高考数学专题复习排列组合二项式定理概率与统计教案汇编
高考数学二轮复习 专题七《排列、组合、二项式定理》教案
2013东北师大附中高考第二轮复习:专题七《排列、组合、二项式定理》【考点梳理】一、考试内容1.分类计数原理与分步计数原理。
2.排列、排列数公式。
3.组合、组合数公式。
4.组合数的两个性质。
5.二项式定理,二项式展开的性质。
二、考试要求1.掌握分类计数原理及分步计数原理,并能用这两个原理分析和解决一些简单的问题。
2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它解决一些简单的问题。
3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。
三、考点简析1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类。
(2)分步计数原理中的分步。
正确地分类与分步是学好这一章的关键。
3.排列(1)排列定义,排列数(2)排列数公式:系==n·(n-1)…(n-m+1)(3)全排列列: =n!(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=7204.组合(1)组合的定义,排列与组合的区别(2)组合数公式:C n m==(3)组合数的性质①C n m=C n n-m②③rC n r=n·C n-1r-1④C n0+C n1+…+C n n=2n⑤C n0-C n1+…+(-1)n C n n=0即 C n0+C n2+C n4+…=C n1+C n3+…=2n-15.二项式定理(1)二项式展开公式(a+b)n=C n0a n+C n1a n-1b+…+C n k a n-k b k+…+C n n b n(2)通项公式:二项式展开式中第k+1项的通项公式是T k+1=C n k a n-k b k6.二项式的应用(1)求某些多项式系数的和。
(2)证明一些简单的组合恒等式。
(3)证明整除性。
①求数的末位;②数的整除性及求系数;③简单多项式的整除问题。
(4)近似计算。
当|x|充分小时,我们常用下列公式估计近似值:①(1+x)n≈1+nx②(1+x)n≈1+nx+x2(5)证明不等式。
高三数学应知应会讲义八:排列组合与二项式定理复习教案
排列组合和二项式定理1.会根据两个原理解决有关分配决策的问题〔要正确区分分类和分步〕(1) 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有〔〕A. 15种B. 8种C. 53种D. 35种(2) 四名医生分配到三所医院工作,每所医院至少一名,那么不同的分配方案有_______种.(3) 有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有〔〕A. 1260种B. 2025种C. 2520种D. 5040种2.会用捆绑法、插空法处理元素相邻或不相邻问题〔1〕不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,那么不同的排法种数共有〔〕A.12种 B.20种 C.24种 D.48种〔2〕5人站成一排,其中A不在左端也不和B相邻的排法种数为〔〕A.48 B.54 C.60 D.66〔3〕用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不.相邻,这样的八位数共有个.〔用数字作答〕3.会求某些元素按指定顺序排列的问题〔1〕七个人排成一行,那么甲在乙左边〔不一定相邻〕的不同排法数有_________种.〔2〕某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后进行,又工程丁必须在丙完成后立即进行,那么安排这6项工程的不同的排法种数是__________.〔用数字作答〕〔3〕今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有_______种不同的方法〔用数字作答〕.4.会解与平均分组和非平均分组有关的问题〔1〕从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,那么不同的取法共有〔〕A. 140种B. 84种C. 70种D. 35种〔2〕将9个人〔含甲、乙〕平均分成三组,甲、乙分在同一组,那么不同分组方法的种数为〔〕A .70B .140C .280D .8405.会解其它有限制条件的排列组合问题 (要注意使用最常用、最本原的方法------列举法)〔1〕在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( ) A. 36个B. 24个C. 18个D. 6个〔2〕电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,那么共有 种不同的播放方式〔结果用数值表示〕.〔3〕以正方体的顶点为顶点,能作出的三棱锥的个数是〔 〕A .34CB .1387C C C .1387C C -6 D .4812C -〔4〕同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张贺年卡不同的分配方式有〔 〕A. 6种B. 9种C. 11种D. 23种〔5〕设有编号为1、2、3、4、5的五个球和编号为1、2、3、4、5的五个盒子,现将这五个球投入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,那么这样投放的方法总数为 ( )A. 20B. 30C. 60D. 120〔6〕用六种不同颜色,给图中A 、B 、C 、D 、四块区域涂色,允许同一种颜色涂不同区域,但相邻区域不能涂同一种颜色,共有________种不同的涂法.6.会将所给的二项式展开或合并(1)计算:)1(5)1(10)1(10)1(5)1(2345-+-+-+-+-x x x x x =___________.(2)设*∈N n ,那么=++++-12321666n n n n n n C C C C _____________.7.会求二项式的展开式的指定项〔要注意区分“第n 项〞、“第n 项的系数〞、“第n 项的二项式系数〞等概念的不同;会灵活运用二项式系数的性质解题〕(1)假设2)nx8项,那么展开式中含1x的项是〔 〕 A .第8项 B .第9项 C .第10项 D .第11项(2)假设()521x -展开式中的第2项小于第1项,且第2项不小于第3项,那么实数x 的取值范围是〔 〕A. x >101-B. 101-<x ≤0C. 41-≤x <101-D. 41-≤x 0≤(3) 设k =1,2,3,4,5, 那么(x +2)5的展开式中kx 的系数不可能是( C)A . 10B . 40C . 50D . 80(4)在〔1+x 〕+〔1+x 〕2+……+〔1+x 〕6的展开式中,x 2项的系数是 .〔用数字作答〕.(5)5(cos 1)x θ+的展开式中2x 的系数与45()4x +的展开式中3x 的系数相等,那么cos θ=_________.(6)843)1()2(xx x x ++-的展开式中整理后的常数项等于 .(7)10)31(xx -的展开式中含x 的正整数指数幂的项数是 A. 0 B. 2 C. 4 D. 68.会求展开式的系数和,能正确使用赋值法解题 (1)如果3nx ⎛⎫- ⎝的展开式中各项系数之和为128,那么展开式中31x 的系数是〔 〕 A. 7 B. 7- C. 21 D. 21-(2)在〔x〕2006的二项展开式中,含x 的奇次幂的项之和为S ,当x时,S 等于〔 〕A.2B.-23008C.23009D.-23009(3) 假设1021001210(2)x a a x a x a x -=++++,那么那么① 01210a a a a +++⋅⋅⋅+= ______________; ② 1210a a a ++⋅⋅⋅+=__________________; ③ 0123910a a a a a a -+-+-+=_____________;④ 8a =___________.。
高考排列组合二项式定理和概率综合运用精讲
排列组合二项式定理和概率一、知识整合二、考试要求:1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.5.了解随机事件的发生存在着规律性和随机事件概率的意义.6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.8.会计算事件在n 次独立重复试验中恰好发生k 次的概率.Ⅰ、随机事件的概率例1 某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成.(1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少?(2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字进行试验,按对自己的密码的概率是多少?解 (1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2,…,9这10种,正确的结果有1种,其概率为6101,随意按下6个数字相当于随意按下610个,随意按下6个数字相当于随意按下610个密码之一,其概率是6101. (2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提下,随意按下一个数字,等可能性的结果为0,1,2,…,9这10种,正确的结果有1种,其概率为101. 例2 一个口袋内有m 个白球和n 个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示)解 设事件I 是“从m 个白球和n 个黑球中任选3个球”,要对应集合I 1,事件A 是“从m 个白球中任选2个球,从n 个黑球中任选一个球”,本题是等可能性事件问题,且Card(I 1)= 123)(,n m n m C C A Card C ⋅=+,于是P(A)=3121)()(nm n m C C C I Card A Card +⋅=. Ⅱ、互斥事件有一个发生的概率例3在20件产品中有15件正品,5件次品,从中任取3件,求:(1)恰有1件次品的概率;(2)至少有1件次品的概率.解 (1)从20件产品中任取3件的取法有320C ,其中恰有1件次品的取法为15215C C 。
计数原理,排列、组合,二项式定理复习教案
国规教材
教育学生数据真实性与诚信、社会责任与公共利益、团队协作
教学流程图
4知识点检测:
(1)从甲、乙、丙3名同学中选出两名同学,一名担任班长,一名担任副班长,有多少种不同的选法?
(2)从甲、乙、丙3名同学中选出2名分别参加上午和下午的活动,有多少种不同的方法?
1.组织学生在了解的基础上理解排列的概念,掌握排列数公
1.组合的概念
从n个不同的元素中,任取m(m≤n)个元素组成一组,称为从n个不同元素中取出m个元素的一个组合.
排列与组合的区别:排列是从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,与m个元素的排列顺序有关;组合是从n个不同元素中任取m(m≤n)个元素组成一组,与m个元素的排列顺序无关.
2.组合数
从n个不同的元素中,任取m(m≤n)个元素的所有组合的个数,称为从n个不同元素中取出m个元素的组合数,
用符号表示.
5、知识点检测:
某天上午共4节课,排语文、数学、体育、计算机课,其中体育课不排在第一节课,那么这天上午课表的不同排法种数是()
1.引导并组织学生根据信息进行讨论.区别排列与组合。
国主义情怀.
