整式的运算培优、拓展、延伸、拔高题(1)

合集下载

整式的运算培优、拓展、延伸、拔高题(1)

整式的运算培优、拓展、延伸、拔高题(1)

1 .计算:I 1 1 1 Z1 1 1 (-d ------ 1 -- F • • ------- )(1 H - 1— + ・• • + 2 3 4 2009 2 32 .计算: ----------- )(% +。

3 ------------ FQ 〃)一(%+。

3^ -- )(4 +。

2 ------------ 3 .计算:判断⑴〃向与(〃 + 1)”的大小关系?(2)是否知道20092°°8与20082期的大小?(3)是否能判断2009一2°08与2008-2(X )9的大小?4 .已知。

= 255力= 3”,c = 533/= 622,则的大小关系是5 .试判断(1) 2010*)09—20092(”°的末位数字(2) Zz 皿+Z?00’的末位数字6.已知2" = 3,2" = 6,2。

= 12,试探究4"c 的关系7・计算:(1 -!)(1 -*0。

一,)…(1 -.8 .已知,卬,。

2,…,”2009,〃2010都是整数,又 A/ = (4 + % d ----- F %009) (% + ^ ------- 々2009) , N = (% +。

2 + …+。

2010)(。

2 +。

3 + …+。

2009)时比较M,N 的大小.9 .若1为实数,则代数式|x|-x 的值一定是 __________/ 2 \ / 2 、1().设在代数式|。

|,-〃,/009 , /OK), ।⑷, —, 幺+ 〃中负数的个 数是 ______11 .已知:(3%-1),=O 7A +。

616+%x5 + …+ 平+%,那么 % +。

6 +〃5 + …+ 4| +。

0 的值时多少?12 .猜想:(1) (x-1 )(x" + x"-1 + Z -2 + -- - + x 2+x + l) =尝试计算:(2) 220,0 +22009 4-22008 + ...22 4-2 + 1 -L )_(i+L\...+-L )(L1+L …+,) 2008 2 3 2009 2 3 4 200813.已知/+3。

(word完整版)整式的加减乘除培优精华

(word完整版)整式的加减乘除培优精华

练习:1、下列那些式子是单项式,并指出他的系数和次数 2013 a 2bba +5x y 2 2013y x + 0 -10 π b a 2221012⨯2、若c ax y -是关于x ,y 的单项式,且系数为2013,次数为12,则a= ,c= 。

3、12)1(++n y x m 是关于x ,y 的四次单项式,则m= ,n= 。

4、下列那些式子是多项式,并指出他的次数,读法,各项的次数x 2+x 3+x 40 4—2π 9 x 4y b a y x +- 6ab+4 243(a+b)5、z y xy x +++444读作: ; 1425-+++-z xz y xy 读作: ;6、2013435232--+-+b a ab b a b a 这个多项式的最高次项是 ,一次项是 ,二次项是 ,三次项是 ,常数项是 。

7、已知4543433515a y y x y x y x +-+-,按a 升幂排列为: ; 按a 的降幂排列为 ;按b 升幂排列为: ;按b 的降幂排列为 . 8、下列那些式子是整式12π -4yxz x 2-y 22a-b+8c 543 43x 4y 0 322013y x + b a 2221012⨯9、若b b a x y x 532-+和是同类项则a= ,b= 。

若363543y x y x nn m -+和是同类项则m= ,n= 。

11、若442-+x x 的值为0,则51232-+x x 的值是________.12、如果代数式535ax bx cx ++-当2x =-时的值为13,那么当2x =时,该式的值是 . 13、若3a =-,25b =,则20072006a b +的个位数字是=________。

14、已知012=-+a a ,求2013223++a a = 。

15、当2x =时,代数式31ax bx -+的值等于17-,那么当1x =-时,代数式31235ax bx --的值 。

培优专题(一) 整式的化简与运算

培优专题(一)  整式的化简与运算

一 化简1. 计算:(1)-(2a -1)+2(a -1);(2)2(2x -3y )-3(4x -5y );(3)-7x -[9x 2+3x -(6x -1)+5];(4)3a 2b -(-3a 2c -3ab 2-3a 2c +3a 2b );(5)-5x 2y -[2x 2y -3(xy -2x 2y )]+2xy .二 列式化简2. 某公交车上原有(4a -b )人,中途有半数人下车,同时又有若干人上车,这时车上共有乘客(6a +b )人,求中途上车的人数.三 化简求值3.[2017春·滨海县月考]先化简,再求值:(4a 2-3a )-(2a 2+a -1)+(2-a 2-4a ),其中a =-2.4.[2017春·萧山区校级月考]先化简,再求值:3a +12(a -2b )-13(3a -6b ),其中a =2,b =-3.5. 先化简,再求值:-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中|a -1|+(b +2)2=0.6.[2017春·成都月考]先化简,再求值:5a 2b -⎣⎡⎦⎤2ab 2-2⎝⎛⎭⎫ab -52a 2b +ab +5ab 2,其中a =-6,b =-12.7.(1)计算:2(x 2y +xy )-3(x 2y -xy )-4x 2y ;(2)若2a 10x b 与-a 2b y 是同类项,求(1)中结果的值.8.[2016秋·建湖县期末]已知a 2+b 2=5,ab =-2,求代数式2(4a 2+2ab -b 2)-3(5a 2-3ab +2b 2)+b 2的值.四整体思想9.小明在一次数学测验中,计算一个多项式加上5ab-3bc+2ac时,误认为减去此式,计算出的结果为2ab-6bc+ac,请你帮助小明求出正确答案.10.若x表示一个两位数,y表示一个一位数,把x放在y左边的三位数记为M,把y 放在x左边的三位数记为N,试说明为什么M-N是9的倍数.五不含某项,求未知系数11. 已知多项式2x2+my-12与多项式nx2-3y+6的和不含有x2,y,试求mn的值.12.已知a,b为常数,且ax2+2xy-x与3x2-2bxy+3y的差中不含二次项,求a2-4b 的值.13.已知多项式(2mx2+5x2+3x+1)-(5x2-4y2+3x)化简后不含x2项,求多项式2m3-[3m3-(4m-5)+m]的值.。

整式的运算-培优-练习

整式的运算-培优-练习

整式的运算-培优-练习2《整式的运算》培优练习略有难度,适合培优使用,题目较多一、填空题:1、若0352=-+y x ,则y x 324⋅的值为 。

2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。

3、若3622=+=-y x y x ,,则y x -= 。

4、若942++mx x 是一个完全平方式,则m 的值为 。

5、计算2002200020012⨯-的结果是 。

6、已知()()71122=-=+b a b a ,,则ab 的值是 。

7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。

8、已知2131⎪⎭⎫ ⎝⎛-=+x x x x ,则的值为 。

9、若n m n m 3210210,310+==,则的值为 。

10、已知2235b a ab b a +==+,则,的值为 。

11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。

12、已知()()22123--==+b a ab b a ,化简,的结果是 。

13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。

14、计算()()2222b ab a b ab a +-++的结果是 。

15、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。

16、计算()()123123-++-y x y x 的结果为 。

17、若xx x 204412,则=+-的值为 。

318、()2101--= 。

19、若()()206323----x x 有意义,则x 的取值范围是 。

20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。

21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。

22、已知199819992000201x x x x x ++=++,则的值为 。

鞍山市七年级数学上册第二章《整式的加减》经典题(培优专题)(1)

鞍山市七年级数学上册第二章《整式的加减》经典题(培优专题)(1)

1.代数式x2﹣1y的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x2﹣1y的正确解释是x的平方与y的倒数的差,故选:B.【点睛】本题考查了代数式,理解题意(代数式的意义)是解题关键.2.与(-b)-(-a)相等的式子是( )A.(+b)-(-a) B.(-b)+aC.(-b)+(-a) D.(-b)-(+a)B解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒3.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.4.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.5.已知132n x y 与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】 本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.把有理数a 代数410a +-得到1a ,称为第一次操作,再将1a 作为a 的值代入410a +-得到2a ,称为第二次操作,...,若a =23,经过第2020次操作后得到的是( )A .-7B .-1C .5D .11A解析:A【分析】先确定第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;…,后面的计算结果没有变化,据此解答即可.【详解】解:第1次操作,a 1=|23+4|-10=17;第2次操作,a 2=|17+4|-10=11;第3次操作,a 3=|11+4|-10=5;第4次操作,a 4=|5+4|-10=-1;第5次操作,a 5=|-1+4|-10=-7;第6次操作,a 6=|-7+4|-10=-7;第7次操作,a 7=|-7+4|-10=-7;…第2020次操作,a 2020=|-7+4|-10=-7.故选:A .【点睛】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.7.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.8.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.9.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A 解析:A【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-B 解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.12.式子5x x-是( ). A .一次二项式B .二次二项式C .代数式D .都不是C 解析:C根据代数式以及整式的定义即可作出判断.【详解】 式子5x x-分母中含有未知数,因而不是整式,故A 、B 错误,是代数式,故C 正确. 故选:C .【点睛】 本题考查了代数式的定义,就是利用运算符号把数或字母连接而成的式子,单独的数或字母都是代数式.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键. 15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.观察下面的一列单项式:2342,4,8,16,,x x x x --根据你发现的规律,第n 个单项式为__________.【分析】分别从单项式的系数与次数两方面总结即可得出规律进而可得答案【详解】解:由已知单项式的排列规律可得第n 个单项式为:故答案为:【点睛】本题考查了单项式的规律探求通过所给的单项式找到规律并能准确的解析:(2)n n x -【分析】分别从单项式的系数与次数两方面总结即可得出规律,进而可得答案.【详解】解:由已知单项式的排列规律可得第n 个单项式为:(2)n nx -.故答案为:(2)n n x -.【点睛】本题考查了单项式的规律探求,通过所给的单项式找到规律,并能准确的用代数式表示是解题的关键.2.请观察下列等式的规律: 111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭,1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, …则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101【解析】试题1111++++13355799101⨯⨯⨯⨯ =111111111111)()()()23235257299101-+-+-++-( =111111111++)23355799101---++-(=111)2101-( =11002101⨯ =50101. 3.m ,n 互为相反数,则(3m –2n )–(2m –3n )=__________.0【解析】由题意m+n=0所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0【点睛】本题考查相反数去括号法则等解题的关键是根据题意得出m+n=0然后再对所求的式子进行去括号合并同解析:0【解析】由题意m+n=0,所以(3m -2n)-(2m -3n)=3m-2n-2m+3n=m+n=0.【点睛】本题考查相反数、去括号法则等,解题的关键是根据题意得出m+n=0,然后再对所求的式子进行去括号,合并同类项,整体代入数值即可.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+3×209=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律.6.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;16=4个;分割2次得到正方形的个数为264=4个;分割3次得到正方形的个数为3…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.y=,则输入的数x=________________.7.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.8.计算7a2b﹣5ba2=_____.2a2b【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a2b【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.9.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a、b、c、d.若|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,则|b﹣c|=___.7【分析】根据数轴和题目中的式子可以求得c﹣b的值从而可以求得|b﹣c|的值【详解】∵|a﹣c|=10|a﹣d|=12|b﹣d|=9∴c﹣a=10d﹣a=12d﹣b=9∴(c﹣a)﹣(d﹣a)+(d解析:7【分析】根据数轴和题目中的式子可以求得c﹣b的值,从而可以求得|b﹣c|的值.【详解】∵|a﹣c|=10,|a﹣d|=12,|b﹣d|=9,∴c﹣a=10,d﹣a=12,d﹣b=9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.10.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.11.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍.设第一堆原有a 个棋子,第二堆原有______个棋子.【分析】根据题意可得第二堆现在的棋子数是2(a-2)因此原来的棋子数为2(a-2)-2【详解】解:由题意可得:现在第二堆有2(a-2)个棋子因此原来第二堆有2(a-2)-2=2a-6个棋子故答案为:解析:()26a -【分析】根据题意可得第二堆现在的棋子数是2(a -2),因此原来的棋子数为2(a -2)-2.【详解】解:由题意可得:现在第二堆有2(a -2)个棋子,因此原来第二堆有2(a -2)-2=2a -6个棋子.故答案为:(2a -6).【点睛】本题考查了整式加减的应用,根据题意列出代数式是解决此题的关键.1.有一长方体形状的物体,它的长,宽,高分别为a ,b ,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a +4b +8c ,方式乙所用绳长为4a +6b +6c ,方式丙所用绳长为6a +6b +4c ,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.2.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.观察下列单项式:﹣x ,2x 2,﹣3x 3,…,﹣9x 9,10x 10,…从中我们可以发现: (1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n 个单项式是 .解析:(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx - 【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.。

