【同课异构】2020年高中数学精品教学选修2-1课件★★§5 夹角的计算

合集下载

新北师大选修2-1高中数学 直线与平面的夹角

新北师大选修2-1高中数学  直线与平面的夹角

§5夹角的计算第二课时 直线与平面的夹角[对应学生用书P37]在上节研究的山体滑坡问题中,A ,B 两点到直线l (水平地面与山坡的交线)的距离分别为AC 和BD ,直线BD 与地面ACD 的夹角为φ.问题1:φ与〈CA ,DB 〉有什么关系? 提示:φ=π-〈CA ,DB 〉.问题2:φ与〈BD ,n 〉有何关系?(n 为地面法向量)提示:φ=π2-〈BD ,n 〉或φ=〈BD ,n 〉-π2,即sin φ=|cos 〈BD ,n 〉|.直线与平面的夹角(1)平面外一条直线与它在该平面内的投影的夹角叫作该直线与此平面的夹角. (2)如果一条直线与一个平面垂直,这条直线与平面的夹角为π2.(3)如果一条直线与一个平面平行或在平面内,这条直线与平面的夹角为0. (4)设直线l 的方向向量为a ,平面α的法向量为n ,l 与α的夹角为θ,则, 当〈a ,n 〉≤π2时,θ=π2-〈a ,n 〉;当〈a ,n 〉>π2时,θ=〈a ,n 〉-π2.即sin 〈a ,n 〉=|cos 〈a ,n 〉|.(1)直线与平面夹角范围是⎣⎡⎦⎤0,π2; (2)求直线与平面夹角θ时,可用定义求解;也可用直线的方向向量s 、平面的法向量n 的夹角进行求解,但要注意sin θ=|cos 〈s ,n 〉|.[对应学生用书P37][例1] 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 的夹角的正弦值. [思路点拔](1)先证明直线与平面垂直,再利用线面垂直的性质求证线线垂直;(2)建立空间直角坐标系,写出点与向量坐标,将线面角的大小用方向向量和法向量表示,但要注意线面角的范围.[精解详析] (1)如图,取AB 的中点O ,连接OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C 平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB ,又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0),则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0,即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1), 故n ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 的夹角的正弦值为105. [一点通]设直线l 的方向向量为a ,平面α的法向量为u ,直线l 与平面α所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|=|a ·u ||a ||u |或cos θ=sin φ,其中θ与φ满足:①当φ是锐角时,θ=π2-φ;②当φ为钝角时,则θ=φ-π2.1.正方体ABCD -A 1B 1C 1D 1中,AC 81与平面ABCD 夹角的余弦值为( ) A.33 B.36 C.62D.63解析:如图所示建系,设正方体棱长为1,则A (1,0,0),C 1(0,1,1),C (0,1,0),而CC 1⊥面ABCD ,∴AC 1在底面ABCD 的射影为AC . 又1AC =(-1,1,1),AC =(-1,1,0), ∴AC 1与平面ABCD 夹角的余弦值cos θ=|cos 〈1AC ,AC 〉|=63. 答案:D2.如图,正三棱柱ABC -A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 夹角的正弦值为________.解析:取B 1C 1中点O ,建立如图所示的空间直角坐标系. 设AB =BB 1=2,则A 1(-3,0,0),C 1(0,1,0),A (-3,0,2),O (0,0,0),1A O =(3,0,0),1A O 为面BB 1C 1C 的法向量,1AC =(3,1,-2),∴sin θ=|cos 〈1A O ,1AC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1A O ·1AC |1A O ||1AC | =33·3+1+4=64.答案:643.如图所示,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥BD .(1)求证:PB =PD ;(2)若E ,F 分别为PC ,AB 的中点,EF ⊥平面PCD ,求直线PB 与平面PCD 所成角的大小.解:(1)证明:如图所示,连接AC ,BD 交于点O ,连接PO ,∵底面ABCD 是正方形, ∴AC ⊥BD ,且O 为BD 的中点. 又PA ⊥BD ,PA ∩AC =A , ∴BD ⊥平面PAC ,由于PO ⊂平面PAC ,故BD ⊥PO . 又BO =DO ,故PB =PD .(2)如图所示,连接AC ,BD , 设PD 的中点为Q ,连接AQ ,EQ ,则EQ 綊12CD ,∴四边形AFEQ 为平行四边形,EF ∥AQ ,∵EF ⊥平面PCD , ∴AQ ⊥平面PCD ,∴AQ ⊥PD ,Q 为PD 的中点,∴AP =AD = 2. 由AQ ⊥平面PCD ,可得AQ ⊥CD . 又DA ⊥CD ,QA ∩AD =A , ∴CD ⊥平面PAD ,∴CD ⊥PA . 又BD ⊥PA ,∴PA ⊥平面ABCD .∴AB ,AP ,AD 两两垂直,以A 为坐标原点,分别以向量AB ―→,AD ―→,AP ―→的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),Q ⎝⎛⎭⎫0,22,22,D (0,2,0),P (0,0,2),∴AQ ―→=⎝⎛⎭⎫0,22,22,PB ―→=(2,0,-2).易知AQ ―→为平面PCD 的一个法向量, 设直线PB 与平面PCD 所成的角为θ, 则sin θ=cos 〈PB ―→,AQ ―→〉=|PB ―→·AQ ―→||PB ―→|·|AQ ―→|=12,∴直线PB 与平面PCD 所成的角为π6.3.已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 的夹角.解:设PA =1,以A 为原点,射线AB ,AC ,AP 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系如图.则P (0,0,1),C (0,1,0),B (2,0,0),M ⎝⎛⎭⎫1,0,12,N ⎝⎛⎭⎫12,0,0, S ⎝⎛⎭⎫1,12,0. (1)证明:CM =⎝⎛⎭⎫1,-1,12,SN =⎝⎛⎭⎫-12,-12,0,因为CM ·SN =-12+12+0=0,所以CM ⊥SN . (2) NC =⎝⎛⎭⎫-12,1,0,设a =(x ,y ,z )为平面CMN 的一个法向量,则a ·CM =0,a ·NC =0,即⎩⎨⎧x -y +12z =0,-12x +y =0.令x =2,得a =(2,1,-2).因为|cos 〈a ,SN 〉|=⎪⎪⎪⎪⎪⎪-1-123×22=22,所以SN 与平面CMN 的夹角为45°.[例2] 如图,在三棱锥A -BCD 中,侧面ABD ,ACD 是全等的直角三角形,AD 是公共的斜边,且AD =3,BD =CD =1.另一个侧面ABC 是等边三角形.点A 在底面BCD 上的射影为H .(1)以D 点为原点建立空间直角坐标系,并求A ,B ,C 的坐标; (2)求平面BAC 与平面DAC 的夹角的余弦值.(3)在线段AC 上是否存在一点E ,使ED 与面BCD 的夹角为30°?若存在,确定点E 的位置;若不存在,说明理由.[思路点拨] (1)建立坐标系,证明AD ·BC =0. (2)求两平面法向量的夹角.(3)先假设存在点E 满足条件,再建立关于点E 的坐标的方程,判断方程是否有符合题意的解,即可得出结论.[精解详析] (1)由题意AB =AC =2,∴BC = 2.则△BDC 为等腰直角三角形. 连接BH ,CH ,∴DB ⊥BH ,CH ⊥BH .∴四边形BHCD 为正方形,以DC 为y 轴,DB 为x 轴建立空间直角坐标系如图所示,则A (1,1,1),B (1,0,0),C (0,1,0).(2)设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC 知:n 1·BC =-x +y =0.同理,由n 1⊥CA 知:n 1·CA =x +z =0. 可取n 1=(1,1,-1).同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1+0+13·2=63, 即所求平面BAC 与平面DAC 的夹角的余弦值为63. (3)假设存在E 满足条件,设CE =x CA =(x,0,x )(0≤x ≤1),则DE =DC +CE =(0,1,0)+(x,0,x )=(x,1,x ),平面BCD 的一个法向量为n =(0,0,1),∵ED 与平面BCD 的夹角为30°, 由图可知DE 与n 的夹角为60°,所以cos 〈DE ,n 〉=DE ·n | DE ||n |=x 1+2x 2=cos60°=12.则2x =1+2x 2,解得x =22,即E ⎝⎛⎭⎫22,1,22, |AC |=2,|CE |=1.