1.二项式定理的内容
设 a.,b是任意实数,n是任意给定的正整数,则
2.二项展开式的通项公式
3.二项式系数与二项展开式中某项的系数
3.知识点检测:
组织学生运用二项式定理的相关内容解决实际问题.。
高考数学二轮复习 概率 1排列组合及二项式定理学案 理
高考数学二轮复习概率 1排列组合及二项式定理学案理排列组合及二项式定理【学习目标】1、分类加法计数原理、分步乘法计数原理理解分类加法计数原理和分步乘法计数原理。
会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题。
2、排列与组合理解排列、组合的概念。
3、二项式定理(1)能用计数原理证明二项式定理。
(2)会用二项式定理解决与二项式展开式有关的简单问题。
【学法指导】1、先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2、限时30分钟独立、规范完成探究部分,并总结规律方法;3、找出自己的疑惑和需要讨论的问题准备课上讨论质疑;【高考方向】1、能利用计数原理推导排列数、组合数公式,并能利用公式解决一些简单的实际问题。
2、会用二项式定理解决与二项式展开式有关的简单问题。
【课前预习】XXXXX:一、知识网络构建1、如何利用列数、组合数解题?二、高考真题再现(xx安徽)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品的同学人数为()或或或或三、基本概念检测1、12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A、B、C、D、2、若的展开式中的系数为7,则实数_________。
3、的展开式的常数项是()4、设,则= 、【课中研讨】例1、设集合则满足且的集合的个数为()(A)57 (B)56 (C)49 (D)8例2、考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(A)(B)(C)(D)例3、展开式中,的系数等于、例4、的二项展开式中,的系数与的系数之差为________、例5、在∠AOB的OA边上取m个点,在OB边上取n个点(均除O 点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )【课后巩固】1、用a代表红球,b代表蓝球,c代表黑球、由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来、依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A、(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B、(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C、(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D、(1+a5)(1+b)5(1+c+c2+c3+c4+c5)2、由0,1,2,3,4,5这六个数字组成的不重复的六位数中,不出现“135”与“24”的六位数的个数为()A、582B、504C、490D、4863、某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )A、36种B、42种C、48种D、54种4、用数字0,1,2,3,4,5,6组成没有重复的四位数,其中个位、位和百位上的数字之和为偶数的四位数共有____________个(用数字作答)、5、如图,一环形花坛分成A、B、C、D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A、96B、84C、60D、486、如图,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A、288种B、264种C、240种D、168种【反思与疑惑】XXXXX:请同学们将其集中在典型题集中。
高考数学二轮复习排列、组合、二项式定理教学案
2016高考数学二轮复习精品资料专题10 排列、组合、二项式定理教学案(学生版)【2016考纲解读】1.理解并运用分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.能用计数原理证明二项式定理; 会用 二项式定理解决与二项展开式有关的简单问题.【知识网络构建】【重点知识整合】 1.两个基本原理 (1)分类加法计数原理; (2)分类乘法计数原理; 2.排列 (1)定义;(2)排列数公式:A mn =n ! n -m !(n ,m ∈N,m ≤n );3.组合(1)定义;(2)组合数公式;(3)组合数的性质:C m n =C n -m n (m ,n ∈N,且m ≤n );C m n +1=C mn +C m -1n (m ,n ∈N,且m ≤n ).4.二项式定理(a +b )n 展开式共有n +1项,其中r +1项T r +1=C r n a n -r b r.5.二项式系数的性质二项式系数是指C 0n ,C 1n ,…,C nn 这n +1个组合数. 二项式系数具有如下几个性质: (1)对称性、等距性、单调性、最值性; (2)C r r +C r r +1+C r r +2+…+C r n =C r +1n +1; C 0n +C 1n +C 2n +…+C r n +…+C n n =2n; C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1;C1n+2C2n+3C3n+…+n C n n=n·2n-1等.【高频考点突破】考点一两个计数原理的应用分类加法计数原理和分步乘法计数原理的区别:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.例1、给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有________种,至少有两个黑色正方形相邻的着色方案共有________种(结果用数值表示).【变式探究】正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有 ( ) A.20 B.15C.12 D.10【方法技巧】1.在应用两个原理解决问题时,一般是先分类再分步.每一步当中又可能用到分类计数原理.2.对于较复杂的两个原理综合使用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.【变式探究】在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为________.【方法技巧】排列与组合综合应用问题的常见解法(1)特殊元素(特殊位置)优先安排法;(2)合理分类与准确分步法;(3)排列与组合混合问题先选后排法;(4)相邻问题捆绑法;(5)不相邻问题插空法;(6)定序问题缩倍法;(7)多排问题一排法;(8)“小集团”问题先整体后局部法;(9)构造模型法;(10)正难则反,等价转化法.考点三二项式定理1.二项式定理:(a+b)n=C0n a n b0+C1n a n-1b+…+C r n a n-r b r+…+C n n b n.2.通项与二项式系数:T r+1=C r n a n-r b r,其中C r n(r=0,1,2,…,n)叫做二项式系数.3.各二项式系数之和:(1)C0n+C1n+C2n+…+C n n=2n.(2)C1n+C3n+…=C0n+C2n+…=2n-1.【变式探究】设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=__________.【方法技巧】在应用通项公式时,要注意以下几点(1)它表示二项展开式中的任意项,只要n与r确定,该项就随之确定.(2)T r+1是展开式中的第r+1项而不是第r项.(3)二项式系数与项的系数不同,项的系数除包含二项式系数外,还与a、b中的系数有关.【难点探究】难点一计数原理例1、某人设计一项单人游戏,规则如下:先将一棋子放在如图18-1所示正方形ABCD(边长为3个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i (i =1,2,…,6),则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )A .22种B .24种C .25种D .36种难点三 二项式定理例3、 若⎝⎛⎭⎪⎫3x -1x n的展开式中各项系数之和为64,则展开式的常数项为________.【历届高考真题】 【2012年高考试题】1.【2012高考真题重庆理4】821⎪⎪⎭⎫⎝⎛+x x 的展开式中常数项为A.1635B.835C.435D.1052.【2012高考真题浙江理6】若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种B.63种C.65种D.66种3.【2012高考真题新课标理2】将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种6.【2012高考真题陕西理8】两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A. 10种B.15种C. 20种D. 30种7.【2012高考真题山东理11】现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为(A )232 (B)252 (C)472 (D)4848.【2012高考真题辽宁理5】一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3! (B) 3×(3!)3(C)(3!)4(D) 9!9.【2012高考真题湖北理5】设a ∈Z ,且013a ≤<,若201251a +能被13整除,则a = A .0 B .1 C .11D .1210.【2012高考真题北京理6】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 611.【2012高考真题安徽理7】2521(2)(1)x x +-的展开式的常数项是( ) ()A 3- ()B 2- ()C 2 ()D 3[14.【2012高考真题全国卷理11】将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种15【2012高考真题重庆理15】某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).16.【2012高考真题浙江理14】若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++ , 其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.17.【2012高考真题陕西理12】5()a x +展开式中2x 的系数为10, 则实数a 的值为 .18.【2012高考真题上海理5】在6)2(xx -的二项展开式中,常数项等于 。
排列、组合、二项式定理、概率高三数学复习教学案
高三数学复习教学案第六章排列、组合与概率第1课时分类计数原理、分步计数原理考纲要求:掌握分类计数原理与分步计数原理,并能运用这两个原理分析和解决一些简单的问题。
一、要点知识归纳:1、分类计数原理:做一件事,完成它可以有n类办法,在第一类办法中有m 1中不同的方法,在第二类办法中有m2中不同的方法,……在第n类办法中有mn中不同的方法,那么完成这件事共有N=_____________________________中不同的方法。
2、分步计数原理:做一件事,完成它需要分n个步骤,做第一步有m1中不同的方法,做第二步有m2中不同的方法,……做第n步有mn中不同的方法,那么完成这件事共有N=_____________________________中不同的方法。
二、基本技能训练1、将(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)展开后的项数有__________项。
2、书架的上层放有4本不同的数学书,中层放有6本不同的外语书,下层放有5本不同的语文书,从中任取一本书的不同取法的种数是__________;从书架上任取两本不同学科的书,共有____________种不同的取法。
3、如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量。
现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为__________。