整式的训练基础+拔高题

整式的训练基础+拔高题

整式训练基础+拔高题1总分:120分日期:____________ 班级:____________ 姓名:____________一、解答题(每小题4分,共5题,共20分)1、我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等等.(1)根据上面的规律,则(a+b)5的展开式=______.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1=______.2、某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌为什么?3、已知:a 是﹣1,且a 、b 、c 满足(c ﹣6)2+|2a+b|=0,请回答问题: (1)请直接写出b 、c 的值:b= ,c=(2)在数轴上,a 、b 、c 所对应的点分别为A 、B 、C ,点P 为易动点,其对应的数为x , (a )当点P 在AB 间运动(不包括A 、B ),试求出P 点与A 、B 、C 三点的距离之和. (b )当点P 从A 点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x ﹣2|+2|x ﹣6|(请写出化简过程)4、已知a 、b 、c 的大小关系如图所示,求a b b c c aa b b c c a----+---的值.5、若符号“a b c d”成为二阶行列式,规定它的运算法则为:a bad bc c d =-,若m 满足等式236131mm m -=--.(1)请你根据上述规定求出m 的值; (2)若12mx ≤-,求x m x m ++-的值.二、填空题(每小题4分,共14题,共56分)6、如图是某同学在沙滩上用石子摆成的小房子:观察图形的变化规律,写出第n 个小房子用了__________块石子.7、下列图形:它们是按一定规律排列的,依照此规律,第n 个图形共有____个★.8、如图所示,由一些点组成的三角形图案,每条边(包括两个顶点)有n (n >1)个点,每个图形中总的点数为s ,当n=9时,s=____.9、用完全一样的火柴棍按如图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍 根,拼成第n 个图形(n 为正整数)需要火柴棍 根(用含n 的代数式表示).10、某电影院第一排座位是18个,第二排座位是20个,以后每排都比前一排多2个座位,那么第n 排有 个座位. 11、将1927化成小数,则小数点后第2009位数字为 . 12、代数式ab ﹣35πxy ﹣18x 3的次数是__,其中﹣35πxy 项的系数是__.13、单项式﹣3πa 3bc 的系数是 ,次数是 . 14、2449x y π的系数与次数的积为_____.15、单项式﹣323x y z π的系数是 ,次数是 .16、已知0a b a b +=,则ab ab的值为_____ 17、若5x 2y m 与4x n+m ﹣1y 的和是单项式,则代数式m ﹣n 的值是 .18、一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是 .19、我国宋朝数学家杨辉在他的著作《祥解九章算法》中提出下表,此表揭示了()na b +(n 为非负数)展开式的各项系数的规律.例如:()1a b +=,它只有一项,系数为1; ()1a b a b +=+,它有两项,系数分别为1,1;()2222a b a ab b +=++,它有三项,系数分别为1,2,1;()3322333a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1;……根据以上规律()4a b +展开式共有五项,系数分别为_____________________三、单选题(每小题4分,共11题,共48分)20、对于每个非零自然数n ,抛物线2211(1)(1)n y x x n n n n +=-+++与x 轴交于A n 、B n 两点,以A n B n 表示这两点间的距离,则A 1B 1+A 2B 2+…+A 2017B 2017的值是( ) A .20152016B .20162017C .20172018D .11 1 1 13 …2 1 1 1321、下列说法正确的是( ) A .25xy -单项式的系数是﹣5B .单项式a 的系数为1,次数是0C .2325a b -次数是6D .xy+x ﹣1是二次三项式22、下列说法错误的是( ) A .单项式x 的系数和次数都是1B .12不是单项式C .多项式3x 2y+2xy ﹣3x+y 中一次项的系数分别是﹣3,1D .﹣23xy 是系数为﹣23的二次单项式23、下列判断中,正确的是()A .单项式﹣223ab 的系数是﹣2 B .单项式﹣23的次数是1C .多项式2x 2﹣3x 2y 2﹣y 的次数是2 D .多项式1+2ab+ab 2是三次三项式24、下列语句中错误的是( ) A .数字0也是单项式 B .单项式a 的系数与次数都是1 C .xy 是二次单项式D .﹣3ab的系数是﹣3 25、下列代数式中,不是单项式的是() A .1xB .﹣12C .tD .3a 2b26、在下列代数式:3ab ,﹣4,2-3abc ,0,x-y ,3x 中,单项式有()A .3个B .4个C .5个D .6个27、若|x ﹣12|+(2y ﹣1)2=0,则x 2+y 2的值是() A .38B .12 C .﹣18D .﹣3828、下列式子:x2+2,1a +4,237ab,abc,﹣5x,0中,整式的个数是()A.6B.5C.4D.329、根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的()A.B.C.D.30、两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点。