故线段AC 上存在点E (与C 的距离为1),使ED 与平面BCD 的夹角为30°. [一点通]解决存在性探究问题,一般先假设存在,然后进行推理计算,推出的结果若符合题意,则说明假设正确.若出现矛盾或得出相反的结论,则否定假设,说明不存在.4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD 与平面PAC 的夹角为90°?若存在,确定P 点位置;若不存在,说明理由.解:如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎫1,1,12, 假设存在P (0,0,x )(0≤x ≤1)满足条件,经检验,当x =0时不满足要求, 当0<x ≤1时,则PA =(1,0,-x ),AC =(-1,1,0),MD =(-1,-1,-12).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎨⎧PA ·n =0, AC ·n =0,得⎩⎪⎨⎪⎧x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =(1,1,1x ). 由题意MD ∥n ,由MD =⎝⎛⎭⎫-1,-1,-12=-⎝⎛⎭⎫1,1,12=-n , 得x =2.又0<x ≤1,故不满足要求,综上所述,棱DD 1上不存在点P ,使MD 与平面PAC 的夹角为90°.5.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求平面A 1BC 1与平面B 1BC 1的夹角的余弦值; (3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值. 解:(1)证明:因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0,即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面B 1BC 1的法向量为m =(3,4,0). 所以cos 〈 n ,m 〉=n ·m |n ||m |=1625.所以平面A 1BC 1与平面B 1BC 1的夹角的余弦值为1625.(3)证明:设D (x 1,y 1,z 1)是线段BC 1上一点,且BD =λ1BC . 所以(x 1,y 1-3,z 1)=λ(4,-3,4). 解得x 1=4λ,y 1=3-3λ,z 1=4λ.所以AD=(4λ,3-3λ,4λ).由AD·1A B=0,即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC1上存在点D,使得AD⊥A1B.此时,BDBC1=λ=9 25.计算直线l与平面α的夹角为θ.(1)利用法向量计算θ的步骤如下:(2)利用定义计算θ的步骤如下:[对应课时跟踪训练(十二)]1.已知直线l的一个方向向量为a=(1,1,0),平面α的一个法向量为μ=(1,2,-2),则直线l与平面α夹角的余弦值为()A.22B.-22C.±22 D.12解析:cos〈a,μ〉=a·μ|a||μ|=32·3=22,则直线l与平面α的夹角θ的正弦值sin θ=|cos〈a ,μ〉|=22,cos θ=22. 答案:A2.已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 是边长为4的正方形,长方体的高为AA 1=3,则BC 1与对角面BB 1D 1D 夹角的正弦值等于( )A.45 B.35 C.225D.325解析:建立如图所示的空间直角坐标系,∵底面是边长为4的正方形,AA 1=3,∴A 1(4,0,0),B (4,4,3),C 1(0,4,0).而面BB 1D 1D 的法向量为AC =11A C =(-4,4,0),∴BC 1与对角面BB 1D 1D 所成角的正弦值即为|cos 〈1BC ,11A C 〉|=|(-4,0,-3)·(-4,4,0)|42+32×42+42=165×42=225.答案:C3.如图所示,点P 是△ABC 所在平面外的一点,若PA ,PB ,PC 与平面α的夹角均相等,则点P 在平面α上的投影P ′是△ABC 的( )A .内心B .外心C .重心D .垂心解析:由于PA ,PB ,PC 与平面α的夹角均相等,所以这三条由点P出发的平面ABC 的斜线段相等,故它们在平面ABC 内的投影P ′A ,P ′B ,P ′C 也都相等,故点P ′是△ABC 的外心.答案:B4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33 C.23 D.13解析:建立如图所示的空间直角坐标系,设AA 1=2AB =2,则B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,2),故DB ―→=(1,1,0),DC 1―→=(0,1,2),DC ―→=(0,1,0).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DC 1―→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2,所以平面BDC 1的一个法向量为n =(2,-2,1).设直线CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC ―→〉|=|n ·DC ―→||n |·|DC ―→|=23,故选A.答案:A5.四棱锥P -ABCD 中,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD =DA =2,F ,E 分别为AD ,PC 的中点.(1)求证:DE ∥平面PFB ; (2)求点E 到平面PFB 的距离.解:(1)证明:以D 为原点, 建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1).FP ―→=(-1,0,2),FB ―→=(1,2,0),DE ―→=(0,1,1),∴DE ―→=12FP ―→+12FB ―→,∴DE ―→∥平面PFB . 又∵DE ⊄平面PFB , ∴DE ∥平面PFB . (2)∵DE ∥平面PFB ,∴点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·FB ―→=0,n ·FP ―→=0⇒⎩⎪⎨⎪⎧x +2y =0,-x +2z =0,令x =2,得y =-1,z =1.∴n =(2,-1,1),又∵FD ―→=(-1,0,0), ∴点D 到平面PFB 的距离 d =|FD ―→·n ||n |=26=63.∴点E 到平面PFB 的距离为63. 6.如图所示,已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 夹角的正弦值为________.解析:不妨设正三棱柱ABC -A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2,则CD =(32,-12,2),1CB =(3,1,2), 设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD =0,n ·1CB =0,解得n =(-3,1,1). 又∵DA =⎝⎛⎭⎫32,-12,-2, ∴sin θ=|cos 〈DA ,n 〉|=45.答案:457.如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点. 求直线AD 和平面ABC 1夹角的正弦值.解:如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D⎝⎛⎭⎫32,-12,2.易知AB =(3,1,0),1AC =(0,2,2),AD =⎝⎛⎭⎫32,12,2.设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AB =3x +y =0,n ·1AC =2y +2z =0,解得x =-33y ,z =-2y . 故可取n =(1,-3,6).所以cos 〈n ,AD 〉=n ·AD |n ||AD |=2310×3=105.即直线AD 和平面ABC 1夹角的正弦值为105. 8.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 夹角的正弦值为67,求k 的值.解:(1)证明:取CD 的中点E ,连接BE ,如图.∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2, ∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD 平面ABCD , ∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1), ∴AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC ·n =0, 1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 的夹角为θ,则sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AA ·n | 1AA |n |=6k 36k 2+13=67,解得k =1, 故所求k 的值为1.。