4、3封信投入4个不同的信箱,共有________种不同的投法;4封信投入3个不同的信箱,共有__________种不同的投法。
设集合A中有5个不同的元素,集合B中有2个不同的元素,建立5、6、某城市的电话号码,由六位数改为七位数(首位数字均不为0),则该城市可增加_____________部电话。
三、例题分析例1、某校学生会由高一年级5人,高二年级6人,高三年级4人组成。
(1)选其中1人为学生会主席,有多少种不同选择?(2)若每年级选1人为校学生会常委,有多少种不同的选择?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选择?例2、由数字0,1,2,3,4可以组成多少个三位数?(1)各位上的数字允许重复?(2)各位上的数字不允许重复?例3、同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则4张贺年卡不同的分配方法有多少种?四、作业1、从1到200的自然数中,各个数位上都不含8的自然数有多少个?2、设x,y∈N*,直角坐标平面内的点P的坐标为(x,y)1)若x+y≤6,这样的P点有多少个?2)若1≤x≤4,1≤y≤5,这样的P点又有多少个?第2课时排列、组合的基本问题考纲要求:1、理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质;2、能解决一些简单的问题。
2019-2020年高考数学复习教学案:排列组合及二项式定理
2019-2020年高考数学复习教学案:排列组合及二项式定理【三维目标】一、知识与技能1. 理解两个计数原理,并会应用解题;2. 理解排列组合(数)的概念产生过程,辨析常见排列组合模型的特点并掌握常用解法;3. 掌握二项式定理的内容和灵活运用解题.二、过程与方法1. 学生小组合作学习,在总结归纳知识的过程中,提高学生“建模”和解决实际问题的能力,渗透类比、化归、分类讨论等数学思想;2. 培养学生学习数学的兴趣和合作探究学习的意识,激励学生互相交流分享学习成果.三、情感态度与价值观1.发展学生的抽象能力和逻辑思维能力,培养学生分析问题和解决实际问题的能力;2.通过小组合作学习,分享学习成果的学习形式,锻炼学生组织表达能力,引导学生探究学习数学的有效方式,体验合作学习的乐趣,培养集体责任感与荣誉感.【教学重点】重点是辨析常见排列组合模型的特点并掌握常用解法.【教学难点】难点是辨析常见排列组合模型的特点并掌握常用解法.【教学过程】一、复习回顾:主干知识梳理1.分类计数原理和分步计数原理运用两个计数原理解题的关键在于正确区分“分类”与“分步”.分类就是能“一步到位”——任何一类中任何一种方法都能完成这件事情,而分步则只能“局部到位”——任何一步中任何一种方法都不能完成这件事情,只能完成事件的某一部分,只有当各步全部完成时,这件事情才完成.即:类类独立,步步关联2.排列和组合 (1)排列与组合的定义(2)排列数与组合数公式推导过程及关系组合数的性质: , (3)排列组合应用题的解题策略:①特殊元素、特殊位置优先安排的策略; ②合理分类与准确分步的策略; ③正难则反,等价转化的策略;④相邻问题捆绑法,不相邻问题插空法的策略; ⑤元素定序,先排后除的策略; ⑥排列、组合混合题先选后排策略; ⑦复杂问题构造模型策略. 3.二项式定理 (1)定理:(a +b )n =C 0n a n b 0+C 1n a n -1b +C 2n a n -2b 2+…+C r n an -r b r +…+C n n a 0b n(r =0,1,2,…,n ).(2)二项展开式的通项T r +1=C r n a n -r b r,r =0,1,2,…,n ,其中C r n 叫做二项式系数.()()()()!! 121m n n m n n n n A m n -=+---= .,,*n m N m n ≤∈并且()()()()!!!!121m n m n m m n n n n C mn -=+---= mn nm n C C -=m n m n m n C C C 11+-=+(3)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,…,C k n =C n -kn ,….②最大值:当n 为偶数时,中间的一项的二项式系数 2nnC 取得最大值;当n为奇数时,中间的两项的二项式系数相等,且同时取得最大值2121-+=n nn nCC.③各二项式系数的和a .C 0n +C 1n +C 2n +…+C k n +…+C n n =2n;b .C 0n +C 2n +…+C 2r n +…=C 1n +C 3n +…+C 2r +1n +…=12·2n =2n -1.(4)解决二项式定理问题的注意事项①运用二项式定理一定要牢记通项T k +1=C k n an -k b k ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的.另外,二项式系数与项的系数是两个不同概念,前者指C r n ,后者指字母外的部分.②求二项式中项的系数和,用“赋值法”解决,通常令字母变量的值为1、-1、0等.③证明整除问题一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”、“消去法”结合整除的有关知识解决. 二.小组合作,分享交流 题型一:两个计数原理例1、现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画。
高考数学专题复习排列组合二项式定理概率与统计教案
高考数学专题复习排列组合二项式定理概率与统计教案供老师和学子们享用排列、组合、二项式定理、概率与统计【考点审视】1.突出运算能力的考查。
高考中无论是排列、组合、二项式定理和概率题目,均是用数值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。
2.有关排列、组合的综合应用问题。
这种问题重点考查逻辑思维能力,它一般有一至两个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。
3.有关二项式定理的通项式和二项式系数性质的问题。
这种问题重点考查运算能力,特别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。
4.有关概率的实际应用问题。
这种问题既考察逻辑思维能力,又考查运算能力;它要求对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。
5.有关统计的实际应用问题。
这种问题主要考查对一些基本概念、基本方法的理解和掌握,它一般以一道选择题或填空题的形式出现,属于基础题。
【疑难点拨】 1.知识体系:2.知识重点:(1)分类计数原理与分步计数原理。
它是本章知识的灵魂和核心,贯穿于本章的始终。
(2)排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。
排列数公式的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。
(3)二项式定理及其推导过程、二项展开式系数的性质及其推导过程。
二项式定理的推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法――赋值法(令x 1)的应用。
(4)等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。
精品教案:排列组合、二项式定理、概率、统计
条件概率:在事件B已 经发生的情况下,计算 事件A发生的概率,即 P(A∣B)=P(A∩B)/P(B)
04
统计
统计的定义
统计是对数据进 行收集、整理、 分析和解释的科 学
统计方法常用于 研究数据的分布 规律和特征
统计在各个领域 都有广泛应用, 如经济学、社会 学、生物学等
统计的主要目的 是为决策提供数 据支持,帮助人 们做出科学合理 的决策
YOUR LOGO
THANK YOU
汇报人:XX
排列组合在金融领域的应用: 投资组合优化、风险评估、
决策理论等。
排列组合在游戏设计中的应 用:游戏策略、AI算法、 概率计算等。
排列组合的解题技巧
理解概念:排 列组合的概念 是解题的基础, 需要理解并掌
握。
掌握公式:排 列组合的公式 是解题的关键, 需要熟练掌握
并运用。
分类讨论:对 于复杂的问题, 需要进行分类 讨论,将问题 分解成若干个 简单的问题。
统计的公式和定理
内容1:统计的公式和定理 内容2:统计的公式和定理 内容3:统计的公式和定理 内容4:统计的公式和定理
统计的应用
数据分析:对大量数据进行整理、分析和解释,以揭示其内在规律和趋势 预测模型:利用统计方法对未来进行预测和推断,例如市场预测、气象预报等 决策制定:基于统计数据为决策者提供依据,例如制定政策、投资决策等 质量控制:通过统计技术对生产过程进行监控和评估,以确保产品质量符合标准
二项式定理的解题技巧
掌握二项式定理 的基本公式和展 开式
理解各项系数和 字母指数的含义 和作用
掌握二项式定理 的通项公式及其 应用
学会利用赋值法 简化计算和提高 计算效率
03
概率
高三数学专题复习排列、组合与概率 人教版 教案
高三数学专题复习排列、组合与概率一、基本知识点回顾: (一)排列、组合 1、 知识结构表:2、 两个基本原理: (1) 分类计数原理 (2) 分步计数原理3、 排列(1) 排列、排列数定义 (2) 排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A mn(3) 全排列公式:!n A nn =4、 组合(1) 组合、组合数定义 (2) 组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C mn(3) 组合数性质:①m n n m n C C -= ②r n r n r n C C C 11+-=+ ③11--•=r n r n C n rC④nn nn n n C C C C 2210=+⋅⋅⋅+++⑤0)1(210=-+⋅⋅⋅++-n n n n n n C C C C 即:1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C5、 思想方法(1) 解排列组合应用题的基本思路:① 将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步② 对“组合数”恰当的分类计算是解组合题的常用方法;③ 是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”; (2) 解排列组合题的基本方法: ① 优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;② 排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
③ 分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。
④ 分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。
⑤ 插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。
高考数学复习“应试笔记”(排列组合二项式定理概率统计矩阵与变换)