整式的乘除培优辅导全

整式的乘除培优辅导全

培优训练(一)(30分钟 50分)一、选择题(每小题4分,共12分)1.(2014·南通中考)计算(-x )2·x 3的结果是( )(A )x 5 (B )-x 5 (C )x 6 (D )-x 62.已知n 是大于1的自然数,则(-c )n -1·(-c )n +1等于( )(A )()2n 1c -- (B )-2nc (C )-c 2n (D )c 2n3.(2014·滨州中考)求1+2+22+23+…+22 012的值,可令S =1+2+22+23+…+22 012,则2S =2+22+23+24+…+22 013,因此2S -S =22 013-1.仿照以上推理,计算出1+5+52+53+…+52 012的值为( )(A )52 012-1 (B )52 013-1 (C )2 013514- (D )2 012514- 二、填空题(每小题4分,共12分)4.已知4m +1=28,则4m =______.5.居里夫人发现了镭这种放射性元素.1千克镭完全衰变后,放出的热量相当于375 000千克煤燃烧所放出的热量.估计地壳内含有100亿千克镭,这些镭完全衰变后所放出的热量相当于______千克煤燃烧所放出的热量(用科学记数法表示).6.已知2x ·2x ·8=212,则x =_____.三、解答题(共26分)7.(8分)计算:(1)(-3)3·(-3)4·(-3); (2)a 3·a 2-a ·(-a )2·a 2;(3)(2m -n )4·(n -2m )3·(2m -n )6.8.(8分)已知a x=5,a y=4,求下列各式的值:(1)a x+2. (2)a x+y+1.【拓展延伸】9.(10分)化简:(1)(-2)n+(-2)n·(-2)(n为正整数). (2)(-x)2n-1·(-x)n+2(n为正整数).培优训练(二)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·重庆中考)计算(ab)2的结果是( )(A)2ab(B)a2b(C)a2b2 (D)ab22.下列运算中,正确的是( )(A)3a2-a2=2 (B)(-a2b) 3=a6b3(C)a3·a6=a9 (D)(2a2)2=2a43.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为( )(A)6×106立方毫米(B)8×106立方毫米(C)2×106立方毫米(D)8×105立方毫米二、填空题(每小题4分,共12分)4.已知22×83=2n,则n的值为______.5.若2x+y=3,则4x×2y=______.6.计算:(1)[(56)6×(-65)6]7=________.(2)82 013× (-2 012=______.三、解答题(共26分)7.(8分)已知x-y=a,试求(x-y)3·(2x-2y)3·(3x-3y)3的值.8.(8分)比较3555,4444,5333的大小.【拓展延伸】9.(10分)阅读材料:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log a N=b.例如,因为54=625,所以log5625=4;因为32=9,所以log39=2.对数有如下性质:如果a>0,且a≠1,M>0,N>0,那么log a(MN)=log a M+log a N. 完成下列各题(1)因为______,所以log28=_______;(2)因为______,所以log216=______;(3)计算:log2(8×16)=_______+_______=_______.培优训练(三)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·江西中考)下列运算正确的是( )(A)a3+a3=2a6 (B)a6÷a-3=a3(C)a3·a3=2a3 (D)(-2a2)3=-8a62.和3-2的结果相同的数是( )(A)-6 (B)9的相反数(C)9的绝对值(D)9的倒数3.(2014·东营中考)若3x=4,9y=7,则3x-2y的值为( )(A)47(B)74(C)-3 (D)27二、填空题(每小题4分,共12分)4.(2014·滨州中考)根据你学习的数学知识,写出一个运算结果为a6的算式_____.5.根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为:E=10n,那么9级地震所释放的相对能量是7级地震所释放的相对能量的______倍.6.计算:a-1·a-2÷a-3=_____.三、解答题(共26分)7.(8分)用小数或分数表示下列各数:(1)4-3×2 0130;(2)×10-3.8.(8分)小丽在学习了“除零以外的任何数的零次幂的值为1”后,遇到这样一道题:“如果(x-2)x+3=1,求x的值”,她解答出来的结果为x=-3.老师说她考虑的问题不够全面,你能帮助小丽解答这个问题吗?【拓展延伸】9.(10分)(1)通过计算比较下列各式中两数的大小:(填“>”“<”或“=”).①1-2 _____ 2-1;②2-3_____3-2;③3-4_____4-3;④4-5_____5-4;….(2)由(1)可以猜测n-(n+1)与(n+1)-n(n为正整数)的大小关系:当n______时,n-(n+1)>(n+1)-n;当n______时,n-(n+1)<(n+1)-n.培优训练(四)(30分钟50分)一、选择题(每小题4分,共12分)1.某种细胞的直径是5×10-4毫米,这个数是( )(A)毫米(B)毫米(C) 5毫米(D) 05毫米2.(2014·大庆中考)科学家测得肥皂泡的厚度约为000 7米,用科学记数法表示为( )(A)×10-6米(B)×10-7米(C)7×10-7米(D)7×10-6米3.小聪在用科学记数法记录一个较小的数时,多数了2个零,结果错误地记成×10-8,正确的结果应是( )(A)×106 (B)×10-6(C)×1010 (D)×10-10二、填空题(每小题4分,共12分)4.(2014·玉林中考)某种原子直径为×10-2纳米,把这个数化为小数是_____纳米.5.(2014·本溪中考)已知1纳米=10-9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为_____.本100页的书大约厚cm,则书的一页厚约______ m(用科学记数法表示).三、解答题(共26分)7.(8分)某种计算机的存储器完成一次存储的时间为十亿分之一秒,则该存储器用百万分之一秒可以完成多少次存储?8.(8分)在显微镜下,人体的一种细胞形状可以近似地看成圆形,它的半径为×10-7米,它相当于多少微米?若1张百元人民币约09米厚,那么它相当于约多少个这种细胞首尾相接的长度?【拓展延伸】9.(10分)1微米相当于一根头发直径的六十分之一,一根头发的直径大约为多少米? 一根头发的横断面的面积为多少平方米?一般人约有10万根头发,把这些头发捆起来的横断面约有多少平方米(π取?培优训练(五)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·沈阳中考)计算(2a)3·a2的结果是( )(A)2a5 (B)2a6 (C)8a5 (D)8a62.下列运算正确的是( )(A)|-3|=3 (B)-(-12)=-12(C)(a3)2=a5(D)2a·3a=6a3.如果-2m2×□=-8m2n3,则□内应填的代数式是( )(A)6n3 (B)4n3(C)-6n3 (D)4m2n3二、填空题(每小题4分,共12分)4.计算:(-2x) 3·(-5xy2)=______.5.已知x m+1y n-2·x m y2=x5y3,那么m n的值是______.6.如图,沿正方形的对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是_____(只要求写出一个结论).三、解答题(共26分)7.(8分)若1+2+3+…+n=m,求(ab n)·(a2b n-1)…(a n-1b2)·(a n b)的值.8.(8分)用18个棱长为a的正方体木块拼成一个长方体,有几种不同的拼法,分别表示你所拼成的长方体的体积,不同的拼法中,你能得到什么结论(至少用两种方法)?【拓展延伸】9.(10分)已知三角表示2ab c,方框表示(-3x z w)y,求×.培优训练(六)(30分钟50分)一、选择题(每小题4分,共12分)1.今天数学课上,老师讲了单项式乘以多项式,放学后,小华回到家拿出课堂笔记,认真复习老师课上讲的内容,他突然发现一道题:-3xy·(4y-2x-1)=-12xy2+6x2y+_____.空格的地方被钢笔水弄污了,你认为横线上应填写( )(A)3xy(B)-3xy(C)-1 (D)12.要使(x2+ax+1)(-6x3)的展开式中不含x4的项,则a应等于( )(D)0(A)6 (B)-1 (C)16(-a+b-c)与-a(a2-ab+ac)的关系是( )(A)相等(B)互为相反数C)前式是后式的-a倍D)前式是后式的a倍二、填空题(每小题4分,共12分)4.计算:-2a(b2+ab)+(a2+b)b= _______ .5.若2x(x-1)-x(2x+3)=15,则x=_____.6.如图所示图形的面积可表示的代数恒等式是______.三、解答题(共26分)7.(8分)某同学在计算一个多项式乘以-3x2时,因抄错运算符号,算成了加上-3x2,得到的结果是x2-4x+1,那么正确的计算结果是多少?8.(8分)已知某长方形的长为(a+b)cm,它的宽比长短(a-b)cm,求这个长方形的周长与面积.【拓展延伸】a米.9.(10分)一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12(1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?培优训练(七)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算中,正确的有( )①(2a-3)(3a-1)=6a2-11a+3; ②(m+n)(n+m)=m2+mn+n2;③(a-2)(a+3)=a2-6; ④(1-a)(1+a)=1-a2.(A)4个(B)3个(C)2个(D)1个2.已知(x+a)(x+b)=x2-13x+36,则a+b的值是( )(A)13 (B)-13 (C)36 (D)-363.一个三角形的一边长为m+2,这条边上的高比它长m,则这个三角形的面积为( )(A)2m2+6m+4 (B)m2+3m+2 (C)m+2 (D)1m+12二、填空题(每小题4分,共12分)4.已知a2-a+5=0,则(a-3)(a+2)的值是_____.5.将一个长为x、宽为y的长方形的长增加1、宽减少1得到的新长方形的面积是_____.6.有若干张如图所示的A类、B类正方形卡片和C类长方形卡片,如果要拼成一个长为3a+b,宽为a+2b的大长方形,则需要C类卡片_____张.三、解答题(共26分)7.(8分)说明:对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值总能被6整除.8.(8分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性. 【拓展延伸】9.(10分)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×_____=_____×25;②_____×396=693×_____.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并说明其正确性.培优训练(八)(30分钟50分)一、选择题(每小题4分,共12分)1.计算(3a-b)(-3a-b)等于( )(A)9a2-6ab-b2 (B)-9a2-6ab-b2(C)b2-9a2 (D)9a2-b22.由m(a+b+c)=ma+mb+mc①,可得:(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2)=a3+b3②.我们把等式②叫做多项式乘法的立方公式.下列应用这个立方公式进行的变形不正确的是( )(A)(x+4y)(x2-4xy+16y2)=x3+64y3(B)(2x+y)(4x2-2xy+y2)=8x3+y3(C)(a+1)(a2+a+1)=a3+1 (D)x3+27=(x+3)(x2-3x+9)3.下列各式中,计算结果为81-x2的是( )(A)(x+9)(x-9) (B)(x+9)(-x-9) (C)(-x+9)(-x-9) (D)(-x-9)(x-9)二、填空题(每小题4分,共12分)4.当x=3,y=1时,代数式(x+y)(x-y)+y2的值是______.5.如果(a+b+1)(a+b-1)=63,那么a+b的值为______.6.观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,根据前面各式的规律可得(x-1)(x n+x n-1+…+x+1)=_____(其中n为正整数).三、解答题(共26分)7.(8分)a,b,c是三个连续的正整数(a<b<c),以b为边长作正方形,分别以c,a为长和宽作长方形,哪个图形的面积大?为什么?8.(8分)如图所示,小明家有一块L型的菜地,要把L型的菜地按图中所示的样子分成面积相等的两个梯形,种上不同的蔬菜,已知这两个梯形的上底都是a米,下底都是b 米,高是(b-a)米.请你给小明家算一算,小明家的菜地的面积是多大?当a=10米,b=30米时,面积是多少?【拓展延伸】9.(10分)两个连续偶数的平方差能被4整除吗?为什么?培优训练(九)(30分钟50分)一、选择题(每小题4分,共12分)1.化简:(a+1)2-(a-1)2=( )(A)2 (B)4 (C)4a(D)2a2+22.一个正方形的边长增加了3 cm,它的面积增加了51 cm2,这个正方形原来的边长是( )(A)5 cm(B)6 cm(C)7 cm(D)8 cm3.计算5a(2-5a)-(5a+1)(-5a+1)的结果是( )(A)1-10a+50a2 (B) 1-10a(C)10a-50a2-1 (D)10a-1二、填空题(每小题4分,共12分)=______.4.100⨯+9910115.为了便于直接应用平方差公式计算,应将(a+b-c)·(a-b+c)变形为[a______][a______].6.(2014·万宁中考)观察下列各式,探索发现规律:22-1=1=1×3;42-1=15=3×5;62-1=35=5×7;82-1=63=7×9;102-1=99=9×11;……用含正整数n的等式表示你所发现的规律为______.三、解答题(共26分)7.(8分)利用平方差公式计算:(1)31×29. (2)×.8.(8分)计算:(1)4x 2-(2x +3)(-2x -3). (2)(3ab +12)(3ab -12)-a 2b 2.【拓展延伸】9.(10分)阅读下列材料:某同学在计算3×(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3×(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)·(22+1)(24+1)(28+1)…(21 024+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(21 024+1) =(2-1)(2+1)(22+1)(24+1)(28+1)…(21024+1)=(22-1)(22+1)(24+1)(28+1)…(21 024+1) =(24-1)(24+1)(28+1)…(21 024+1)=…=(21 024-1)(21 024+1)=22 048-1. 回答下列问题:(1)请借鉴该同学的经验,计算: (3+1)(32+1)(34+1)(38+1).(2)借用上面的方法,再逆用平方差公式计算: (2112 )(1-213)(1-214)…(1-2110).培优训练(十)(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·临沂中考)下列计算正确的是( )(A)2a2+4a2=6a4 (B)(a+1)2=a2+1 (C)(a2)3=a5 (D)x7÷x5=x22.