2-5-1~2夹角的计算课件(北师大版选修2-1)

2-5-1~2夹角的计算课件(北师大版选修2-1)

按照二面角的平面角的定义和空间任意两个向量都是共面向量 的知识,我们只要是在二面角的两个半平面内分别作和二面角 的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指 向外,那么这两个向量所成的角的大小就是二面角的大小.如 图所示.
题型一 利用空间向量求异面直线所成的角 【例 1】 在正方体 ABCD-A1B1C1D1 中,E1,F1 分别在 A1B1, 1 1 C1D1 上,且 E1B1=4A1B1,D1F1=4D1C1,求 BE1 与 DF1 所成的 夹角的余弦值. [思路探索] 几何法,平移直线构造在同一个三角形中,通过解 三角形求解;向量法,可以用基底,也可以建立坐标系,利用 方向向量的夹角求解.
→ |n· | 1 BM ∵cos θ =|cos φ |= = , → 2 |n||BM| π 解得 θ= , 3 π ∴二面角 B1­A1C­C1 的大小为 3 .
题型三 综合问题 【例 3】 (12 分)如下图,在长方体 ABCD-A1B1C1D1 中,已知 AB=4,AD=3,AA1=2.E、F 分别是线段 AB、BC 上的点,且 EB=FB=1.
题型二
利用空间向量求二面角
【例 2】已知正方体 ABCD-A1B1C1D1 中平面 AB1D1 与平面 A1BD 所成的夹角为 θ,求 cos θ 的值.
求点坐标及相 [思路探索] 建立坐标系 → → 关向量的坐标 A1BD 及平面 AB1D1 的法向量 n1, 2→ n
求平面
求|cos 1, 2〉 cos θ 〈n n |→
→ ∵向量AA1=(0,0,2)与平面 CDE 垂直, 设二面角 CDEC1 的平面角大小为 θ. 由图知所求二面角为锐二面角,(6 分) → n· 1 AA → ∴cos θ =cos〈n,AA1〉= → |n|· 1| |AA -1×0-1×0+2×2 6 = =3, 1+1+4× 0+0+4 2 ∴tan θ = .(8 分) 2

高中数学北师大版选修2-1同步配套教学案第二章 2.5 夹角的计算

高中数学北师大版选修2-1同步配套教学案第二章 2.5 夹角的计算

§夹角的计算第一课时直线间的夹角、平面间的夹角山体滑坡是一种常见的自然灾害.甲、乙两名科学人员为了测量一个山体的倾斜程度,甲站在水平地面上的处,乙站在山坡斜面上的处,从,两点到直线(水平地面与山坡的交线)的距离和分别为和,的长为,的长为 .问题:直线和的夹角范围是什么?向量与向量的夹角范围是什么?提示:,[,π].问题:直线与的夹角与〈,〉有什么关系?提示:当≤〈,〉≤时,它们相等;当<〈,〉≤π时,直线与的夹角为π-〈,〉.问题:上图中水平地面与斜坡面的夹角α与〈,〉有什么关系?为什么?提示:α=π-〈,〉,因为图中两平面夹角(即为直线与的夹角)为锐角,而〈,〉为钝角,所以α=π-〈,〉.问题:若,分别为两个平面π,π的法向量,则π与π的夹角θ与〈,〉有什么关系?提示:当≤〈,〉≤时,θ=〈,〉;当<〈,〉≤π时,θ=π-〈,〉..两直线的夹角当两条直线与共面时,把两条直线交角中,范围在内的角叫做两直线的夹角..异面直线与的夹角()定义:直线与是异面直线,在直线上任取一点作∥,则直线和直线的夹角叫作异面直线与的夹角.()计算:设直线与的方向向量分别为,.当≤〈,〉≤时,直线与的夹角等于〈,〉;当<〈,〉≤π时,直线与的夹角等于π-〈,〉..平面间的夹角()定义:平面π与π相交于直线,点为直线上任意一点,过点,在平面π上作直线⊥,在平面π上作直线⊥,则直线和的夹角叫作平面π与π的夹角.()计算:已知平面π和π的法向量分别为和,当≤〈,〉≤时,平面π和π的夹角等于〈,〉;当<〈,〉≤π时,平面π和π的夹角等于π-〈,〉..求空间角时,要注意角的范围.()异面直线夹角范围是;()两平面夹角范围是..求两异面直线的夹角、两平面夹角时可用定义求解;也可用直线的方向向量、平面的法向量的夹角进行求解,但要注意其转化关系.[例]如图所示,在四棱锥-中,底面是一直角梯形,∠=°,∥,==,=,且⊥底面,∠=°,⊥,为垂足.()求证:⊥;()求异面直线与夹角的余弦值.[思路点拨]要证明两直线垂直,或求两直线的夹角,只要适当地建立空间直角坐标系,求出两直线对应的方向向量,然后借助于这两个向量的数量积公式即可求得.[精解详析]以为原点,,,所在的直线为坐标轴,建立空间直角坐标系,如图,则(),(),(,),().又∵∠=°,∴=· °=·=,=· °=·=.过作⊥,垂足为,在△中,=,∠=°,∴=,=.∴,.()证明:=,=,∴·=+-=.∴⊥,∴⊥.。

北师大版选修2-1高中数学2.5《夹角的计算》word导学案

北师大版选修2-1高中数学2.5《夹角的计算》word导学案

北师大版选修2-1高中数学2.5《夹角的计算》w o r d导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN课 题: 2.5夹角的计算 学习目标:知识与技能 : 掌握空间向量的夹角公式及其简单应用; 学生学会选择恰当的方法求夹角.过程与方法: 经历知识的发生、发展和形成过程,提高观察分析、类比转化的能力; 学生通过用向量法解决空间角的问题,提高数形结合能力和分析问题、解决问题的能力.情感态度价值观: 提高学生的学习热情和求知欲,体现学生的主体地位; 感受和体会“学数学用数学”、“学会与会学”的关系.学习重点 : 空间向量夹角公式及其坐标表示;选择恰当方法求夹角. 学习难点 : 两条异面直线的夹角与两个空间向量的夹角之间的区别;构建恰当的空间直角坐标系,并正确求出点的坐标及向量的坐标.学习方法 以讲学稿为依托的探究式教学方法.学习过程一、课前预习指导:1.两条异面直线所成的角:当直线l 1、l 2是异面直线时,在直线l 1上任取一点A 作AB ∥l 2,我们把l 1和直线AB 的夹角叫做异面直线l 1与l 2的夹角.已知l 1、l 2的方向向量分别为s 1、s 2,当0≤〈s 1,s 2〉≤π2时,l 1与l 2的夹角等于〈s 1,s 2〉;当π2<〈s 1,s 2〉≤π时,l 1与l 2的夹角等于π-〈s 1,s 2〉. 2.直线和平面的夹角是指这条直线与它在这个平面内的 的夹角,其范围是 斜线与平面的夹角是这条直线与平面内的一切直线所成角中 的角.直线和平面所成的角可以通过直线的 与平面的 求得,若设直线与平面所成的角为θ,直线的方向向量与平面的法向量的夹角为φ,则有sin θ= .3. 如图所示,平面π1与π2相交于直线l ,点R 为直线l 上任意一点, 过点R ,在平面π1上作直线l 1⊥l ,在平面π2上作直线l 2⊥l ,则l 1∩l 2=R .我们把直 线l 1和l 2的夹角叫作平面π1与π2的夹角. 已知平面π1和π2的法向量分别为n 1和n 2.当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉; 当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉.二、新课学习:问题探究一线线夹角问题1 两直线夹角的范围是什么?问题2 怎样求两条异面直线所成的角?问题 3 两条异面直线所成的角和两条异面直线的方向向量的夹角有什么区别?讲解教材43页例1学后检测1:如图所示,三棱柱OAB—O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.问题探究二求直线和平面的夹角问题1 直线和平面的夹角的范围是什么?问题2怎样利用向量求直线和平面所成的角?讲解教材45页例3,46页例4学后检测2如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM; (2)求BD与平面ADMN的夹角.问题探究三求平面间的夹角问题怎样利用向量法求两个平面间的夹角的大小?讲解教材44页例2学后检测3 如图,已知四棱锥P—ABCD中,PA⊥底面ABCD,且ABCD为正方形,PA=AB=a,点M是PC的中点.(1)求BP与DM所成的角的大小;(2)求平面MAD与平面的ABCD的夹角的大小.三、当堂检测:1.若直线l1的方向向量与l2的方向向量的夹角是150°,则l1与l2这两条异面直线所成的角等于( )A.30° B.150° C.30°或150° D.以上均错2.已知向量m,n分别是直线l和平面α的方向向量、法向量,若cos〈m,n〉=-1 2,则l与α所成的角为 ( )A.30° B.60° C.120° D.150°3.正方体ABCD—A1B1C1D1中,直线BC1与平面A1BD的夹角的正弦值为()A.24B.23C.63D.324.在正方体ABCD—A1B1C1D1中,E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为______.四、课堂小结五、课后作业六、板书设计:七、教(学)后反思。