江苏高考数学复习“应试笔记”江苏高考·数学解题·高分策略——难点突破与培优提高第I卷160分部分一、填空题答卷提醒:重视填空题的解法与得分,尽可能减少失误,这是取得好成绩的基石!A1.集合1.知识点(1)集合的表示方法.3种.列举法.(2)元素与集合的关系.2种.∈,/∈.(3)集合与集合的关系.重点:A⊆B,A≠⊂B,A=B.(4)集合的交、并、补运算.(5)常用数集的符号.①任何一个集合是它本身的子集,记为A⊆A;2.方法(1)利用数轴进行集合运算.(2)分清集合中的元素是什么,选择适当的方法进行运算.3.主要结论及其得出方法.若A={a1,a2,…,a n},则A的子集有2n个,真子集有2n-1个,非空真子集有2n-2个.4.注意点(1)空集是任何集合的子集,记为∅⊆A;空集是任何非空集合的真子集.(2)A⊆B需分两种情况:①A=∅,②A≠∅.(3)集合运算的结果需用集合表示,定义域、值域都要用集合表示.A2.基本初等函数1.知识点(1)函数的概念.非空数集间的一种特殊的对应关系.(2)函数值的求法,需要在定义域内,注意分段函数值.(3)定义域的几种类型.①分母;②对数;③偶次方根;④正切;⑤实际问题.本质上是解不等式或不等式组.(4)函数单调性的定义.注意区间内的任意性.(5)函数奇偶性的定义及其图象特征.(6)函数周期性的定义及其图象特征.(7)基本初等函数的图象及其分布、定义域、值域、奇偶性、周期性、单调性.(8)指数、对数的意义及其运算法则.(9)方程的近似解的判断.计算端点处的函数值.(10)导数①导数的概念及其几何意义.②常见函数的导数. ③导数的运算法则.④导数与函数单调性的关系. 2.方法(1)画函数图象的方法①已知基本初等函数,直接画出. ②利用区间的两个端点,简易画出. ③利用导数,求出拐点,精确画出. ④分段函数分开画出,并合并. ⑤含参数的函数分类讨论. (2)函数单调性的求法①基本初等函数,直接写出.②复合函数的单调性,特别要注意定义域.如:y =log 2(x 2-2x -3). ③迭加函数.如y =x +ln x (x >0). ④复杂函数.利用导数. (3)函数最值的求法①研究函数的单调性,从而得出函数的图象.②换元或变形转化为基本初等函数.但要注意换元或变形后的字母的取值.如:y =x +1-x . ③利用基本不等式.一个最明显的形式是:分式有倒数.或有两个变量.(4)方程问题、不等式问题、存在性问题、恒成立问题常用分离参数转化为函数问题.如: ①若关于x 的方程x 2-2x +a =0在区间[-1,4]上有解,求实数a 的取值范围. 此问题可以转化为a =-x 2+2x 在区间[-1,4]上有解,即: 函数y =a 与函数y =-x 2+2x (x ∈[-1,4])的图象有交点.②若关于x 的不等式2-x 2>|x -a |至少有一个负数解,求实数a 的取值范围.此问题可以转化为在轴的左边函数f (x )=2-x 2的图象有在函数g (x )=|x -a |的图象的上方部分. ③已知f (x )=ax 3-3x +1,当x ∈[-1,1]时,f (x )≥0恒成立,求实数a 的值. 此问题可以转化为:1)x ∈(0,1],a ≥(3x -1x3)max ,且2)x =0,a ∈R ,且3)x ∈[-1,0),a ≤(3x -1x3)min .(5)求函数的解析式 ①待定系数法. ②比较法.(6)分类讨论,研究函数图象的局部形状. 4.常用结论(1)函数f (x )在x =0时有意义,则f (x )为奇函数的必要条件是f (0)=0. (2)增函数+增函数是增函数;增函数-减函数是增函数;减函数+减函数是减函数;减函数-增函数是减函数. (3)偶函数±偶函数是偶函数;奇函数±奇函数是奇函数;偶函数×(÷)偶函数是偶函数;偶函数×(÷)奇函数是奇函数; 奇函数×(÷)奇函数是偶函数. (4)函数图像的对称性①对于函数y =f (x ),若存在常数a ,b ,使得函数定义域内的任意x ,都有f (a +x )=f (b -x ),则函数y =f (x )的图像关于直线x =a +b2对称. 当a =b 时,f (x )的图像关于直线x =a 对称. f (x )=f (2a -x )..对于函数y =f (x ),若存在常数a ,b ,使得函数定义域内的任意x ,都有f (a +x )=-f (b -x ),则函数y =f (x )的图像关于点(a +b2,0)对称. 当a =b 时,f (x )的图像关于点(a ,0)对称.f (x )=-f (2a-x ).②函数y =f (x )与y =-f (x )的图像关于直线y =0对称; 函数y =f (x )与y =f (-x )的图像关于直线x =0对称; 函数y =f (x )与y =-f (-x )的图像关于原点(0,0)对称.(5)奇函数y =f (x )在区间(0,+∞)上是递增的,那么函数y =f (x )在区间(-∞,0)上也是递增的;偶函数y =f (x )在区间(0,+∞)上是递增的,那么函数y =f (x )在区间(-∞,0)上是递减的. A4.逻辑1.命题的否定与否命题命题p ⇒q 的否定与它的否命题的区别:命题p ⇒q 的否定是p ⇒﹁q ,否命题是﹁p ⇒﹁q .命题“p 或q ”的否定是“﹁p 且﹁q ”,“p 且q ”的否定是“﹁p 或﹁q ”. 2.全称命题p :∀x ∈M ,p (x );全称命题p 的否定﹁p :∃x ∈M ,﹁p (x ). 存在性命题p :∃x ∈M ,p (x );特称命题p 的否定﹁p :∀x ∈M ,﹁p (x ). 3.充要条件的判断.4.互为逆否的两个命题是等价的. 5.“p 或q ”、“p 且q ”的真假性及解题规范.A5.排列、组合和二项式定理(附加题部分) 1.知识点(1)两个计数原理①加法原理:完成一件事是分类的.总方法数用加法. ②乘法原理:完成一件事是分步的.总方法数用乘法. (2)两个计数模型①排列模型:从n 个不同元素中选出m 个不同元素排成一列.与顺序有关. ②组合模型:从n 个不同元素中选出m 个不同元素放在一起.与顺序无关. 主要计算公式: A m n =n ·(n -1)·(n -2)·…·(n -m +1).(n ,m ∈N *,并且m ≤n ). A nn =n ·(n -1)·(n -1)·(n -2)·…·2·1=n !.A m n =n !(n -m )!.0!=1. C mn +1=C m n-1+C mn .C mn =A m n A m m =n !m !(n -m )!(n ,m ∈N *,且m ≤n ).C m n =C n n-m. (3)二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n其中,n ∈N *. 二项式系数、系数,通项公式.C 0n +C 1n +C 2n +…+C n n =2n. C 0n +C 2n +…=C 1n +C 3n +…=2n -1. 2.方法(1)解决有限制条件的(有序排列,无序组合)问题方法是:①直接法:用加法原理(分类)用乘法原理(发步)⎩⎨⎧位置分析法,元素分析法,插入法(不相邻问题),捆绑法(相邻问题).②间接法:即排除不符合要求的情形 ③一般先从特殊元素和特殊位置入手. (2)解排列组合问题的方法有: ①特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置).②间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉).③相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列).④不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间).⑤先选后排法.⑥至多至少问题间接法,分类法.⑦相同元素分组可采用隔板法.如:方程x +y +z =100的正整数解的个数. ⑧涂色问题先分步考虑至某一步时再分类.⑨分组问题:要注意区分是平均分组还是非平均分组,平均分成n 组,别忘除以n !. ⑩最原始的方法:逐个列举,往往是最好的方法.(3)解决二项式问题的基本方法是从通项入手.T k +1=C k n a n -k b k. (4)有关系数和的问题用赋值法,对组合恒等式的证明常用到:①求导后赋值;②赋值;③k C k n =n C k -1n -1A6.概率、统计 【必修部分】 1.知识点(1)概率的计算公式①古典概型:P (A )=A 包含的基本事件数基本事件的总数=mn .②几何概型:P (A )=d 的测度D 的测度.【注意】测度可以是长度、面积、体积等.③互斥事件A ,B 至少有一个发生的概率计算公式:P (A +B )=P (A )+P (B ). ④对立事件的概率计算公式是:P (-A )=1-P (A ).(2)统计中的抽样方法①简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取.②分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异.共同点:每个个体被抽到的概率都相等(nN).③系统抽样.即分组,只需要用简单随机抽样抽取第一组的一个,然后在其它组的同样位置抽取样本.(3)统计中的样本特征数①一组数据x 1,x 2,…,x n 的样本平均数:-x =1n (x 1+x 2+…+x n )=1n i =1∑nx i②一组数据x 1,x 2,…,x n 的样本方差s 2=1n [(x 1--x )2+(x 2--x )2+…+(x n --x )2]=1n i =1∑n (x i --x )2=1n (i =1∑n x i 2)-(1n i =1∑nx i )2;标准差=s 2.【注意】两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,其中y i =ax i +b 的平均数、方差、标准差的关系.(4)统计中的表、图①频率分布表(分组、频数、频率、累积频率)②频率分布直方图(横坐标:样本分组;纵坐标:频率组距)a .频率=频数样本容量;b .小长方形面积=组距×频率组距=频率;c .所有小长方形面积的和=1.③茎叶图当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边像植物茎上长出来的叶子,这种表示数据的图叫做茎叶图. 2.方法(1)概率计算中,计数常用方法:列举法、树状图等,一般情况下不需要用到排列、组合知识,有初中的知识就足够了. (2)平均数、方差的计算. 【附加题部分】 1.知识点(1)概率分布(概率分布列、概率分布表) (2)随机变量X .(3)数学期望:若离散型随机变量X 的概率分布为则称E (X )=x 1p 1+x 2p 2+…+x n p n 为X 的均值或数学期望,简称为期望. (4)几个分布①两点分布:随机变量X 只取两个可能值0和1,这一类概率分布称为0-1分布或两点分布,并记为X ~0-1,“读成X 服从两点分布”.②超几何分布:随机变量X 的分布列为P (X =r )=C M r C N -Mn -rC Nn, 其中r =0,1,2,3,…,l ,l =min(n ,M ),则称X 服从超几何分布.记为X ~H (n ,M ,N ),并将P (X =r )=C M r C N -Mn -r C Nn记为H (r ;n ,M ,N ). 超几何分布的数学期望:E (X )=nMN.③二项分布:在n 次独立重复试验中,事件A 发生的概率均为p ,那么在这n 次独立重复试验中,事件A 恰好发生k 次的概率是P n (k )=C k n p k q n -k,k =0,1,2,3,…,n .即P n (k )=C k n p k q n -k是二项式(q +p )n 展开式中的通项,故称X 服从参数n ,p 的二项分布,记为X ~B (n ,p ),其中n ,p 为参数,n 表示重复的次数,p 指在一次试验中事件A 发生的概率. 二项分布的数学期望E (X )=np .(5)独立事件同时发生的概率计算公式是:P (A •B )=P (A )•P (B );独立事件重复试验的概率计算公式是:P n (k )=C kn p k (1-p )n -k .条件概率:称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的概率.A7.矩阵与变换(附加题部分) 1.知识点(1)二阶矩阵与列向量的乘法⎣⎢⎡⎦⎥⎤a 11a 12a 21a 22⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a 11×x +a 12×y a 21×x +a 22×y .(2)常见的6个变换恒等变换⎣⎢⎡⎦⎥⎤1 00 1,也叫单位矩阵;伸压变换⎣⎢⎡⎦⎥⎤k 00 1,⎣⎢⎡⎦⎥⎤1 00 k (k >0);投影变换⎣⎢⎡⎦⎥⎤1 00 0,⎣⎢⎡⎦⎥⎤0 00 1,⎣⎢⎡⎦⎥⎤1 01 0;反射变换⎣⎡⎦⎤0 11 0;旋转变换⎣⎡⎦⎤cos θ-sin θsin θ cos θ(逆时针方向);切变变换⎣⎡⎦⎤1 k 0 1,⎣⎡⎦⎤1 0k 1.(3)二阶矩阵的乘法⎣⎢⎡⎦⎥⎤a 11a 12a 21a 22⎣⎢⎡⎦⎥⎤b 11b 12b 21b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21a 11b 12+a 12b 22a 21b 11+a 22b 21a 21b 12+a 22b 22. (4)复合变换:AB (先B 后A ,不得交换)(5)矩阵的逆矩阵:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵,A 也是B 的逆矩阵.二阶矩阵A =⎣⎡⎦⎤ab cd (ad -bc ≠0)的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc -c ad -bc a ad -bc (可直接使用,但须写上公式). (6)特征向量、特征值、特征多项式二阶矩阵A ,对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.几何解释:特征向量的方向经过矩阵A 对应的变换作用后,保持在同一直线上.当λ>0时,方向不变;当λ<0时,方向相反;当λ=0时,特征向量就被变换成向量0.对于二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc称为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征多项式.(7)行列式:⎪⎪⎪⎪abcd =ad -bc .2.方法(1)二阶矩阵将点变换成点.(2)一般情况下,二阶矩阵将直线变换成直线.(3)求曲线C 在二阶矩阵对应的变换作用得到的曲线C 1的方程.如: 求出曲线y =ln x 在矩阵⎣⎡⎦⎤0 11 0作用下变换得到的曲线.第一步:在曲线y =ln x 上任取一个点P'(x',y'),在矩阵⎣⎡⎦⎤0 11 0对应的变换作用下变为点P (x ,y ).第二步: 由⎣⎡⎦⎤0 11 0⎣⎡⎦⎤x'y'=⎣⎡⎦⎤x y ,所以有y'=x ,x'=y . 第三步: 因为y'=ln x',所以x =ln y ,即y =e x .所以,曲线y =ln x 在⎣⎡⎦⎤0 11 0作用下变为曲线y =e x .附:写给忙于20XX 年江苏高考备考师生的信。