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )(A)(m+n)2-(m-n)2=4mn(B)(m+n)2-(m2+n2)=2mn(C)(m-n)2+2mn=m2+n2(D)(m+n)(m-n)=m2-n23.若a,b是正数,a-b=1,ab=2,则a+b=( )(A)-3 (B)3 (C)±3 (D)9二、填空题(每小题4分,共12分)4.(2014·河北中考)已知y=x-1,则(x-y)2+(y-x)+1的值为_____.5.(2014·江西中考)已知(m-n)2=8,(m+n)2=2,则m2+n2=______.6.(2014.六盘水中考)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=______.三、解答题(共26分)7.(8分)利用完全平方公式计算:(1)482.(2)1032.8.(8分)( 2014·丽水中考)已知A=2x+y,B=2x-y,计算A2-B2.【拓展延伸】9.(10分)如图所示,有四个同样大小的直角三角形,两条直角边分别为a,b,斜边为c,拼成一个正方形,但中间却留有一个小正方形,你能利用它们之间的面积关系,得到关于a,b,c 的等式吗?培优训练(十一)(30分钟50分)一、选择题(每小题4分,共12分)1.下列计算36a8b6÷13a2b÷4a3b2的方法正确的是( )(A)(36÷13÷4)a8-2-3b6-1-2(B)36a8b6÷(13a2b÷4a3b2)(C)(36-13-4)a8-2-3b6-1-2(D)(36÷13÷4)a8-2-3b6-0-22.一颗人造地球卫星的速度为×107米/时,一架喷气式飞机的速度为×106米/时,则这颗人造地球卫星的速度是这架喷气式飞机的速度的( )(A)1 600倍(B)160倍(C)16倍(D)倍3.已知a3b6÷a2b2=3,则a2b8的值等于( )(A)6 (B)9 (C)12 (D)81二、填空题(每小题4分,共12分)4.计算a5b÷a3=_____.5.已知28a3b m÷28a n b2=b2,那么m=_____,n=_____.6.若(2a)3·(-b2)2÷12a3b2·M=-b8,则M=_____.三、解答题(共26分)7.(8分)计算:(1)(-3xy2)2·2xy÷3x2y5. (2)(x-y)5÷(y-x)3.8.(8分)三峡一期工程结束后的当年发电量为×109度,某市有10万户居民,若平均每户用电×103千瓦时.那么三峡工程该年所发的电能供该市居民使用多少年?【拓展延伸】9.(10分)观察下列单项式:x,-2x2,4x3,-8x4,16x5,…(1)计算一下这里任一个单项式与前面相连的单项式的商是多少?据此规律写出第n个单项式.(2)根据你发现的规律写出第10个单项式.培优训练(十二)(30分钟50分)一、选择题(每小题4分,共12分)1.对于任意正整数n,按照n→平方→+n→÷n→-n→答案程序计算,应输出的答案是( )(A)n2-n+1 (B)n2-n (C)3-n(D)12.计算[2(3x2)2-48x3+6x]÷(-6x)等于( )(A)3x3-8x2 (B)-3x3+8x2(C)-3x3+8x2-1 (D)-3x3-8x2-13.下列计算正确的是( )(A)(9x4y3-12x3y4)÷3x3y2=3xy-4xy2(B)(28a3-14a2+7a)÷7a=4a2-2a+7a (C)(-4a3+12a2b-7a3b2)÷(-4a2)=a-3b+74ab2(D)(25x2+15x2y-20x4)÷(-5x2)=-5-3xy+4x2二、填空题(每小题4分,共12分)4.填上适当的式子,使以下等式成立:2xy2+x2y-xy=xy·_____.5.如果用“★”表示一种新的运算符号,而且规定有如下的运算法则:m★n=m2n+n,则(2x★y)÷y的运算结果是_____.6.已知梯形的面积是3a3b4-ab2,上、下底的长度之和为2b2,那么梯形的高为_____.三、解答题(共26分)7.(8分)计算:(1)(64x5y6-48x4y4-8x2y2)÷(-8x2y2). (2)-12a3b2-16a4b3)÷(-.8.(8分)先化简,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=12,b=-1.【拓展延伸】9.(10分)一堂习题课上,数学老师在黑板上出了这样一道题:当a=2 012,b=2时,求[3a2b(b-a)+a(3a2b-ab2)]÷a2b的值.一会儿,雯雯说:“老师,您给的‘a=2 012’这个条件是多余的.”一旁的小明反驳道:“题目中有两个字母,不给这个条件,肯定求不出结果!”他们谁说得有道理?请说明理由.单元评价检测(一)第一章(45分钟100分)一、选择题(每小题4分,共28分)1.(2014·益阳中考)下列计算正确的是( )(A)2a+3b=5ab(B)(x+2)2=x2+4 (C)(ab3)2=ab6 (D)(-1)0=12.计算:2-2=( )(A)14(B)2 (C)-14(D)43.(2014·天门中考)下列运算不正确的是( )(A)a5+a5=2a5 (B)(-2a2)3=-2a6 (C)2a2·a-1=2a(D)(2a3-a2)÷a2=2a-14.若关于x的积(x-m)(x+6)中常数项为12,则m的值为( )(A)2 (B)-2 (C)6 (D)-65.(-112)2 013×(23)2 013等于( )(A)1 (B)-1 (C)-94(D)-496.若x2+mx-15=(x+3)(x+n),则m的值为( )(A)-5 (B)5 (C)-2 (D)27. 现规定一种运算:a*b=ab+a-b,其中a,b为实数,则a*b+(b-a)*b等于( )(A)a2-b(B)b2-b(C)b2 (D)b2-a二、填空题(每小题5分,共25分)8.(2014·贺州中考)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为000 53平方毫米,用科学记数法表示为____平方毫米.9.已知(9n)2=38,则n=_____.10.要使(ax2-3x)(x2-2x-1)的展开式中不含x3项,则a=_____.11.已知(x-ay)(x+ay)=x2-16y2,那么a=_____.12.(2014·黔东南中考)如图,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n)个图有_____个相同的小正方形.三、解答题(共47分)13.(10分)计算:(1)(-2x+5)(-5-2x)-(x-1)2. (2)[-6a3x4-(3a2x3)2]÷(-3ax2).14.(12分)先化简,再求值:3(2a-b)2-3a(4a-3b)+(2a+b)(2a-b)-b(a+b),其中a=1,b=2.15.(12分)在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方.(2)然后再减去4.(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?16.(13分)新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础上进行联系、推广等方式产生的知识,大多数知识是这样的知识.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则是如何获得的?(用(a+b)(c+d)来说明)答案解析一1.【解析】选A.(-x) 2·x3=x2·x3=x2+3=x5.2.【解析】选D .(-c )n -1·(-c )n +1=(-c )n -1+n +1=(-c )2n =c 2n .3.【解析】选C .设S =1+5+52+53+…+52 012,则5S =5+52+53+54+…+52 013,因此,5S -S =52 013-1,S =2 013514. 4.【解析】因为4m +1=4m ×41,所以4m ×4=28,所以4m =7.答案:75.【解析】100亿千克=1010千克,所以100亿千克镭完全衰变后所放出的热量相当于375 000×1010=×105×1010=×1015(千克)煤燃烧所放出的热量.答案:×10156.【解析】因为2x ·2x ·8=2x ·2x ·23=2x +x +3,所以x +x +3=12,解得x =92. 答案:927.【解析】(1)(-3)3·(-3)4·(-3)=(-3)3+4+1=(-3)8=38.(2)a 3·a 2-a ·(-a )2·a 2=a 3+2-a ·a 2·a 2=a 5-a 5=0.(3)(2m -n )4·(n -2m )3·(2m -n )6=(n -2m )4·(n -2m )3·(n -2m ) 6=(n -2m )4+3+6=(n -2m )13.8.【解析】(1)a x +2=a x ×a 2=5a 2.(2)a x +y +1=a x ·a y ·a =5×4×a =20a .9.【解析】(1)(-2)n +(-2)n ·(-2)=(-2+1)(-2)n=-(-2)n .当n 为偶数时,原式=-2n ,当n为奇数时,原式=2n.(2)(-x)2n-1·(-x)n+2=(-x)2n-1+n+2=(-x)3n+1.当n为偶数时,原式=-x3n+1,当n为奇数时,原式=x3n+1.答案解析二1.【解析】选C.(ab)2=a2b2.2.【解析】选-a2=2a2,(-a2b)3=-a6b3,a3·a6=a9,(2a2)2=4a4,故A,B,D错误.3.【解析】选B.正方体的体积为:(2×102)3=8×106(立方毫米).4.【解析】因为22×83=22×(23)3=22×29=211,所以n=11.答案:115.【解析】因为4x×2y=(22)x×2y=22x×2y=22x+y,所以4x×2y=23=8.答案:86.【解析】(1)[(56)6×(-65)6]7=[(56)6×(65)6]7=[(5665)6]7=1.(2)82 013×(-2 012=8×82 012× 012=8×(8×2 012=8×1=8. 答案:(1)1 (2)87.【解析】(x-y)3·(2x-2y)3·(3x-3y)3=(x-y)3[2(x-y)]3[3(x-y)]3=(x-y)3·8(x-y)3·27(x-y)3=216(x-y)9=216a9.8.【解析】因为3555=3111×5=(35)111=243111,4444=4111×4=(44)111=256111,5333=5111×3=(53)111=125111,又因为125<243<256,所以125111<243111<256111,所以5333<3555<4444.9.【解析】(1)因为23=8,所以log 28=3;(2)因为24=16,所以log 216=4;(3)log 2(8×16)=log 28+log 216=3+4=7.所以依次应填:(1)23=83(2)24=164 (3)log 28 log 216 7 答案解析三1.【解析】选+a 3=2a 3,a 6÷a -3=a 9,a 3·a 3=a 6,(-2a 2)3=-8a 2×3=-8a 6.2.【解析】选D .因为3-2=21139=,所以和3-2的结果相同的数是9的倒数. 3.【解析】选-2y =3x ÷32y =3x ÷(32)y =3x ÷9y =4÷7=47. 4.【解析】本题属于开放题,答案不惟一,如a 8÷a 2=a 6(a ≠0)或a 4·a 2=a 6.答案:a 8÷a 2(a ≠0)(答案不惟一)5.【解析】因为9级地震所释放的相对能量为109,7级地震所释放的相对能量为107,所以109÷107=102=100.即9级地震所释放的相对能量是7级地震所释放的相对能量的100倍.答案:1006.【解析】a -1·a -2÷a -3=a -3÷a -3=1.答案:17.【解析】 (1)4-3×2 0130=3111464⨯=.(2)×10-3=×3110=× = 29. 8.【解析】当x -2=1时,即x =3,(3-2)3+3=16=1,满足题意;当x -2=-1时,即x =1时,(1-2)1+3=(-1)4=1,满足题意;当x =-3时,而x -2=-5≠0满足题意,所以当(x -2)x +3=1时,x 的值为3或1或-3.9.【解析】(1)①∵1-2=1,2-1=12,1>12,∴1-2>2-1;②∵2-3=18,3-2=19,18>19,∴2-3>3-2;③∵3-4=181,4-3=164,181<164,∴3-4<4-3;④4-5=11 024,5-4=1625,∵11 024<1625, ∴4-5<5-4.故答案依次为:>> < <.(2)≤2 >2.答案解析四1.【解析】选×10-4= 5.2.【解析】选 000 7米=7×10-7米.3.【解析】选B .因为×10-8= 000 040 3,所以原数是 004 03=×10-6.4.【解析】×10-2=.答案:5.【解析】158×10-9= 000 158米=×10-7米.答案:×10-7米6.【解析】 cm ÷100= cm = 05 m =5×10-5m .答案:5×10-57.【解析】因为百万分之一秒=6110秒=10-6秒, 又因为十亿分之一秒=9110秒=10-9秒, 所以10-6÷10-9=10-6-(-9)=103=1 000(次).所以百万分之一秒可以完成1 000次存储.8.【解析】×10-7米=×10-7×106=微米.×10-7米= 000 78米,09÷(2× 000 78)≈58(个).9.【解析】由1微米=10-6米,可求出一根头发直径为10-6×60=6×10-5(米).由圆的面积公式S =πr 2可得一根头发的横断面的面积为×(56102-⨯)2=×10-9(平方米).10万根头发捆绑起来的横断面面积为:×10-9×105=×10-4(平方米).答案解析五1.【解析】选C .(2a )3·a 2=8a 5.2.【解析】选A .|-3|=3;-(-12)=12;(a 3)2=a 6;2a ·3a =6a 2,故选A .3.【解析】选B .因为-2m 2·4n 3=-8m 2n 3,所以□内应填4n 3.4.【解析】(-2x )3·(-5xy 2)=(-8x 3)·(-5xy 2)=40x 4y 2.答案:40x 4y 25.【解析】因为x m +1y n -2·x m y 2=x 2m +1y n ,所以2m +1=5,n =3,所以m n =23=8.答案:86.【解析】当a 与2a 重合时,其乘积为2a 2;当b 与-2b 重合时,其乘积为-2b 2. 答案:2a 2(或-2b 2)7.【解析】因为1+2+3+…+n =m ,所以(ab n )·(a 2b n -1)…(a n -1b 2)·(a n b )=a 1+2+…+n b n +n -1+…+1=a m b m .8.【解析】拼法不惟一,现列举5种:(1)长为18a,宽为a,高为a,体积为18a·a·a=18a3;(2)长为9a,宽为2a,高为a,体积为9a·2a·a=18a3;(3)长为6a,宽为3a,高为a,体积为6a·3a·a=18a3;(4)长和宽都为3a,高为2a,体积为3a·3a·2a=18a3;(5)长为3a,宽为2a,高为3a,体积为3a·2a·3a=18a3.可以发现,不管怎样拼,体积总是18a3.9.【解析】×=2mn3·(-3n5m)2=2mn3·9n10m2=18n13m3.答案解析六1.【解析】选A.-3xy·(4y-2x-1)=-3xy·4y+(-3xy)·(-2x)+(-3xy)·(-1)=-12xy2+6x2y+3xy,所以应填写3xy.2.【解析】选D.(x2+ax+1)(-6x3)=-6x5-6ax4-6x3.展开式中不含x4项,则-6a=0,所以a=0.3.【解析】选A.因为a2(-a+b-c)=-a3+a2b-a2c;-a(a2-ab+ac)=-a3+a2b-a2c,所以两式相等.4.【解析】-2a(b2+ab)+(a2+b)b=-2ab2-2a2b+a2b+b2=-2ab2-a2b+b2.答案:-2ab2-a2b+b25.【解析】2x(x-1)-x(2x+3)=15,去括号,得2x2-2x-2x2-3x=15,-5x=15,所以x=-3.