八年级数学全等三角形同步练习1

合集下载

人教版八年级数学上册全等三角形的判定同步训练习题

人教版八年级数学上册全等三角形的判定同步训练习题

人教版八年级数学上册12.2《全等三角形的判定》同步训练习题一.选择题(共10小题)1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2.(2015春•南京校级期末)下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③3.(2015•宁波)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠24.(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对5.(2015•滨湖区一模)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个6.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS7.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(2015•漳州一模)小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.① B.② C.③ D.①和②9.(2015春•陕西校级期末)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFC的理由是()A.SSS B.AAS C.SAS D.HL10.(2014•厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF二.填空题(共10小题)11.(2015•南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.12.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)13.(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .14.(2015•怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.15.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.16.(2015•姜堰市一模)如图,E为正方形ABCD边CD上一点,DE=3,CE=1,F为直线BC上一点,直线DF与直线AE交于G,且DF=AE,则DG= .17.(2015春•锡山区)如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2= °.18.(2015春•揭西县期末)如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是.19.(2015春•瑶海区期末)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,G在AD 上,且DF=BE.①CE=CF;②EC⊥CF;③△ECG≌△FCG,④若∠GCE=45°,则EG=BE+GD,以上说法正确的是.20.(2015春•苏州期末)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A﹣C 路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.则点P运动时间为时,△PEC与△QFC全等.三.解答题(共10小题)21.(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.22.(2015•通辽)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.23.(2015•泸州)如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.24.(2015•南充)如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.25.(2015•温州)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.26.(2015•金溪县模拟)请从以下三个等式中,选出一个等式填在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,.求证:△ABE≌△CDF.证明:27.(2015•大兴区一模)已知,在△ABC中,DE∥AB,FG∥AC,BE=GC.求证:DE=FB.28.(2015•西安模拟)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:△ADC≌△BEA;(2)若PQ=4,PE=1,求AD的长.29.(2015•铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.30.(2015春•鄄城县期末)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且点B,C在AE的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)BD=DE+CE成立吗?为什么?(2)若直线AE绕点A旋转到如图2位置时,其他条件不变,BD与DE,CE关系如何?请说明理由.人教版八年级数学上册12.2《全等三角形的判定》同步训练习题参考答案一.选择题(共10小题)1.(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC选A【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2015春•南京校级期末)下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③【考点】全等三角形的判定.【分析】熟练综合运用判定定理判断,做题时要结合已知与全等的判定方法逐个验证.【解答】解:因为两个三角形的两个角对应相等,根据内角和定理,可知另一对对应角也相等,那么总能利用ASA来判定两个三角形全等,故选项①正确;两个全等的直角三角形都和一个等边三角形不全等,但是这两个全等的直角三角形可以全等,故选项②错误;判定两个三角形全等时,必须有边的参与,否则不会全等,故选项③正确.故选C.【点评】AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2015•宁波)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【考点】全等三角形的判定;平行四边形的性质.【分析】利用平行四边形的性质以及全等三角形的判定分别得出三角形全等,再进行选择即可.【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;故选C.【点评】本题考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.4.(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.5.(2015•滨湖区一模)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个【考点】全等三角形的判定.【分析】根据30°角所对的直角边等于斜边的一半以及垂线段最短的性质求出AC边的最短值,然后选择即可得解.【解答】解:如图,AC⊥BC时,∵∠ABC=30°,AB=4,∴AC=AB=×4=2,∵垂线段最短,∴AC≥2,∴在1、2、3、4、5中可取的值有2、3、4、5,当AC=2时可以作1个三角形,当AC=3时可以作2个三角形,当AC=4时可以作1个三角形,当AC=5时可以作1个三角形,共1+2+1+1=5,所以,三角形的个数是5个.故选C.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,垂线段最短,求出AC边的最小值是解题的关键.6.(2015•沂源县校级模拟)如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASA B.SSS C.SAS D.AAS【考点】全等三角形的判定;作图—基本作图.【分析】由作图可得CO=DO,CE=DE,OE=OE,可利用SSS定理判定三角形全等.【解答】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2015•启东市模拟)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.8.(2015•漳州一模)小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②【考点】全等三角形的应用.【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.9.(2015春•陕西校级期末)如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么Rt △AEC≌Rt△BFC的理由是()A.SSS B.AAS C.SAS D.HL【考点】全等三角形的判定.【分析】根据垂直定义求出∠AEC=∠BFD=90°,根据平行线的性质得出∠A=∠B,根据全等三角形的判定定理AAS推出即可.【解答】解:∵CE⊥AB,DF⊥AB,∴∠AEC=∠BFD=90°.∵AC∥DB,∴∠A=∠B.在△AEC和△BFD中,∴Rt△AEC≌Rt△BFC(AAS),故选B.【点评】本题考查了全等三角形的判定,平行线的性质,垂直定义的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL定理.10.(2014•厦门)如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定与性质,可得∠ACB与∠DBE的关系,根据三角形外角的性质,可得答案.【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.二.填空题(共10小题)11.(2015•南昌)如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有 3 对全等三角形.【考点】全等三角形的判定;角平分线的性质.【分析】由OP平分∠MON,PE⊥OM于E,PF⊥ON于F,得到PE=PF,∠1=∠2,证得△AOP≌△BOP,再根据△AOP≌△BOP,得出AP=BP,于是证得△AOP≌△BOP,和R t△AOP≌R t△BOP.【解答】解:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为:3.【点评】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.12.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF .(只填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC=∠EDF,根据条件利用ASA即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),故答案为:BC=EF或∠BAC=∠EDF【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 .【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.14.(2015•怀化)如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA与∠OAD的关系,根据直角三角形的判定,可得答案.15.(2015•盐亭县模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60 度.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】几何图形问题.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.【点评】本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.16.(2015•姜堰市一模)如图,E为正方形ABCD边CD上一点,DE=3,CE=1,F为直线BC上一点,直线DF与直线AE交于G,且DF=AE,则DG= 或.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【专题】分类讨论.【分析】分两种情况:①由正方形的性质得出∠ADE=∠DCF=90°,AD=DC=4,由勾股定理求出AE,由HL证明Rt△ADE≌Rt△DCF,得出∠AED=∠DFC,证出∠DGE=90°,由△ADE的面积=AE×DG=AD×DE,即可求出DG的长;②如图2所示:同①得:Rt△ADE≌Rt△DCF,得出CF=DE,DF=AE,作GM⊥BC于M,作GN⊥DC于N;证出△GMF∽△DCF,△GNE∽△ADE,得出比例式,,设GM=4x,则FM=3x,GF=5x,GN=MC=3+3x,EN=4x+1,解方程求出x,得出GF,即可得出DG的长.【解答】解:分两种情况:①如图1所示:∵四边形ABCD是正方形,∴∠ADE=∠DCF=90°,AD=DC=3+1=4,AD∥BC,∴AE===5,在Rt△ADE和Rt△DCF中,,∴Rt△ADE≌Rt△DCF(HL),∴∠AED=∠DFC,∵∠DFC+∠CDF=90°,∴∠AED+∠CDF=90°,∴∠DGE=90°,∵△ADE的面积=AE×DG=AD×DE,∴DG==;②如图2所示:同①得:Rt△ADE≌Rt△DCF,∴CF=DE=3,DF=AE=5,作GM⊥BC于M,作GN⊥DC于N;则GM∥DC,GN∥AD,∴△GMF∽△DCF,△GNE∽△ADE,∴=,=,设GM=4x,则FM=3x,∴GF=5x,GN=MC=3+3x,EN=4x+1,∴,解得:x=,∴GF=,∴DG=DF+GF=5+=;综上所述:DG的长为或;故答案为:或.【点评】本题考查了正方形的性质、勾股定理、全等三角形的判定与性质、相似三角形的判定与性质;本题有一定难度,需要进行分类讨论,特别是②中,需要证明三角形相似才能得出结果.17.(2015春•锡山区期末)如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2= 50 °.【考点】全等三角形的判定与性质.【分析】易证△ABC和△ADC均为直角三角形,即可证明RT△ABC≌RT△ADC,可得∠1=∠CAD,即可解题.【解答】解:∵∠B=∠D=90°,∴△ABC和△ADC均为直角三角形,在RT△ABC和RT△ADC中,,∴RT△ABC≌RT△ADC(HL),∴∠1=∠CAD,∴∠2=90°﹣∠CAD=50°.故答案为 50°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证RT△ABC ≌RT△ADC是解题的关键.18.(2015春•揭西县期末)如图所示,已知点D为等腰直角三角形ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA,则∠DCE的度数是105°.【考点】全等三角形的判定与性质;等腰三角形的性质;等腰直角三角形.【分析】根据等腰直角△ABC,求出CD是边AB的垂直平分线,求出CD平分∠ACB,根据CE=CA,∠CAD=15°,求出∠ACE=150°即可利用角的和差求解.【解答】解:∵△ABC是等腰直角三角形,∴∠BAC=∠ABC=45°,∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=45°﹣15°=30°,∠ABD=∠ABC﹣15°=30°,∴BD=AD,∴D在AB的垂直平分线上,∵AC=BC,∴C也在AB的垂直平分线上,即直线CD是AB的垂直平分线,∴∠ACD=∠BCD=45°,∵∠CAD=15°,CE=CA,∴∠CED=∠CAD=15°,∴∠ECA=150°,∴∠DCE=∠ECA﹣∠ACD=150°﹣45°=105°.故答案为:105°.【点评】此题主要考查等腰直角三角形,线段垂直平分线的性质与判定、等腰三角形的性质等知识点,难易程度适中,是一道很典型的题目.。

人教版八年级上册数学 第12章 全等三角形 单元同步练习题

人教版八年级上册数学  第12章  全等三角形   单元同步练习题

人教版八年级上册数学第12章全等三角形单元同步练习题一.选择题1.已知,△ABC≌△DEF,∠A=80°,∠B=60°,则∠F的度数是()A.30°B.40°C.70°D.80°2.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.73.如图,B,C,D三点在同一直线上,CE=BC,∠B=∠E添加下列条件仍不能证明△ECD≌△BCA的是()A.∠A=∠D B.AB=DE C.∠ACB=∠DCE D.AC=CD4.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB的度数为()A.66°B.56°C.50°D.45°5.如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点F,则图中共有几对全等三角形()A.6 B.5 C.4 D.36.如图,在△ABC中,CD平分∠ACB,若AC=6,S△ACD:S△BCD=3:5,则BC的长为()A.10 B.8 C.6 D.47.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为()A.12 B.6 C.7 D.88.如图,在△ABC和△EDA中,AC=AE=10,∠CDE=∠BAE,AB=DE,CD=6,则BC的长为()A.2 B.3 C.4 D.59.如图,△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,D,E在同一条直线上,若∠CAE+∠ACE+∠ADE=130°,则∠ADE的度数为()A.50°B.65°C.70°D.75°二.填空题10.如图,△ABC与△DCE为直角三角形,且BC=CE,若要判定△ABC≌△DCE,可补充的一个条件为.11.如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE垂足为F,DE交CB的延长线于点G,连接AG,若S四边形DGBA=6,AF=3,则FG的长是.212.如图,已知AB=DC,AD=BC,E、F是BD上的两点,且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=.13.如图,Rt△ABC中,∠C=90°,AC=15,BC=8,AB=17,利用尺规在AC,AB上分别截取AD,AE.使DE为长的半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC AD=AE,分别以D,E为圆心,以大于12于点G,点P为边AB上的一动点,则GP的最小值为.14.如图,已知CE平分∠ACD,OE平分∠AOB,EF⊥OA,下面四个结论:①DE平分∠CDB;②∠OED=∠∠AOB;④S△CEF+S△DEG=S△CDE其中正确的是.(填序号)OCD;③∠CED=90°+1215.如图,已知∠POQ,以点O为圆心,适当长为半径作弧,两弧分别交OP,OQ于点M,N;分别以点M,N为圆心,以大于1MN的长为半径作弧,两弧交于点C;作射线OC.连接CM,CN,过点C作CA⊥OP交OP2于点A,作CB⊥OQ交OQ于点B.已知CM=10,AC=8,△OCM的周长为36,△OAC的周长为40,则BN 的长为.三.解答题16.如图,AC与BD交于点E,已知AB=CD,AC=BD.(1)求证:∠A=∠D;(2)若AC=7,BE=3,求DE的长.17.如图,点A,B在射线OM上,点C,D在射线ON上,已知AB=CD,S△ABP=S△CDP,求证:点P在∠MON 的平分线上.18.如图,在△ABC和△DEC中,AB与DE交于点O.已知AB=DE,AC=DC,BC=EC.(1)求证:∠A=∠D;(2)连接CO,若AC⊥BC,∠A=30°,∠BCE=40°,求∠COD的度数.19.如图,在四边形ABCD中,已知BC=CD.(1)用直尺和圆规作出∠BCD的平分线CE交AD于点E;(保留作图痕迹,不写作法)(2)在(1)的条件下、连接BE,求证:BE=DE.20.如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC内一点,∠ABD=∠ACD=20°,E为BD延长线上的一点,且AB=AE.(1)求证DE平分∠ADC;(2)请判断AD,BD,DE之间的数量关系,并说明理由.21.实验中学打算举办校园文化艺术节,琪琪同学负责此次艺术节宣传板的制作任务.如图,将该宣传板垂直于地面放置时,点A,C,E到地面的距离分别是60cm,20cm,80cm,过点A作AF⊥BD,交DB的延长线于点F.过点C作CG⊥BD于点G,已知AB=BC且AB⊥BC,CD=DE且CD⊥DE.(1)求证:△ABF≌△BCG;(2)请你帮琪琪同学计算出这块宣传板的面积.。