专题 排列组合二项式定理(学案)-高三数学二轮专题复习
排列组合二项式定理学习目标:1.独立说出两个计数原理的内容及异同,理清排列、组合、二项式定理与这两个计数原理的关系.2.通过明确概念、公式、定理的形成过程,能利用计数原理推导排列数公式和组合数公式; 3借助两个计数原理和排列、组合公式得到二项式定理,能用计数原理的知识解决一些实际的问题.考点一 排列与组合(一)基本计数原理:分类计数原理:N =m 1+m 2+⋯+m n 种不同的方法.分步计数原理:N =m 1×m 2×⋯×m n 种不同的方法.(二)排列与组合1.排列:排列数公式:A n m =n(n −1)(n −2)⋯(n −m +1),m ,n ∈N +,并且m ≤n . 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用n!表示.规定:0!=1.2.组合组合数公式:C n m =n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,m,n ∈N +,并且m ≤n . 组合数的两个性质: ①C n m =C n n−m ;②C n+1m =C n m +C n m−1.(规定C n 0=1)(三)排列与组合解题的常用方法1.特殊元素、特殊位置优先法:元素优先法:位置优先法:2.分类分步法:3.排除法:4.捆绑法:5.插空法:6.插板法:7.分组、分配法: 考点二 二项式定理1.二项式定理:(a +b )n =C n 0a n +C n 1a n−1b +C n 2a n−2b 2+...+C n n b n (n ∈N ∗)2.二项式系数、二项式的通项定义:C n 0a n +C n 1a n−1b +C n 2a n−2b 2+...+C n n b n 叫做(a +b )n 的二项展开式,其中的系数C n r (r =0,1,2,...,n )叫做二项式系数,式中的C n r a n−r b r 叫做二项展开式的通项.用T r+1表示,即通项为展开式的第r +1项:T r+1=C n r a n−r b r .3.二项式展开式的各项幂指数:二项式(a +b )n 的展开式项数为n +1项4.二项式系数的性质1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等.2)单调性:二项式系数(数列)在前半部分逐渐增大,在后半部分逐渐减小,在中间(项)取得最大值.其中:当n 为偶数时,二项展开式中间一项的二项式系数C n n 2最大;当n 为奇数时,二项展开式中间两项的二项式系数C n n−12, C n n+12相等,且最大.3)组合总数公式:C n 0+C n 1+C n 2+⋯+C n n =2n 即二项展开式中各项的二项式系数之和等于2n .4)“一分为二”的考察:二项展开式中各奇数项的二项式系数之和等于各偶数项的二项式系数之和,即C n 0+C n 2+C n 4+⋯=C n 1+C n 3+C n 5+⋯=2n−1.探究点一:排列组合问题1(多选题).为了贯彻常态化疫情防控工作,动员广大医护人员抓细抓实各项防疫工作,人民医院组织护理、感染、儿科、疾控、药剂、呼吸六位专家进行“防疫有我,健康同行”知识讲座,每天一人,连续6天.则下列结论正确的是( )A .从六位专家中选两位的不同选法共有20种B .“呼吸类专家”不排在最后一天的不同排法共有600种C .“护理、感染类专家”排在相邻两天的不同排法共有240种D .“护理、感染、儿科类专家”排在都不相邻的三天的不同排法共有72种2.将7个相同的球放入4个不同的盒子中,则每个盒子都有球的放法种数为( )A .22B .25C .20D .483.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法种数是( ) A .420 B .210 C .70 D .354.2021年某地电视台春晚的戏曲节目,准备了经典京剧、豫剧、越剧、粤剧、黄梅戏、评剧6个剧种的各一个片段.对这6个剧种的演出顺序有如下要求:京剧必须排在前三,且越剧、粤剧必须排在一起,则该戏曲节目演出顺序共有( )种.A .120B .156C .188D .2405.10名同学合影,站成前排4人后排6人,现摄影师要从后排6人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2263C AB .2666C A C .2266C AD .2265C A 6.从一楼到二楼共有12级台阶,可以一步迈一级也可以一步迈两级,要求8步从一楼到二楼共有走法.A .12B .8C .70D .667.地面上有并排的七个汽车位,现有红、白、黄、黑四辆不同的汽车同时倒车入库.当停车完毕后,恰有两个连续的空车位,且红、白两车互不相邻的情况有________种.8.十二生肖(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪),又叫十二属相,每一个人的出生年份对应着一种生肖.现有十二生肖的吉祥物各1个,从中选出含牛吉祥物在内的5个吉祥物分给甲、乙、丙3个人,每人至少分得1个吉祥物,则不同的分法种数为___________.9.9.6本不同的书,按下列要求各有多少种不同的分法?(1)分给甲、乙、丙三人,每人两本;(2)分为三份,每份两本;(3)分为三份,一份一本,一份两本,一份三本;(4)分给甲、乙、丙三人,一人一本,一人两本,一人三本;(5)分给甲、乙、丙三人,每人至少一本.(选做)10.某次灯谜大会共设置6个不同的谜题,分别藏在如图所示的6只灯笼里,每只灯笼里仅放一个谜题.并规定一名参与者每次只能取其中一串最下面的一只灯笼并解答里面的谜题,直到答完全部6个谜题,则一名参与者一共有___________种不同的答题顺序.探究点二:二项式定理11.(12)n x -的二项展开式中,奇数项的系数和为( )A .2nB .12n -C .(1)32n n -+D .(1)32n n -- 12.81x y x ⎛⎫-+ ⎪⎝⎭的展开式含42x y 的系数是________(用常数表示). 13.(1)求()()10211x x x ++-的展开式中4x 的系数; (2)求()()()210111x x x ++++⋅⋅⋅++的展开式中3x 的系数.14.已知在二项式()*22,N n n n x ⎫⋅≥∈⎪⎭的展开式中,前三项系数的和是97.求展开式中二项式系数最大的项 ;15.已知()31n x -的展开式中第2项与第5项的二项式系数相等,求212nx x ⎛⎫- ⎪⎝⎭的展开式中:系数绝对值最大的项 .16.在二项式2nx ⎫⎪⎭的展开式中,(1)若6n =,求展开式中的有理项; (2)若第4项的系数与第6项的系数比为5:6,求:①二项展开式中的各项的二项式系数之和;②二项展开式中的各项的系数之和.17.已知57A 56C n n =,且()201212nn n x a a x a x a x -=+++⋅⋅⋅+. (1)求n 的值;(2)求123n a a a a +++⋅⋅⋅+的值;(3)求0241n a a a a -+++⋅⋅⋅+的值.。
(新人教A)高三数学教案排列、组合和和概率 二项式定理
第十章 排列、组合和和概率二、二项式定理学习指导:1.有关二项式定理,要记住公式,弄清与其相关的概念:二项式系数、系数、项、项数、通项等,从而正确运用二项式系数的性质进行计算,解一些应用题。
重点是二项式定理的应用、难点是对通项的理解。
2.二项式定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a +⋅⋅⋅++⋅⋅⋅+++=+---222110)(。
右边的多项式叫做nb a )(+的二项展开式,共有1+n 项,其中各项的系数),,1,0(n r C r n ⋅⋅⋅=叫做二项式系数,r rn r n b aC -叫做二项展开式的通项,用1+r T 表示。
3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等。
(2)增减性与最大值 当21+<n k 时,二项式系数是逐渐增大的;当21+>n k 时,二项式系数是逐渐减小的, 当n 是偶数时,中间一项的二项式系数2nnC 取得最大值;当n 是奇数时,中间的两项的二项式系数2121+-=n nn nCC相等,且同时取得最大值。
(3)n b a )(+的展开式的各个二项式系数的和等于n2,即n n n n n n C C C C 2210=+⋅⋅⋅+++(4)nb a )(+的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即131202-=⋅⋅⋅++=⋅⋅⋅++n n n n n C C C C 。
例题选讲 例1.求153)1(xx -展开式中的常数项。
解:展开式的通项为23151521315151)1()(rr rr rr rr xC x xC T ----+-=-⋅=。
令2315rr =-得6=r ∴展开式的常数项为5057=T 。
注:若把上题改为“求153)1(xx -展开式中的有理项”,由)61(565302315rr r r -=-=--知r 为6的倍数,又150≤≤r ;12,6,0=∴r ∴展开式中的有理项为51x T =,50057=T ,531513-=x C T 。
专题07 排列组合、二项式定理,概率与统计(教学案)
一.考场传真1. 【2015高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )602.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个3.【2015高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648(B )0.432(C )0.36(D )0.3124.【2015高考重庆,理3】重庆市2013年各月的平均气温(oC )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、23 5.【2015高考新课标2,理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关6.【2015高考福建,理13】如图,点A 的坐标为()1,0 ,点C 的坐标为()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .7.【2015高考新课标1,理19】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =,w =81ii w=∑(Ⅰ)根据散点图判断,y=a +bx 与y =c +y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x.根据(Ⅱ)的结果回答下列问题: (ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()niii nii u u v v u u β==---∑∑, =v u αβ-8.【2015高考新课标2,理18】某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:A 地区B 地区4 5 6 7 8 9记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.二.