答案:-36.【解析】因为长方形的长是2a,宽是a+b,所以上图的面积是2a(a+b).因为长方形的面积为a2+a2+ab+ab=2a2+2ab,所以2a(a+b)=2a2+2ab.答案:2a(a+b)=2a2+2ab7.【解析】这个多项式是(x2-4x+1) -(-3x2)=4x2-4x+1,正确的计算结果是:(4x2-4x+1)·(-3x2)=-12x4+12x3-3x2.8.【解析】由题意可得:这个长方形的宽为(a+b)-(a-b)=2b(cm),长方形的周长为2(a+b+2b)=2a+6b(cm),长方形的面积为(a+b)×2b=2ab+2b2(cm2).9.【解析】(1)防洪堤坝的横断面积S=12[a+(a+2b)]×12a=14a(2a+2b)=1 2a2+12ab.故防洪堤坝的横断面面积为(12a2+12ab)平方米.(2)堤坝的体积V=(12a2+12ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.答案解析七1.【解析】选C.因为(2a-3)(3a-1)=6a2-11a+3;(m+n)(n+m)=m2+2mn+n2;(a-2)(a+3)=a2+a-6;(1-a)(1+a)=1-a2,故正确的有2个.2.【解析】选B.(x+a)(x+b)=x2+(a+b)x+ab,又因为(x+a)(x+b)=x2-13x+36,所以a+b=-13.3.【解析】选B.由题意知这条边上的高为2m+2,所以这个三角形的面积为12(m+2)(2m+2)=1(2m2+6m+4)=m2+3m+2.24.【解析】(a-3)(a+2)=a2-a-6,因为a2-a+5=0,所以a2-a=-5,所以原式=-5-6=-11.答案:-115.【解析】由题意可得(x+1)(y-1)=xy-x+y-1.答案:xy-x+y-16.【解析】长为3a+b、宽为a+2b的大长方形的面积为(3a+b)(a+2b)=3a2+2b2+7ab;A类卡片的面积为a·a=a2;B类卡片的面积为b·b=b2;C类卡片的面积为a·b=ab.因此,拼成一个长为3a+b,宽为a+2b的大长方形,需要3张A类卡片、2张B类卡片和7张C 类卡片.答案:77.【解析】因为n(n+7)-(n+3)(n-2)=n2+7n-(n2+n-6)=6n+6=6(n+1),所以当n为正整数时,6(n+1)总能被6整除.8.【解析】(1)观察图乙得知,长方形的长为a+2b,宽为a+b,所以面积为(a+2b)(a+b).又因为这个图形由6部分组成,所以其面积为a2+ab+ab+ab+b2+b2 =a2+2b2+3ab,所以(a+b)(a+2b)=a2+2b2+3ab,(2)如图所示:恒等式是(a+b)(a+b)=a2+2ab+b2.(答案不惟一)9.【解析】(1)①因为5+2=7,所以左边的三位数是275,右边的三位数是572,所以52×275=572×25.②因为左边的三位数是396,所以左边的两位数是63,右边的两位数是36,63×396=693×36.(2)因为左边两位数的十位数字为a,个位数字为b,所以左边的两位数是10a+b,三位数是100b+10(a+b)+a,右边的两位数是10b+a,三位数是100a+10(a+b)+b,所以一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),理由:左边=(10a+b)×[100b+10(a+b)+a]=(10a+b)(100b+10a+10b+a)=(10a+b)(110b+11a)=11(10a+b)(10b+a),右边=[100a+10(a+b)+b]×(10b+a)=(100a+10a+10b+b)(10b+a)=(110a+11b)(10b+a)=11(10a+b)(10b+a),左边=右边,所以“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).答案解析八1.【解析】选C.-b是相同的项,互为相反数的项是3a与-3a,故结果是(-b)2-(3a)2=b2-9a2.2.【解析】选C.因为C中正确的算式应是(a+1)(a2-a+1)=a3+1.3.【解析】选D.因为(x+9)(x-9)=x2-81;(x+9)(-x-9)=-x2-18x-81;(-x+9)(-x-9)=x2-81;(-x-9)(x-9)=81-x2,所以选D.4.【解析】(x+y)(x-y)+y2=x2-y2+y2=x2=32=9.答案:95.【解析】因为(a+b+1)(a+b-1)=63,即(a+b)2-1=63,所以(a+b)2=64,所以a+b=±8. 答案:±86.【解析】(x-1)(x n+x n-1+…+x+1)=x n+1-1.答案:x n+1-17.【解析】以b为边长的正方形面积大.因为a,b,c是三个连续的正整数(a<b<c),所以a=b-1,c=b+1,所以以c,a为长和宽所作长方形的面积为ac=(b-1)·(b+1)=b2-1.又因为以b为边的正方形的面积为b2,且b2-1<b2,所以以b为边长的正方形面积大.8.【解析】由题意得,菜地的面积为:(a+b)(b-a)=(b2-a2)(平方米).2×12当a=10米,b=30米时,b2-a2=302-102=900-100=800(平方米).答:小明家的菜地面积为(b2-a2)平方米,当a=10米,b=30米时,其面积为800平方米.9.【解析】设两个连续偶数为2n ,2n +2,则有 (2n +2)2-(2n )2 =(2n +2+2n )(2n +2-2n ) =(4n +2)×2 =4(2n +1). 因为n 为整数,所以4(2n +1)中的2n +1也是整数, 所以4(2n +1)是4的倍数.答案解析九1.【解析】选C .(a +1)2-(a -1)2=[(a +1)-(a -1)]·[(a +1)+(a -1)]=2×2a =4a .2.【解析】选C .设原来的边长为x cm , 则(x +3)2-x 2=51,所以(x +3+x )(x +3-x )=51,(2x +3)×3=51, 所以2x +3=17,解得x =7.3.【解析】选D .原式=10a -25a 2-(1-25a 2) =10a -25a 2-1+25a 2=10a -1.4.【解析】100991011⨯+=()()22100100100110011001110011100100===-++-+.答案:11005.【解析】通过观察发现两个多项式中a 完全相同,而b ,c 前的符号相反,所以把b -c 看作一项,构造平方差公式为[a +(b -c )][a -(b -c )]=a 2-(b -c )2. 答案:+(b -c )-(b -c )6.【解析】观察式子,每个式子中等号左边的被减数是偶数的平方,减数都是1,等号右边是此偶数前后两个连续奇数的乘积,所以用含正整数n 的等式表示其规律为(2n )2-1=(2n -1)(2n +1).答案:(2n ) 2-1=(2n -1)(2n +1)7.【解析】(1)31×29=(30+1)(30-1)=302-12=900-1=899. (2)×=(10-(10+=102-=100-=. 8.【解析】(1)4x 2-(2x +3)(-2x -3) =4x 2+4x 2+12x +9 =8x 2+12x +9.(2)(3ab +12)(3ab -12)-a 2b 2 =(3ab )2-(12)2-a 2b 2=9a 2b 2-14-a 2b 2=8a 2b 2-14.9.【解析】(1)(3+1)(32+1)(34+1)(38+1)=12(32-1)(32+1)(34+1)(38+1)=12(34-1)(34+1)(38+1)=12(38-1)(38+1) =12(316-1). (2) (2112-)(1-213)(1-214)…(1-2110)=(1-12)(1+12)(1-13)(1+13)…(1-110)(1+110)=132491122331010⨯⨯⨯⨯⨯⨯L =111210⨯=1120. 答案解析十1.【解析】选D .选项A 结果为6a 2,选项B 结果为a 2+2a +1,选项C 结果为a 6.2.【解析】选B .根据图示可知,阴影部分的面积是边长为m +n 的正方形减去中间白色的正方形的面积m 2+n 2,即(m +n )2-(m 2+n 2)=2mn .3.【解析】选B .因为a -b =1,ab =2,可将a -b =1两边同时平方,ab =2两边同乘以4,两式相加可得(a+b)2=9.又a,b为正数,从而B正确.4.【解析】由y=x-1得y-x=-1,所以(x-y)2+(y-x)+1=(y-x)2+(y-x)+1=(-1)2+(-1)+1=1.答案:15.【解析】两式相加得:m2-2mn+n2+m2+2mn+n2=10,所以2(m2+n2)=10,所以m2+n2=5.答案:56.【解析】(a+b)4=a4+4a3b+6a2b2+4ab3+b4答案:a4+4a3b+6a2b2+4ab3+b47.【解析】(1)482=(50-2)2=2 500-200+4=2 304.(2)1032=(100+3)2=10 000+600+9=10 609.8.【解析】A2-B2=(2x+y)2-(2x-y)2=(4x2+4xy+y2)-(4x2-4xy+y2)=4x2+4xy+y2-4x2+4xy-y2=8xy.9.【解析】因为小正方形的边长为b-a,所以它的面积为(b-a)2,所以大正方形的面积为4×1×a×b+(b-a)2.2又因为大正方形的面积为c2,所以4×12×a×b+(b-a)2=c2,即2ab+b2-2ab+a2=c2,得a2+b2=c2.答案解析111.【解析】选÷13a2b÷4a3b2=(36÷13÷4)a8-2-3b6-1-2.2.【解析】选C.×107)÷×106)=(2. 88÷×(107÷106)=×10=16,所以这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.3.【解析】选B.因为a3b6÷a2b2=3,即ab4=3,所以a2b8=ab4·ab4=3×3=9.4.【解析】a5b÷a3=(a5÷a3)·b=a2b.答案:a2b5.【解析】因为28a3b m÷28a n b2=a3-n b m-2,所以3-n=0,m-2=2,解得m=4,n=3. 答案:4 36.【解析】因为(2a)3·(-b2)2÷12a3b2=8a3b4÷12a3b2=23b2,所以23b2·M=-b8,M=-b8÷23b2=-32b6.答案:-32b67.【解析】(1)(-3xy2)2·2xy÷3x2y5=9x2y4·2xy÷3x2y5=18x3y5÷3x2y5=6x.(2)(x-y)5÷(y-x)3=(x-y)5÷[-(x-y)3]=-(x-y)5-3=-(x-y)2=-x2+2xy-y2.8.【解析】该市用电量为×103×105=×108,×109)÷×108)=÷×109-8=20(年).答:三峡工程该年所发的电能供该市居民使用20年.9.【解析】(1)-2x,(-2)n-1·x n.(2)第n个单项式为(-2)n-1·x n,则第10个单项式为-512x10.答案解析121.【解析】选D.由题意,有(n2+n)÷n-n=n+1-n=1.2.【解析】选C.[2(3x2)2-48x3+6x]÷(-6x)=(18x4-48x3+6x)÷(-6x)=-3x3+8x2-1.3.【解析】选C.因为(9x4y3-12x3y4)÷3x3y2=3xy-4y2;(28a3-14a2+7a)÷7a=4a2-2a+1;(-4a3+12a2b-7a3b2)÷(-4a2)=a-3b+74ab2;(25x2+15x2y-20x4)÷(-5x2)=-5-3y+4x2,所以A,B,D错误,C正确.4.【解析】因为(2xy2+x2y-xy)÷xy=2y+x-1,所以2xy2+x2y-xy=xy·(2y+x-1).答案:(2y+x-1)5.【解析】(2x★y)÷y=[(2x)2y+y]÷y=(4x2y+y)÷y=4x2+1.答案:4x2+16.【解析】梯形的高为2(3a3b4-ab2)÷2b2=(6a3b4-2ab2)÷2b2=3a3b2-a.答案:3a3b2-a7.【解析】(1)(64x5y6-48x4y4-8x2y2)÷(-8x2y2)=64x5y6÷ (-8x2y2)-48x4y4÷(-8x2y2)-8x2y2÷(-8x2y2)=-8x3y4+6x2y2+1.(2) -12a3b2-16a4b3)÷(-=-÷+12a3b2÷+16a4b3÷=-+ab +13a 2b 2.8.【解析】(a 2b -2ab 2-b 3)÷b -(a +b )(a -b ) =a 2b ÷b -2ab 2÷b -b 3÷b -(a 2-b 2) =a 2-2ab -b 2-a 2+b 2 =-2ab ,当a =12,b =-1时,原式=-2×12×(-1)=1. 9.【解析】因为[3a 2b (b -a )+a (3a 2b -ab 2)]÷a 2b =(3a 2b 2-3a 3b +3a 3b -a 2b 2)÷a 2b =2a 2b 2÷a 2b =2b ,所以化简的结果中不含a ,这样代入求值就与a 无关,所以雯雯说得有道理.答案解析 单元检测1.【解析】选D .选项A 不是同类项,不能合并;选项B 中乘法公式应用错误;选项C 应为a 2b 6,错误;选项D 正确.2.【解析】选-2=21124. 3.【解析】选B .(-2a 2)3=-8a 6.4.【解析】选B .(x -m )(x +6)=x 2+6x -mx -6m =x 2+(6-m )x -6m ,得-6m =12,m =-2.5.【解析】选B .原式=(-32)2 013×(23)2 013=(-32×23)2 013=-1. 6.【解析】选C .因为(x +3)(x +n )=x 2+(3+n )x +3n , 所以3n =-15,n =-5;3+n =m ,即m =3-5=-2. 7.【解析】选*b +(b -a )*b =ab +a -b +(b -a )b +(b -a )-b =ab +a -b +b 2-ab +b -a -b=b2-b.8.【解析】000 53=×10-7答案:×10-79.【解析】因为(9n)2=92n=(32)2n=34n,所以4n=8,n=2.答案:210.【解析】原式=ax4-2ax3-ax2-3x3+6x2+3x=ax4-(2a+3)x3-(a-6)x2+3x,因为展开式中不含x3项,所以2a+3=0,a=-3.2答案:-3211.【解析】因为(x-ay)(x+ay)=x2-a2y2,所以a2=16,a=±4.答案:±412.【解析】第(1)个图有2个相同的小正方形,而2=1×2;第(2)个图有6个相同的小正方形,而6=2×3;第(3)个图有12个相同的小正方形,而12=3×4;第(4)个图有20个相同的小正方形,而20=4×5;……所以第(n)个图有n(n+1)个相同的小正方形.答案:n(n+1)13.【解析】(1)(-2x+5)(-5-2x)-(x-1)2=(-2x+5)(-2x-5)-(x-1)2=4x2-25-(x2-2x+1)=4x2-25-x2+2x-1=3x2+2x-26.(2)[-6a3x4-(3a2x3)2]÷(-3ax2)=(-6a3x4-9a4x6)÷(-3ax2)=-6a3x4÷(-3ax2)-9a4x6÷(-3ax2)=2a2x2+3a3x4.14.【解析】3(2a-b)2-3a(4a-3b)+(2a+b)(2a-b)-b(a+b)=3(4a2-4ab+b2)-(12a2-9ab)+(4a2-b2)-(ab+b2)=12a2-12ab+3b2-12a2+9ab+4a2-b2-ab-b2=4a2-4ab+b2,当a=1,b=2时,原式=4×12-4×1×2+22=0.15.【解析】设这个数为x,据题意得,[(x+2)2-4]÷x=(x2+4x+4-4)÷4=x+4.如果把这个商告诉主持人,主持人只需减去4就知道这个数是多少.16.【解析】(1)是第二类知识.(2)单项式乘以多项式(分配律)、字母表示数、数可以表示线段的长或图形的面积等.(3)用数来说明:(a+b)(c+d)=(a+b)c+(a+b)d=ac+bc+ad+bd.用形来说明:如图,边长分别为a+b和c+d的矩形,分割前后的面积相等,即(a+b)(c+d)=ac+bc+ad+bd.。