《第12章全等三角形》同步能力达标训练 (附答案) 2021-2022学年人教版八年级数学上册

《第12章全等三角形》同步能力达标训练 (附答案) 2021-2022学年人教版八年级数学上册

2021-2022学年人教版八年级数学上册《第12章全等三角形》同步能力达标训练(附答案)一.选择题(共10小题,每小题3分,共计30分)1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是()A.甲B.乙C.甲和乙D.都不是2.如图,已知AB+AC=16,点O为∠ABC与∠ACB的平分线的交点,且OD⊥BC于D.若OD=4,则四边形ABOC的面积是()A.36B.32C.30D.643.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,点E在边AC上,若DE=DB,则下列结论不正确的是()A.DC=DF B.DE=BF C.AC=AF D.AB=AC+CE 4.如图为正方形网格,则∠1+∠2+∠3=()A.105°B.120°C.115°D.135°5.如图,AB=AC,AD=AE,∠A=55°,∠C=35°,则∠DOE的度数是()A.105°B.115°C.125°D.130°6.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD =6,则DE的长可以是()A.1B.3C.5D.77.如图,AB与CD相交于点E,AD=CB,要使△ADE≌△CBE,需添加一个条件,则添加的条件以及相应的判定定理正确的是()A.AE=CE;SAS B.DE=BE;SAS C.∠D=∠B;AAS D.∠A=∠C;ASA 8.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为()A.2B.5C.8D.119.如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,CE=AC,则下列结论中正确的是()A.E为BC中点B.2BE=CD C.CB=CD D.△ABC≌△CDE 10.直角△ABC、△DEF如图放置,其中∠ACB=∠DFE=90°,AB=DE且AB⊥DE.若DF=a,BC=b,CF=c,则AE的长为()A.a+c B.b+c C.a+b﹣c D.a﹣b+c二.填空题(共10小题,每小题3分,共计30分)11.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=6,BC=4,DE=2,则△ABC的面积为.12.如图,AB=12cm,∠CAB=∠DBA=62°,AC=BD=9cm.点P在线段AB上以3cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设点Q的运动速度为xcm/s.当以B、P、Q顶点的三角形与△ACP全等时,x的值为.13.如图,在△ABC中,点E在AB上,D为AC的中点,过点C作CF∥AB交ED的延长线于点F.若AB=15cm,CF=10cm,则BE=cm.14.如图,点E在AB上,点F在AC上.若AE=AF,AB=AC,且BF=5,DE=1,则DC=.15.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x﹣y=.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE交于点F,若BF=AC,CD=3,BD=8,则线段AF的长度为.17.如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=°.18.AD为△ABC中的中线,若AB=8,AC=6,那么AD的取值范围是.19.如图,已知线段AB与CD相交于点E,AC=AD,CE=ED,则图中全等三角形有对.20.如图,点C在线段AB上(不与点A,B重合),在AB的上方分别作△ACD和△BCE,且AC=DC,BC=EC,∠ACD=∠BCE=α,连接AE,BD交于点P.下列结论:①AE=DB;②当α=60°时,AD=BE;③∠APB=2∠ADC;④连接PC,则PC平分∠APB.其中正确的是.(把你认为正确结论的序号都填上)三.解答题(共6小题,每小题10分,共计60分)21.如图,在△ABC中,AD是中线,CE⊥AD于点E,BF⊥AD,交AD的延长线于点F,求证:点D是线段EF的中点.22.如图,锐角△ABC的两条高BD与CE相交于点O,且OB=OC.(1)试说明∠ABC=∠ACB;(2)连接AO并延长,交BC于F,若∠BOE=50°,求∠DBC和∠BAF的度数.23.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AE=CF;(2)AD∥CB.24.如图,△ABC中,AB=AC,点D是△ABC外一点,且BD=DC,CD⊥AC,点M、N 分别在AB、AC上,∠MDN=∠BDC,在AC的延长线上截取了CP=BM,并连接DP.(1)△MBD≌△PCD吗?请说明理由;(2)试说明MN=NP.25.如图,已知△ABC是等腰三角形,点M是AC的中点,连接BM并延长至点D,使DM =BM,连接AD.(1)试说明:△DAM≌△BCM;(2)如图2,点N是BC的中点,连接AN,试说明:BM=AN.26.如图,在△ABC和△BCD中,AC=CD,∠BAC+∠BDC=180°,在BD的延长线上取点E,使DE=AB,连接CE.(1)试说明:∠ABC=∠DBC;(2)连接AD交BC于点F,若∠ABD=60°,∠ADB=40°,试说明:BD=AB+AF.参考答案一.选择题(共10小题,每小题3分,共计30分)1.解:甲三角形夹b边的两角分别与已知三角形对应相等,故甲与△ABC全等;乙三角形50°内角及所对边与△ABC对应相等且均有70°内角,可根据AAS判定乙与△ABC全等;则与△ABC全等的有乙和甲,故选:C.2.解:如图所示,过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵点O为∠ABC与∠ACB的平分线的交点,OD⊥BC于D,OD=4,∴OE=OD=4,OF=OD=4,∵AB+AC=16,∴四边形ABOC的面积S=S△ABO+S△ACO=×AB×OE+×AC×OF=×AB×4+×AC×4=×(AB+AC)=2×16=32,故选:B.3.解:∵Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点D作DF⊥AB,垂足为点F,∴DC=DF,故A正确,在Rt△DCE与Rt△DFB中,,∴Rt△DCE≌Rt△DFB(HL),∴CE=BF,故B错误,在Rt△ADC与Rt△ADF中,,∴Rt△ADC≌Rt△ADF(HL),∴AC=AF,故C正确,∴AB=AF+BF=AC+CE,故D正确,故选:B.4.解:∵在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠1+∠3=90°,∵AD=MD,∠ADM=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故选:D.5.解:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠B=∠C,∵∠C=35°,∴∠B=35°,∴∠OEC=∠B+∠A=35°+55°=90°,∴∠DOE=∠C+∠OEC=35°+90°=125°.故选:C.6.解:过点D作DM⊥AB于点M,如图所示.∵AD平分∠BAC,∠C=90°,DM⊥AB,∴DM=CD=6.又∵E是边AB上一点,∴DE≥DM,∴DE≥6.故选:D.7.解:A.添加的条件不能推出△ADE≌△CBE,故本选项不符合题意;B.添加的条件不能推出△ADE≌△CBE,故本选项不符合题意;C.∵在△ADE和△CBE中,,∴△ADE≌△CBE(AAS),故本选项符合题意;D.∵在△ADE和△CBE中,,∴△ADE≌△CBE(AAS),故本选项不符合题意;故选:C.8.解:∵E为BC的中点,∴BE=EC,∵AB∥CD,∴∠F=∠CDE,在△BEF与△CED中,,∴△BEF≌△CED(AAS)∴EF=DE,BF=CD=3,∴AF=AB+BF=8,∵AE⊥DE,EF=DE,∴AF=AD=8,故选:C.9.解:在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL),∴CB=DE,CE=AC,CD=AB,△ABC≌△CDE,故选:D.10.解:∵AB⊥DE,∴∠DGH=90°,∵∠DFE=90°,∴∠AFH=90°,∴∠AFH=∠DGH,∵∠DHG=∠AHF,∴∠A=∠D,在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF,BC=EF,∵DF=a,BC=b,CF=c,∴AE=AC+EF﹣CF=DF+BC﹣CF=a+b﹣c.故选:C.二.填空题(共10小题,每小题3分,共计30分)11.解:过D点作DH⊥BC于H,如图,∵BD是△ABC的角平分线,DE⊥AB,DH⊥BC,∴DH=DE=2,∴S△ABC=S△ABD+S△BCD=×6×2+×4×2=10.故答案为10.12.解:①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,当x=3或时,△ACP与△BPQ全等.故答案为3或.13.解:∵CF∥AB,∴∠AED=∠F,∠FCD=∠A.∵点D为AC的中点,∴AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(AAS).∴AE=CF,∵AB=15cm,CF=10cm,∴BE=AB﹣AE=AB﹣CF=15﹣10=5(cm).故答案为5.14.解:在△BAF和△CAE中,,∴△BAF≌△CAE(SAS),∴BF=CE,∵BF=5,DE=1,∴DC=CE﹣DE=BF﹣DE=5﹣1=4,故答案为:4.15.解:∵两个三角形全等,∴x=6,y=5,∴x﹣y=6﹣5=1,故答案为:1.16.解:∵AD是BC边上的高,BE是AC边上的高,∴∠ADC=∠BDF=∠AEB=90°,∴∠DAC+∠C=90°,∠C+∠DBF=90°,∴∠DAC=∠DBF,在△ADC和△BDF中,,∴△ADC≌△BDF(AAS),∴CD=FD=3,AD=BD=8,∵CD=3,BD=8,∴AD=8,DF=3,∴AF=AD﹣FD=8﹣3=5,故答案为:5.17.解:∵∠C=50°,∠A=90°,∴∠ABC=40°,∵DE⊥BC,∴∠A=∠BED=90°,在Rt△ABD和Rt△EBD中,,∴Rt△ABD≌Rt△EBD(HL),∴∠ABD=∠DBE,∴∠ABD=∠ABC=20°,故答案为:20.18.解:延长AD至E,使DE=AD,连接CE.在△ABD与△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,∴1<AD<7,故答案为:1<AD<7.19.解:在△ACE和△ADE中,,∴△ACE≌△ADE(SSS),∴∠CAE=∠DAE,在△CAB和△DAB中,∴△CAB≌△DAB(SAS),∴BC=BD,在△BCE和△BDE中,∴△BCE≌△BDE(SSS).∴图中全等三角形有3对.故答案为:3.20.解:∵∠ACD=∠BCE=α,∴∠ACE=∠DCB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS),∴AE=DB,∠EAC=∠BDC,故①正确,当α=60°时,△ACD是等边三角形,△CEB是等边三角形,∴AD=AC,BE=BC,当AC=BC时,AD=BE,故②错误;∵AC=CD,∠ACD=α,∴∠CAD=∠CDA=,∵∠APB=∠P AD+∠ADP=∠ADC+∠BDC+∠DAP=∠ADC+∠EAC+∠DAP=∠ADC+∠CAD,∴∠APB=2∠ADC,故③正确;如图,连接PC,过点C作CG⊥AE于G,CH⊥BD于H,∵△ACE≌△DCB,∴S△ACE=S△DCB,AE=BD,∴×AE×CG=×DB×CH,∴CG=CH,又∵CG⊥AE,CH⊥BD,∴PC平分∠APB,故④正确,故答案为:①③④.三.解答题(共6小题,每小题10分,共计60分)21.证明:∵CE⊥AD,BF⊥AD,∴∠CED=∠BFD=90°,∵AD是中线,∴BD=CD,在△CED和△BFD中,,∴△CED≌△BFD(AAS),∴DE=DF.点D是线段EF的中点.22.(1)证明:∵OB=OC,即∠DBC=∠ECB,∵BE、CD是两条高,∴∠BDC=∠CEB=90°,在△DBC和△ECB中,,∴△DBC≌△ECB(AAS),∴∠ABC=∠ACB;(2)解:在△BOE中,CE⊥AB,∠BOE=50°,∴∠EBO=90°﹣∠BOE=40°,在△BCE中,CE⊥AB,∴∠EBC+∠ECB=90°,即∠EBO+∠DBC+∠ECB=90°,∵∠DBC=∠ECB,∴∠DBC=∠ECB=25°,∴∠ABC=∠EBO+∠DBC=65°,∵三角形的三条高所在直线相交于一点,∴AF⊥BC,∴∠BAF=90°﹣∠ABC=90°﹣65°=25°.23.证明:(1)∵DE⊥AC,BF⊥AC,∴∠CED=∠AFB=90°,在Rt△CDE和Rt△ABF中,,∴Rt△CDE≌Rt△ABF(HL),∴AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF;(2)由(1)知,AE=CF,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF,∴AD∥CB.24.证明:(1))△MBD≌△PCD,理由如下:∵AB=AC,BD=DC,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABC+∠DBC=∠ACB+∠DCB,即∠ABD=∠ACD,∵CD⊥AC,∴∠ABD=∠ACD=∠DCP=90°,在△MBD和△PCD中,,∴△MBD≌△PCD(SAS);(2)由(1)知,△MBD≌△PCD,∴MD=PD,∠MDB=∠PDC,∵∠MDN=∠BDC,∴∠BDM+∠NDC=∠PDC+∠NDC=∠NDP=∠BDC,∴∠MDN=∠NDP,在△MDN和△PDN中,,∴△MDN≌△PDN(SAS),∴MN=NP.25.解:(1)∵点M是AC的中点,∴DM=BM,在△DAM和△BCM中,,∴△DAM≌△BCM(SAS);(2)∵△ABC是等腰三角形,∴AC=BC,∵点M是AC的中点,点N是BC的中点,∴CM=AC,CN=BC,∴CM=CN,在△BCM和△ACN中,,∴△BCM≌△ACN(SAS),∴BM=AN.26.解:(1)∵∠BAC+∠BDC=180°,∠CDE+∠BDC=180°,∴∠CDE=∠BAC,在△BAC和△EDC中,,∴△BAC≌△EDC(SAS),∴∠ABC=∠CEB,BC=CE,∴∠CEB=∠CBE,∴∠ABC=∠DBC;(2)如图,在BD上截取BH=AB,连接FH,∵∠ABD=60°,∠ADB=40°,∴∠BAD=80°,在△ABF和△HBF中,,∴△ABF≌△HBF(SAS),∴∠BAD=∠BHF=80°,AF=FH,∵∠BHF=∠ADB+∠DFH,∴∠DFH=40°=∠ADB,∴DH=FH=AF,∴BD=BH+DH=AB+AF.。

人教版数学八上《 三角形全等的判定HL(第4课时)》同步练习1

 人教版数学八上《 三角形全等的判定HL(第4课时)》同步练习1

本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

三角形全等的判定要点感知1 斜边和一条_______分别相等的两个直角三角形全等(可以简写成_____或“_____”).预习练习1-1 如图,∠B=∠E=90°,AB=DE,AC=DF,则△ABC≌△DEF的理由是( )A.SASB.ASAC.AASD.HL要点感知2 直角三角形全等除“HL”外,还有SSS,SAS,ASA,AAS都适合.预习练习2-1 下列命题:①两直角边分别相等的两个直角三角形全等;②两锐角分别相等的两个直角三角形全等;③斜边和一直角边分别相等的两个直角三角形全等;④一锐角和一直角边分别相等的两个直角三角形全等;⑤一锐角和斜边分别相等的两个直角三角形全等.其中,正确的命题有_____.(填写正确的序号)知识点1 用“HL”判定直角三角形全等1.已知如图,AC⊥BC,AD⊥BD,垂足分别为C、D,AC=BD,Rt△ABC与Rt△BAD全等吗?为什么?2.已知,在△ABC中,AB=AC,AD⊥BC,垂足为D,求证:AD平分∠BAC.3.如图,∠ACB=∠CFE=90°,AB=DE,BC=EF,求证:AD=CF.知识点2 直角三角形全等的判定方法的选用4.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如图,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°5.如图,在△ABC中,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,BE=CF.(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形说明理由.6.如图,在Rt△ABC中,∠BAC=90°,DE⊥BC,AC=6,EC=6,∠ACB=60°,则∠ACD的度数为( )A.45°B.30°C.20°D.15°7.如图,在直角三角形ABC中,∠C=90°,一条线段PQ=AB,点P,Q两点分别在AC和AC的垂线AX上移动,当AP=_____时,才能使△ABC≌△QPA.8.如图,已知方格纸中是4个相同的正方形,则∠1+∠3=_____.9.如图,已知AE=DE,AB⊥BC,DC⊥BC,且AB=EC.求证:BC=AB+DC.10.如图,在△ABC中,AD是中线,分别过点B,C作AD及其延长线的垂线BE,CF,垂足分别为点E,F.求证:BE=CF.11.如图所示,已知AB=CD,DE⊥AC于E,BF⊥AC于F,且BF=DE,求证:AB∥CD.12.如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.挑战自我13.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:∠ABO=∠ACO;(2)如图2,若点O在△ABC的内部,求证:∠ABO=∠ACO.参考答案课前预习要点感知1 直角边斜边、直角边 HL预习练习1-1 D预习练习2-1 ①③④⑤当堂训练1.Rt△ABC≌Rt△BAD.理由如下:∵AC⊥BC,AD⊥BD,∴∠C=∠D=90°.在Rt△ABC和Rt△BAD中,AB=BA,AC =BD,∴Rt△ABC≌Rt△BAD(HL).2.证明:∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ABD和Rt△ACD中,AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL).∴∠BAD=∠CAD,即AD平分∠BAC.3.证明:∵∠ACB=∠CFE=90°,∴∠ACB=∠DFE=90°.在Rt△ACB和Rt△DFE中,AB=DE,BC=EF,∴Rt△ACB≌Rt △DFE(HL).∴AC=DF.∴AC-AF=DF-AF,即AD=CF.4.B5.(1)△BDE≌△CDF,△AED≌△AFD,△ABD≌△ACD.(2)∵DE⊥AB,DF⊥AC,∴△BDE和△CDF是直角三角形.∵D 是BC的中点,∴BD=CD.又∵BE=CF,∴Rt△BDE≌Rt△CDF(HL).课后作业6.B7.CB8.90°9.证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在Rt△ABE和Rt△ECD中,AE=DE,AB=EC,∴Rt△ABE≌Rt△ECD.∴BE=CD.∵BC=BE+EC,∴BC=AB+DC.10.证明:∵在△ABC中,AD是中线,∴BD=CD.∵CF⊥AD,BE⊥AD,∴∠CFD=∠BED=90°.在△BED与△CFD中,∵∠BED =∠CFD,∠BDE=∠CDF,BD=CD,∴△BED≌△CFD(AAS).∴BE=CF.11.证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°.在Rt△ABF和Rt△CDE中,AB=CD,BF=DE,∴Rt△ABF≌Rt△CDE(HL).∴∠BAF=∠DCE.∴AB∥CD.12.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,∴∠ADB=∠AFB=90°.∵AB=AB,AD=AF,∴Rt△ABD≌Rt△ABF.∴DB=FB.∵AC=AE,AD=AF,∴Rt△ADC≌Rt△AFE.∴DC=FE.∴DB-DC=FB-FE,即BC=BE.13.(1)证明:过点O作OE⊥AB于E,作OF⊥AC于F,则∠BEO=∠CFO=90°,OE=OF.又∵OB=OC,∴Rt△BOE≌Rt△COF(HL).∴∠ABO=∠ACO.(2)证明:过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,则∠BEO=∠CFO=90°,OE=OF.又OB=OC,∴Rt△OEB≌Rt△OFC.∴∠EBO=∠FCO.即∠ABO=∠ACO.本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

