x| < 1,那么x的取值范围是:A. x > 1B. x < -1C. -1 < x < 1D. x ≥ 1 或x ≤ -15. 两个实数相除,如果除数为负数,商的符号与:A. 被除数相同B. 被除数相反C. 除数相同D. 除数相反二、填空题(每题2分,共10分)6. 若a = -2,则a的相反数是______。
7. 一个数的绝对值是5,这个数可以是______。
8. 一个数的平方根是3,那么这个数的立方根是______。
9. 一个数的立方是-8,这个数是______。
10. 若√x = 3,则x = ______。
三、解答题(每题10分,共40分)11. 计算下列各题,并简化结果:(1) √25(2) (-3)^2(3) √(-4)^212. 已知a = -1,b = 3,求下列表达式的值:(1) a + b(2) a - b(3) a * b13. 根据题目条件,求解以下不等式:(1) |x - 2| < 3(2) |x + 1| ≥ 414. 证明:如果a > 0,b < 0,且|a| > |b|,则a + b > 0。
四、应用题(每题15分,共30分)15. 一个数的平方根是4,求这个数,并计算它的立方根。
16. 某工厂在生产过程中,发现一个零件的长度在-2到2厘米之间波动。
如果这个零件的长度超过1.5厘米,就会影响机器的正常运转。
第3章 实数 浙教版数学七年级上册单元综合测试卷(含答案)
第3 章综合测试卷 实数班级学号得分姓名一、选择题(本大题有10 小题,每小题3分,共30分)1.数轴上的点表示的一定是()A. 整数B. 有理数C. 无理数D. 实数2.下列各式正确的是()A .16=±4B .3―27=―3C .―9=―3D .2519=5133.下列说法正确的是()A. 无限小数都是无理数 B .―1125没有立方根C. 正数的两个平方根互为相反数D. -(-13)没有平方根4. 已知一个数的立方根是―12,那么这个数是()A .―32B 14 c 18D .―185.81的平方根是()A. ±3B. 3C. ±9D. 96.如图,数轴上点P 表示的数可能是()A 7B .―7C. —3.2 D .―107.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有()A. 0个B. 1个C. 2个D. 3个8.|6―3|+|2―6|的值为()A. 5 B .5―26 C. 1 D .26―19. 若a 2=9,3b =―2,则a+b=()A. -5B. —11C. -5或-11D. ±5或±1110. 如图,面积为5 的正方形 ABCD 的顶点A 在数轴上,且表示的数为1,若 AD=AE ,则数轴上点 E 所表示的数为()A .―5B .1―5C .―1―52D .32―5二、填空题(本大题有6 小题,每小题4分,共24分)11.1―6的相反数是,绝对值是.12. x +3=2,那么(x +3)²=.13. 已知m 与n 互为相反数,c 与d 互为倒数,a 是5的整数部分,则cd+2(m +n)—a 的值是.14. 如图,数轴上的点A 和点B 之间的整数点表示的数分别为.15. 如图所示,化简|a ―3|―|b +3|的结果是.16. 有四个实数分别是||―3|,π2,9,4π,请你计算其中有理数的和与无理数的积的差,其计算结果是.三、解答题(本大题有8小题,共66分)17.(6分)计算.(1)2+32―52;(2)|2―3|+2(3―1);(3)16―9+3―27.18. (6分)把下列各数分别填在相应的括号内.―12,0,0.16,312,3,―235,π3,16,―22,―3.14.有理数:{};无理数:{};负实数:{}.19.(6分)如图,一只蚂蚁从点 A 沿数轴向右爬行2个单位长度到达点 B,再爬行到C点停止.已知点 A 表示―2,点 C 表示 2,设点 B 所表示的数为m.(1)求m的值;(2)求 BC的长.20.(8分)一段圆钢,长2分米,体积为10π立方分米,已知1立方分米钢的质量是7.8千克,那么这段圆钢横截面的半径是多少分米? 这段圆钢重多少千克(保留π)?21.(8分)已知实数a,b,c在数轴上对应点的位置如图所示,a2―|a+b|+(c―a)2+|b―c|.22. (10分)大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,所得的差2―1就是其小数部分.