夹角的计算-北师大版高中数学选修2-1ppt课件

夹角的计算-北师大版高中数学选修2-1ppt课件

的 法 向 量 平 移 到 A 1B 1C 1位 置 , 已 知 BCC AC C 1, 取 A 1B 1、
A 1C 1的 中 点 D 1、 F 1, 求 AF 1与 D 1 B所 成 的 角 的 余 弦 值 .
解1:以点C为坐标原点建立空间直角坐标系 C xyz.
如图所示,设 C C1 则 1:
A
F
y
B
所 以 B 1 C 1 与 面 A B 1 C 所 成 的 角 的 正 弦 值 为 3 3。
例:
的棱长为 1.
求 B 1 C 1 与 平 面 A B 1 C 所 成 的 角 的 正 弦 值 .
解2 立体几何法
z
D1
A1
C1
B1
D
xC
PE A
F
y
B
例 RtABC 中 , BC A900,现 将 ABC 沿 着 平 面 ABC 的 法 向 量 平 移 到 A 1B 1C 1位 置 , 已 知 BCC AC C 1, 取 A 1B 1、 A 1C 1的 中 点 D 1、 F 1, 求 AF 1与 D 1 B所 成 的 角 的 余 弦 值 .
u
例:
的棱长为 1.
求 B 1 C 1 与 平 面 A B 1 C 所 成 的 角 的 正 弦 值 .
z
解1 建立直角坐标系.
D1
A1
则 B 1 C 1 (0 , - 1 , 0 ), C1
B1
平面AB1C的一个法向量为
D1B=(1,1,1),
D
cos
BD1, B1C1
010 3 1 3 3
xC
E
A .x
30 .
10
2、夹线角面问角题:设直线 l,m 的方向向量分别为 a, b ,

北师大版选修2-1高中数学2.5《夹角的计算》ppt课件(1)

北师大版选修2-1高中数学2.5《夹角的计算》ppt课件(1)
-12-
§5 夹角的计算
首页
J 基础知识 ICHU ZHISHI
Z 重点难点 HONGDIAN NANDIAN
S 随堂练习 UITANG LIANXI
探究一
探究二
探究三
探究四
解法一:∵������������1 = ������������ + ������������1, ������������ = ������������ + ������������,
S 随堂练习 UITANG LIANXI
1
2
3
思考 2 如何利用向量求平面间的夹角?
提示:先求出两个平面的法向量,再利用向量夹角公式求角,则该角或它 的补角就等于平面间的夹角.一般用坐标运算进行,求解后要结合题意来判 断求出的角是夹角的补角还是夹角.
-7-
§5 夹角的计算
首页
J 基础知识 ICHU ZHISHI
∴������������=(2,0,-2 3),������������=(-2,-3,0),
∴cos<������������, ������������>=���|���������������������·||���������������������|��� = 4 -413=- 1133, ∴PA 与 BC 夹角的余弦值为 1133.
当 0≤<n1,n2>≤���2���时,平面 π1 与 π2 的夹角等于
������n1,n2������; 当���2���<<n1,n2>≤π 时,平面 π1 与 π2 的夹角等于 π-<n1,n2>.
-6-
§5 夹角的计算
首页
J 基础知识 ICHU ZHISHI

高中数学选修2-1北师大版 夹角的计算 课件 (37张)

高中数学选修2-1北师大版 夹角的计算 课件 (37张)
������������ ·������������ cos������ ������������1 , ������������������ = 1 |������������1 |·|������������|
=
π 3
-������2 1 2π =- ,∴ ������ ������������1 , ������������ ������ = , 2a× 2a 2 3
探究一
探究二
探究三
探究四
直线间的夹角
已知直线 l1 与 l2 的方向向量分别为 s1,s2,l1 与 l2 间的夹角为 θ,先用向量 夹角公式求出������ s1,s2������ 或 cos������ s1,s2������ ,再根据直线间的夹角的范围判断 θ=������ s1,s2������ 还是 θ=π-������ s1,s2������ ,最后得出结论.
1
2
3
反思 1.直线与平面所成的角用向量来求时,得到的不是线面角,
而是它的余角(或补角的余角).应注意到线面角为锐角(或直角). 2.直线与平面所成角 θ 的范围是 0,
π 2
.向量法可通过直线的方向向量
与平面的法向量的夹角 φ 求得,关系式:sin θ=|cos φ|或 cos θ=sin φ.
探究一
探究二
探究三
探究四
解法一:∵ ������������1 = ������������ + ������������1 , ������������ = ������������ + ������������ , ∴ ������������1 ·������������ =(������������ + ������������1 )·(������������ + ������������ ) =������������·������������ + ������������·������������ + ������������1 ·������������ + ������������1 ·������������ . ∵ AB⊥BC,BB1⊥AB,BB1⊥BC, ∴ ������������·������������ =0,������������1 ·������������=0,������������1 ·������������ =0,������������·������������=-a2,∴ ������������1 ·������������ =-a2. 又

高中数学北师大版选修2-1 2.5.3直线与平面的夹角 课件(36张)

高中数学北师大版选修2-1 2.5.3直线与平面的夹角 课件(36张)

M 目标导航 Z 知识梳理 D典例透析 S随堂演练
UBIAODAOHANG HISHI SHULI IANLI TOUXI
UITANGYANLIAN
题型一
题型二
Байду номын сангаас题型三
解:(方法一)如图所示,连接BC1,交B1C于点O,连接A1O. ∵BC1⊥B1C,A1B1⊥BC1,A1B1∩B1C=B1, ∴BC1⊥平面A1B1CD, ∴A1B在平面A1B1CD内的射影为A1O, ∴∠OA1B就是A1B与平面A1B1CD所成的角. 设正方体的棱长为1,
3.夹角的计算常用方法 (1)定义法:利用角的定义作出所求的角,构造三角形求解,步骤:一 “作”;二“证”;三“求”. (2)向量法:根据题目条件建立合适的空间直角坐标系,写出有关 点的坐标,把所求的角转化为向量的夹角,避免了作角,使过程变得 简单.
M 目标导航 Z 知识梳理 D典例透析 S随堂演练
在 Rt△A1OB 中 ,A1B= 2,BO=
������������ ∴sin∠OA 1B=������ ������ 1
2 , 2
=
2 2
2
=
1 ,∴∠OA 1B=30° . 2
∴A1B 与平面 A1B1CD 所成的角为 30° .
M 目标导航 Z 知识梳理 D典例透析 S随堂演练
UBIAODAOHANG HISHI SHULI IANLI TOUXI
UITANGYANLIAN
题型一
题型二
题型三
(方法二)如图所示,以D为坐标原点,直线DA,DC,DD1分别为x轴、 y轴、z轴建立空间直角坐标系. 设正方体的棱长为1,则A1(1,0,1),C(0,1,0),
∴������������1 =(1,0,1), ������������ =(0,1,0).