数学人教版八年级上册第12章第一节全等三角形同步练习(精品测试卷)

数学人教版八年级上册第12章第一节全等三角形同步练习(精品测试卷)
(2)如图(3)所示,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,那么(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.
第二套与三角形有关的线段专题训练试题
一、填空题
1.在△ABC是AB=5,AC=3,BC边的中线的取值范围是__________.
【答案】1<x<4
三角形内角和定理、三角形的角平分线、中ห้องสมุดไป่ตู้和高
点评:本题是基础题,考查了三角形的内角和等于180°以及角平分线的定义,准确识别图形是解题的关键.
4.∠A+∠B+∠C+∠D+∠E+∠F的度数=_____.
【答案】360°
【解析】
【分析】
连接CD,根据三角形的内角和定理即可证得∠A+∠B=∠BDC+∠ACD,则∠A+∠B+∠C+∠D+∠E+∠F=∠BDC+∠ACD+∠ACF+∠BDE+∠E+∠F=∠EDC+∠FCD+∠E+∠F,根据四边形的内角和定理即可求解.
【答案】D
【解析】
∵BE为△ABC的高,∠BAC=50°,
∴∠ABE=90°-50°=40°,
∵CF为△ABC的高,
∴∠BFC=90°,
∴∠BHC=∠ABE+∠BFC=40°+90°=130°.
故选D.
12.下列长度的三条线段不能组成三角形的是( )
5.如图,AD是△ABC 角平分线,AB:AC=3:2,△ABD的面积为15,则△ACD的面积为.
【答案】10.
【解析】
如图,
过点D作DE⊥AB于E,DF⊥AC于F,

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章 三角形全等的判定》同步练习题附带答案

2023-2024学年人教版八年级数学上册《第十二章三角形全等的判定》同步练习题附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,在△ACD与△ABD中∠C=∠B,再添加下列哪个条件,能判定△ADC≌△ADB()A.AC=AB B.AC⊥CD C.DA平分∠BDC D.CD=BD2.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSSBC若ΔABC的面积3.如图,AE垂直于∠ABC的平分线于点D,交BC于点E,CE=13为12,则ΔCDE的面积是()A.2B.3C.4D.64.工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分別与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≅△MOC,共依据是()A.SSS B.SAS C.ASA D.AAS5.如图,在△ABC中∠C=90°,D是AC上一点,DE⊥AB于点E,BE=BC连接BD,若AC=8cm,则AD+DE等于()A.6cm B.7cm C.8cm D.10cm6.如图,为了测出池塘两端A,B间的距离,小铱在地面上取一个可以直接到达A点和B点的点O,连接AO并延长到C,使OC=OA;连接BO并延长到D,使OD=OB,连接CD并和测量出它的长度,小铱认为CD的长度就是A,B间的距离,她是根据△OAB≌△OCD来判断的AB=CD,那么判定这两个三角形全等的依据是().A.SSS B.SAS C.ASA D.AAS7.“又是一年三月三”.在校内劳动课上,小明所在小组的同学们设计了如图所示的风筝框架.已知∠B=∠E,AB=DE,BF=EC,△ABC的周长为24cm,FC=3cm制作该风筝框架需用材料的总长度至少为()A.44cm B.45cm C.46cm D.48cm8.如图,AB⊥BC,EC⊥BC,AD⊥DE,AD=DE,AB=3,BC=8,则CE长为()A.4 B.5 C.8 D.10二、填空题9.如下图,已知AC=AB,要使△ABE≌△ACD.则需添加一个条件.10.数学实践活动课中,老师布置了“测量小口圆柱形瓶底部内径”的探究任务,某学习小组设计了如下方案:如图,用螺丝钉将两根小棒AC,BD的中点O固定,现测得C,D之间的距离为75mm,那么小口圆柱形瓶底部的内径AB=mm.11.如图,在Rt△ABC中∠BAC=90°,AB=AC分别过点B、C作经过点A的直线的垂线段BD、CE,若BD=5厘米,CE=8厘米,则DE的长为.12.如图,△ABC中,AD是中线AC=3,AB=5则AD的取值范围是.13.如图,在四边形ABEF中,AB=4,EF=6,点C是BE上一点,连接AC、CF,若AC=CF,∠B=∠E=∠ACF,则BE的长为.三、解答题14.图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中AB=AC,BD=CD,∠C=23°.求∠B的度数.15.如图,已知在△ABC中,D、E是BC上两点,且∠ADE=∠AED,∠BAD=∠EAC,求证:AB=AC.16.如图,C是AB上一点,点D,E分别在AB两侧AD∥BE,且AD=BC,BE=AC求证:CD=EC.17.如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,求∠ABO度数.18.课间,小明拿着老师的直角三角尺玩,不小心掉到两堆砖块之间,如图所示,已知∠ACB= 90°,AC=BC,AD⊥DE,BE⊥DE.(1)试说明:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a(每块砖的厚度相同)参考答案1.C2.A3.A4.A5.C6.B7.B8.B9.∠C=∠B (答案不唯一)10.7511.13厘米12.1<AD <413.1014.解:在△ABD 和△ACD 中{AB =AC AD =AD BD =CD ∴△ABD ≌△ACD(SSS) ∴∠B =∠C ∵∠C =23° ∴∠B =23°.15.证明:∵∠ADE =∠AED∴AD =AE ,∠ADB =∠AEC在△ABD 与△ACE 中{∠BAD =∠EAC AD =AE ∠ADB =∠AEC∴△ABD ≌△ACE(ASA)∴AB =AC16.证明:∵AD ∥BE∴∠A =∠B在△ADC 和△BCE 中{AD =BC∠A =∠B AC =BE∴△DAC ≌△CBE∴CD =CE ;17.解:∵OM ⊥AB ,ON ⊥BC ∴∠OMB =∠ONB =90°在Rt △OMB 和Rt △ONB 中{OM =ON OB =OB∴Rt △OMB ≌Rt △ONB(HL)∴∠OBM =∠OBN∵∠ABC =30°∴∠ABO =15°.18.(1)解:∵∠ACB =90°∴∠ACD +∠BCE =90°∵AD ⊥DE∴∠ACD +∠DAC =90°∴∠BCE =∠DAC在△ADC 与△CEB 中{∠ADC =∠BEC =90°∠BCE =∠DACAC =BC∴△ADC ≌△CEB(AAS);(2)解:∵△ADC ≌△CEB∴DC =BE ,AD =CE∴DE =DC +CE =BE +AD =35cm ∵一共有7块砖∴每块砖块的厚度a 为:35÷7=5cm .。

青岛版八年级数学上册1.1全等三角形-同步练习(word版含答案)

青岛版八年级数学上册1.1全等三角形-同步练习(word版含答案)

1.1全等三角形基础过关1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED. ∠B=∠D1题 2题2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°4题 6题5.如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI______全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI______全等.(填“一定”或“不一定”或“一定不”)6.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=______.7.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.能力提升8.如图,△ABC与△DEF是全等三角形,则图中的相等线段()A.1 B.2 C.3 D.48题 9题 10题9.如图,△ABC与△DBE是全等三角形,则图中相等的角有()A.1对 B.2对 C.3对 D.4对10.如图,△ABC ≌△FED ,则下列结论错误的是( )A .EC=BDB .EF ∥ABC .DF=BD D .AC ∥FD11.如图,在△ABC 中,AC >BC >AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边).11题 12题12. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.13. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.应用拓展14.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的.若∠1:∠2:∠3=28:5:3,则∠α= .14题 15题 F E DC BA15.如图,△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,则∠DFE= °,EC= .16.已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大边长是,最大角是度.17.如图,△ABC≌△FED,AC与DF是对应边,∠C与∠D是对应角,则AC//FD成立吗?请说明理由.创新突破18.如图,△ABC≌△ADE,∠CAD=10°,∠B= =25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE BF=.求证:(1)AF CE∥.=;(2)AB CD答案1.D2.B3.C4.B 5.一定,一定不6.50°7.40°8.D 9.D 10.C 11. DE EF DF 12. 27° 13. 4cm或9.5cm 14. 80° 15. 100、 2 16. 10、 9017.解:AC//FD成立.因为AC与FD为对应边,所以∠ABC与∠FED为对应角.因为∠C与∠D为对应角,所以∠A与∠F为对应角.又因为△ABC≌△FED,所以∠A=∠F,从而AC//FD.18.解:因为△ABC≌△ADE,所以∠DAE=∠BAC=(∠EAC-∠CAD)=55°.从而∠DFB=∠FAB+∠B=∠FAC+∠CAB +∠B =10°+55°+25°.∠DGB=∠DFB-∠D =90°-25°=65°.19.证明:(1)在ABF△和△CDE中,AB CD DE BF=⎧⎨=⎩,,∴△ABF≌△CDE(HL).∴AF CE=.(2)由(1)知∠ACD=∠CAB,∴AB∥CD.1 2。

八年级数学直角三角形全等的判定同步练习1

八年级数学直角三角形全等的判定同步练习1

1.1 探索勾股定理1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定4.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 5.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 . 6.假如有一个三角形是直角三角形,那么三边a 、b 、c 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边a 、b 、c 满足222b c a =+,那么这个三角形是 三角形,其中b 边是 边,b 边所对的角是 . 7.一个三角形三边之比是6:8:10,则按角分类它是 三角形.8. 若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 . 9.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .10. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .11.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.ACB12.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?13.如图,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.14.如图,有一只小鸟在一棵高13m 12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?16.如下图所示,△ABC 中,AB =15 cm ,AC =24 cm ,∠A =60°,求BC 的长.观测点A17.如图,在四边形ABCD 中,∠BAD=90°,∠DBC=90°,AB=3,AD=4,BC=12,求CD 的长。