根据以上内容,解答下面的问题:(1)5的整数部分是,小数部分是;(2)1+2的整数部分是,小数部分是;(3)若设2+3的整数部分是x,小数部分是y,求x―3y的值.23. (10分)如图是4×4的方格图,每个小正方形的边长都为1,利用这个4×4的方格图作出面积为5的正方形,然后在数轴上表示实数5和―5.24. (12分)先填写下表,观察后再回答问题.a0.0000010.00010.011100100001000000(1)被开方数a的小数点位置移动和它的算术平方根的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a=1800,― 3.24=―1.8,你能求出a的值吗?第3 章综合测试卷实数1. D 2. B 3. C 4. D 5. A 6. B 7. C8. C 解析:原式=3―6+6―2=1.故选 C.9. C 10. B11.6—16—1 12. 16 13. -1 14. -1,0,1,15. -a-b 16. 4 17. 解:(1)原式=(1+3―5)2=―2.(2)原式=2-3+23―2=3.(3)原式:=4-3-3=-2.18.―12,0,0.16,312,16,―3.143,―235,π3,―22―12,―235,―22,―3.1419. 解:(1)m―2=―2,m=2―2. (2)BC=|2-(2-2)|=|2―2+2|=2.20. 解:设这段圆钢半径为r分米,则2πr²=10π,r²=5,r=5(分米),10π×7.8=78π(千克).21. 解:由题图,得c<b<0<a,且|a|=|b|,则a+b=0,c-a<0,b-c>0,故原式=a-0+a-c+b-c=2a+b-2c.22. 解:(1)25―2解析:∵2<5<3,:5的整数部分是2,小数部分是5―2.(2)22―1解析:∵1<2<2,∴2<1+2<3.∴1+2的整数部分是2,小数部分若1+2―2= 2―1.(3)∵1<3<2,∴3<2+3<4.∴x=3,y=2+3―3=3―1.∴x―3y=3―3(3―1)=3.23. 解:面积为5的正方形如图所示(所画图形合理即可).这个正方形的边长为5,,可用圆规截得长5的线段,找到表示5和―5的点,并画到数轴上(如图).24. 解:依次填:0.0010.01 0.1 1 10 100 1000(1)有规律,当被开方数的小数点每向左(或向右)移动2位时,算术平方根的小数点向左(或向右)移动 1 位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位后的数,即a=3240000.。
七年级数学上册《第三章-实数》练习题及答案-浙教版
七年级数学上册《第三章 实数》练习题及答案-浙教版一 、选择题1.下列各数:1.414,2,-13,0,其中是无理数的是( ) A.1.414 B. 2 C.-13D.0 2.下列各数中,无理数的个数有( )A.1个B.2个C.3个D.4个3.计算1916+42536的值为( ) A.2512 B.3512 C.4712 D.57124.当14 a 的值为最小时,a 的取值为( )A.-1B.0C.﹣14D.1 5.下列说法正确的是( )A.|-2|=-2B.0的倒数是0C.4的平方根是2D.-3的相反数是36.若a=10,则实数a 在数轴上对应的点的大致位置是( )A.点EB.点FC.点GD.点H7.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .- 2B .2- 2C .1- 2D .1+ 28.实数-7,-2,-3的大小关系是( )A.-7<-3<-2B.-3<-2<-7C.-2<-7<-3D.-3<-7<-2二 、填空题9.写出一个3到4之间的无理数 .10.化简:|3﹣2|= .11.实数a,b在数轴上的位置如图所示,则a2﹣|a﹣b|=______.12.比较大小:5﹣3 0.(填“>”、“﹦”或“<”号)13.点A在数轴上和原点相距7个单位,点B在数轴上和原点相距3个单位,且点B在点A的左边,则A,B两点之间的距离为 .14.如图,数轴上与1,2对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-2|的值是____________.三、解答题15.在数轴上画出表示下列各数的点,并用”<”连接.16.已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+(a+b)2.17.一个长方体木箱,它的底面是正方形,木箱高1.25m,体积是11.25m3,求这个木箱底面的边长.18.