选修2-1第二章夹角的运算

选修2-1第二章夹角的运算

明目标、知重点 1.理解直线与平面所成角的概念.2.能够利用向量方法解决线线、线面、面面的夹角问题.3.体会用空间向量解决立体几何问题的三步曲.1.两条异面直线所成的角:当直线l 1、l 2是异面直线时,在直线l 1上任取一点A 作AB ∥l 2,我们把l 1和直线AB 的夹角叫做异面直线l 1与l 2的夹角.已知l 1、l 2的方向向量分别为s 1、s 2,当0≤〈s 1,s 2〉≤π2时,l 1与l 2的夹角等于〈s 1,s 2〉;当π2<〈s 1,s 2〉≤π时,l 1与l 2的夹角等于π-〈s 1,s 2〉. 2.直线和平面的夹角是指这条直线与它在这个平面内的投影的夹角,其范围是⎣⎡⎦⎤0,π2,斜线与平面的夹角是这条直线与平面内的一切直线所成角中最小的角.直线和平面所成的角可以通过直线的方向向量与平面的法向量求得,若设直线与平面所成的角为θ,直线的方向向量与平面的法向量的夹角为φ,则有sin θ=|cos_φ|.3.如图所示,平面π1与π2相交于直线l ,点R 为直线l 上任意一点,过点R ,在平面π1上作直线l 1⊥l ,在平面π2上作直线l 2⊥l ,则l 1∩l 2=R .我们把直线l 1和l 2的夹角叫作平面π1与π2的夹角. 已知平面π1和π2的法向量分别为n 1和n 2.当0≤〈n 1,n 2〉≤π2时,平面π1与π2的夹角等于〈n 1,n 2〉;当π2<〈n 1,n 2〉≤π时,平面π1与π2的夹角等于π-〈n 1,n 2〉.探究点一 求两条异面直线的夹角 思考1 怎样求两条异面直线的夹角?答 (1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)向量法:设a 、b 分别为异面直线l 1、l 2上的方向向量,θ为异面直线的夹角,则异面直线的夹角公式cos θ=|cos 〈a ,b 〉|=|a·b ||a||b |.思考2 两条异面直线的夹角和两条异面直线的方向向量夹角有什么区别?答 两条异面直线的夹角为锐角或直角,而两向量夹角的范围是[0,π],两条异面直线的夹角与它们的方向向量的夹角相等或互补.例1 如图所示,三棱柱OAB —O 1A 1B 1中,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,∠AOB =90°,且OB =OO 1=2,OA =3,求异面直线A 1B 与AO 1夹角的余弦值.解 建立如图所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A (3,0,0),A 1(3,1,3),B (0,2,0), ∴A 1B →=(-3,1,-3), O 1A →=(3,-1,-3). ∴|cos 〈A 1B →,O 1A →〉| =|A 1B →·O 1A →||A 1B →|·|O 1A →|=|(-3,1,-3)·(3,-1,-3)|7·7=17.∴异面直线A 1B 与AO 1夹角的余弦值为17.反思与感悟 建立空间直角坐标系要充分利用题目中的垂直关系;利用向量法求两异面直线夹角计算思路简便,要注意角的范围.跟踪训练1 如图,四棱锥P ABCD 中,PD ⊥平面ABCD ,P A 与平面ABCD 所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB =4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B 、P 的坐标; (2)求异面直线P A 与BC 夹角的余弦值.解 (1)如图,建立空间直角坐标系. ∵∠ADC =∠DAB =90°, AB =4,CD =1,AD =2.∴A (2,0,0),C (0,1,0),B (2,4,0). 由PD ⊥平面ABCD ,得∠P AD 为P A 与平面ABCD 所成的角,∴∠P AD =60°. 在Rt △P AD 中,由AD =2,得PD =2 3. ∴P (0,0,23).(2)由(1)得,P A →=(2,0,-23),BC →=(-2,-3,0), ∴|cos 〈P A →,BC →〉|=|2×(-2)+0×(-3)+(-23)×0|4×13=1313,即P A 与BC 夹角的余弦值为1313. 探究点二 求平面间的夹角思考 怎样利用向量法求两个平面夹角的大小?答 (1)基向量法:利用定义在棱上找到两个能表示二面角的向量,将其用一组基底表示,再做向量运算;(2)法向量:建立适当的空间直角坐标系,求得相关两个平面的法向量,再借助平面的法向量求解.设n 1、n 2分别是面α、β的法向量,θ为平面间的夹角,实际上θ与〈n 1,n 2〉可能相等,也可能互补,所以cos θ=|n 1·n 2||n 1||n 2|. 例2 在空间直角坐标系中有单位正方体ABCD -A ′B ′C ′D ′.求平面BCD ′A ′与平面ABCD 的夹角θ.解 设平面BCD ′A ′与平面ABCD 的法向量分别是n 1和n 2,取n 2=(0,0,1).因为A ′(0,0,1),B (0,1,0),C (1,1,0),所以 A ′B →=(0,1,-1),BC →=(1,0,0).设n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·A ′B →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧y -z =0,x =0.取n 1=(0,1,1),得cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=22.此时〈n 1,n 2〉=π4,因此,平面BCD ′A ′与平面ABCD 的夹角θ=〈n 1,n 2〉=π4.若取平面BCD ′A ′的法向量n 1=(0,-1,-1),则 cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-22.此时〈n 1,n 2〉=3π4,因此,平面BCD ′A ′与平面ABCD 的夹角θ=π-〈n 1,n 2〉=π4.反思与感悟 (1)当空间直角坐标系容易建立(有特殊的位置关系)时,用向量法求解二面角无需作出二面角的平面角.只需求出平面的法向量,经过简单的运算即可求出,有时不易判断两法向量的夹角的大小就是二面角的大小(相等或互补),但我们可以根据图形观察得到结论,因为二面角是钝二面角还是锐二面角一般是明显的. (2)注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角.跟踪训练2 若P A ⊥平面ABC ,AC ⊥BC ,P A =AC =1,BC =2,求平面P AB 与平面PBC 夹角的余弦值.解 如图所示建立空间直角坐标系,则 A (0,0,0),B (2,1,0), C (0,1,0),P (0,0,1),故AP →=(0,0,1),AB →=(2,1,0), CB →=(2,0,0),CP →=(0,-1,1), 设平面P AB 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧(x ,y ,z )·(0,0,1)=0,(x ,y ,z )·(2,1,0)=0⇒⎩⎪⎨⎪⎧z =0,2x +y =0, 令x =1,则y =-2,故m =(1,-2,0). 设平面PBC 的法向量为n =(x ′,y ′,z ′),则 ⎩⎪⎨⎪⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧(x ′,y ′,z ′)·(2,0,0)=0,(x ′,y ′,z ′)·(0,-1,1)=0⇒⎩⎪⎨⎪⎧2x ′=0,-y ′+z ′=0. 令y ′=-1,则z ′=-1,故n =(0,-1,-1), ∴cos 〈m ,n 〉=m·n|m||n|=33. ∴平面P AB 与平面PBC 夹角的余弦值为33. 探究点三 求直线和平面的夹角思考1 直线和平面的夹角的范围是什么?答 直线和平面的夹角的范围是[0°,90°];若直线和平面斜交,所成的角为锐角. 思考2 直线与平面的夹角θ和直线方向向量a 与平面法向量b 的夹角有什么关系? 答 直线方向向量与平面法向量所夹的锐角α和直线与平面所成的角θ互为余角,即θ=π2-α.因此sin θ=cos α=|a ·b ||a ||b |.思考3 当一条直线l 与一个平面α的夹角为0时,这条直线一定在平面内吗? 答 不一定,这条直线还可能与平面平行.例3 如图,在空间直角坐标系中有单位正方体ABCD -A ′B ′C ′D ′,E ,F 分别是B ′C ′,A ′D ′的中点.求直线AC 与平面ABEF 的夹角θ的正弦值.解 因为A (0,0,0),B (1,0,0),C (1,1,0),F (0,12,1),所以AC →=(1,1,0).设平面ABEF 的法向量是n =(x ,y ,z ),因为AB →=(1,0,0),AF →=(0,12,1),则⎩⎪⎨⎪⎧ n ·AB →=0,n ·AF →=0,得⎩⎪⎨⎪⎧x =0,12y +z =0.取n =(0,1,-12),得cos 〈n ,AC →〉=n ·AC →|n ||AC →|=152×2=210=105>0,故〈n ,AC →〉<π2,所以直线AC 与平面ABEF 的夹角θ=π2-〈n ,AC →〉.所以sin θ=sin(π2-〈n ,AC →〉)=cos 〈n ,AC →〉=105.反思与感悟 借助于向量求线面角关键在于确定直线的方向向量和平面的法向量,一定要注意向量夹角与线面角的区别和联系.跟踪训练3 已知正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,M 为A 1B 1的中点,求BC 1与平面AMC 1的夹角的正弦值.解 建立如图所示的空间直角坐标系,则A (0,0,0),M (0,a2,2a ),C 1(-32a ,a2,2a ),B (0,a,0), 故AC 1→=(-32a ,a 2,2a ),AM →=(0,a 2,2a ),BC 1→=(-32a ,-a 2,2a ).设平面AMC 1的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧AC 1→·n =0,AM →·n =0.∴⎩⎨⎧-32ax +a2y +2az =0,a 2y +2az =0,令y =2,则z =-22,x =0.∴n =(0,2,-22). 又BC 1→=(-32a ,-a 2,2a ),∴cos 〈BC 1→,n 〉=BC 1→·n |BC 1→||n |=-a -a 3a ×92=-269.设BC 1与平面AMC 1的夹角为θ, 则sin θ=|cos 〈BC 1→,n 〉|=269.1.若直线l 1的方向向量与l 2的方向向量的夹角是150°,则l 1与l 2这两条异面直线的夹角等于( ) A .30° B .150° C .30°或150° D .以上均错答案 A2.已知向量m ,n 分别是直线l 的方向向量和平面α的法向量,若cos 〈m ,n 〉=-12,则l 与α的夹角为( )A .30°B .60°C .120°D .150° 答案 A解析 设l 与α的夹角为θ,则sin θ=|cos 〈m ,n 〉|=12.