高频考点突破考点1 分类计数原理与分步计数原理【例1】【2015届吉林省实验中学高三上学期第五次模拟】某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种 B.42种 C.48种 D.54种【举一反三】【2015届中国人民大学附属中学高考冲刺六】某展室有9个展台,现有3件展品需要展出,要求每件展品独自占用1个展台,并且3件展品所选用的展台既不在两端又不相邻,则不同的展出方法有______种;如果进一步要求3件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____种.考点2 排列、组合及性质【例2】化简:1n C +22n C +33n C +…+n nn C = .【举一反三】设01212(1)m mn n n n n m S C C C C ---=-+-+- ,*,m n ∈N 且m n <,其中当n 为偶数时,2nm =;当n 为奇数时,12n m -=. (1)证明:当*n ∈N ,2n ≥时,11n n n S S S +-=-; (2)记01231007201420132012201110071111120142013201220111007S C C C C C =-+-+- ,求S 的值.考点3 排列、组合的应用【例3】将四个相同的红球和四个相同的黑球排成一排,然后从左至右依次给它们赋以编号l ,2,…,8.则红球的编号之和小于黑球编号之和的排法有 种.【举一反三】【2015届中国人民大学附属中学高考冲刺九】一天有语文、数学、英语、物理、化学、生物、体育七节课,体育不在第一节上,数学不在第六、七节上,这天课表的不同排法种数为( )(A )7575A A - (B )2545A A (C )115565A A A (D )61156455A A A A +考点4 二项式定理及应用【例4】【2015高考陕西,理4】二项式(1)()nx n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【举一反三】【2015届江西高安中学高三命题中心模拟三】如果n x x )13(32-的展开式中各项系数之和为128,则展开式中31x的系数是 .考点5 赋值法在二项式定理中的应用【例5】【2015届福建省福州市三中高三模拟】若等式2014201422102014)12(x a x a x a a x ++++=- 对于一切实数x 都成立,则=++++2014210201513121a a a a ( ) A .40301 B .20151 C .20152 D .0【举一反三】【2015届甘肃省天水市一中高三5月中旬仿真考试】已知7270127()x m a a x a x a x -=++++ 的展开式中4x 的系数是-35,则1237a a a a ++++ =考点6 二项式定理与其他知识交汇【例6】设()6212f x x x ⎛⎫+ ⎪⎝⎭是展开式的中间项,若()f x mx ≤在区间2⎢⎣上恒成立,则实数m 的取值范围是______.【举一反三】【2015届陕西省西安市第一中学高三下学期自主命题二】设()f x 是261()2x x+展开式的中间项,若()f x mx ≤在区间⎣上恒成立,则实数m 的取值范围是( ) A .(-∞,5) B .(-∞,5] C .(5,+∞) D .[5,+∞)考点7 古典概型与几何概型【例7】【2015届吉林省东北师大附中高三第四次模拟】高考将至,凭借在五大学科竞赛的卓越表现,我校共有25人获得北大、清华保送及降分录取优惠政策,具体人数如下表.若随机从这25人中任选2人做经验交流,在已知恰有1人获得北大优惠政策而另1人获得清华优惠政策的条件下,至少有1人是参加数学竞赛的概率为( )(A )12 (B )5 (C )25 (D )43100【举一反三】【2015届湖北省武汉华中师大附中高三5月考试】如图,正方形OABC 的边长为1,记曲线2y x =和直线14y =,1,0x x ==所围成的图形(阴影部分)为Ω,若向正方形OABC 内任意投一点M ,则点M 落在区域Ω内的概率为A .14 B .13C .23D .25 考点8 互斥事件与相互独立事件【例8】【2015届福建省泉州一中高三下学期最后一次模拟】某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为13,12;租用2小时以上且不超过3小时的概率分别为12,13,且两人租用的时间都不超过4小时. (Ⅰ)求甲、乙两人所付费用相同的概率;(Ⅱ)设甲、乙两人所付的费用之和为随机变量ξ,求ξ的分布列与数学期望.【举一反三】【2016届江苏省苏州市高三第一次模拟考试】一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的,,A B C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民至少购买2种商品的概率;(2)用随机变量h 表示该网民购买商品的种数,求h 的概率分布和数学期望.考点9 独立重复实验与二项分布【例9】【2016届广西武鸣县高级中学高三9月考】为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X 表示体重超过60公斤的学生人数,求X 的分布列和数学期望.分析:(Ⅰ)给出了样本的频率分布直方图,由各组频率和为1和后两组的频率可求得前三组的频率和,再结合前三组的频率比可求得第二小组的频率,再由频率公式可得样本容量;(Ⅱ)由第一问易知在总体中任选1人其体重超过60公斤的概率,把问题转化为一个二项分布问题,由其概率公式可求得其随机变量X 取各值的概率得到其分布列和数学期望.【举一反三】2016届广西河池高中高三上第五次月考甲、乙两人共同抛掷一枚硬币,规定硬币正面朝上甲得1分,否则乙得1分,先积得3分者获胜,并结束游戏.(Ⅰ)求在前3次抛掷中甲得2分,乙得1分的概率;(Ⅱ)若甲已经积得2分,乙已经积得1分,求甲最终获胜的概率;(Ⅲ)用ξ表示决出胜负抛硬币的次数,求ξ的分布列及数学期望.考点10 离散型随机变量的分布列、均值与方差【例10】【2015届黑龙江省哈尔滨市三中高三第四次模拟考试】某企业有100位员工.拟在新年联欢会中,增加一个摸球兑奖的环节,规定:每位员工从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该员工所获的中奖额.企业预算抽奖总额为6000元,共提出两种方案.方案一:袋中所装的4个球中有两个球所标的面值为10元,另外两个标的面值为50元;方案二:袋中所装的4个球中有两个球所标的面值为20元,另外两个标的面值为40元.(Ⅰ)求两种方案中,某员工获奖金额的分布列;(Ⅱ)在两种方案中,请帮助该企业选择一个适合的方案,并说明理由.【举一反三】【2015届甘肃省天水市一中高三第五次高考模拟考试】某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.把符合条件的1000名志愿者按年龄分组:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45],得到的频率分布直方图如图所示:(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者参加广场的宣传活动,应从第3、4、5组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这12名志愿者中随机抽取3名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率;(3)在(2)的条件下,若ξ表示抽出的3名志愿者中第3组的人数,求ξ的分布列和数考点11 抽样方法【例11】【2016届山东省济南外国语学校高三上开学考试】某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生()A.1030人 B.97人 C.950人 D.970人【举一反三】【2016届云南师范大学附属中学高三月考四】某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并按编号顺序平均分成10组(1~5号,6~10号,…,46~50号),若在第三组抽到的编号是13,则在第七组抽到的编号是()A.23 B.33 C.43 D.53考点12 用样本估计总体【例12】【2016届江西省吉安一中高三上学期第四次周考】在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形面积和的25,且样本容量为140,则中间一组的频数为()A.28 B.40 C.56 D.60【举一反三】【2016届湖南省常德市一中高三上第五次月考】某学生在一门功课的22次考试中,所得分数如下茎叶图所示,此学生该门功课考试分数的极差与中位数之和为()A.117 B.118 C.118.5 D.119.5考点13 线性回归分析与独立性检验【例13】【2015届福建省泉州五中高三模拟考试】某单位为了了解用电量y 度与气温x C 之间的关系,随机统计了某四天的用电量与当天气温,列表如下:由表中数据得到回归直线方程2y x a ∧=-+.据此预测当气温为4C - 时,用电量为______(单位:度).【举一反三】【2016届河北省正定中学高三上第五次月考】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.(1)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在150 名和9511000 名的学生进行了调查,得到右表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在150 的学生人数为X ,求X 的分布列和数学期望. 附:22()()()()()n ad bc K a b c d a c b d -=++++三.错混辨析1.确定分类的标准出错和特殊情况考虑不全出错【例1】如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有 个.2.排列、组合问题中盲目列举导致重复或遗漏出错【例2】 【2013年四川卷】从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,a b ,共可得到lg lg a b -的不同值的个数是( )A.9B.10C.18D.203. 二项式()na b +展开式的通项中,因a 与b 的顺序颠倒而容易出错. 【例3】n⎫展开式中第三项的系数比第二项的系数大162,则x 的一次项为 . 【例4】把红、蓝、黑、白4张纸牌随机地分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B . 互斥但不对立事件C .不可能事件D .以上均不对5.混淆“互斥”与“独立”导致错误【例5】某零件从毛坯到成品,一共要经过六道自动加工工序,如果各道工序出次品的概率依次为%5%,5%,3%,3%,2%,1,那么这种零件的次品率为多少?6.“条件概率”与“积事件的概率”导致错误【例6】袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.7.“二项分布”与“超几何分布”导致错误【例7】某人参加一次英语考试,已知在备选的10道试题能答出其中的4道题,规定每次考试从备选题中随机抽取3题进行测试,求答对题X 的分布列.1. 在小语种自主招生考试中,某学校获得5个推荐名额,其中韩语2名,日语2名,俄语1名.并且日语和韩语都要求必须有女生参加.学校通过选拔定下3女2男共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .26种2. 设n a ,0≠是大于1的自然数,()1n ax +的展开式为2012n n a a x a x a x ++++ .若点(),i i A i a ()1,2i =的位置如图所示,则n =.3. 在平面直角坐标系中,已知点P(4,0),Q(0,4),A,B分别是x轴和y轴上的动点,若以MN为直径的圆C与直线PQ相切,当圆C的面积最小时,在四边形APQB内任取一点,则这点落在圆C外的概率为4. 2015国际滑联世界花样滑冰锦标赛于3月23日至29日在上海举行,为调查市民喜欢这项赛事是否与年龄有关,随机抽取了55名市民,得到如下数据表:(I)判断是否有99.5%的把握认为喜欢这项赛事与年龄有关?(II)用分层抽样的方法从喜欢这项赛事的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.下面的临界值表供参考:(参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)5. 2015年3月15日,中央电视台揭露部分汽车4S店维修黑幕,国家工商总局针对汽车制造行业中的垄断行为加大了调查力度,对汽车零部件加工的相关企业开出了巨额罚单.某品牌汽车制造商为了压缩成本,计划对A、B、C三种汽车零部件进行招标采购,某著名汽车零部件加工厂参入了该次竞标,已知A种零部件中标后即可签合同,而B、C两种汽车零部件具有很强的关联性,所以公司规定两者都中标才能签合同,否则都不签合同,而三种零部件是否中标互不影响.已知该汽车零部件加工厂中标A种零部件的概率为34,只中标B种零部件的概率为18,B、C两种零部件签订合同的概率为16.(Ⅰ)求该汽车零部件加工厂C种汽车零部件中标的概率;(Ⅱ)设该汽车零部件加工厂签订合同的汽车零部件种数为X,求X的分布列与期望.。