(整式的加减_培优)拔高 经典题型

(整式的加减_培优)拔高 经典题型

整式1.多项式521323422343-+-+-b a b a ab b a 是 次 项式,五次项是 ,五次项的系数是 ,常数项是 ,按字母a 的降幂排列是 .2.三个连续的偶数中间的一个为n 2,则这三个数的和表示为 .3.两个单项式61342557b a b a n m +-与可以合并,则=m ,=n .4.某人以5千米/时的速度走了x 小时,那么,他一共走的路程是x 5千米.请对单项式“x 5”再给出一个实际背景 .5.一个三位数的百位数字是a ,)(a c c b >,个位数字是十位数字是 ,将百位数字与个位数字交换位置,所得的三位数字与原三位数的差为 ,这个差必能被 整除.6. -2a+3b-4c 的相反数是6.有理数a 、b 在数轴上的对应点如图所示:───┴─────────┴──┴───→a 0 b化简:︱a +b ︱+︱a -b ︱-︱a ︱+︱b ︱= .7.如果2x ²--3y-7=2,那么(1)(--2x ²+3y )²= (2)4x ²--6y-3= ;8. 已知(m-2)a 3b |m|是关于a,b 的5次单项式,则m=_________9、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为10. 关于x 的多项式3(4)b a x x x b --+-的次数是2,则a= b=11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。

12..某市出租车收费标准是:起步价为5元,3千米后每千米价为2元,若某人乘坐了x (x>3)千米的路,则应支付的费用是 ;13. 关于x 的多项式x 2 +(2-3n)x -5x 3+2m x 2 -1不含二次项与一次项,则m=_____,n=_______. 14. x 2-6y+3比-3x 2-6y-1大还是小?_____15、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 16.都是自然数和若n m ,n m n m y x +--2则多项式的次数是 ( )A mB nC n m +D m 、中较大的数n17、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式18.m 个人用n 天做p 个零件,则n 个人用相同的速度做m 个零件需要( )天A .p m 2B .2mp C . m p 2 D . 2p m 1.)253(5)52(222x x x x -+-- 2 .])86(7[322x x x x ----3.先化简再求值: 312)]}4(3[2{5222=-=-=----c b a b a ab abc b a abc ,,,其中4.求加上-a ²b+3a-2的2倍等于6a ²b-4a+7的整式。

七年级数学下期培优学案(4)第一章拓展

七年级数学下期培优学案(4)第一章拓展

七年级下期培优学案(4)--第一章《整式的运算》拔高题专项练习1、若0352=-+y x ,则y x 324⋅的值为 。

2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。

3、若3622=+=-y x y x ,,则y x -= 。

4、若942++mx x 是一个完全平方式,则m 的值为 。

5、计算2002200020012⨯-的结果是 。

6、已知()()71122=-=+b a b a ,,则ab 的值是 。

7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。

8、已知2131⎪⎭⎫ ⎝⎛-=+x x x x ,则的值为 。

9、若n m n m 3210210,310+==,则的值为 。

10、已知2235b a ab b a +==+,则,的值为 。

11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。

12、已知()()22123--==+b a ab b a ,化简,的结果是 。

13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。

14、计算()()2222b ab a b ab a +-++的结果是 。

15、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。

16、计算()()123123-++-y x y x 的结果为 。

17、若xx x 204412,则=+-的值为 。

18、()2101--= 。

19、若()()206323----x x 有意义,则x 的取值范围是 。

20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。

21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。

22、已知199819992000201x x x x x ++=++,则的值为 。

整式的加减培优题

整式的加减培优题

整式的加减培优题一、基础题1、已知-3x,求3x的相反数为3x,所以-3x的相反数为3x。

2、若-4x,求m和n。

由题可知m+3y2与wx5yn+3是同类项,所以它们的指数相等,即2=5n+3,解得n=1,代入m+3y2与wx5yn+3同类项中的y2,得到m-2y3与x3y7-2n是同类项,所以它们的指数相等,即2+2n=m,解得m=4,代入n=1,得到m=4,n=1.3、当1≤m<2时,化简。

由题可知,m=1时,等式右边为(1-1)3=0,所以当1≤m<2时,等式右边为0.4、使m-1-m-2得。

化简得m-1-m-2=m-1-(m-2)=m-1-m+2=m+1.5、已知623mn2xy和xy的和是单项式,则代数式9m2-5mn-17的值为。

由题可知623mn2xy和xy的和是单项式,所以它们的指数相等,即2=n,代入9m2-5mn-17中的n,得到9m2-5m2-17=4m2-17,所以代数式9m2-5mn-17的值为4m2-17.6、若A是三次多项式,B是四次多项式,则A+B一定是()。

A、七次多项式B、四次多项式C、单项式D、不高于四次的多项式或单项式。

A+B的次数为3+4=7,所以A+B是七次多项式。

7、若a-3b=5,则2a-3b+3b-a-15的值是。

化简得2a-3b+3b-a-15=a-15.8、其中单项式有个,多项式有。

单项式为1-1/(2π3x),多项式为x2y,x+3y,a。

1x,2x-y。

9、若代数式4x-2x+5的值是7,那么代数式2x-x+1的值等于。

化简得4x-2x+5=2x+5=7,所以2x-x+1的值等于4.10、若多项式32(k2-2x+k-2x-6)是关于x的二次多项式,则k的值为。

化简得32(k2-4x-6)=-96x+32k2+96,所以k的值为±4.11、一个关于字母x,y的多项式,除常数项外,其余各项的次数都是4,这个多项式最多有几项。

整式的加减培优题

整式的加减培优题

整式的加减培优题整式的加减培优训练1、已知-3x+2x= -x,求其值。

2、若-4x+m+3y^2和wx^5yn+3是同类项,则m=3,n=1.3、当1≤m<2时,化简m-1-m-2得m-3.4、使ax^2-2xy+y^2-ax^2+bxy+2y^2=6x^2-9xy+cy^2成立,那么a=6,b=-9,c=8.5、已知2xy+x^6+23myn的和是单项式,则代数式9m^2-5mn-17的值为-17.6、若A是三次多项式,B是四次多项式,则A+B一定是不高于四次的多项式或单项式。

7、若a-3b=5,则2a-3b+3b-a-15的值是-10.8、下列式子:-(a-b),-2a+3b,a^2-b^2,4a-4b中只有a^2-b^2是单项式。

9、若代数式4x-2x+5的值是7,那么代数式2x-x+1的值等于3.10、若多项式k(k-2)x+(k-2)x-6是关于x的二次多项式,则k的值为4.11、一个关于字母x,y的多项式,除常数项外,其余各项的次数都是4,这个多项式最多有5项。

12、其中单项式有2π3x^2,22x,(m+1)a+a^2,1-x^2,其中多项式是2x^2-3x+1.13、当x=3时,多项式ax^2+bx+c-5的值是7,那么当x=-3时,它的值是-5.14、每千克m元的甲种糖a千克与每千克n元的乙种糖果b千克混合制成什锦糖,那么每千克什锦糖应定价为(ma+nb)/(a+b)元。

15.合并同类项:5-3x^2)+x^2-2x^2=-4x^2+518x^2-3+2x)-(x-5+2x^2)=16x^2-8+x+5=16x^2+x-3a+b-c)+(b+c-a)-(c+a-b)=02(x-3x+1)-3(2x-x-2)=-x-116、求整式3x^2-5x+2与2x+x-3的差,化简得x^2-6x+5.17、已知A=x-2xy,B=y+3xy,求2A-3B的值,化简得-6xy-x+y。

【教师卷】初中七年级数学上册第二章《整式的加减》基础卷(课后培优)(1)

【教师卷】初中七年级数学上册第二章《整式的加减》基础卷(课后培优)(1)