∴θ=30°.3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 夹角的正弦值为( ) A.24 B.23 C.63 D.32答案 C解析 建系如图,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1),A (1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B →=(0,1,-1), A 1D →=(-1,0,-1). ∴AC 1→·A 1B →=1-1=0,AC 1→·A 1D →=1-1=0.∴AC 1→是平面A 1BD 的一个法向量.∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.∴直线BC 1与平面A 1BD 所成角的正弦值为63. 4.已知点A (1,0,0),B (0,2,0),C (0,0,3),则平面ABC 与平面xOy 夹角的余弦值为________. 答案 27解析 AB →=(-1,2,0),AC →=(-1,0,3).设平面ABC 的法向量为n =(x ,y ,z ).由n ·AB →=0,n ·AC →=0知⎩⎪⎨⎪⎧-x +2y =0,-x +3z =0.令x =2,则y =1,z =23.∴平面ABC 的一个法向量为n =(2,1,23).平面xOy 的一个法向量为OC →=(0,0,3).由此易求出平面ABC 与平面xOy 夹角的余弦值cos θ=n ·OC →|n |·|OC →|=23×73=27.5.如图,在三棱锥V —ABC 中,顶点C 在空间直角坐标系的原点处,顶点A 、B 、V 分别在x 、y 、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =π3,求异面直线AC 与VD 夹角的余弦值. 解 由于AC =BC =2,D 是AB 的中点,所以 C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0). 在Rt △VCD 中,CD =2,tan ∠VDC =3, 故V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6). 所以cos 〈AC →,VD →〉=AC →·VD →|AC →||VD →|=-22·22=-24.所以异面直线AC 与VD 夹角的余弦值为24.[呈重点、现规律]利用空间向量求角的基本思路是把空间角转化为求两个向量之间的关系.首先要找出并利用空间直角坐标系或基向量(有明显的线面垂直关系时尽量建系)表示出向量;其次理清所求角和两个向量夹角之间的关系.一、基础过关1.若直线l 的方向向量与平面α的法向量的夹角等于150°,则直线l 与平面α的夹角等于( ) A .30° B .60° C .150° D .以上均错答案 B2.直线l 1,l 2的方向向量分别是v 1,v 2,若v 1与v 2的夹角为θ,直线l 1,l 2的夹角为α,则( ) A .α=θ B .α=π-θ C .cos θ=|cos α| D .cos α=|cos θ| 答案 D3.在正四面体ABCD 中,E 为棱AD 的中点,则CE 与平面BCD 夹角的正弦值为( ) A.12 B.23 C.32D.73 答案 B4.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 的夹角为( ) A .60° B .90° C .105° D .75° 答案 B解析 建立如图所示的空间直角坐标系,设BB 1=1,则A (0,0,1), B 1⎝⎛⎭⎫62,22,0,C 1(0,2,0), B ⎝⎛⎭⎫62,22,1. ∴AB 1→=⎝⎛⎭⎫62,22,-1,C 1B →=⎝⎛⎭⎫62,-22,1,∴AB 1→·C 1B →=64-24-1=0,即AB 1与C 1B 的夹角为90°.5.在矩形ABCD 中,AB =1,BC =2,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 的夹角是________. 答案 30°解析 建立如图所示的空间直角坐标系,则P (0,0,1),C (1,2,0),PC →=(1,2,-1),平面ABCD 的一个法向量为n =(0,0,1), 所以cos 〈PC →,n 〉 =PC →·n |PC →|·|n |=-12,所以〈PC →·n 〉=120°,所以斜线PC 与平面ABCD 的法向量所在直线的夹角为60°, 所以斜线PC 与平面ABCD 的夹角为30°.6.若两个平面α,β的法向量分别是n =(1,0,1),ν=(-1,1,0),则这两个平面的夹角是________. 答案 60°解析 ∵cos 〈n ,ν〉=-12·2=-12.∴〈n ,ν〉=120°.故两平面的夹角为60°.7.如图,已知点P 在正方体ABCD —A ′B ′C ′D ′的对角线BD ′上,∠PDA =60°.(1)求DP 与CC ′的夹角;(2)求DP 与平面AA ′D ′D 的夹角.解 如图,以D 为原点,DA 为单位长建立空间直角坐标系Dxyz .则DA →=(1,0,0), CC ′→=(0,0,1). 连接BD ,B ′D ′.在平面BB ′D ′D 中,延长DP 交B ′D ′于H .设DH →=(m ,m,1) (m >0),由已知〈DH →,DA →〉=60°,由DA →·DH →=|DA →||DH →|cos 〈DH →,DA →〉,可得2m =2m 2+1. 解得m =22,所以DH →=⎝⎛⎭⎫22,22,1. (1)因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22, 所以〈DH →,CC ′→〉=45°,即DP 与CC ′的夹角为45°.(2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0).因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12, 所以〈DH →,DC →〉=60°.可得DP 与平面AA ′D ′D 的夹角为30°.二、能力提升8.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 夹角的余弦值为( )A.13B.23C.33D.23答案 C解析 令正四棱锥的棱长为2,建立如图所示坐标系,则A (1,-1,0),D (-1,-1,0),S (0,0,2),E (12,12,22), ∴AE →=(-12,32,22), SD →=(-1,-1,-2),∴|cos 〈AE →,SD →〉|=|AE →·SD →||AE →||SD →|=|-33|=33. ∴AE 、SD 夹角的余弦值为33. 9.在空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________. 答案 0解析 OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →|·|OC →|cos π3-|OA →|·|OB →|·cos π3=12|OA →|(|OC →|-|OB →|)=0. ∴cos 〈OA →·BC →〉=|OA →·BC →||OA →||BC →|=0. 10.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为______. 答案 60°解析 由条件,知CA →·AB →=0,AB →·BD →=0,CD →=CA →+AB →+BD →.∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉=(217)2.∴cos 〈CA →,BD →〉=-12,〈CA →,BD →〉=120°, ∴二面角的大小为60°.11.如图,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD . (1)求异面直线BF 与DE 的夹角;(2)证明:平面AMD ⊥平面CDE ;(3)求平面ACD 与平面CDE 的夹角的余弦值.(1)解 如图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M (12,1,12).BF →=(-1,0,1),DE →=(0,-1,1),于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12×2=12.所以异面直线BF 与DE 的夹角为60°.(2)证明 由AM →=(12,1,12),CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE 平面CDE ,所以平面AMD ⊥平面CDE .(3)解 设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧ -x +z =0,-y +z =0.令x =1,可得u =(1,1,1).又由题设,平面ACD 的一个法向量为v =(0,0,1).所以,cos 〈u ,v 〉=u·v |u||v |=0+0+13×1=33.所以平面ACD 与平面CDE 夹角的余弦值为33.12.如图,四棱锥F —ABCD 的底面ABCD 是菱形,其对角线AC =2,BD = 2.CF 与平面ABCD 垂直,CF =2.求平面ABF 与平面ADF 的夹角.解 过点A 作AE ⊥平面ABCD .以A 为坐标原点,BD →、AC →、AE →方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).于是B ⎝⎛⎭⎫-22,1,0, D ⎝⎛⎭⎫22,1,0,F (0,2,2). 设平面ABF 的法向量n 1=(x ,y ,z ),则由⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·AF →=0, 得⎩⎪⎨⎪⎧ -22x +y =0,2y +2z =0.令z =1,得⎩⎪⎨⎪⎧x =-2,y =-1. 所以n 1=(-2,-1,1). 同理,可求得平面ADF 的法向量n 2=(2,-1,1).由n 1·n 2=0知,平面ABF 与平面ADF 垂直,所以平面ABF 与平面ADF 的夹角为π2. 三、探究与拓展13.如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB =2,求直线A 1C 与平面BB 1C 1C 夹角的正弦值.(1)证明 如图,取AB 的中点O ,连接CO 、A 1O .∵CA =CB ,∴CO ⊥AB ,又∵AA 1=AB ,∴AA 1=2AO ,又∠A 1AO =60°,∴∠AOA 1=90°,即AB ⊥A 1O ,∴AB ⊥平面A 1OC ,∴AB ⊥A 1C .(2)解 以O 为原点,OA 所在直线为x 轴,OA 1所在直线为y 轴,OC 所在直线为z 轴,建立如图直角坐标系,则A (1,0,0),A 1(0,3,0),B (-1,0,0),C (0,0,3),B 1(-2,3,0),则BC →=(1,0,3),BB 1→=(-1,3,0),A 1C →=(0,-3,3),设n =(x ,y ,z )为平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧ n ·BC →=0n ·BB 1→=0,所以n =(3,1,-1)为平面BB 1C 1C 的一个法向量,所以直线A 1C 与平面BB 1C 1C 所成角的正弦值sin θ=|cos 〈A 1C →,n 〉|=105.。