新人教版八年级上册数学第十二章《全等三角形》同步检测题

新人教版八年级上册数学第十二章《全等三角形》同步检测题

新人教版八年级上册数学第十二章《全等三角形》同步检测题一.选择题(共15小题)1.(2016春•寿光市期末)如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF2.(2016春•泉港区期末)已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3 B.5 C.6 D.103.(2016春•福田区期末)如图,在△ABC中,D、E分别是AC、AB上的点,在△ADE ≌△BDE≌△BDC,则∠A的度数是()A.15°B.20°C.25°D.30°4.(2016春•永新县期末)如图,已知D、E分别是△ABC的边AB、AC上的一点,若△ADE≌△CFE,则下列结论中不正确的是()A.AD=CF B.AB∥CF C.AC⊥DF D.E是AC的中点5.(2015秋•饶平县期末)如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AB=AD D.∠B=∠D6.(2016•琼海校级模拟)如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F7.(2016春•泰州校级期末)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF8.(2016春•永登县期末)如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是()A.∠B=∠E B.AC=EF C.AB=ED D.不用补充条件9.(2016春•揭西县期末)如图,AB∥EF,AB=EF,添加下面哪个条件不能使△ABC≌△EFD()A.BD=FC B.∠A=∠E C.AC∥DE D.AC=ED10.(2016春•蓝田县期末)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°11.(2016春•永登县期中)如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD12.(2016春•吉安校级月考)在△ABC中,∠B,∠C平分线的交点P恰好在BC边的高AD上,则△ABC一定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形13.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE ⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+214.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.315.(2015•茂名校级一模)如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.7二.填空题(共10小题)16.(2016春•洛江区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为______.17.(2015•柳州)如图,△ABC≌△DEF,则EF=______.18.(2015秋•青龙县期末)能够完全重合的两个图形叫做______.19.(2015秋•长汀县期末)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=______.20.(2015秋•淅川县期末)如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=______°.21.(2016春•景泰县期末)已知∠B=∠DEF,AB=DE,请添加一个条件,使△ABC≌△DEF,需添加的条件是______.22.(2016春•福州校级期末)如图,∵∴△______≌△______(SAS).23.(2016春•普宁市期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是______.24.(2016春•罗湖区期末)如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为______cm.25.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是______.三.解答题(共5小题)26.(2015秋•盱眙县校级月考)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.27.(2014秋•无锡期中)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数和EC的长.28.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.29.(2016•厦门模拟)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC ∥AB,求证:AD=CF.30.(2013秋•陆丰市校级期中)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.新人教版八年级上册数学第十二章《全等三角形》同步检测题参考答案与试题解析一.选择题(共15小题)1.(2016春•寿光市期末)如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF【分析】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt △DEF.【解答】解:∵RRt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.【点评】本题涉及的是全等三角形的知识;解答本题的关键是应用平移的基本性质.2.(2016春•泉港区期末)已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3 B.5 C.6 D.10【分析】先根据全等图形的对应边相等,得出PE=BC,再根据BC的长,求得PE的长即可.【解答】解:∵四边形OPEF≌四边形ABCD∴PE=BC又∵BC=10∴PE=10故选(D)【点评】本题主要考查了全等图形的概念,解题时注意:全等图形的对应边相等,对应角相等.3.(2016春•福田区期末)如图,在△ABC中,D、E分别是AC、AB上的点,在△ADE ≌△BDE≌△BDC,则∠A的度数是()A.15°B.20°C.25°D.30°【分析】直接利用全等三角形的性质得出对应角相等,进而结合平角的定义得出答案.【解答】解:∵△ADE≌△BDE≌△BDC,∴∠ADE=∠BDE=∠BDC,∠AED=∠BED,又∵∠ADE+∠BDE+∠BDC=180°,∠AED+∠BED=180°,∴∠ADE=60°,∠AED=90°∴∠B=30°.故选(D)【点评】此题主要考查了全等三角形的性质以及平角的定义,得出对应角相等是解题关键.4.(2016春•永新县期末)如图,已知D、E分别是△ABC的边AB、AC上的一点,若△ADE≌△CFE,则下列结论中不正确的是()A.AD=CF B.AB∥CF C.AC⊥DF D.E是AC的中点【分析】根据全等三角形的性质进行判断,全等三角形的对应边相等,全等三角形的对应角相等.【解答】解:∵△ADE≌△CFE,∴AD=CF,∠A=∠ECF,AE=CE,∴AB∥CF,点E是AC的中点∴(A)、(B)、(D)正确;∵∠AED不一定为直角∴AC⊥DF不一定成立∴(C)不正确.故选(C)【点评】本题主要考查了全等三角形的性质,解题时注意:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.5.(2015秋•饶平县期末)如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AB=AD D.∠B=∠D【分析】根据全等三角形的性质进行分析,从而得到答案,做题时要找准对应边,对应角.【解答】解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选C.【点评】本题较简单,只要熟知三角形全等的性质即可,三角形全等时,对应角相等,对应边分别相等,找对应角,对应边是比较关键的.6.(2016•琼海校级模拟)如图,AE∥DF,AE=DF.则添加下列条件还不能使△EAC≌△FDB.()A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F【分析】判定三角形全等的方法主要有SAS、ASA、AAS、SSS等,根据所添加的条件判段能否得出△EAC≌△FDB即可.【解答】解:(A)当AB=CD时,AC=DB,根据SAS可以判定△EAC≌△FDB;(B)当CE∥BF时,∠ECA=∠FBD,根据AAS可以判定△EAC≌△FDB;(C)当CE=BF时,不能判定△EAC≌△FDB;(D)当∠E=∠F时,根据ASA可以判定△EAC≌△FDB;故选(C)【点评】本题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解题时注意:判定两个三角形全等时,必须有边相等的条件,若有两边一角对应相等时,角必须是两边的夹角.7.(2016春•泰州校级期末)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2016春•永登县期末)如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是()A.∠B=∠E B.AC=EF C.AB=ED D.不用补充条件【分析】根据已知及全等三角形的判定方法进行分析即可.【解答】解:∵AB∥DE∴∠D=∠B∵CD=BF∴DF=BC∴AB=ED∴△ABC≌△EDF故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS和ASA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(2016春•揭西县期末)如图,AB∥EF,AB=EF,添加下面哪个条件不能使△ABC≌△EFD()A.BD=FC B.∠A=∠E C.AC∥DE D.AC=ED【分析】根据全等三角形的判定方法依次进行判断即可.【解答】解:∵AB∥EF,AB=EF,∴∠B=∠F,当BD=CF时,可得BC=DF,在△ABC和△EFD中,满足SAS,故A可以判定;当∠A=∠E时,在△ABC和△EFD中,满足ASA,故B可以判定;当AC∥DE时,可得∠ACB=∠EDF,在△ABC和△EFD中,满足AAS,故C可以判定;当AC=DE时,在△ABC和△EFD中,满足SSA,故D不可以判定;故选D.【点评】本题主要考查三角形全等的判定方法,掌握全等三角形的五种判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.10.(2016春•蓝田县期末)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°【分析】本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°﹣∠1的值.【解答】解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°﹣∠1=50°.故选B.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.11.(2016春•永登县期中)如图,OP平分∠AOB,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论正确的是()A.PD=PE B.PE=OE C.∠DPO=∠EOP D.PD=OD【分析】根据角平分线上的点到角的两边距离相等可得PD=PE.【解答】解:∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.12.(2016春•吉安校级月考)在△ABC中,∠B,∠C平分线的交点P恰好在BC边的高AD上,则△ABC一定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形【分析】先根据角平分线的性质判断出AD是△ABC的角平分线,然后利用“角边角”证明△ABD和△ACD全等,根据全等三角形对应边相等可得AB=AC,从而证明△ABC一定是等腰三角形.【解答】解:∵∠ABC与∠ACB的平分线的交点P恰好在BC边的高AD上,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(ASA),∴AB=AC,∴△ABC一定是等腰三角形.故选C.【点评】本题考查了等腰三角形的判定:在同一三角形中,有两条边相等的三角形是等腰三角形.13.(2015•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE ⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选C.【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.14.(2015•茂名)如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为()A.6 B.5 C.4 D.3【分析】过点P作PE⊥OB于点E,根据角平分线上的点到角的两边的距离相等可得PE=PD,从而得解.【解答】解:如图,过点P作PE⊥OB于点E,∵OC是∠AOB的平分线,PD⊥OA于D,∴PE=PD,∵PD=6,∴PE=6,即点P到OB的距离是6.故选:A.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.15.(2015•茂名校级一模)如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.7【分析】由角平分线的性质可得点D到AB的距离等于CD,根据已知求得CD即可.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离等于CD,∵BC=10,BD=6,∴CD=BC﹣BD=10﹣6=4,∴点D到AB的距离是4.故选A.【点评】此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.二.填空题(共10小题)16.(2016春•洛江区期末)如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.【点评】本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.17.(2015•柳州)如图,△ABC≌△DEF,则EF=5.【分析】利用全等三角形的性质得出BC=EF,进而求出即可.【解答】解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.【点评】此题主要考查了全等三角形的性质,得出对应边是解题关键.18.(2015秋•青龙县期末)能够完全重合的两个图形叫做全等形.【分析】由已知条件,根据全等形的定义进行解答.【解答】解:由全等形的定义:能够完全重合的两个图形叫做全等形.所以答案为:全等形.故填全等形.【点评】本题考查的是全等形的定义,属于较容易的基础题.对于基本概念要掌握熟练,这是进一步学习的基础.19.(2015秋•长汀县期末)已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=5.【分析】全等三角形,对应边相等,周长也相等.【解答】解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.【点评】本题考查了全等三角形的性质;要熟练掌握全等三角形的性质,本题比较简单.20.(2015秋•淅川县期末)如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=25°.【分析】根据全等三角形对应角相等可以得到∠CAB=∠EAD,然后两个相等的角减去同一个∠EAB即可得到∠CAE=∠BAD,从而得到结论.【解答】解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∴∠CAB﹣∠EAB=∠EAD﹣∠BAD,即:∠BAD=∠EAC=25°,故答案为25.【点评】本题考查了全等三角形的性质,属于基础题,相对比较简单,解题的关键是发现∠BAD和∠EAC之间的关系.21.(2016春•景泰县期末)已知∠B=∠DEF,AB=DE,请添加一个条件,使△ABC≌△DEF,需添加的条件是∠A=∠D(或∠ACB=∠F、AC=DF).【分析】要使△ABC≌△DEF,已知∠B=∠DEF,AB=DE,具备了一组边和一组角对应相等,还缺少边或角对应相等的条件,结合判定方法及图形进行选择即可.【解答】解:要使△ABC≌△DEF,已知∠B=∠DEF,AB=DE,则可以添加AC=DF,运用SAS来判定其全等;也可添加一组角∠A=∠D或∠C=∠F运用AAS来判定其全等.故答案为:∠A=∠D(或∠ACB=∠F、AC=DF).【点评】本题主要考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.22.(2016春•福州校级期末)如图,∵∴△ABD≌△ACE(SAS).【分析】本题是很据已知条件找对应的全等三角形,关键是先确定出所给条件中,已知的两条边是哪两个三角形的.进而可判断出哪些三角形全等.【解答】解:∵AB、AD和AC、AE分别是△ADB和△ACE的两边,且AB=AC,AD=AE;又∵∠BAC=∠CAB,∴△ADB≌△ACE(SAS).故填ABD,ACE.【点评】本题主要考查全等三角形的判定方法;在书写三角形全等时要注意各对应顶点要对应,排列位置要一致.23.(2016春•普宁市期末)如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.【点评】本题考查了对全等三角形的判定定理的应用,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS,ASA,AAS,SSS,HL.24.(2016春•罗湖区期末)如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为4cm.【分析】由已知进行思考,结合角的平分线的性质可得DE=AD,而AD=AC﹣CD=10﹣6=4cm,即可求解.【解答】解:∵∠A=90°,BD是角平分线,DE⊥BC,∴DE=AD(角的平分线上的点到角的两边的距离相等)∵AD=AC﹣CD=10﹣6=4cm,∴DE=4cm.故填4.【点评】本题主要考查平分线的性质:角的平分线上的点到角的两边的距离相等;题目比较简单,属于基础题.25.(2015•聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.【分析】求出∠ABC,求出∠DBC,根据含30度角的直角三角形性质求出BC,CD,问题即可求出.【解答】解:∵∠C=90°,∠A=30°,∴∠ABC=180°﹣30°﹣90°=60°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=30°,∴BC=AB=3,∴CD=BC•tan30°=3×=,∵BD是∠ABC的平分线,又∵角平线上点到角两边距离相等,∴点D到AB的距离=CD=,故答案为:.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.三.解答题(共5小题)26.(2015秋•盱眙县校级月考)如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.【分析】根据全等三角形对应边相等可得OB=OD,全等三角形对应角相等可得∠ABO=∠D,再根据等边对等角求出∠OBD=∠D,然后求出∠ABC,再根据两直线平行,内错角相等解答即可.【解答】解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∴∠A=∠ABC=30°.【点评】本题考查了全等三角形的性质,等边对等角的性质,平行线的性质,熟记性质并准确识图是解题的关键.27.(2014秋•无锡期中)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数和EC的长.【分析】根据三角形的内角和等于180°求出∠ACB的度数,然后根据全等三角形对应角相等即可求出∠DFE,全等三角形对应边相等可得EF=BC,然后推出EC=BF.【解答】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.【点评】本题主要考查了全等三角形对应边相等,全等三角形对应角相等的性质,三角形的内角和定理,比较简单,熟记性质是解题的关键.28.(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.29.(2016•厦门模拟)如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC ∥AB,求证:AD=CF.【分析】根据平行线性质求出∠A=∠FCE,根据AAS推出△ADE≌△CFE即可.【解答】证明:∵FC∥AB,∴∠A=∠FCE,在△ADE和△CFE中∴△ADE≌△CFE(AAS),∴AD=CF.【点评】本题考查了全等三角形的性质和判定和平行线的性质的应用,注意:全等三角形的对应边相等.30.(2013秋•陆丰市校级期中)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.【分析】根据角平分线性质得出P在∠AOB的角平分线上,推出∠AOB=2∠BOC,求出即可.【解答】解:∵PM⊥OA于M,PN⊥OB于N,PM=PN,∴P在∠AOB的角平分线上,∴∠AOB=2∠BOC=2×30°=60°.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.。

八年级数学下册1.3直角三角形全等的判定同步练习1(新版)湘教版

八年级数学下册1.3直角三角形全等的判定同步练习1(新版)湘教版

1.3直角三角形全等的判定同步练习一、选择题(本大题共8小题)1.如图,/ A=Z D=90°, AC=DB 则厶 AB3A DCB 的依据是()2. 在下列条件中,不能判定两个直角三角形全等的是 ()A. 两条直角边对应相等B. 两个锐角对应相等C. 一个锐角和它所对的直角边对应相等D. 一条斜边和一条直角边对应相等3. 如图所示,AB=CD,AE 丄BD 于点E,CF 丄BD 于点F,AE=CF,则图中全等的三角形有 ()A.HLB.ASAC.AASA.1 对B.2 D.44.在 Rt △ ABC 和 Rt △ A B' C'中,/ C=Z C =90°,/ A=Z B ', AB=B A ,则下列结论中正确的是( ) A. AC=A ' CB.BC=B' CC.AC=B' CD. /A=/ A 5.如图所示,△ ABC 中, AE =AC ADL BC 交 D 点,E 、 F 分别是DB D.SAS 对A.1B.2C.3D.4三角形的对数是()6.已知在△ ABC 和厶DEF 中,/ A=Z D=90° ,则下列条件中不能判定厶 ABC 和厶DEF 全等的是8. 如图,南京路与八一街垂直,西安路也与八一街垂直,曙光路与环城路垂 直•如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程为()m.二、填空题(本大题共6小题)9. 已知一条斜边和一条直角边,求作直角三角形,作图的依据是___________ .10. 已知:如图,AE ± BC DF 丄BC 垂足分别为 E 、F, AE=DF AB=DC 则厶ABE^A ____________A. AB=DE,AC=DFB. AC=EF,BC=DFC.AB=DE,BC=EFD. / C=Z F,BC=EF 7.如图,在Rt △ ABC 的斜边 BC 上截取CD=CA 过点D 作DEI BC 交AB 于点E,则有() A.DE=DB B.DE=AE C.AE=BED.AE=BDA.400B.60011. 如图,已知BD 丄AE 于点B,C 是BD 上一点,且BC=BE 要使Rt △ AB3 Rt △ DBE,应补充的条 件是/ A=Z D 或 __________ 或 ___________ 或 ___________14.用三角尺可按下面方法画角平分线: 如图,在已知/ AOB两边上分别取 0M=0,再分别过点M N 作OA 0B 的垂线,两垂线交于点 P,画射线0P 则0P 平分/ AOB 作图过程用到了厶 OPM PA 0PN 那么△ 0PM PA 0PN 的依据是 __________ .12.如图,△ ABC 中,AD ± BC 于点D,要使△ ABD^A ACD 若根据“ HL ”判定,还需要加一个条件 __________iy c/ D=60°,则/ A=13.16. 已知:Rt △ ABC 中,/ ACB 是直角,D 是AB 上一点,BD=BC 过D 作AB 的垂线交求证:CD L BE17.用尺规作一个直角三角形,使其中一条边长为 a ,这条边所对的角为 30°a已知:线段a ,求作:Rt △ ABC 使 BC=a / ACB=90,/ A=30°18. 已知△ ABC 中,CD L AB 于D,过D 作DEI AC F 为BC 中点,过F 作FG L DC 求证: 参考答案: 一、选择题(本大题共8小题) 1. A分析:已知/ A=Z D=90 , 题中隐含BC=BC,根据HL 即可推出△ AB 笑 △ DCB■Vi f三、计算题(本大题共4小题)15. 已知:如图△ ABC 中,BD 丄 AC, CE L AB, BD CE 交于O 点,且BD=CE 求证:OB=OC.AC 于 E ,DG=EG解:解:HL,理由是:•/ / A=Z D=90 ,•••在Rt△ ABC和Rt△ DCB 中AC 二BDBC =BC•Rt△ ABC^ Rt△ DCB( HL),故选A.2. D分析:针对每一个条件进行判定验证,从而判断结论。