1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B 解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a ;C. (-b)+(-a)=-b-a ;D. (-b)-(+a)=-b-a ;故与(-b)-(-a)相等的式子是:(-b)+a ﹒故选:B ﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键. 5.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.6.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A 解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.7.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.8.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.9.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A 解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】 22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.10.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.11.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.12.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=-- C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误; 2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.13.下列说法正确的是( )A .0不是单项式B .25R π的系数是5C .322a 是5次单项式D .多项式2ax +的次数是2D解析:D【分析】根据整式的相关概念可得答案.【详解】A 、0是单项式,故A 错误;B 、25R π的系数是5π,故B 错误;C 、322a 是2次单项式,故C 错误;D 、多项式2ax +的次数是2,故D 正确.故选:D .【点睛】 本题考查单项式的系数,单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,也考查了多项式的次数.14.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.15.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D解析:D【分析】 根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关1.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 2.如图,阴影部分的面积用整式表示为_________.x2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x +6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x 2+3x +6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.4.将一个正方形纸片剪成如图中的四个小正方形,用同样的方法,每个小正方形又被剪成四个更小的正方形,这样连续5次后共得到______个小正方形.1024【分析】先写出前3次分割得到的正方形的个数找到规律即可得出答案【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为个;分割3次得到正方形的个数为个;…以此类推分割5次得到解析:1024【分析】先写出前3次分割得到的正方形的个数,找到规律即可得出答案.【详解】由图可知分割1次得到正方形的个数为4;分割2次得到正方形的个数为216=4个;分割3次得到正方形的个数为364=4个;…以此类推,分割5次得到正方形的个数为:54=1024个,故答案为:1024.【点睛】本题考查了图形规律题,仔细观察图形找到规律是解题的关键.5.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b+. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.6.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.7.如图,在整式化简过程中,第②步依据的是_______.(填运算律)化简:()22253ab ab a b ab +--+ 解:()22253a b ab a b ab +--+22253a b ab a b ab =++-①22253a b a b ab ab =++-②()222(53)a b a b ab ab =++-③232a b ab =+.④加法交换律【分析】直接利用整式的加减运算法则进而得出答案【详解】解:原式=2a2b+5ab+a2b-3ab=2a2b+a2b+5ab-3ab=(2a2b+a2b )+(5ab-3ab )=3a2b+2a解析:加法交换律【分析】直接利用整式的加减运算法则进而得出答案.【详解】解:原式=2a 2b+5ab+a 2b-3ab=2a 2b+a 2b+5ab-3ab=(2a 2b+a 2b )+(5ab-3ab )=3a 2b+2ab .第②步依据是:加法交换律.故答案为:加法交换律.【点睛】此题主要考查了整式的加减运算,正确掌握相关运算法则是解题关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥,∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.10.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 11.多项式234324x x x -+-按x 的降幂排列为______.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.1.先化简,再求值(1)()223421332a a a a -+-+-,其中23a =-(2)()()22352542m mn mn m -+--+,其中22m mn -=解析:(1)原式=23362a a --+;256;(2)原式()2111m mn =-+;23. 【分析】(1)根据整式的运算法则,先将整式进行化简,再将字母的值代入计算求值即可.(2)根据整式的运算法则,去括号合并同类项,将整式化成最简,然后将字母的值代入计算即可.【详解】解(1)原式=22333-4233222a a a a ⨯-⨯++-=22363332a a a a --++-=23362a a --+ 将23a =-代入得:222336332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭=256; (2)原式=()()2222352542351084m mn mn m m mn mn m -+--+=+-+-- ()2111m mn =-+将22m mn -=代入得:11×2+1=23【点睛】本题考查了整式的化简求值,解决本题的挂件是正确理解题意,熟练掌握整式的运算法则,将整式正确进行化简.2.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 3. 1+2+3++100⋯=?经过研究,这个问题的一般性结论是()1123n n n 12+++⋯+=+,其中n 是正整数.现在我们来研究一个类似的问题:()122334n n 1⨯+⨯+⨯+⋯+=?观察下面三个特殊的等式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯ 将这三个等式的两边相加,可以得到1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:1223341011⨯+⨯+⨯+⋯⨯=① ______()122334n n 1⨯+⨯+⨯+⋯+=② ______(2)探究并计算:()()123234345n n 1n 2⨯⨯+⨯⨯+⨯⨯+⋯+++= ______ (3)请利用(2)的探究结果,直接写出下式的计算结果:123234345101112⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯= ______ .解析:(1)①440,②()()1n n 1n 23++;(2)()()()1n n 1n 2n 34+++;(3)4290 【分析】(1)①根据阅读材料的结论计算即可;②根据阅读材料的结论进行总结;(2)仿照(1)的计算方法进行归纳即可;(3)代入(2)总结的规律进行计算即可.【详解】解:(1)①1×2+2×3+3×4+…10×11=13×10×11×12=440,②1×2+2×3+3×4+…+n (n+1)=13n (n+1)(n+2), (2)1×2×3=14(1×2×3×4-0×1×2×3), 2×3×4=14(2×3×4×5-1×2×3×4), 3×4×5=14(3×4×5×6-2×3×4×5), 则1×2×3+2×3×4+3×4×5+…+n (n+1)(n+2)=14n (n+1)(n+2)(n+3); (3)123234345101112⨯⨯+⨯⨯+⨯⨯++⨯⨯ =14×10×11×12×13 =4290.【点睛】 本题考查了有理数的混合运算、规律型-数字的变化类,弄清题意,得出一般性的规律是解本题的关键.4.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4.【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.。

七年级数学(下)第一章《整式的运算》拔高题专项练习1

七年级数学(下)第一章《整式的运算》拔高题专项练习1

《整式的运算》拔高题专项练习1、若0352=-+y x ,则y x 324⋅的值为 。

2、在()()y x y ax -+与3的积中,不想含有xy 项,则a 必须为 。

3、若3622=+=-y x y x ,,则y x -= 。

4、若942++mx x 是一个完全平方式,则m 的值为 。

5、计算2002200020012⨯-的结果是 。

6、已知()()71122=-=+b a b a ,,则ab 的值是 。

7、若()()q a a pa a +-++3822中不含有23a a 和项,则=p ,=q 。

8、已知2131⎪⎭⎫⎝⎛-=+x x x x ,则的值为 。

9、若n m n m 3210210,310+==,则的值为 。

10、已知2235b a ab b a +==+,则,的值为 。

11、当x = ,y = 时,多项式11249422-+-+y x y x 有最小值,此时这个最小值是 。

12、已知()()22123--==+b a ab b a ,化简,的结果是 。

13、()()()()()121212121232842+⋅⋅⋅⋅⋅⋅++++的个位数字是 。

14、计算()()2222b ab a b ab a +-++的结果是 。

15、若()()[]1320122---=+++ab ab ab b b a ,则的值是 。

16、计算()()123123-++-y x y x 的结果为 。

17、若x x x 204412,则=+-的值为 。

18、()2101--= 。

19、若()()206323----x x 有意义,则x 的取值范围是 。

20、若代数式5021422++-+y x y x 的值为0,则=x ,=y 。

21、计算()()()()205021.010432--⨯-⨯-÷-的结果为 。

22、已知199819992000201x x x x x ++=++,则的值为 。

23、多项式621143--++b a ab a m 是一个六次四项式,则=m 。

(完整版)整式的加减拓展拔高

(完整版)整式的加减拓展拔高

整式的加减第一部分:合并同类项例1. 1.已知︱a-2︱+(b-3)2=0,求3a 2-4ab+5-a 2+3ab-3的值2.已知m,x,y 满足:①32(x-5)2+5︱m ︱=0 ②-2a 2by+1与7b 3a 2的和是一个单项式求代数式2x 2-6y 2+mxy-9my 2-3x 2+3xy-7y 2的值例2. 1. 已知x+y=5,xy=-4, 求xy y x x y xy x x 336315643122+-+-+--的值2.已知a+b=2,,求4(a+b)2+2(a+b)-7(a+b)+3(a+b)2的值。

例3 1.下面两个多项式是否相等?5x 3-3x 2+2x-x 3+6x 2, 4x 3+5x 2+3x-2x 2-x.2.已知关于x 多项式x 3+ax 2-2x 2+3x-bx-c 与多项式x 3-3x 2+4x-1相等,求a+b+c 的值。

例4 1.若化简关于x, y 的整式x 3+2a(x 2+xy)-bx 2-xy+y 2,得到的结果是一个三次二项式,求a 3+b 2的值。

2.若关于x, y 的单项式(2+m)x a y 4与4x 2y b+5的和等于0,求3m+2a+4b的值。

提升训练:1. 三个连续偶数,若中间的一个是2x ,则这三个连续偶数的和是_____________.2. 写出一个整式,使其至少含有三项,且合并同类项后的结果为3xy 2。

3. 已知-2x my 与3x 3y n是同类项,求m-m 2n-3m+4n+2nm 2-3n 的值。

4. 已知(a+1)2+︱b-2︱=0,求多项式a 2b 2+3ab-7a 2b 2-25ab+1+5a 2b 2的值。

5. k 为何值时,关于x, y 的多项式x 2+2kxy-3y 2-6xy-y 中不含xy 项。

第二部分:去括号,整式的加减例1. 1.已知关于a 的多项式-3a 3-2ma 2+5a+3与8a 2-3a+5相加后,不含二次项,求的m 值2.已知多项式(m+4)x4-x n+x-n是关于x的二次三项式,求m与n的差的相反数。