(教师用书)高中数学 2.5 夹角的计算课件 北师大版选修2-1

(教师用书)高中数学 2.5 夹角的计算课件 北师大版选修2-1
§ 5 夹角的计算 5.1 直线间的夹角 5.2 平面间的夹角 5.3 直线与平面的夹角
教师用书独具演示
●三维目标 1.知识与技能 (1)使学生掌握空间向量的夹角公式及其简单应用 (2)提高学生选择恰当的方法求夹角的技能.
2.过程与方法 (1)在与平面向量的夹角公式的比较基础上,培养学生观 察、分析、类比转化的能力. (2)通过对空间几何图形的探究,使学生会恰当地建立空 间直角坐标系. (3)通过空间向量的坐标表示法的学习,使学生经历对空 间图形的研究从“定性推理”到“定量计算”的转化过程, 从而提高分析问题、解决问题的能力.
π → → ∴〈C1E,FD1〉> . 2 → → 所以 C1E 和 FD1 的夹角 θ=π-〈C1E,FD1〉 , 21 故 cos θ= 14 , 21 即异面直线 C1E 与 FD1 的夹角的余弦值为 14 .
1.建立恰当的空间直角坐标系,准确求出相关点的坐标 是解决本题的关键. π 2.求线线夹角时应注意线线夹角范围为[0,2],所以若 求得余弦值为负数,则线线夹角为其补角.
若本例条件不变,求直线 EF 和直线 DC1 的夹角的余弦 值.
【解】 由上例知 E(3,3,0),F(2,4,0),D(0,0,0),C1(0,4,2) → =(2,4,0)-(3,3,0)=(-1,1,0), ∴EF → DC1=(0,4,2), -1×0+1×4+0×2 10 → → ∴cos〈EF,DC1〉= = 5 , 2· 20 10 ∴直线 EF 和直线 DC1 的夹角的余弦值为 . 5
事实上,设平面 π1 与平面 π2 的夹角为 θ ,则 cos θ
直线与平面的夹角
【问题导思】 1.如图 1,直线 l 的方向向量为 a,平面的法向量为 n, 则直线 l 与平面的夹角 θ 与〈a,n〉有怎样的关系?