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学12.2 全等三角形的判定同步练习一、单选题1.在下列各组图形中,是全等图形的是( )A .B .C .D . 2.已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50° 3.如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒ 4.如图,在ABC 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30 5.如图,已知∠ABC ∠∠CDE ,其中AB =CD ,不正确的是( )A .AC =CEB .∠BAC =∠DCE C .∠ACB =∠ECD D .∠B =∠D 6.如图,ABC DEC ≌△△,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30B .25︒C .35︒D .65︒ 7.如图,A ABC B C '''≌△△,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .60°B .100°C .120°D .135° 8.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定二、填空题 9.如图,△EFG∠∠NMH ,△EFG 的周长为15cm ,HN=6cm ,EF=4cm ,FH=1cm ,则HG= ______ .10.如图,若∠ABC∠∠A 1B 1C 1,且∠A =110°,∠B =40°,则∠C 1=______°.11.如图,已知△ABC ∠∠BAD .若∠DAC =20°,∠C =88°,则∠DBA =________°.12.如图,∠ABD∠∠AC E,A E=3cm,AC=6 cm,则CD=__________cm.13.如图∠ABC,使A与D重合,则∠ABC______∠DBC,其对应角为_____,对应边是_______.14.如图,已知∠ABC∠∠DBC,∠A=45°,∠ACD=76°,则∠DBC的度数为_________°.15.如图△ACB∠A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是________度.16.已知△ABC∠∠DEF,若∠B=40°,∠D=30°,则∠F=________°.三、解答题17.如图,C为BE上一点,点A,D在线段BE的两侧,若△ABC∠∠CED,试说明:AB∠ED.18.如图,ABE DCE △≌△,点E 在线段AD 上,点F 在CD 延长线上,F A ∠=∠,求证:AD BF ∥.19.已知:如图,::3:10:5ABC A B C A BCA ABC ''∆∆∠∠∠=≌,,求A B BC ''∠∠,的度数.20.如图,已知∠ABF∠∠CDE.(1)若∠B =30°,∠DCF =40°,求∠EFC 的度数;(2)若BD=10,EF=2,求BF 的长.答案第1页,共1页 参考答案:1.C2.A3.C4.D5.C6.B7.C8.C9.4cm10.3011.3612.313. ∠ ∠A =∠D ,∠ABC =∠DBC ;∠ACB =∠DCB AB =DB ,AC =DC ,BC =BC . 14.9715.4016.11019.30A '∠=︒,50B BC '∠=︒20.(1)70°;(2)6.。

2022-2023学年人教版八年级数学上册《三角形全等的判定》同步练习

2022-2023学年人教版八年级数学上册《三角形全等的判定》同步练习

人教版数学八年级上册《12.2三角形全等的判定》同步练习一、单选题(本大题共15小题,共45分)1.(3分)不能确定两个三角形全等的条件是()A. 三条边对应相等B. 两边及其夹角对应相等C. 两角及其中一角的对边对应相等D. 两条边和一条边所对的角对应相等2.(3分)如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是()A. ΔABC≌ΔBADB. OB=OCC. ∠CAB=∠DBAD. ∠C=∠D3.(3分)在△ABC中,∠C=90°,∠CBA的外角平分线,交AC的延长线于F,交斜边上的高CD的延长线于E,EG∥AC交AB的延长线于G,则下列结论:①CF=CE;②GE=CF;③EF是CG的垂直平分线;④BC=BG.其中正确的是()A. ①②③④B. ①③④C. ②③④D. ①②4.(3分)如图,AD是ΔABC的高,AD也是ΔABC的中线,则下列结论不一定成立的是()A. AB=ACB. AD=BCC. ∠B=∠CD. ∠BAD=∠CAD5.(3分)B为AC上一点,在AC同侧作等边△EAB及等边△DBC,那么下列式子错误的是( )A. △ABD≌△EBCB. ∠BDA=∠BCEC. △ABE≌△BCDD. 若BE交AD于M,CE交BD于N,那么△NBC≌△MBD6.(3分)如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A. ∠B=∠CB. AD=AEC. ∠ADC=∠AEBD. DC=BE7.(3分)把点M(-2,1)向右平移3个单位长度,再向下平移2个单位长度后得到点N,则N的坐标为( )A. (-4,4)B. (-5,3)C. (1,-1)D. (-5,-1)8.(3分)如图,AB交CD于点O,点O分别是AB与CD的中点,则下列结论中错误的是()A. ∠A=∠BB. AC=BDC. ∠A+∠B=90°D. AC∥BD9.(3分)如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A. ∠DAE=∠CBEB. △DEA不全等于△CEBC. CE=DED. △EAB是等腰三角形10.(3分)如图,在正方形ABCD中,点E,F分别在BC和CD上,过点A作GA⊥AE,CD的延长线交AG于点G,BE+DF=EF,若∠DAF=30°,则∠BAE的度数为()A. 15°B. 20°C. 25°D. 30°11.(3分)下列说法正确的是( )A. 有两边和一个角相等的两个三角形全等B. 两条直角边对应相等的两个直角三角形全等C. 三角形的一条中线把三角形分成的两个小三角形全等D. 有两边和其中一边的对角对应相等的两个三角形全等12.(3分)在下列命题中,是假命题的个数有()①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③面积相等的两个三角形全等;④三角形的一个外角等于两个内角的和.A. 4个B. 3个C. 2个D. 1个13.(3分)如图,已知O是线段AC和BD的中点,要说明ΔABO≌ΔCDO,以下回答最合理的是()A. 添加条件∠A=∠CB. 添加条件AB=CDC. 不需要添加条件D. ΔABO和ΔCDO不可能全等14.(3分)如图,∠1=∠2,∠3=∠4,则下面结论中错误的是()A. △ADC≌△BCDB. △ABD≌△BACC. △AOB≌△CODD. △AOD≌△BOC15.(3分)如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A. 2个B. 4个C. 6个D. 8个二、填空题(本大题共5小题,共15分)16.(3分)如图,∠BAC=∠ABD,BD、AC交于点O,要使OC=OD,还需添加一个条件,这个条件可以是____.17.(3分)同学们知道:只有两边和其中一边的对角对应相等的两个三角形不一定全等.你如何处理这三个条件,使这两个三角形全等?如方案(1):若这两个三角形是直角三角形,则这两个三角形全等.请你仿照方案(1)写出另外一个方案:____.18.(3分)如图,∠1=∠2=30°,∠A=∠B,AE=BE,点D在边AC上,AE与BD相交于点O,则∠C的度数为______.19.(3分)如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=21°,∠2=30°,∠3= ______ .20.(3分)如图,已知AD=BC,根据“SAS”,还需要一个条件____,可证明△ABC≌△BAD.三、解答题(本大题共5小题,共40分)21.(8分)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD,∠BCD=45°,BE⊥CD于E,BE与AC交于F.(1)求证:CF=2BO;(2)若DE=1,求CF⋅FO的值.22.(8分)已知:∠A=90°,∠ADE=120°,BD平分∠ADE,AD=DE.(1)ΔBAD与ΔBED全等吗?请说明理由;(2)若DE=2,试求AC与EC的长.23.(8分)已知:如图,点E,D,B,F在同一条直线上,AD//CB,∠BAD=∠BCD,DE=BF.求证:(1)AD=BC;(2)AE//CF.24.(8分)如图,在RtΔABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:BE=CF;(2)若∠E=40°,求∠AGB的度数.25.(8分)如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:____;得到的一对全等三角形是△____≌△____.答案和解析1.【答案】D;【解析】解:A、三条边对应相等,符合SSS,能判定三角形全等;B、两边及其夹角对应相等,符合SAS,能判定三角形全等;C、两角及其中一角的对边对应相等,能判定三角形全等,符合AAS.D、两条边和一条边所对的角对应相等,满足SSA,不能判定三角形全等.故选D.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL,做题时要结合各选项的已知逐个进行验证.该题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.【答案】B;【解析】解:A、根据SSS可以证明ΔABC≌ΔBAD,故本选项正确;B、OB和OC显然不是对应边,故本选项错误;C、根据全等三角形的对应角相等,得∠CAB=∠DBA,故本选项正确;D、根据全等三角形的对应角相等,得∠C=∠D,故本选项正确.故选:B.根据SSS可以证明ΔABC≌ΔBAD,从而得到其对应角相等、对应边相等.该题考查全等三角形的判定和性质,解答该题的关键是熟练掌握基本知识,属于中考常考题型.3.【答案】A;【解析】解:∵BF平分∠GBC,∴∠GBF=∠CBF,而∠GBF=∠EBD,∴∠CBF=∠EBD,∵∠BCA=90°,CD为高,∴∠F=∠BED,∴CF=CE,所以①正确;又∵GE∥AF,∴∠F=∠GEB,∴∠GEB=∠CEB,而∠GBF=∠CBF,∴∠GBE=∠CBE,∴△BEG≌△BEC,∴GE=CE,∴GE=CF,所以②正确;在△EGC中,EC=EG,BE平分∠CEG,∴EB垂直平分GC,所以③正确;∴BG=BC,所以④正确.故选A.4.【答案】B;【解析】解:∵AD是ΔABC的高,AD也是ΔABC的中线,∴BC⊥AD,BD=CD,在ΔABD和ΔACD中,{AD=AD∠ADB=∠ADC=90°BD=CD,∴ΔABD≌ΔACD(SAS),∴AB=AC,∠B=∠C,∠BAD=∠BAD.故选:B.证明ΔABD≌ΔACD,可得AB=AC,∠B=∠C,∠BAD=∠BAD.则答案得出.考查了等腰三角形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答该题的关键.5.【答案】C;【解析】△ABE与△BCD未必全等,故选C。

人教版 初中数学八年级上册 12.2全等三角形的判定 同步练习(含答案)

人教版 初中数学八年级上册 12.2全等三角形的判定 同步练习(含答案)

人教版初中数学八年级上册12.2全等三角形的判定同步练习(含答案)一、选择题(本大题共8道小题)1. 如图,AD=AE,若利用“SAS”证明△ABE△△ACD,则需要添加的条件是()A.AB=ACB.△B=△CC.△AEB=△ADCD.△A=△B2. 下列三角形中全等的是()A.△△ B.△△ C.△△ D.△△3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画△HDE=△A,△GED=△B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图所示,△C=△D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.△ABC=△ABD D.△BAC=△BAD5. 如图,点B,F,C,E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DFC.△A=△D D.BF=EC6. 如图所示,P是△BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA△△PF A的依据是()A.HL B.ASA C.SSS D.SAS7. 在Rt△ABC和Rt△DEF中,△C=△F=90°,下列条件不能判定Rt△ABC△Rt△DEF的是()A.AC=DF,△B=△E B.△A=△D,△B=△EC.AB=DE,AC=DF D.AB=DE,△A=△D8. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角△ABC=35°,则右边的滑梯与地面的夹角△DFE等于()A.60° B.55° C.65° D.35°二、填空题(本大题共4道小题)9. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH△△CEB.10. 如图,在△ABC中,AD△BC于点D,要使△ABD△△ACD,若根据“HL”判定,还需要添加条件:____________.11. 如图,已知AD=BC,AB=CD,若△C=40°,则△A=________°.12. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若△ACD=40°,则△AGD=________°.三、解答题(本大题共2道小题)13. 如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.14. 如图,C是线段BD的中点,AB=EC,△B=△ECD.求证:△ABC△△ECD.人教版初中数学八年级上册12.2全等三角形的判定同步练习-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】A[解析] △△符合证明三角形全等的判定方法“SAS”.△△中相等的角所对的边不相等,所以不可能全等.故选A.3. 【答案】A4. 【答案】A5. 【答案】C[解析] 选项A中添加AB=DE可用“AAS”进行判定,故本选项不符合题意;选项B中添加AC=DF可用“AAS”进行判定,故本选项不符合题意;选项C中添加△A=△D不能判定△ABC△△DEF,故本选项符合题意;选项D中添加BF=EC可得出BC=EF,然后可用“ASA”进行判定,故本选项不符合题意.故选C.6. 【答案】A7. 【答案】B[解析] 选项A,D均可由“AAS”判定Rt△ABC△Rt△DEF,选项C 可由“HL”判定Rt△ABC△Rt△DEF,只有选项B不能判定Rt△ABC△Rt△DEF.8. 【答案】B [解析] 在Rt△ABC 和Rt△DEF 中,⎩⎨⎧BC =EF ,AC =DF ,△Rt△ABC△Rt△DEF(HL). △△DEF =△ABC =35°.△△DFE =90°-35°=55°.二、填空题(本大题共4道小题)9. 【答案】AH =CB (符合要求即可)【解析】∵AD ⊥BC ,CE ⊥AB ,垂足分别为点D 、E ,∴∠BEC =∠AEC =90°,在Rt △AEH 中,∠EAH =90°-∠AHE ,在Rt △HDC 中,∠ECB =90°-∠DHC ,∵∠AHE =∠DHC ,∴∠EAH =∠ECB ,∴根据AAS 添加AH =CB 或EH =EB ;根据ASA 添加AE =CE.可证△AEH ≌△CEB.故答案为:AH =CB 或EH =EB 或AE =CE 均可.10. 【答案】AB =AC 11. 【答案】40[解析] 如图,连接DB.在△ADB 和△CBD 中,⎩⎨⎧AD =CB ,AB =CD ,DB =BD ,△△ADB△△CBD(SSS). △△A =△C =40°.12. 【答案】40[解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,△△ABC△△DEC(SSS). △△A =△D.又△△AFG =△DFC ,△△AGD =△ACD =40°.三、解答题(本大题共2道小题)13. 【答案】证明:∵CE ∥DF ,∴∠ACE =∠FDB ,(2分)在△ACE 和△FDB 中,⎩⎨⎧EC =BD∠ACE =∠FDB AC =FD,∴△ACE ≌△FDB(SAS ),(5分) ∴AE =FB.(7分)14. 【答案】证明:△C 是线段BD 的中点,△BC =CD.在△ABC 与△ECD 中,⎩⎨⎧BC =CD ,△B =△ECD ,AB =EC ,△△ABC△△ECD.。

人教版 八年级上册数学 12.2 全等三角形的判定 同步训练(含答案)

人教版 八年级上册数学 12.2 全等三角形的判定 同步训练(含答案)