如图,某玩具厂要制作一批体积为100 0cm3的长方体包装盒,其高为10cm. 按设计需要,底面应做成正方形. 求底面边长应是多少?19.例:试比较4与17的大小.解:∵42=16,(17)2=17又∵16<17∴4<17.请你参照上面的例子比较下列各数的大小.(1)8与65;(2)1.8与3;(3)-5与-24.20.阅读理解∵4<5<9,即2<5<3.∴1<5﹣1<2∴5﹣1的整数部分为1.∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣3的整数部分,b是17﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.参考答案一、选择题1.【答案】B2.【答案】C3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】B8.【答案】D二、填空题9.【答案】π.10.【答案】2﹣ 3.11.【答案】﹣b12.【答案】<.13.【答案】3±7.14.【答案】22-2三、解答题15.【答案】解:数轴略-2<-3<0<0.5<2< 516.【答案】解:由图知b<a<0,∴a-b>0,a+b<0.故|a-b|=a-b,(a+b)2=-(a+b)=-a-b∴原式=a-b-a-b=-2b.17.【答案】解:11.25÷1.25=3m.18.【答案】解:由题意可知:底面面积为:1000÷10=100 cm2所以底面边长:10 cm19.【答案】解:(1)8<65 (2)1.8> 3 (3)-5<-2420.【答案】解:∵<<∴4<17<5∴1<17﹣3<2∴a=1,b=17﹣4∴(﹣a)3+(b+4)2=(﹣1)3+(17﹣4+4)2=﹣1+17=16∴(﹣a)3+(b+4)2的平方根是:±4.。
七年级上册实数数学试卷
考试时间:90分钟满分:100分一、选择题(每题4分,共40分)1. 下列实数中,不属于有理数的是()A. 2.5B. -3C. √4D. π2. 下列数中,有最小正整数解的是()A. -1/3B. 1/2C. 2/3D. 1/43. 如果 |a| = 5,那么 a 的值为()A. ±5B. 5C. -5D. ±104. 下列各数中,不是实数的是()A. -√16B. 3/2C. √25D. 05. 下列各数中,不是无理数的是()B. √9C. πD. 0.1010010001...6. 下列各数中,不是正数的是()A. -2B. 0C. 3D. -√47. 下列各数中,不是负数的是()A. -1B. 0C. 2D. -√98. 如果 a 和 b 是相反数,那么 |a| + |b| 的值为()A. 0B. aC. bD. a + b9. 下列各数中,不是有理数的是()A. 0.333...B. 2/3C. √2510. 下列各数中,不是无理数的是()A. √2B. √4C. πD. 0.1010010001...二、填空题(每题5分,共50分)11. -|3| 的值是 _______。
12. 如果 |a| = 4,那么 a 的值为 _______。
13. 下列各数中,绝对值最大的是 _______。
14. 下列各数中,无理数的是 _______。
15. 下列各数中,有理数的是 _______。
16. 下列各数中,正数的是 _______。
17. 下列各数中,负数的是 _______。
18. 下列各数中,零的是 _______。
19. 下列各数中,不是实数的是 _______。
20. 下列各数中,不是无理数的是 _______。
三、解答题(每题10分,共30分)21. 判断下列说法是否正确,并说明理由。
(1)实数包括有理数和无理数。
(2)有理数可以表示成分数的形式。
(3)无理数可以表示成分数的形式。
七年级数学上册实数经典大题例题
(每日一练)七年级数学上册实数经典大题例题单选题1、下列计算正确的是()A.√0.09=±0.3B.√414=2√12C.√−273=−3D.−√|−25|=5答案:C解析:根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.A、原式=0.3,故A不符合题意.B、原式=√174=√172,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.小提示:本题考查了平方根的性质、立方根的性质以及绝对值的性质,正确进行平方根与立方根的计算是关键,要注意平方根与算术平方根的区别.2、下列四个实数中,是无理数的为()A.0B.