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。
最新高三教案-排列、组合、二项式定理、概率与统计 精
第九专题 排列、组合、二项式定理、概率与统计一、考情分析:本专题内容以其独特的研究对象和研究方法,在中学数学中是相对独立的.不管是从内容上,还是从思想方法上,都体现着应用的观念与意识.在展现分类讨论思想、化归思想的同时,培养学生解决问题的能力.排列、组合是学习概率的预备知识,而概率、统计又是后续学习所必需的基础.二、考点整合(一)排列、组合、二项式定理1、两个原理: (1)分类计数原理(加法原理): (2)分步计数原理(乘法原理):2、排列: (1)排列的定义: (2)排列数公式:3、组合: (1)组合的定义: (2)组合数公式: (3)组合数性质:4、二项式定理: (1)展开式及通项: (2)二项式系数:需注意的几个问题:①它表示二项式中的任意项,只要n 与r 确定,该项也随之确定;②通项公式表示的是第1+r 项,而不是第r 项;③公式中、b a 的位置不能颠倒,它们的指数和一定为n ;④二项式系数与项的系数区别.(3)二项式系数性质:①对称性:②最值:③系数和:④系数比:(二)概率与统计(一)概率: 1、古典概率: 2、互斥事件:(1)互斥事件、对立事件的定义:(2)互斥事件有一个发生的概率计算::当事件、B A 互斥时,)()()(B P A P B A P +=+.推广:当事件n 、A 、、A A 21彼此互斥时,)()()()(2121n n A P A P A P A A A P +++=+++ .(3)对立事件概率的计算:对立事件的概率和为1,则1)()(=+A P A P 或)(1)(A P A P -=.3、相互独立事件: (1)定义: (2)相互独立事件同时发生的概率计算:(3)n 次独立重复试验中,某事件发生k 次的概率计算:(二)统计:1、抽样方法:(1)简单随机抽样:(2)分层抽样:2、总体分布的估计:三、典例精讲:例1 (1)从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A 、210种B 、420种C 、630种D 、840种(2)在5名学生(3名男生,2名女生)中安排2名学生值日,其中至少有1名女生的概率是_____________.例2 8个人排成一排,其中甲、乙、丙3人中,有两个相邻,但这3个人不同时相邻,求满足条件的所有不同排法的种数.例3 (1)四面体的一个顶点为A ,从其他顶点和各棱中点中取3个点,使它们和点A 在同一平面上,有多少种不同的取法?(2)四面体的顶点和各棱中点共10个点,取其中4个不共面的点,有多少种不同的取法?例4 已知nx x )3(232+展开式中各项的系数和比各项的二项式系数和大992,求展开式中系数最大的项.例5 宿舍楼走廊上有编号的照明灯一排8盏,为节约用电又不影响照明,要求同时熄掉其中3盏,但不能同时熄掉相邻的灯,问熄灯的方法多少种?例6 设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为05.0,甲、丙都需要照顾的概率为1.0,乙、丙都需要照顾的概率为125.0.(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别为多少?(Ⅱ)计算这个小时内至少有一台机器需要照顾的概率.例7 已知8支球队中有3支弱队,以抽签方式将这8支球队分为、B A 两组,每组4支.求:(Ⅰ)、B A 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率.例8 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92. (Ⅰ)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.四、提高训练: 姓名___________(一)选择题:1.设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为、B A 的值,则所得不同直线的条数是( )A 、20B 、19C 、18D 、162.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张A 、53.0B 、5.0C 、47.0D 、37.03.若n x )21(+展开式中含3x 的项的系数等于含x 项的系数的8倍,则n 等于( )A 、5B 、7C 、9D 、114.10张奖券中只有3张有奖,5个人购买,每人1张,至少有1人中奖的概率是( )A 、103B 、121C 、21D 、1211 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( )A 、300种B 、240种C 、144种D 、96种6.用五个数字0,1,1,2,2组成的五位数总共有( )A 、12个B 、24个C 、30个D 、48个7.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数等差数列,设最大频率为a ,视力在6.4到0.5之间的学生数为b ,则、b a 的值分别为( )A 、78,27.0B 、83,27.0C 、78,7.2D 、83,7.2(二)填空题:8.在62)1()1()1(x x x ++++++ 的展开式中,2x 项的系数是_____.(用数字作答)9.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人.为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是_____.(三)解答题:10.10个由父母、孩子组成的家庭共30人(每个家庭由父母和孩子构成),要从这30人中任选5人排成一列参加接力比赛,若选出的五人中没有任何两人属于同一家庭,则可以组成多少种接力队伍?11.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ)从A 中有放回地摸球,每次摸出一个,共摸5次.求:①恰好有3次摸到红球的概率;②第一次、第三次、第五次均摸到红球的概率. (Ⅱ)若、B A 两个袋子中的球数之比为2:1,将、B A 中的球装在一起后,从中摸出一个红球的概率是52,求p 的值.12.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界三个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求三个景区都有部门选择的概率;(Ⅱ)求恰有两个景区有部门选择的概率.。
超实用高考数学重难点专题复习:专题八 概率与统计 第一讲 排列组合与二项式定理
第一讲 排列组合与二项式定理
距离高考还有一段时间,不少有经验的老师都会提醒考生,愈是临近高考,
能否咬紧牙关、学会自我调节,态度是否主动积极,安排是否科学合理,能不 能保持良好的心态、以饱满的情绪迎接挑战,其效果往往大不一样。以下是本 人从事10多年教学经验总结出的超实用新高考数学专题复习讲义希望可以帮助 大家提高答题的正确率,希望对你有所帮助,有志者事竟成!
②若 f (x) a0 a1x a2x2 an xn ,则f(x)展开式中的各项系数和为f(1),
奇数项系数和为 a0 a2 a4
f (1) f (1) 2
偶数项系数之和为 a1 a3 a5
f (1) f (1) 2
[典型例题]
[答案]:A
1. (1 2x2 )(1 x)4 的展开式中 x3的系数为( )
[典型例题]
[答案]:D
3.已知 (1 ax)6 1 12x bx2 a6x6 ,则实数b的值为( )
A.15
B.20
C.40
D.60
[解析] (1 ax)6 的展开式的通项为 Tr1 C6r ar xr ,令 r 1 ,则 C16a 12 ,解得 a 2 ,则 b C62 22 60 ,故选D.
x
2
2 x
5
的展开式中
x 4 的系数为(
)
A.10
B.20
C.40
D.80
[答案]:C
[解析]
由二项式定理得
x
2
2
5
x
的展开式的通项为
Tr 1
C5r
x2
5r 2 r x
2r C5r x103r
由 10 3r 4
专题06 排列组合、二项式定理概率与统计教学案-2018年高考数学理二轮复习资料新课标版 含解析
【高效整合篇】专题六排列组合、二项式定理,概率与统计一.考场传真1. 【2016高考新课标2理数】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )9 【答案】B【解析】由题意,小明从街道的E 处出发到F 处最短有24C 条路,再从F 处到G 处最短共有13C 条路,则小明到老年公寓可以选择的最短路径条数为214318C C ⋅=条,故选B.2.【2016高考新课标1卷】5(2x 的展开式中,x 3的系数是 .(用数字填写答案) 【答案】103.【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) (A )13 (B )12 (C )23 (D )34【答案】B【解析】如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟根据几何概型,所求概率10101402P +==.故选B . 4.【2016高考新课标2理数】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为 (A )4n m (B )2n m (C )4m n (D )2mn【答案】C【解析】利用几何概型,圆形的面积和正方形的面积比为224S R mS R nπ==圆正方形,所以4m n π=.选C.5.【2016高考新课标3理数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D . 6.【2016高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有 ( ) (A )18个 (B )16个(C )14个(D )12个【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:7.【2016高考新课标1卷】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;16.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ;24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ;2.02.02.04.02.02)20(=⨯+⨯⨯==X P ;08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P .所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.8.【2016高考新课标2理数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.(Ⅲ)记续保人本年度的保费为X,则X的分布列为=⨯+⨯+⨯+⨯+⨯+⨯=,因此EX a a a a a a a0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23续保人本年度的平均保费与基本保费的比值为1.23二.高考研究【考纲解读】1.考纲要求排列、组合、二项式定理(1)分类加法计数原理、分步乘法计数原理:①理解分类加法计数原理和分步乘法计数原理;②会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合①理解排列、组合的概念.②能利用计数原理推导排列数公式、组合数公式.③能解决简单的实际问题.(3)二项式定理①能用计数原理证明二项式定理.②会用二项式定理解决与二项展开式有关的简单问题.概率与统计(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.了解互斥事件、对立事件的意义及其运算公式.(2)理解古典概型及其概率计算公式.会计算一些随机事件所含的基本事件数及事件发生的概率.