人教版八年级数学12.2 全等三角形的判定同步训练一、选择题(本大题共10道小题)1. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD2. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS3. 如图所示,已知AB∥DE,点B,E,C,F在同一直线上,AB=DE,BE=CF,∠B=32°,∠A=78°,则∠F等于()A.55°B.65°C.60°D.70°4. 如图,李颖同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最合理的办法是带哪块玻璃去()A.只带①B.只带②C.只带③D.带①和②5. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙6. 如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC7. 在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列条件不能判定Rt△ABC≌Rt△DEF的是()A.AC=DF,∠B=∠E B.∠A=∠D,∠B=∠EC.AB=DE,AC=DF D.AB=DE,∠A=∠D8. 如图,AB⊥BC,BE⊥AC,垂足分别为B,E,∠1=∠2,AD=AB,则下列结论正确的是()A.∠1=∠EFDB.BE=ECC.BF=CDD.FD∥BC9. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 610. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题(本大题共7道小题)11. 如图,AB=DE,∠1=∠2,添加一个适当的条件,使△ABC≌△DEC,则需添加的条件是__________(不添加任何辅助线,填一个即可).12. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).13. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED与AB相交于点G.若∠ACD=40°,则∠AGD=________°.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB 的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图,若AB=AC,BD=CD,∠A=80°,∠BDC=120°,则∠B=________°.16. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.17. 如图,已知△ABC(AC>AB),DE=BC,以D,E为顶点作三角形,使所作的三角形与△ABC全等,则这样的三角形最多可以作出________个.三、解答题(本大题共4道小题)18. 如图,点B,C分别在∠MAN的边AM,AN上,点E,F在∠MAN内部的射线AD上,∠1,∠2分别是△ABE,△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE ≌△CAF.19. 在四边形ABCD 中,AB =AD .(1)如图①,若∠B =∠D =90°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .请直接写出线段EF ,BE ,FD 之间的数量关系:____________.(2)如图②,若∠B +∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由. (3)如图③,若∠B +∠ADC =180°,E ,F 分别是边BC ,CD 延长线上的点,且∠EAF =12∠BAD ,请直接写出EF ,BE ,FD 三者的数量关系.20. 如图①,点A ,B ,C ,D 在同一直线上,AB=CD ,作EC ⊥AD 于点C ,FB⊥AD 于点B ,且AE=DF . (1)求证:EF 平分线段BC ;(2)若将△BFD 沿AD 方向平移得到图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.21. (1)如图①,在△ABC 中,∠BAC =90°,AB =CA ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为D ,E.求证:DE =BD +CE.(2)如图②,将(1)中的条件改为:在△ABC 中,AB =CA ,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角,则结论DE =BD +CE 是否成立?若成立,请你给出证明;若不成立,请说明理由.人教版 八年级数学 12.2 全等三角形的判定同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.2. 【答案】A3. 【答案】D[解析] 因为AB∥DE,所以∠B=∠DEF.由条件BE=CF知BC=EF.结合条件AB=DE,可由“SAS”判定△ABC≌△DEF,所以∠F=∠ACB=180°-(∠A+∠B)=180°-(78°+32°)=70°.4. 【答案】C[解析] 由“ASA”的判定方法可知只带③去就可以配出一块和以前一样(全等)的三角形玻璃.5. 【答案】D6. 【答案】C[解析] A.∠A=∠D,∠ABC=∠DCB,BC=BC,符合“AAS”,即能推出△ABC≌△DCB,故本选项不符合题意;B.∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合“ASA”,即能推出△ABC ≌△DCB,故本选项不符合题意;C.∠ABC=∠DCB,AC=DB,BC=BC,不符合全等三角形的判定条件,即不能推出△ABC≌△DCB,故本选项符合题意;D.AB=DC,∠ABC=∠DCB,BC=CB,符合“SAS”,即能推出△ABC≌△DCB,故本选项不符合题意.故选C.7. 【答案】B[解析] 选项A,D均可由“AAS”判定Rt△ABC≌Rt△DEF,选项C 可由“HL”判定Rt△ABC≌Rt△DEF,只有选项B不能判定Rt△ABC≌Rt△DEF.8. 【答案】D[解析] 在△AFD和△AFB中,∴△AFD≌△AFB.∴∠ADF=∠ABF.∵AB⊥BC,BE⊥AC,∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.9. 【答案】B【解析】如解图,连接OC ,由已知条件易得∠A =∠OCE ,CO =AO ,∠DOE =∠COA ,∴∠DOE -∠COD =∠COA -∠COD ,即∠AOD =∠COE ,∴△AOD ≌△COE (ASA),∴AD =CE ,进而得CD +CE =CD +AD =AC=22AB =3,故选B.10. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.二、填空题(本大题共7道小题)11. 【答案】答案不唯一,如∠B =∠E12. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).13. 【答案】40[解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS). ∴∠A =∠D.又∵∠AFG =∠DFC , ∴∠AGD =∠ACD =40°.14. 【答案】2[解析] ∵CF ∥AB ,∴∠A =∠FCE.在△ADE 和△CFE 中,⎩⎨⎧∠A =∠FCE ,∠AED =∠CEF ,DE =FE ,∴△ADE ≌△CFE(AAS). ∴AD =CF =3.∴BD =AB -AD =5-3=2.15. 【答案】20[解析] 如图,过点D 作射线AF.在△BAD 和△CAD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,∴△BAD ≌△CAD(SSS). ∴∠BAD =∠CAD ,∠B =∠C.∵∠BDF =∠B +∠BAD ,∠CDF =∠C +∠CAD , ∴∠BDF +∠CDF =∠B +∠BAD +∠C +∠CAD , 即∠BDC =∠B +∠C +∠BAC. ∵∠BAC =80°,∠BDC =120°, ∴∠B =∠C =20°.16. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°. ∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).17. 【答案】4[解析] 能画4个,分别是:以点D 为圆心,AB 长为半径画圆;以点E 为圆心,AC 长为半径画圆,两圆相交于两点(DE 上下各一个),分别与点D ,E 连接后,可得到两个三角形.以点D 为圆心,AC 长为半径画圆;以点E 为圆心,AB 长为半径画圆,两圆相交于两点(DE 上下各一个),分别与点D ,E 连接后,可得到两个三角形.因此最多能画出4个三角形与△ABC 全等.如图.三、解答题(本大题共4道小题)18. 【答案】证明:∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA).19. 【答案】解:(1)EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.证明:如图,延长EB 到点G ,使BG =DF ,连接AG .∵∠ABC +∠D =180°,∠ABG +∠ABC =180°,∴∠ABG =∠D.在△ABG 与△ADF 中,⎩⎨⎧AB =AD ,∠ABG =∠D ,BG =DF , ∴△ABG ≌△ADF(SAS).∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠BAD -∠EAF.又∵∠EAF =12∠BAD ,∴∠1+∠3=12∠BAD =∠EAF ,即∠EAG =∠EAF.在△AEG 和△AEF 中,⎩⎨⎧AG =AF ,∠EAG =∠EAF ,AE =AE , ∴△AEG ≌△AEF.∴EG =EF.∵EG =BE +BG ,∴EF =BE +FD.(3)EF =BE -FD.20. 【答案】解:(1)证明:∵EC ⊥AD ,FB ⊥AD , ∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB+BC=BC+CD , 即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB. 在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS).∴CG=BG ,即EF 平分线段BC.(2)EF 平分线段BC 仍成立.理由:∵EC ⊥AD ,FB ⊥AD ,∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB-BC=CD-BC ,即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB.在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS).∴CG=BG ,即EF 平分线段BC.21. 【答案】解:(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠AEC =90°.∴∠BAD +∠ABD =90°.∵∠BAC =90°,∴∠BAD +∠CAE =90°. ∴∠CAE =∠ABD.在△ADB 和△CEA 中,⎩⎨⎧∠ABD =∠CAE ,∠BDA =∠AEC ,AB =CA , ∴△ADB ≌△CEA(AAS).∴BD =AE ,AD =CE.∴DE =AE +AD =BD +CE.(2)成立.证明:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠EAC =180°-α. ∴∠DBA =∠EAC.在△ADB 和△CEA 中,⎩⎨⎧∠DBA =∠EAC ,∠BDA =∠AEC ,AB =CA ,∴△ADB≌△CEA(AAS).∴BD=AE,AD=CE.∴DE=AE+AD=BD+CE.。

人教版八年级上册数学全等三角形练习题及答案一

人教版八年级上册数学全等三角形练习题及答案一

12.2 第1课时 “边边边”一、选择题1.如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A .ABD ACD △≌△ B .ABE ACE △≌△ C .BDE CDE △≌△D .以上答案都不对2.如图,在ABC △和DCB △中,AB DC =,AC 与BD 相交于点E ,若不再添加任何字母与辅助线,要使ABC DCB △≌△,则还需增加的一个条件是( )A.AC=BDB.AC=BCC.BE=CED.AE=DE3.如图,已知AB=AC ,BD=DC ,那么下列结论中不正确的是( ) A .△ABD ≌△ACD B .∠ADB=90° C .∠BAD 是∠B 的一半D .AD 平分∠BAC4. 如图,AB=AD ,CB=CD ,∠B=30°,∠BAD=46°,则∠ACD 的度数是( )EDCB AA EB D C第1题图第2题图第3题图A.120°B.125°C.127°D.104°第4题图第5题图5. 如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D6. 如图,AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,DE=BF,,那么图中全等三角形共有()对A.4对 B.3对 C.2对 D.1对7. 如图,AB=CD,BC=AD,则下列结论不一定正确的是().A.AB∥DCB. ∠B=∠DC. ∠A=∠CD. AB=BC第7题图8. 如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x -1,若这两个三角形全等,则x 等于( )A .73B .3C .4D .5二、填空题9.(2011湖北十堰)工人师傅常用角尺平分一个任意角。

做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺 两边相同的刻度分别与M ,N 重合,过角尺顶点C 作射线OC 。