√3C.﹣1D.13答案:B解析:因为0,﹣1,1是有限小数或无限循环小数,√3是无限不循环小数,所以√3是无理3数,故选B.3、下列实数中,最大的数是()A.﹣1B.0C.√3D.13答案:C解析:根据实数的大小比较,负数总是小于零,正数总是大于零,同负绝对值大的反而小,同为正可以进行估算比较大小.,解:∵√3≈1.732>13∴﹣1<0<1<√3,3∴最大的数是√3.故选:C.本题主要考查实数的大小比较,可以根据负数总是小于零,正数总是大于零,同负绝对值大的反而小进行判断.填空题4、若一个数的立方根等于这个数的算术平方根,则这个数是_____.答案:0或1解析:设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a.解:设这个数为a,由题意知,3=√a(a≥0),√a解得:a=1或0,所以答案是:1或0小提示:本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a≥0.5、规定运算:(a*b)=|a-b|,其中a、b为实数,则(√7*3)+√7=________.解析:根据题意得(√7*3)+√7=|√7-3|+√7=3-√7+√7=3,所以答案是:3.解答题6、阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2-1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知:10+√3=x+y,其中x是整数,且0<y<1,求x-y的相反数.答案:√3-12解析:本题主要考查了无理数的公式能力,解题关键是估算无理数的整数部分和小数部分. 根据题意的方法,估计√3的大小,易得10+√3的范围,进而可得xy的值;再由相反数的求法,易得答案.解:∵1<√3<2,∴1+10<10+√3<2+10,∴11<10+√3<12,∴x=11,y=10+√3-11=√3-1,x-y=11-(√3-1)=12-√3,∴x-y的相反数√3-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》测试题
班级: 姓名 学号 得分
一、 选择题:(15分)
(1)下列各数中,没有平方根是( )
A .0
B .2)3(-
C .23-
D .)3(--
(2)下列说法错误的是( )
A .3-是9的平方根
B .5的平方等于5
C .1-的平方根是1±
D .9的算术平方根是3
(3)求3001045.0的值为( )
A .2186.0
B .1015.0
C .4710.0
D .5253.0
(4)下列语句中正确的是( )
A .带根号的数都是无理数
B .不带根号的数一定是有理数
C .无理数一定是无限不循环小数
D .无限小数是无理数
(5)38-,3,7
11,6.0&,π,3.10这六个数,无理数有( )个。
A .2个 B .3个 C .4个 D .6个
二、填空题:(15分)
(1)16的平方根是 。
(2)平方根是2
3±的数是_____________。
(3)数轴上表示38-的点与原点距离是_______.。
(4)13-x 有意义,则x 的取值范围是________.。
(5)=-52________.。
三、解答题(70分)
1、比较大小(10分):
3
55-___ _ __112-. 75.0____ ___ 75.0; 3-__ ____ 14.3- 152____ _ ___ 63.
2、计算题(20分)
(1)073.3533-+(精确到01.0)
(2)263--π(精确到01.0)
(3)()()
1726-- (保留三位有效数字)。
(4)36.009.0-+16
71- 3、化简(5分)233221-+-+-
4、求x 的值(10分)
(1)0492=-x ; (2)0142=-x ;
5、若021=++++b a a ,求101100b a +的值。
(5分)
6.已知球的半径为r cm ,球的体积3850cm ,根据球的体积公式23
4r V π=球,求r 的值。
(精确到01.0) (5分)
7.有边长为cm 5的正方形和长为cm 8,宽为cm 18的矩形,要作一个面积为这两个图形的面积之和的正方形,求边长应为多少cm ?(5分)
8.已知424,32=-=+b a b a ,求b a -的值。
(5分)
9、若一个正数的平方根分别为3a+1和4-2a ,则这个正数是多少?(5分)。