(3)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(4)理解样本数据标准差的意义和作用,会计算数据标准差.(5)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(6)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(7)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.(8)理解取有限个值的离散型随机变量均值、方差的概念.(9)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.2.命题规律(1)排列、组合与二项式定理每年交替考查,主要以选择、填空的形式出现,试题难度中等或偏易.(2)排列、组合试题具有一定的灵活性和综合性,常与实际相结合,转化为基本的排列组合模型解决问题,需用到分类讨论思想,转化思想. 排列与组合问题一直是高考数学的热点内容之一.从近几年的高考试题统计分析来看,对排列与组合知识的考查均以应用题的形式出现,题型为选择题、填空题,题量最多是一道,分值为5分,属于中档题.内容以考查排列、组合的基础知识为主.高考中对本讲注重基础知识和基本解题方法、规律的考查,以及运算能力的考查,基本都为中等难度试题.最近几个年份考查多少不一.(3)与二项式定理有关的问题比较简单,但非二项问题也是今后高考的一个热点,解决此类问题的策略是转化思想. 考查的重点是二项式定理的通项公式、二项式系数及项的系数;以考查基本概念、基础知识为主,如系数和、求某项的系数、求常数项、求有理项、求所含参数的值或范围等;难度不大,属于中档题和容易题,题型为选择题或填空题.(4)随机事件的概率在高考中多以选择题、填空题的形式考查,也时常在解答题中出现,应用题也是常考题型,并且常与统计知识放在一块考查;(5)借助古典概型考查互斥事件、对立事件的概率求法.考查古典概型概率公式的应用,尤其是古典概型与互斥、对立事件的综合问题更是高考的热点.在解答题中古典概型常与统计相结合进行综合考查,考查学生分析和解决问题的能力,难度以中档题为主;(6)以选择题或填空题的形式考查与长度或面积有关的几何概型的求法是高考对本内容的热点考法,特别是与平面几何、函数等结合的几何概型是高考的重点内容.新课标高考对几何概型的要求较低,常与积分结合起来出题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列、组合、二项式定理、概率与统计【考点审视】1. 突出运算能力的考查。
高考中无论是排列、组合、二项式定理和概率题目,均是用数值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。
2. 有关排列、组合的综合应用问题。
这种问题重点考查逻辑思维能力,它一般有一至两个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。
3. 有关二项式定理的通项式和二项式系数性质的问题。
这种问题重点考查运算能力,特别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。
4. 有关概率的实际应用问题。
这种问题既考察逻辑思维能力,又考查运算能力;它要求对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。
5. 有关统计的实际应用问题。
这种问题主要考查对一些基本概念、基本方法的理解和掌握,它一般以一道选择题或填空题的形式出现,属于基础题。
【疑难点拨】 1. 知识体系:2.知识重点:(1) 分类计数原理与分步计数原理。
它是本章知识的灵魂和核心,贯穿于本章的始终。
(2) 排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。
排列数公式的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。
(3) 二项式定理及其推导过程、二项展开式系数的性质及其推导过程。
二项式定理的推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令1±=x )的应用。
(4) 等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。
互斥事件的概率加法公式对应着分类相加计数原理的应用,相互独立事件的概率乘法公式对应着分步相乘计数原理的应用。
(5) (理科)离散型随机变量的定义,离散型随机变量的分布列、期望和方差。
(6) 简单随机抽样、系统抽样、分层抽样,总体分布,正态分布,线性回归。
2. 知识难点:(1) 排列、组合的综合应用问题。
突破此难点的关键在于:在基本思想上强调两个基本原理(分类相加计数原理和分步相乘计数原理)在本章知识中的核心地位;在通法上要求,首先要认真审题,分清是排列(有序)还是组合(无序),或二者兼而有之;其次要抓住问题的本质特征,准确合理地利用两个基本原理进行“分类与分步”,分类时要不重不漏,分步时要独立连续。
在两个公式的应用中要深刻理解其定义中的“所有”的含义,特别是组合数“mnC ”已包含了m 个元素“所有”可能的组合的个数,故在平均分堆过程中就会产生重复,而平均分配给不同的对象过程中就不用再排序。
同时在本节中要注意强调转化化归数学思想的应用。
(2) 二项式定理的计算。
突破此难点的关键在于:熟记指数的运算法则和二项展开式的通项公式,深刻理解“第k 项”“常数项”“有理项”“二项式系数”“系数”等基本概念的区别与联系。
(3) 概率、分布列、期望和方差的计算。
突破此难点的关键在于:首先要运用两个基本原理认真审题,弄清楚问题属于四种类型事件中的哪一种,然后准确地运用相应的公式进行计算,其中要注意排列、组合知识的应用。
(理科)对于分布列要熟记一个基本型(ζ)和三个特殊型(b a +=ζη,二项分布,几何分布)的定义和有关公式;此类问题解题思维的的流程是:要求期望,则必先求分布列,而求分布列的难点在于求概率,求概率的关键在于要真正弄清每一个随机变量“k =ζ”所对应的具体随机试验的结果。
【经典题例】例1:将8名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方法共有多少种?[思路分析] 根据宿舍的人数,可分为三类:“62+”型不同的分配方法有2228A C 种;“53+”型不同的分配方法有2238A C 种;“44+”型不同的分配方法有48C 种。
则由加法原理得,不同的分配方法共有2384822382228=++C A C A C 种。
[简要评述] 本题体现了“先选后排”通法的应用,属于排列组合混合问题。
要注意(不)平均分配与(不)平均分堆的联系与区别。
例2:在正方形ABCD 中,H G F E ,,,分别为各边的中点,O 为正方形中心,在此图中的九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有多少个?[思路分析] 根据三角形的类型分为三类:直角三角形有DAB Rt DAE Rt HAE Rt ∆∆∆,,共3种;以边AB 为底的三角形GAB OAB ∆∆,共2种;过中点和中心的三角形有,,HGB DGB GBO ∆∆∆ 共3种。
由加法原理得,共有3238++=种不同类型的三角形。
[简要评述] 本题体现了“转化化归数学思想”的应用,属于排列组合中的几何问题,在具体方法上是运用了“穷举法(将所有的情形全部列出)”。
例3:在多项式65(1)(1)x x +-的展开式中,含3x 项的系数为多少?[思路分析]解1652323(1)(1)(161520)(151010)x x x x x x x x +-=++++-+-+,所以含3x项的系数为 1060515205-+-⨯+=-。
解2 6525122455(1)(1)(1)(1)(1)(1)x x x x C x C x x +-=-+=-+-+,所以含3x 项的系数为1515C -⋅=-。
解3 由组合原理03312221130065656565(1)(1)(1)(1)5C C C C C C C C -+-+-+-=-。
[简要评述] 本题重点考查对二项式定理的本质的理解和运算能力。
例4:从数字0,1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于6的概率为多少?[思路分析] 本题的基本事件是由6个不同的数字允许重复而且含0的条件下组成三位数,根据乘法原理可知基本事件的全体共有566180⨯⨯=个。
设三个数字之和等于6的事件为A ,则A 分为六类:数码(5,1,0)组成不同的三位数有2122A C个;数码(4,2,0)组成不同的三位数有2122A C 个;数码(4,1,1)组成不同的三位数有13C个;数码(3,3,0)组成不同的三位数有12C 个;数码(3,2,1)组成不同的三位数有33A个;数码(2,2,2)组成不同的三位数有1个,根据加法原理,事件A 共有21211132222323120A C A C C C A +++++=个。
故201()1809P A ==。
[简要评述] 本题考查等可能性事件的概率和互斥事件的概率,重点在于利用排列组合知识求各个基本事件的总数。
例5:若1002100012100(12)(1)(1)(1),,1,2,3,,i x e e x e x e x e R i +=+-+-++-∈=则012100e e e e ++++=,012100e e e e ++++=。
[思路分析] 将条件等式的左右两边比较,可知变形[]100100(12)3(2)(1)x x +=+--。
利用赋值法,令(1)1x -=,则有100012100(321)1e e e e ++++=-⨯=;令(1)1x -=-,则有[]1001001210032(1)5e e e e ++++=-⨯-=。
[简要评述] 本题考查二项展开式系数的性质,在具体方法上是运用了通法“赋值法”。
例6:从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的不同四位数共有 个。
[思路分析] 由已知,此四位数的末位只能是0或5,且0不能在首位,故0,5为特殊元素,而且二者中至少要选一个。
根据题意,可分三类:有5无0,不同的四位数有123343C C A个;有0无5,不同的四位数有213343C C A个;0,5同时存在,当0在末位时,不同的四位数有113343C C A 个,当5在末位时,不同的四位数有11123422C C C A个。
所以满足条件的不同的四位数共有1232131131234334334322()300C C A C C A C C A C A +++=个。
[简要评述] 本题考查有两个受条件限制的特殊元素的排列组合混合问题,基本解题模型为:分为三类。
第一类,两个中一个都不考虑;第二类,两个中考虑一个;第三类,两个都考虑。
注意在具体求解中其中“先选后排”“位置分析法”等通法的运用。
例7:鱼塘中共有N 条鱼,从中捕得t 条,加上标志后立即放回塘中,经过一段时间,再从塘中捕出n 条鱼,发现其中有s 条标志鱼。
(1)问其中有s 条标志鱼的概率是多少?(2)由此可推测塘中共有多少条鱼(即用,,t n s 表示N )?[思路分析] (1)由题意可知,基本事件总数为n NC 。
鱼塘中的鱼分为两类:有标志的鱼t条,无标志的鱼()N t -条,从而在捕出n 条鱼中,有标志的s 条鱼有st C种可能,同时无标志的()n s -条鱼有n sN t C --种可能,则捕出n 条鱼中有s 条鱼共有s n s t N t C C --种可能。
所以概率为s n st N tnN C C C --。
(2)由分层抽样可知,,s n nt N t N s =∴=(条)。
[简要评述] 本题考查等可能性事件的概率和统计知识,重点要注意“鱼”的不同的分类以及抽样方法中各个元素被抽取概率的相等性。
例8:某宾馆有6间客房,现要安排4位旅游者,每人可以进住任意一个房间,且进住各房间是等可能的,求下列事件各的概率:(1)事件A :指定的4个房间各有1人;(2)事件B :恰有4个房间各有1人;(3)事件C :指定的某房间中有2人;(4)事件D :一号房间有1人,二号房间有2人;(5)事件E :至少有2人在同一个房间。
[思路分析] 由于每人可以进住任一房间,进住哪一个房间都有6种等可能的方法,根据乘法原理,4个人进住6个房间有46种方法,则(1)指定的4个房间中各有1人有44A 种方法,4441()654A P A ==。
(2)恰有4个房间各有1人有4464C A 种方法,446445()618C A P B ==。
(3)从4人中选2人的方法有24C 种,余下的2人每人都可以去另外的5个房间中的任一间,有25种方法,2244525()6216C P C ⋅==。