七年级数学尖子生培优竞赛专题辅导专题08 整式乘法运算及其拓展

七年级数学尖子生培优竞赛专题辅导专题08 整式乘法运算及其拓展

专题08 整式乘法运算及其拓展专题解读】整式的乘法运算是初中代数的一块重要而基础的知识,是初中代数中“式”的重要内容之一.整式的乘法运算与有理数运算的联系紧密,是对该内容学习的拓展和延续,也是今后学习分式和根式的运算、函数及其图像等知识的基础.所以说,“整式的乘法运算”在整个初中代数学习中具有非常重要的意义. 思维索引例1.计算:(1)(1-212)(1-213)(1-214)…(1-2110);(2)3(22+1)(24+1)(28+1)…(264+1)+1.例2.(1)已知4x =3y ,求代数式(x -2y )2-(x -y )(x +y )-2y 2的值;(2)若x 满足(80-x )(x -60)=30,求(80-x )2+(x -60)2的值.素养提升1.(x 2-mx +1)(x -2)的积中x 的二次项系数为零,则m 的值是( ) A .1 B .-1 C .-2 D .22.若(x +m )(x +n )=x 2+ax +12,则a 的取值有( )A .4个B .5个C .6个D .7个 3.已知(x -2017)2+(x -2019)2=34,则(x -2018)2的值是( ) A .4 B .8C .12D .16 4.若x -y =2,x 2+y 2=4,则x 2018+y 2018的值为( )A .4B .20182C .22018D .420185.如图,用四个完全一样的长、宽分别为x 、y 的长方形纸片围成一个大正方形ABCD ,中间是空的小正方形EFGH .若AB =a ,EF =b ,判断以下关系式:①x +y =a ;②x -y =b ;③a 2-b 2=2xy ;④x 2-y 2=ab ;⑤x 2+y 2=222a b ,其中正确的个数有( ) A .2个B .3个C .4个D .5个(第5题)GFE H DCBA6.若要使x (x 2+a +3)=x (x 2+5)+2(b +2)成立,则a 、b 的值分别为 .7.已知a -b =4,ab +c 2-6c +13=0,则a +b +c = .8.若多项式(x -1)(x +3)(x -4)(x -8)+a 为一个完全平方式,则a 的值是 . 9.若m 1,m 2,…,m 2019是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2019=1529,(m 1-1)2+(m 2-1)2+…+(m 2019-1)2=1510,则在m 1,m 2,…m 2019中取值为0的个数为 . 10.有A 、B 、C 三种不同型号的卡片,其中A 型卡片是边长为a 的正方形,B 型卡片是长为b 的长方形,C 型卡片是边长为b 的正方形,其中a >b .现有A 型卡片3张,B 型卡片4张,C 型卡片5张,从其中取出若干张,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分),所拼成的正方形的边长为 . 11.求下列代数式的值: (1)已知a (a -1)-(a 2-b )=2,求222a b -ab 的值;(2)已知x -1x =3,求x 4+41x的值; (3)若a +b +2c =1,a 2+b 2-8c 2+6c =5,求ab -bc -ac 的值.12.观察下列各式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,…………由此我们可以得到:(x-1)(x n+x1n+…+x2+x+1)=;请你利用上面的结论,完成下面的计算:(1)当x=3时,(3-1)(3018+32017+32016+…+33+32+3+1)=;(2)299+298+297+……+2+1;(3)(-2)50+(-2)49+(-2)48+…+(-2)+1.13.拓展创新:(1)试说明:代数式(2x+3)(6x+2)-6x(2x+13)+8(7x+2)的值与x的取值无关;(2)若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小;(3)已知ax+by=8,ax2+by2=22,ax3+by3=62,ax4+by4=178,试求1995(x+y)+6xy的值.14.将一长2m 、宽2n 的长方形,如图(1)沿虚线均分成四个小长方形,然后图拼成如图(2)一个正方形.(图2)(图1)nn nnnn nn mmm m mm m m(1)用两种不同的方法求图(2)中阴影部分面积.方法一: ;方法2: ;(2)观察图(2),写出下列三个代数式:(m +n )2,(m -n )2,4mn 之间的等量关系: .(3)根据(3)题中的等量关系,解决如下问题;若a +b =7,ab =10,求(a -b )2的值. (4)试画一个几何图形,使它的面积能表示(m +n )(m +3n )=m 2+4mn +3n 2.15.先阅读再解题.题目:如果(x -1)5=a 1x 5+a 2x 4+a 3x 3+a 4x 2+a 5x +a 6,求a 6的值.解这类题目时,可根据等式的性质,取x 的特殊值,如x =0,1,-1…代入等式两边即可求得有关代数式的值.如:当x =0,(0-1)5=a 6,即a 6=-1. 请你求出下列代数式的值. (1)a 1+a 2+a 3+a 4+a 5; (2)a 1-a 2+a 3-a 4+a 5.专题08整式乘法运算及其拓展思维索引】例1.(1)1120; (2)2128;例2.(1)0; (2)340; 素养提升】1.C ; 2.C ; 3.D ; 4.C ; 5.C ; 6.2,-2; 7.3; 8.196;9.1000;10.a +b 或a +2b ; 11.(1)2; (2)119; (3)一2; 12.11n x+-; (1)32019-1; (2)2100-1;(3) 51213+;13.(1)略; (2)x <y ; (3)10011;14.(1)(m -n )2;(m +n )2-4mn ; (2)(m -n )2=(m +n )2-4mn ; (3)9; (4)略; 15.(1)1; (2)31;。

七上整式运算拔高题1

七上整式运算拔高题1

七上整式运算拔高题11、下列代数式2x ,x 2+x -1,2x a +,1x y -,-2.5,πab ,其中整式有( )个 A .6 B .5 C .4 D .3 2、下列说法中正确的是( )A .3x y -是单项式 B .x 4-1是四次二项式 C .3π2x 3y 的次数是6 D .单项式-ab 2的系数是1 3、下列说法错误的是( )A . m 是单项式也是整式B . (m -n)是多项式也是整式C . 整式一定是单项式D . 整式不一定是多项式4、下列各组是同类项的是( )A .2πx 与3x 2B .13x 与12xy -C .x 与-πxD .2x 2y 与-5y 2x 5、如果关于 a ,b 的两个单项式225m n a b 与 a b 是同类项,那么 m n 的值是( ) A .0 B .1 C .12D .3 6、若A 和B 都是4次多项式,则A +B 一定是( )A .8次多项式B .4次多项式C .次数不高于4次的整式D .次数不低于4次的整式7、一个多项式减去-5x 第于3x 2-5x +9,这个多项式是( )A .8x 2-5x +9B .3x 2+9C .3x 2+10x +9D .3x 2-10x +9 8、一个多项式A 与多项式B=2x 2﹣3xy ﹣y 2的差是多项式C=x 2+xy+y 2,则A 等于( )A .x 2﹣4xy ﹣2y 2B .﹣x 2+4xy+2y 2C .3x 2﹣2xy ﹣2y 2*D .3x 2﹣2xy 9、下列各式中,去括号或添括号正确的是( )A .a 2-(2a -b +c)=a 2-2a -b +cB .a -3x +2y -1=a +(-3x +2y -1)C .3x -[5x -(2x -1)]=3x -5x -2x +1D .-2x -y -a +1=-(2x -y)+(a -1)10、减去-3m 等于5m 2-3m -5的式子是( )A .5(m 2-1)B .5m 2-6m -5C .5(m 2+1)D .-(5m 2+6m -5)11、已知 a -b =-3,c +d =2,则(b +c )-(a -d )的值为()A .1B .5C .-5D .-112、单项式-2πa 2b 3的系数是 ,次数是 .13、已知2a +4b =-6,则8-a -2b 的值是 .14、若单项式3ab m 和-4a n b 是同类项,则m +n = .15、代数式y 2+2y +1的值是6,则4y 2+8y -5的值是 .16、一个关于x 的二次三项式,二次项的系数是-1,一次项的系数和常数项的和等于2,则这个多项式可以是___________17、一辆客车上原有(6a﹣2b)人,中途下车一半人数,又上车若干人,这时车上共有(12a ﹣5b)人.则中途上车的乘客是人.18、(1) 先化简,再求值:2(x2-2y2)-(x-2y)-(x-3y2+2x2),其中x=-2,y=-3 (2) 已知多项式(2mx2-x2+8x+1)-(5x2-5y2+6x)化简后不含x2项,求多项式2m3-[3m3-(4m-6)+m]的值19、若关于x的多项式-5x3-2mx2+2x+x2-3nx-1不含二次项和一次项,求m,n的值.20、已知多项式3x2 -2 x - 4 与多项式A的和为6x -1, 且式子A-(mx +1)的计算结果中不含关于x的一次项,(1)求多项式A;(2)求m的值21、己知关于x、y的单项式132m nx y-与单式-xy m是同类项,试求整式-12[5m-(2mn+2n-3n)]-(32mn-3n)的值.22、已知,A=2x2+3mx-2x-1,B=-x2-mx+1,且A+2B的值与x的取值无关,求m的值.23、计算求值:(1)已知x=2时,代数式-ax3-[7-(bx+2ax3)]的值为5.求x=-2时,该代数式的值为多少?(2)已知x=2时,多项式ax5+bx4+cx3+dx2+ex+f和bx4+dx2+f的值分别为4和3,则当x=-2时,ax5+bx4+cx3+dx2+ex+f的值是多少?。

整式的运算提高题

整式的运算提高题

21.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.(2)已知2a -b =5,ab =23,求4a 2+b 2-1的值.(3)已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.(4)x 2+2mx +16是完全平方式,则m 的值为(5)如果x ,y 满足x 减2的绝对值,加(x+y) 2 等于0,求y 的x 次方(6)若5=+y x ,2=xy ,求22y x +(7)(7)已知b a b a 42522+=++,b a 53-求的值.19.已知a +b =-3,ab =-4,求下列各代数式的值.(1)3a 2+3b 2; (2)(a -b )2; (3)a b +ba ; (4)(2a -1)(2b -1).20.已知(1)a +4b +3=0,求2a ·16b 的值;(2)如果2a =3,2b =5,求42a -b 的值.21.已知a+b+c=8,a2+b2+c2=30,求ab+bc+ac的值.解下列方程或不等式22.(2x-1)2-(3x+2)2=(1-x)(5x+4)+10.23.2(3x2-1)-(2x+3)(2x+3)>(x-1)(2x+3).17.2(2y+1)2-8(y+1)(y-1)=34.18.(x-2)(x2+2x+4)-x(x-2)2<4x(x+1).19. x (x+2)+(2x+1)(2x -1)=5(x 2+3).20.用简便方法计算:(1)972; (2)20022; (3)992-98×100; (4)49×51-2499.13.(a -2b +3c -d )(a +2b -3c -d )=[(a -d )-(_____)][(a -d )+(______)]=()2-( )2. 14.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________.化简求值(2x+3y )2 –(2x+y)(2x-y),其中x=1/3,y= –1/2⑵若()92=+y x ,()52=-y x ,则______________=xy .3.填空: ⑴222(2)____4a b a b -=-+; ⑵22___16(___)m m ++=+;⑶若225x ax ++是一个完全平方式,则_______.a =⑴22010; ⑵2()x y z +-;⑶22(2)(2)m m +-; ⑷2(3)(9)(3)a a a --+. ⑹(1)(1)x y x y +++-;1.(多题-思路题)计算: (1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.利用平方差公式计算:22007200820061⨯+. 广场内有一块边长为2a 米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?已知x ≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.计算:
11111111111111()(1)(1)()23420092320082320092342008
++++++++-++++++++
2.计算:1212323112()()()()n n n n a a a a a a a a a a a a --++++++-++++++ 3.计算:判断(1)1
n n +与(1)n
n +的大小关系?
(2)是否知道2008
2009
与2009
2008
的大小?
(3)是否能判断2008
2009
-与2009
2008
-的大小?
4.已知55
4433
22
2,3,5,6,a b c d ====则,,,a b c d 的大小关系是________ 5.试判断(1)2009
20102010
2009-的末位数字
(2)2008200722+的末位数字
6.已知23,26,212,a
b
c
===试探究,,a b c 的关系 7.计算:22222
11111
(1)(1)(1)(1)(1)234910-
---- . 8.已知,1220092010,,,,a a a a 都是整数, 又
122009()M a a a =+++ 232009()
a a a +++ ,
122010232009()()N a a a a a a =++++++
时比较M,N 的大小.
9.若x 为实数,则代数式||x x -的值一定是________ 10.设a <0,在代数式|a |,-a ,2009
a ,2010
a
,|-a |,2a a a ⎛⎫- ⎪⎝⎭,2a a a ⎛⎫
+ ⎪⎝⎭
中负数的个数是_______
11.已知:7
7
6
5
76510(31)x a x a x a x a x a -=+++++ ,那么76510a a a a a +++++ 的值时多少?
12.猜想:(1)1
22(1)(1)______n
n n x x x x x x ---++++++=
尝试计算:(2)2010
2009200822
22221+++++
13.已知2
310a a +-=,求2
2
3102005a a ++的值.
15.已知103,102,m n ==求210m n
-的值;已知23
6,98,m
n ==求643m n -的值
16.已知2
(1)
1x x +-=,求整数x 的值.
17.计算:()4
221()n
n x y x y +⎡⎤+÷--⎣⎦.(n 是正整数)
18.计算:33230165321
()()()()(3)356233
---÷+-÷--+
19.若0
(3210)x y +-无意义,且25,x y +=求,x y 的值. 20.若整数,,x y z 满足,则9
1016()()()28915
x y z
⨯⨯=,求x,y,z 的值. 21.如果3,9m n a a ==,那么32m n
a -=________
22.若210
25,y
=则10y -等于________
23.已知99
99909911,99
P Q ==,那么P,Q 的大小关系是_______。

相关文档
最新文档