人教版八年级数学12.1《全等三角形》同步训练习题

人教版八年级数学12.1《全等三角形》同步训练习题

人教版八年级数学上册12.1《全等三角形》同步训练习题一.选择题(共12小题)1.(2015秋•蓟县期中)下列各组的两个图形属于全等图形的是()A.B.C.D.2.(2015春•山亭区期末)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个3.(2015春•太康县期末)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC 的长为()A.2 B.3 C.5 D.2.54.(2015春•泰山区期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个5.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°6.(2015春•东莞校级期末)如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°7.(2015秋•南通校级期中)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°.8.(2015秋•淮安校级月考)如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD9.(2015秋•赵县校级月考)如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE上,则∠BAD的度数为()A.15°B.20°C.25°D.30°10.(2015秋•德州校级月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A.55 B.45 C.30 D.2511.(2015秋•邗江区校级月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或512.(2014春•兴化市校级月考)△ABC≌△A1B1C1,其中△ABC三边为x、6、3,另一个△A1B1C1三边为3、y、8.那么2x+y()A.8 B.6 C.22 D.24二.填空题(共11小题)13.(2015•柳州)如图,△ABC≌△DEF,则EF=.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=.15.(2015春•黄冈校级期末)△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF=.16.(2015春•衡阳县期末)如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则AC=.17.(2015秋•南江县校级期中)已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC=.18.(2015秋•泰兴市校级月考)如图,△ABC≌△ADE,BC的延长线交DE于F,∠B=30°,∠AED=110°,∠DAC=10°,则∠DFB的度数为.19.(2015秋•乐陵市校级月考)已知△ABC≌△DEF,BC=EF=6厘米,△ABC 的面积为9平方厘米,则EF边上的高是厘米.20.(2015秋•泰兴市校级月考)如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是.21.(2014春•榆树市期末)如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D=.22.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=.23.(2015秋•都匀市期中)如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x=.三.解答题(共7小题)24.(2015春•太康县期末)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.25.(2015春•安岳县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.26.(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.27.(2014秋•泰山区校级期中)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE 与DC之间有怎样的数量关系?说明理由.28.(2014秋•扶沟县期中)如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.29.(2014秋•盐城期中)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?30.(2012春•永春县期中)如图,已知△ABC中,AB=AC=10厘米,BC=8cm,点D为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由点C向点A点以a厘米/秒运动,设运动的时间为t 秒,(1)求CP的长;(2)若以C、P、Q为顶点的三角形和以B、D、P为顶点的三角形全等,且∠B 和∠C是对应角,求a的值.人教版八年级数学上册12.1《全等三角形》同步训练习题参考答案一.选择题(共12小题)1.(2015秋•蓟县期中)下列各组的两个图形属于全等图形的是()A.B.C.D.选D2.(2015春•山亭区期末)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个B.2个C.3个D.4个【考点】全等图形.【分析】分别利用全等图形的概念以及全等三角形的判定方法进而判断得出即可.【解答】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)两角和一边对应相等的两个三角形全等,是一角的对边或两角的夹边对应相等,正确;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.【点评】此题主要考查了全等图形的概念与性质,正确掌握判定两三角形全等的方法是解题关键.3.(2015春•太康县期末)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC 的长为()A.2 B.3 C.5 D.2.5【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.4.(2015春•泰山区期末)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.5.(2015秋•武平县校级月考)如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD的度数,再根据△ABG和△FDG的内角和都等于180°,所以∠DFB=∠BAD.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD,∴∠BAD=∠CAE,∵∠DAC=60°,∠BAE=100°,∴∠BAD=(∠BAE﹣∠DAC)=(100°﹣60°)=20°,在△ABG和△FDG中,∵∠B=∠D,∠AGB=∠FGD,∴∠DFB=∠BAD=20°.故选B.【点评】本题主要利用全等三角形对应角相等的性质,准确识图也是考查点之一.6.(2015春•东莞校级期末)如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC,∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,∵∠BED+∠CED=180°,∴∠A=∠BED=∠CED=90°,在△ABC中,∠C+2∠C+90°=180°,∴∠C=30°.故选D.【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.7.(2015秋•南通校级期中)如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANC=120°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°.【考点】全等三角形的性质.【分析】利用三角形内角和定理得出∠BAN的度数,再利用全等三角形的性质得出∠MAC的度数.【解答】解:∵∠ANC=120°,∴∠ANB=180°﹣120°=60°,∵∠B=50°,∴∠BAN=180°﹣60°﹣50°=70°,∵△ABN≌△ACM,∴∠BAN=∠MAC=70°.故选:B.【点评】此题主要考查了全等三角形的性质,得出∠BAN的度数是解题关键.8.(2015秋•淮安校级月考)如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.【点评】本题考查了全等三角形的性质和平行线的判定的应用,注意:全等三角形的对应角相等,对应边相等.9.(2015秋•赵县校级月考)如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE上,则∠BAD的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】先由△ABC≌△DEF,根据全等三角形的性质得出∠B=∠E=60°,∠C=∠F=40°,由DF∥BC,得出∠1=∠C,等量代换得到∠1=∠F,那么AC∥EF,于是∠2=∠E=60°.由三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=80°,于是∠BAD=∠BAC﹣∠2=20°.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∠C=∠F=40°,∵DF∥BC,∴∠1=∠C,∴∠1=∠F,∴AC∥EF,∴∠2=∠E=60°.∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∴∠BAD=∠BAC﹣∠2=80°﹣60°=20°.故选B.【点评】本题考查了全等三角形的性质,平行线的判定与性质,三角形内角和定理,求出∠2=∠E=60°是解题的关键.10.(2015秋•德州校级月考)若△ABC≌△DEF,△ABC的周长为100,AB=30,EF=25,则AC=()A.55 B.45 C.30 D.25【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF=25,再根据三角形的周长公式列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=25,∵△ABC的周长为100,AB=30,∴AC=100﹣30﹣25=45.故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等.11.(2015秋•邗江区校级月考)△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为()A.2.5 B.3 C.2.25或3 D.1或5【考点】全等三角形的性质.【专题】动点型.【分析】分两种情况讨论:①若△BPD≌△CPQ,根据全等三角形的性质,则BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根据速度、路程、时间的关系即可求得;②若△BPD≌△CQP,则CP=BD=6厘米,BP=CQ,得出,解得:v=3.【解答】解:∵△ABC中,AB=AC=12厘米,点D为AB的中点,∴BD=6厘米,若△BPD≌△CPQ,则需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),∵点Q的运动速度为3厘米/秒,∴点Q的运动时间为:6÷3=2(s),∴v=4.5÷2=2.25(厘米/秒);若△BPD≌△CQP,则需CP=BD=6厘米,BP=CQ,∴,解得:v=3;∴v的值为:2.25或3,故选C.【点评】此题考查了线段垂直平分线的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.12.(2014春•兴化市校级月考)△ABC≌△A1B1C1,其中△ABC三边为x、6、3,另一个△A1B1C1三边为3、y、8.那么2x+y()A.8 B.6 C.22 D.24选C二.填空题(共11小题)13.(2015•柳州)如图,△ABC≌△DEF,则EF=5.【考点】全等三角形的性质.【分析】利用全等三角形的性质得出BC=EF,进而求出即可.【解答】解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.【点评】此题主要考查了全等三角形的性质,得出对应边是解题关键.14.(2015春•万州区期末)如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=30°.【考点】全等三角形的性质.【专题】证明题.【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC=∠BAC=30°,即可得∠CAE的度数.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=∠BAC=30°,∴∠CAE=∠DAE﹣∠DAC=60°﹣30°=30°.故答案填:30°.【点评】本题考查了全等三角形的性质及角平分线的性质,熟练掌握三角形全等的性质是解题的关键.15.(2015春•黄冈校级期末)△ABC中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠DEF=40°.【考点】全等三角形的性质.【分析】先由△ABC中,∠A:∠C:∠B=4:3:2及三角形内角和定理求出∠B 的度数,再根据全等三角形的对应角相等求出∠DEF.【解答】解:∵△ABC中,∠A:∠C:∠B=4:3:2,∴∠B=180°×=40°,∵△ABC≌△DEF,∴∠E=∠B=40°.故答案为:40°.【点评】本题考查了全等三角形的性质的应用,掌握全等三角形的对应角相等是解题的关键.也考查了三角形内角和定理.16.(2015春•衡阳县期末)如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则AC=5.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等可得AC=DB,再求出AB=CD=(AD﹣BC)=3,那么AC=AB+BC,代入数值计算即可得解.【解答】解:∵△ACE≌△DBF,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD,∵AD=8,BC=2,∴AB=(AD﹣BC)=×(8﹣2)=3,∴AC=AB+BC=3+2=5.故答案为5.【点评】本题考查了全等三角形对应边相等的性质,熟记性质并求出AB=CD是解题的关键.17.(2015秋•南江县校级期中)已知△ABC≌△DEF,且△DEF的周长为12,若AB=5,BC=4,AC=3.【考点】全等三角形的性质.【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=5,BC=4,∴AC=3,故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.18.(2015秋•泰兴市校级月考)如图,△ABC≌△ADE,BC的延长线交DE于F,∠B=30°,∠AED=110°,∠DAC=10°,则∠DFB的度数为50°.【考点】全等三角形的性质.【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.【解答】解:设AD与BF交于点M,∵△ABC≌△ADE,∴∠AED=∠ACB=110°,∴∠ACM=180°﹣110°=70°,∠AMC=180°﹣∠ACM﹣∠DAC=180°﹣70°﹣10°=100°,∴∠FMD=∠AMC=100°,∴∠DFB=180°﹣∠D﹣∠FMD=180°﹣100°﹣30°=50°.故答案为:50°.【点评】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.19.(2015秋•乐陵市校级月考)已知△ABC≌△DEF,BC=EF=6厘米,△ABC 的面积为9平方厘米,则EF边上的高是3厘米.【考点】全等三角形的性质.【分析】根据三角形的面积公式求出△ABC边BC上的高,再根据全等三角形对应边上的高相等解答.【解答】解:设△ABC边BC上的高为h,则△ABC的面积=BC•h=×6h=9,解得h=3,∵△ABC≌△DEF,BC=EF,∴EF边上的高是3cm.故答案为:3.【点评】本题主要考查了全等三角形对应边上的高相等的性质.20.(2015秋•泰兴市校级月考)如图所示,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,∠DEF的度数是35°.【考点】全等三角形的性质.【分析】由△ACB的内角和定理求得∠CAB=25°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=25°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=105°,∠B=50°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣50°﹣105°=25°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=25°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=10°,∴∠EAB=25°+10°+25°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣50°=70°,∴∠DEF=∠AED﹣∠AEB=105°﹣70°=35°.故答案为:35°.【点评】本题考查全等三角形的性质.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.21.(2014春•榆树市期末)如图,已知△ABC≌△CDA,∠BAC=60°,∠DAC=23°,则∠D=97°.【考点】全等三角形的性质.【分析】先由全等三角形的对应角相等得出∠BAC=∠DCA=60°,然后在△ADC 中根据三角形内角和定理求出∠D的度数.【解答】解:∵△ABC≌△CDA,∴∠BAC=∠DCA=60°,∵∠DAC=23°∴∠D=180°﹣∠DCA﹣∠DAC=97°.故答案为97°.【点评】本题考查了全等三角形的性质及三角形内角和定理,根据全等三角形的对应角相等得出∠BAC=∠DCA=60°,是解题的关键.22.(2015春•苏州期末)如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=66°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.23.(2015秋•都匀市期中)如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为3x﹣2,2x﹣1,3,若这两个三角形全等,则x=3.【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形的对应边相等得到3x﹣2=7且2x﹣1=5或3x﹣2=5且2x﹣1=7,然后分别解两方程求出满足条件的x的值.【解答】解:∵△ABC与△DEF全等,∴3x﹣2=7且2x﹣1=5,解得x=3,或3x﹣2=5且2x﹣1=7,没有满足条件的x的值.故答案为:3.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的对应边上的高、中线以及对应角的平分线相等.三.解答题(共7小题)24.(2015春•太康县期末)如图,若△OAD≌△OBC,且∠0=65°,∠BEA=135°,求∠C的度数.【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【解答】解:∵△OAD≌△OBC,∴∠C=∠D,∠OBC=∠OAD,∵∠0=65°,∴∠OBC=180°﹣65°﹣∠C=115°﹣∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°﹣∠C+135°+115°﹣∠C=360°,解得∠C=35°.【点评】本题考查了全等三角形的性质,三角形的内角和定理,四边形的内角和定理,熟记性质与定理并列出关于∠C的方程是解题的关键.25.(2015春•安岳县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60°(1)求线段AE的长.(2)求∠DFA的度数.【考点】全等三角形的性质.【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)∵△ABC≌△DEB,∴AB=DE=7,BE=BC=4,∴AE=AB﹣BE=7﹣4=3;∴∠A=∠D=35°,∠DBE=∠C=60°,∴∠DFA=∠A+∠AEF=∠A+∠D+∠DBE=130°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等分析.26.(2014秋•青山区期中)如图,△ABC≌△DEC,点E在AB上,∠DCA=40°,请写出AB的对应边并求∠BCE的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出即可,根据全等得出∠ACB=∠DCE,都减去∠ACE即可.【解答】解:AB的对应边为DE,∵△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD=40°.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.27.(2014秋•泰山区校级期中)已知在△ABC中,∠A=90°,D,E分别是边BC,AC上的点,且DE⊥BC于D,△ADB≌△EDB≌EDC,则∠C的度数为多少?.DE 与DC之间有怎样的数量关系?说明理由.【分析】根据全等三角形的象征得出∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,跟即三角形内角和定理求出∠C=30°,根据含30度角的就三角形性质得出即可.【解答】解:当∠C=30°时,△ADB≌△EDB≌EDC,DC=2ED,理由是:∵△ADB≌△EDB≌△EDC,∴∠A=∠DEB=∠DEC=90°,∠ABD=∠EBD=∠C,∵∠A=90°,∴∠C+∠ABC=90°,∴3∠C=90°,∴∠C=30°,∵∠DEC=90°,∴DC=2DE.【点评】本题考查了全等三角形的性质,含30度角的直角三角形性质的应用,注意:全等三角形的对应边相等,题目比较好,难度适中.28.(2014秋•扶沟县期中)如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.【解答】解:∵△EAB≌△DCE,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,∴∠CEA=100°﹣35°=65°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等分析.29.(2014秋•盐城期中)如图,△ABD≌△EBC,AB=3cm,BC=6cm,(1)求DE的长.(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?【考点】全等三角形的性质.【分析】(1)根据全等三角形对应边相等可得BD=BC=6cm,BE=AB=3cm,然后根据DE=BD﹣BE代入数据进行计算即可得解;(2)DB⊥AC.根据全等三角形对应角相等可得∠ABD=∠EBC,又A、B、C 在一条直线上,根据平角的定义得出∠ABD+∠EBC=180°,所以∠ABD=∠EBC=90°,由垂直的定义即可得到DB⊥AC.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=6cm,BE=AB=3cm,∴DE=BD﹣BE=3cm;(2)DB⊥AC.理由如下:∵△ABD≌△EBC,∴∠ABD=∠EBC,∴∠ABD=∠EBC=90°,∴DB⊥AC.【点评】本题主要考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了平角的定义与垂直的定义,熟记性质与定义是解题的关键.30.(2012春•永春县期中)如图,已知△ABC中,AB=AC=10厘米,BC=8cm,点D为AB的中点,点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由点C向点A点以a厘米/秒运动,设运动的时间为t 秒,(1)求CP的长;(2)若以C、P、Q为顶点的三角形和以B、D、P为顶点的三角形全等,且∠B 和∠C是对应角,求a的值.【考点】全等三角形的性质;等腰三角形的性质.【专题】动点型;分类讨论.【分析】(1)用BC的长度减去BP的长度即可;(2)根据全等三角形对应边相等,分①BD=CP时,先列式计算求出时间t,再根据BP=CQ列式计算即可求出a的值;②BP=CP时,先列式计算求出时间t,再根据BD=CQ列式计算即可求出a的值.【解答】解:(1)∵BP=3t,BC=8,∴CP=8﹣3t;∴5=8﹣3t,【点评】本题考查了全等三角形的性质,(2)因为对应边不明确,所以要分情况讨论求解.。

人教版八年级数学上册 12.1 全等三角形 同步训练(含答案)

人教版八年级数学上册 12.1 全等三角形 同步训练(含答案)

人教版八年级数学上册12.1 全等三角形同步训练一、选择题1. 下列各组的两个图形属于全等图形的是()2. 已知图中的两个三角形全等,则∠α的度数为 ()A.105°B.75°C.60°D.45°3. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C=24°,则∠B′的度数为()A.150°B.120°C.90°D.60°4. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5. 如图,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A.5B.8C.10D.156. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.58. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm9. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°10. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°二、填空题11. 如图,△ABC≌△DEF,根据图中提供的信息,得x=________.12. 已知△ABC≌△A'B'C',∠A=90°,∠B'=30°,AC=15 cm,则∠C'=,B'C'=.13. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.14. 已知△ABC≌△DEF,若△ABC的周长为16,AB=6,AC=7,则EF=________.15. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x+2.若两个三角形全等,则x的值为________.16. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.三、解答题17. 如图所示,已知△ABD≌△ACD,且点B,D,C在同一条直线上,那么AD 与BC有怎样的位置关系?为什么?18. 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC =2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.19. 如图,在△ACE中,CD⊥AE于点D,B是AE延长线上一点,连接BC,取BC上一点F.若∠ACB=90°,△ACD≌△ECD,△CEF≌△BEF.(1)求∠B的度数;(2)求证:EF∥AC.人教版八年级数学上册12.1 全等三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】 B3. 【答案】B[解析] ∵∠A=36°,∠C=24°,∴∠B=120°.∵△ABC≌△A′B′C′,∴∠B=∠B′=120°.4. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.5. 【答案】A[解析] ∵△ABC≌△EDF,AC=15,∴EF=AC=15.∵EC=10,∴CF=EF-EC=15-10=5.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.8. 【答案】B[解析] ∵△AEC≌△DFB,∴AC=DB.∴AC-BC=DB-BC,即AB=CD.∵AD=37 cm,BC=15 cm,∴AB==11(cm).9. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.10. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.二、填空题11. 【答案】2012. 【答案】60°30 cm13. 【答案】70[解析] ∵△ABC≌△ADE,∴∠B=∠D.∵∠GFD=∠AFB,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.14. 【答案】3[解析] ∵△ABC的周长为16,AB=6,AC=7,∴BC=3.∵△ABC≌△DEF,∴EF=BC=3.15. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:①4x+2=10,解得x=2;6x-4=8,解得x=2.由于2=2,所以此种情况成立. ②4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.16. 【答案】4[解析] ∵△ABC 的三边长分别为6,7,10,△DEF 的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.三、解答题17. 【答案】解:AD ⊥BC.理由:∵△ABD ≌△ACD , ∴∠ADB =∠ADC.又∵∠ADB +∠ADC =180°, ∴∠ADB =∠ADC =90°. ∴AD ⊥BC.18. 【答案】解:(1)∵∠ABE =150°,∠DBC =30°, ∴∠ABD +∠CBE =120°.∵△ABC ≌△DBE ,∴∠ABC =∠DBE.∵∠ABD =∠ABC -∠DBC ,∠CBE =∠DBE -∠DBC , ∴∠ABD =∠CBE =60°, 即∠CBE 的度数为60°. (2)∵△ABC ≌△DBE ,∴DE =AC =AD +DC =4.8,BE =BC =4.1.∴△DCP 与△BPE 的周长和=DC +DP +BP +CP +PE +BE =DC +DE +BC +BE =15.4.19. 【答案】解:(1)∵△ACD≌△ECD,∴∠A=∠DEC. ∵△CEF≌△BEF,∴∠ECB=∠B.∵∠DEC=∠ECB+∠B,∴∠A=2∠B.∵∠ACB=90°,∴∠A+∠B=90°.∴2∠B+∠B=90°.∴∠B=30°.(2)证明:∵△CEF≌△BEF,∴∠EFB=∠EFC.而∠EFB+∠EFC=180°,∴∠EFB=90°.∴∠ACB=∠EFB.∴EF∥AC.。

14.1全等三角形2024-2025学年八年级数学上册同步学与练(沪科版)[含答案]

14.1全等三角形2024-2025学年八年级数学上册同步学与练(沪科版)[含答案]