高中数学 2.5 夹角的计算课件 北师大版选修21

高中数学 2.5 夹角的计算课件 北师大版选修21

●教学建议 1.通过提问、探索、讨论、归纳,让学生参与教学活动, 调动学习积极性. 2.渗透类比、分析、归纳的方法,加深学生对向量法的 理解,培养学生探索能力. 3.通过纯几何方法求空间角的“难”与向量法求空间角 的“易”比较,加深对向量法的认识.
●教学流程
演示结束
课 1.能用向量方法解决线线、线面、 标 面面夹角的计算问题.(重点) 解 2.体会向量方法在研究立体几何 读 问题中的作用.(难点)
平面间的夹角 【问题导思】 1.如图 1,n1,n2 分别是平面 π1,π2 的法向量,则二面 角 π1-l-π2 的大小 θ 与〈n1,n2〉有怎样的关系?
图1 【提示】 θ=π-〈n1,n2〉.
2.将图 1 改成图 2 呢?
图2 【提示】 θ=〈n1,n2〉.
平面间的夹角 (1)平面间夹角的概念 如图 2-5-1,平面 π1 和 π2 相交于直线 l,点 R 为直线 l 上任意一点,过点 R,在平面 π1 上作直线 l1⊥l,在平面 π2 上作直线 l2⊥l,则 l1∩l2=R,我们把直线 l1 和 l2 的 夹角 叫 作平面 π1 与 π2 的夹角.
直线与平面的夹角 【问题导思】 1.如图 1,直线 l 的方向向量为 a,平面的法向量为 n, 则直线 l 与平面的夹角 θ 与〈a,n〉有怎样的关系?
图1 【提示】 θ=π2-〈a,n〉.
2.将图 1 改成图 2 呢?
图2 【提示】 θ=〈a,n〉-π2.
直线与平面的夹角 设直线 l 的方向向量为 s,平面 α 的法向量为 n,直线 l 与平面 α 的夹角为 θ.
直线间的夹角
在长方体 ABCD-A1B1C1D1 中,已知 AB=4, AD=3,AA1=2,E、F 分别是线段 AB、BC 上的点,且 EB =FB=1,求异面直线 C1E 与 FD1 的夹角的余弦值.

高中数学课件-2.5夹角的计算 课件(北师大版选修2-1)

高中数学课件-2.5夹角的计算 课件(北师大版选修2-1)

262=0,
∴∠BOD=90°,即 AB1 与 BC1 所成的角为 90°.
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·选修2-1
[点评] (1)向量法求异面直线所成的角的特点是程序化, 即建坐标系,设点,求向量,考查数量积.
(2)方法二是求两异面直线所成的角的一般方法:通常是平 移变异面直线为相交直线,然后解三角形.
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·选修2-1
思路方法技巧
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·选修2-1
异面直线所成的角
在正三棱柱 ABC-A1B1C1 中,若 AB= 2BB1, 求 AB1 与 C1B 所成角的大小.
[解析] 方法一:如图所示,以 A 为原 点,射线 AC、AA1 分别为 y 轴,z 轴,过 A 垂直于 AC,AA1 的射线为 x 轴,建立直角坐 标系,取 BB1=1,则 B( 26, 22,0),B1( 26, 22,1),C1(0, 2,1),
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·选修2-1
[点评] 本题考查空间中线面关系的判定、空间角的求 法.在判断空间中直线位置关系时,常用勾股定理逆定理来证 明线线垂直;求二面角的平面角是高考重点,可用空间向量来 解决.还有面积法、异面直线法,作三垂线定理法等要灵活应 用.
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·选修2-1
成才之路 ·高中新课程 ·学习指导 ·北师大版 ·数学 ·选修2-1
7.直线与平面夹角的求法 设平面 α 的法向量为 n,直线 l 的方向向量为 a,直线 l 与 平面 α 所成的角为 θ. 当 0≤〈n,a〉≤π2时,θ=_π2_-__〈__n_,__a_〉__; 当π2<〈n,a〉≤π 时,θ=〈__n_,__a_〉__-__π2__. 即 sinθ=_|_c_o_s〈__n_,__a_〉__|.

高中数学北师大版选修2-1 2.5.1-2.5.2直线间的夹角 平面间的夹角 课件(33张)

高中数学北师大版选修2-1 2.5.1-2.5.2直线间的夹角 平面间的夹角 课件(33张)
1 5 3 C. 5
A.
2 5 4 D. 5
B.
答案 :D 【做一做 1-2】 在正三棱柱 ABC-A1B1C1 中 ,若 AB= 2BB1,则 AB1 与 C1B 所成角的大小为 .
π 答案 : 2
-7-
2.平面间的夹角 (1)如图所示,平面π1与π2相交于直线l,R为直线l上任意一点,过点R 在平面π1上作直线l1⊥l,在平面π2上作直线l2⊥l,则l1∩l2=R.我们把 直线l1和l2的夹角叫作平面π1与π2的夹角.
π 2
,所以若求得余弦值为负数 ,则异面直线所成角为其补角 .
再者应用向量解决几何问题时一定要合理建系使向量的表达更科 学、合理 .
-13-
题型一
题型二
题型三
【变式训练 1】 在三棱锥 S-ABC 中,∠SAB=∠SAC=∠ ACB=90° ,AC=2,BC= 13,SB= 29.求 SC 与 AB 所成角的余弦值. 解 :如图所示 ,以 A 为坐标原点,过点 A 且垂直平面 ABS 的直线为 x 轴 ,直线 AB,AS 分别为 y 轴、 z 轴建立空间直角坐标系,则由 ∠SAB= ∠SAC=∠ACB=90° ,AC=2,BC= 13,SB= 29,得 B(0, 17,0),S(0,0,2 3),C 2
13 4 , ,0 17 17
,
∴������������ = 2
13 4 , ,-2 17 17
3 .
-14-
题型一
题型二
题型三
设 SC 与 AB 所成的角为 α.
∵������������=(0, 17,0), ∴������������ ·������������ =4,| ������������ ||������������|=4 17,∴cos α= 17 ,

2020-2021学年北师大版数学选修2-1课件:第二章 5 夹角的计算

2020-2021学年北师大版数学选修2-1课件:第二章 5 夹角的计算

1.如图所示,在三棱柱OAB-O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°, ∠AOB=90°,且OB=OO1=2,OA= 3,求异面直线A1B与O1A夹角的余弦值.
解析:以O为坐标原点,
OA,OB所在直线分别为x轴,y轴,建立空间直角坐标系Oxyz,
则O(0,0,0),O1(0,1, 3),A( 3,0,0),
(1)证明:B→E=-a,12a, 23a,P→D=0,2a,-23 3a, ∴B→E·P→D=0+a2-a2=0.
∴B→E⊥P→D,∴BE⊥PD.
(2)A→E=0,12a, 23a,C→D=(-a,a,0).
则cos〈A→E,C→D〉=|AA→→EE|·|CC→→DD|=
12a2 = 2a·a
42,
D.sin θ=||nn|·|aa||
解析:若直线与平面所成的角为θ,直线的方向向量与该平面的法向量所成的角为β,
则θ=β-90˚ 或θ=90˚ -β,故选D.
答案:D
5.若两个平面α,β的法向量分别是n=(1,0,1),v=(-1,1,0),则这两个平面所成的 锐二面角的度数是________.
DA=
3
,∠ADC=
π 2
,求异面直线A1C与AD1所成角的余弦
值.
[解析] 建立如图所示的空间直角坐标系,则
A( 3,0,0),D1(0,1, 3),C(0,2,0),D(0,0,0)
由A→A1=D→D1得A1( 3,1, 3).
∴A→1C=(- 3,1,- 3),
D→1A=( 3,-1,- 3),
[练一练]
3.已知直线l1的方向向量s1=(1,0,1)与直线l2的方向向量s2=(-1,2,-2),则l1和l2夹角 的余弦值为( )A.2ຫໍສະໝຸດ 4B.122 C. 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档