14.1 全等三角形课程标准学习目标①理解全等三角形的概念,能识别全等三角形中的对应边、对应角;②掌握全等三角形的性质. 1.了解全等形的概念,能判断两个图形是不是全等形.2.理解全等三角形的有关概念,掌握确定对应元素的方法.3.掌握全等三角形的性质,能够利用全等三角形的性质进行计算和证明.知识点01全等的概念·全等形:能够完全重合的两个图形,叫做全等形【即学即练1】(23-24八年级上·安徽阜阳·阶段练习)1.下列说法中正确的是( )A .两个面积相等的图形,一定是全等图形B .若两个图形周长相等,则它们一定是全等图形C .两个等边三角形一定是全等图形D .能够完全重合的两个图形是全等图形知识点02 全等三角形的有关概念·能够完全重合的两个三角形;·符号表示:全等符号“≌”,△ABC ≌△111A B C ;·对应元素:对应顶点、对应角、对应边;【即学即练2】2.如图,ABC DCB △≌△,其中AC 与DB 是对应边,那么BAC Ð的对应角是( )A .ABDÐB .ACB ÐC .BDC ÐD .CDBÐ【即学即练3】3.如图,ABC BAD V V ≌,请指出两个全等三角形的对应边和对应角.【即学即练4】4.如图,已知ABC DEF ≌△△,点A 与点D ,点B 与点E ,点C 与点F 是对应顶点.写出这两个三角形的对应边和对应角.知识点03 全等三角形的性质(1)对应角相等;(2)对应边相等;(3)对应周长、面积相等;(4)对应角平分线、中线、高线相等.【即学即练5】5.下列说法正确的是( )①全等三角形的对应边相等,对应角相等;②全等三角形的周长相等,面积相等;③面积相等的三角形全等;④周长相等的三角形全等A .②③B .③④C .①②D .①②③【即学即练6】6.已知下图中的两个三角形全等,则a Ð等于( )A .72°B .60°C .58°D .50°【即学即练7】(23-24八年级上·安徽合肥·期末)7.如图,ABC ADE △≌△,70B Ð=°,30C Ð=°,35DAC Ð=°,则CAE Ð的度数为( )A .50°B .45°C .40°D .35°【即学即练8】(23-24八年级上·安徽阜阳·阶段练习)8.如图,ABC CDE △≌△,点C ,A ,D 在同一条直线上.(1)求证:AB CE ∥;(2)当7CE =,12AB =时,求线段AD 的长.·全等三角形中的对应关系:根据全等三角形的表示找对应线段和对应角关键:对应点在全等表示中的位置也对应相等案例:ABC ADE △≌△ABC ADE △≌△中的对应关系:·线段AB 与线段AD 对应,线段BC 与线段DE 对应,线段AC 与线段AE 对应·∠ABC 与∠ADE 对应,∠BCA 与∠DEA 对应,∠CAB 与∠EAD 对应【题型一:全等三角形的性质与角度等量代换】例1.(24-25八年级上·安徽合肥·阶段练习)9.如图,ABC DEC ≌△△,过点A 作AF CD ^,垂足为点F ,若65BCE Ð=°,则CAF Ð的度数为( )A .25°B .30°C .35°D .40°变式1.(23-24八年级上·安徽铜陵·阶段练习)10.如图,ABC DEC ≌△△,75ABC Ð=°,点E 在线段AB 上,过点B 作BF CE ^,且与DE 交于点F ,则BFD Ð的度数为( )A .150°B .155°C .160°D .165°例2.(23-24八年级上·安徽马鞍山·期中)11.如图,已知11ABC A B C V V ≌,若11150,45,60A A B C ACB Ð=°Ð=°Ð=°,则a Ð的度数是( )A .15°B .20°C .25°D .10°变式2.12.如图所示,ABC ADE △△≌,且1025120,,CAD D EAB Ð=°Ð=°Ð=°,求DFB Ð和DGBÐ的度数.【方法技巧与总结】灵活运用外角的性质、三角形的内角和、直角三角形两锐角互余、平行线的性质、角平分线进行角度等量代换.【题型二:利用全等三角形的性质求线段长】例3.(24-25八年级上·安徽合肥·阶段练习)13.如图,A ,C ,E 三点在同一直线上,且ABC DAE △△≌.若2CE DE ==,则BC = .变式3-1.(23-24八年级上·安徽阜阳·阶段练习)14.如图,ABC CDE △≌△,点C ,A ,D 在同一条直线上.(1)求证:AB CE ∥;(2)当7CE =,12AB =时,求线段AD 的长.变式3-2.(22-23八年级上·安徽滁州·阶段练习)15.如图,ABC DBE ≌△△,点D 在边AC 上,BC 与DE 交于点P ,已知162ABE Ð=°,30DBC Ð=°, 2.5AD DC ==,4BC =.(1)求CBE Ð的度数.(2)求CDP △与BEP △的周长和.【题型三:全等三角形的性质与图形综合】例4.16.如图,已知ABC DEB △△≌,点E 在AB 上,DE 与AC 相交于点F .(1)若8DE =,5BC =,则线段AE 的长是 ;(2)已知35D Ð=°,60C Ð=°,求AFD Ð的度数.【题型四:全等三角形与坐标】例5.17.如图,在平面直角坐标系中,已知AOB COD V V ≌,则点C 的坐标是 .变式5.(22-23八年级上·安徽蚌埠·阶段练习)18.如图,直线1l :y ax b =+(常数0a <,0b >)与x 轴、y 轴分别交于A ,B 两点,直线2l :y ca d =+(常数0c >,0d >)与x 轴、y 轴分别交于C ,D 两点,直线1l 与直线2l 交于点E ,且△≌△A O B C O D .(1)求证AB CD^(2)若2a =-,4b =,求ADE V 的面积.一、选择题(23-24八年级上·安徽淮南·期中)19.已知ABC DEF ≌△△,80A Ð=°,40B Ð=°,则F Ð的度数是( )A .40°B .50°C .60°D .80°(23-24八年级上·江苏南通·期中)20.如图,ABC FDE ≌△△,50C Ð=°,100F Ð=°,则B Ð的度数为( )A .20°B .30°C .35°D .40°(16-17八年级上·云南红河·期末)21.如图,ABC DCB △≌△,若7AC =,5BE =,则DE 的长为( )A .2B .3C .4D .5(23-24八年级上·安徽安庆·期末)22.下列命题中,是假命题的是( )A .两点确定一条直线B .对顶角相等C .同旁内角互补D .全等三角形的面积相等(23-24八年级上·安徽亳州·期末)23.如图,已知ABC ADE △△≌,55BAC Ð=°,100Ð=°ADE ,则C Ð的度数为( )A .55°B .45°C .35°D .25°(20-21八年级上·安徽阜阳·阶段练习)24.下列关于全等三角形的说法中,正确的有( )①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等三角形;④全等三角形的周长相等、面积相等.A .1个B .2个C .3个D .4个(24-25八年级上·安徽安庆·阶段练习)25.如图,在ABC V 中,AD BC ^于点D ,点E 在AD 上,且CED ABD V V ≌.若14DE DC +=,2DA DB -=,则DE 的长为( )A .6B .7C .8D .9二、填空题(22-23八年级上·江苏南通·期末)26.如图,ABC ADE △≌△,42B Ð=°,30C Ð=°,50BAD Ð=°,则BAE Ð=(23-24八年级上·安徽合肥·期末)27.已知ABC DEF ≌△△,其中6AC =,则DF = .(16-17八年级下·江西抚州·期中)28.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF V 的位置,10AB =,4DO =,平移距离为6,则阴影部分面积为 .三、解答题(2023上·河北沧州·八年级校考阶段练习)29.如图,已知ABC DEB @△△,点E 在AB 上,DE 与AC 相交于点F ,若10DE =,6BC =,30D Ð=°,70C Ð=°.(1)求线段AE 的长;(2)求DBC Ð的度数.(21-22八年级上·安徽安庆·期末)30.如图,已知ABC DEB V V ≌,点E 在AB 上,AC 与BD 交于点F .(1)若6AB =,3BC =,求AE 的长;(2)若25A Ð=°,55C Ð=°,求AED Ð的度数.(23-24八年级上·安徽淮南·阶段练习)31.如图,A 、D 、E 三点在同一条直线上,且ABD CAE ≌V V .(1)若5BD =,3CE =,求DE ;(2)若BD CE ∥,求BAC Ð.(22-23八年级上·安徽六安·期末)32.如图,直线l :122y x =-+与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点()0,4C ,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动,移动了t 秒.(1)求A 、B 两点的坐标.(2)当t 为何值时,COM AOB △△≌,并求此时M 点的坐标.33.如图,在四边形ABCD 中,50B C Ð=Ð=°, 2.5AB =,6BC =,动点E ,F 分别在线段BC ,DC 上,连接AE ,EF ,AF .(1)若70BAE Ð=°,60AEF Ð=°,求EFC Ð的度数;(2)若V V ≌ABE AFE ,100BAF Ð=°,求AEB Ð的度数;(3)若ABE V 与ECF △全等,点B 与点C 为对应点,求BE 的长.34.综合与实践(1)【探索发现】在ΔABC 中. AC BC =,ACB a Ð=,点D 为直线BC 上一动点(点D 不与点B ,C 重合),过点D 作//DF AC 交直线AB 于点F ,将AD 绕点D 顺时针旋转a 得到ED ,连接BE .如图(1),当点D 在线段BC 上,且90a =°时,试猜想:①AF 与BE 之间的数量关系:______;②ABE Ð=______.(2)【拓展探究】如图(2),当点D 在线段BC 上,且090a °<<°时,判断AF 与BE 之间的数量关系及ABE Ð的度数,请说明理由.(3)【解决问题】如图(3),在ΔABC 中,AC BC =,4AB =,ACB a Ð=,点D 在射线BC 上,将AD 绕点D 顺时针旋转a 得到ED ,连接BE .当3BD CD =时,直接写出BE 的长.【分析】根据全等三角形的定义进行判断作答即可.【详解】解:两个面积相等的图形,不一定是全等图形,A 错误,故不符合要求;若两个图形周长相等,则它们不一定是全等图形,B 错误,故不符合要求;两个等边三角形不一定是全等图形,C 错误,故不符合要求;能够完全重合的两个图形是全等图形,D 正确,故符合要求;故选:D .【点睛】本题考查了全等三角形的定义.解题的关键在于对知识的熟练掌握.2.D【分析】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应边相等,对应角相等是解题的关键.【详解】解:∵ABC DCB △≌△,其中AC 与BD 是对应边,∴A 和D 、B 和C 是对应点,∴BAC CDB =∠∠.故选:D .3.对应边:AB 与BA ,BC 与AD ,AC 与BD ;对应角:CAB Ð与DBA Ð,ABC Ð与BAD Ð,C Ð与DÐ【分析】根据全等三角形中能够互相重合的边是对应边,能够互相重合的角是对应角,再解答即可.【详解】解:∵ABC BAD V V ≌,∴对应边:AB 与BA ,BC 与AD ,AC 与BD ;对应角:CAB Ð与DBA Ð,ABC Ð与BAD Ð,C Ð与D Ð.【点睛】本题考查的是全等三角形的概念,掌握全等三角形的对应边与对应角的含义是解本题的关键.4.见解析【分析】根据对应顶点,写出对应边和对应角即可.【详解】解:∵ABC DEF ≌△△,点A 与点D ,点B 与点E ,点C 与点F 是对应顶点,∴这两个三角形的对应边是:BC 和EF ,AB 和DE ,AC 和DF ;对应角是:ABC Ð和DEF Ð,ACB Ð和DFE Ð,BAC Ð和EDF Ð.【点睛】本题考查全等三角形的性质.正确的找出对应边和对应角,是解题的关键.【分析】理清全等三角形的判定及性质,即可熟练求解此题.【详解】解:①全等三角形的对应边相等,对应角相等,正确;②全等三角形的周长相等,面积相等,正确;③面积相等的三角形形状不一定相同,故错误;④周长相等的三角形形状不一定相同,故错误.所以①②正确,故选:C .【点睛】本题主要考查了全等三角形的判定及性质,能够掌握并熟练运用是解题的关键.6.D【分析】本题考查了全等三角形的性质.由全等三角形的性质即可求得结果.【详解】解:由全等三角形的性质得:a Ð是边a 和c 的夹角,∴50a Ð=°,故选:D .7.B【分析】本题主要考查全等三角形的性质和三角形内角和定理,由题意得对应角相等,利用三角形内角和定理得80DAE BAC Ð=Ð=°,结合CAE DAE CAD Ð=Ð-Ð即可求得答案.【详解】解:∵ABC ADE △≌△,∴ABC ADE Ð=Ð,C E Ð=Ð,BAC DAE Ð=Ð,∵70B Ð=°,30C Ð=°,∴80DAE BAC Ð=Ð=°,∵35DAC Ð=°,∴45CAE DAE CAD Ð=Ð-Ð=°,故选:B .8.(1)见解析(2)5【分析】(1)根据三角形全等的性质得到BAC DCE Ð=Ð,再根据内错角相等两直线平行即可得出结论;(2)根据三角形全等的性质得到12CD AB ==,7AC CE ==,根据AD CD AC =-即可求出最后结果.【详解】(1)证明:ABC CDE Q ≌△△,BAC DCE \Ð=Ð,AB CE \∥;(2)ABC CDE Q ≌△△,12CD AB \==,7AC CE ==,1275AD CD AC \=-=-=.【点睛】本题考查了全等三角形的性质,平行线的判定,熟练掌握三角形全等的性质是解答本题的关键.9.A【分析】本题考查了三角形全等的性质,直角三角形的两个锐角互余.根据三角形全等的性质可得ACB DCE Ð=Ð,进而可得BCE ACD Ð=Ð,根据直角三角形的两个锐角互余,即可求得CAF Ð的度数.【详解】解:Q ABC DEC ≌△△,\ACB DCE Ð=Ð,ACB ACE DCE ACE\Ð-Ð=Ð-Ð即BCE ACD Ð=Ð,Q AF CD ^,65BCE Ð=°,9025CAF ACD \Ð=°-Ð=°,故选:A .10.D【分析】本题考查了全等三角形的性质,垂直的定义,直角三角形的两锐角互余,邻补角,熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质得出75ABC DEC Ð=Ð=°,根据垂直的定义,直角三角形的两锐角互余,得出 15EFB Ð=°,根据邻补角即可求解.【详解】ABC DEC Q △≌△,75ABC Ð=°,75ABC DEC \Ð=Ð=°,BF CE ^Q ,9015EFB FEC \Ð=°-Ð=°,180165BFD EFB \Ð=°-Ð=°.故选:D .11.C【分析】本题考查了全等三角形的性质,三角形的内角和等知识.根据11ABC A B C V V ≌得到45ABC Ð=°,根据三角形内角和求出85ACB Ð=°,即可求出125BCB Ð=°,问题得解.【详解】解:∵11ABC A B C V V ≌,∴1145A B C ABC ÐÐ=°=,∵50A Ð=°,∴180180504585ACB A ABC Ð=°-Ð-Ð=°-°-°=°,∵160ACB Ð=°,∴11856025BCB ACB ACB Ð=Ð-Ð=°-°=°即25a Ð=°.故选:C12.9065,DFB DGB Ð=°Ð=°【分析】本题主要考查三角形全等的性质,找到相应等量关系的角是解题的关键,做题时要结合图形进行思考.由ABC ADE △△≌,可得()12DAE BAC EAB CAD Ð=Ð=Ð-Ð,根据三角形外角性质可得DFB FAB B Ð=Ð+Ð,可得DFB Ð的度数;根据三角形内角和定理可得90DGB D Ð=°-Ð,即可得DGB Ð的度数.【详解】解:∵ABC ADE △△≌,∴()()11120106522DAE BAC EAB CAD Ð=Ð=Ð-Ð=´°-°=°,25B D Ð=Ð=°,\652590=DFG FAB B Ð=Ð+Ð=°+°°,∴90DFB DFG Ð=Ð=°,在Rt DCG △中,90902565DGB D Ð=°-Ð=°-°=°.13.4【分析】本题考查全等三角形的性质,根据全等三角形的对应边相等,得到AC DE =,BC AE =,再利用线段的和差关系,求出AE 的长即可.【详解】解:∵ABC DAE △△≌,∴AC DE =,BC AE =,∵2CE DE ==,∴2AC =,∴4BC AE AC CE ==+=;故答案为:4.14.(1)见解析(2)5【分析】(1)根据三角形全等的性质得到BAC DCE Ð=Ð,再根据内错角相等两直线平行即可得出结论;(2)根据三角形全等的性质得到12CD AB ==,7AC CE ==,根据AD CD AC =-即可求出最后结果.【详解】(1)证明:ABC CDE Q ≌△△,BAC DCE \Ð=Ð,AB CE \∥;(2)ABC CDE Q ≌△△,12CD AB \==,7AC CE ==,1275AD CD AC \=-=-=.【点睛】本题考查了全等三角形的性质,平行线的判定,熟练掌握三角形全等的性质是解答本题的关键.15.(1)66°(2)15.5【分析】(1)根据全等三角形的性质得到ABC DBE Ð=Ð,计算即可;(2)根据全等三角形的性质求出BE 、DE ,根据三角形的周长公式计算即可.【详解】(1)解:∵162ABE Ð=°,30DBC Ð=°,∴132ABD CBE Ð+Ð=°,∵ABC DBE ≌△△,∴ABC DBE Ð=Ð,∴132266ABD CBE Ð=Ð=°¸=°,即CBE Ð的度数为66°;(2)解:∵ABC DBE ≌△△,∴5DE AC AD DC ==+=,4BE BC ==,∴CDP △与BEP △的周长和为DC DP PC BP PE BE+++++DC DE BC BE=+++2.5544=+++15.5=.【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的对应角相等,对应边相等是解本题的关键.16.(1)3(2)130°【分析】(1)根据全等三角形的性质得到8A B D E ==,5BE BC ==,结合图形计算,得到答案;(2)根据全等三角形的性质得到60DBE C Ð=Ð=°,35A D Ð=Ð=°,根据三角形内角和定理求出ABC Ð,计算即可.【详解】(1)解:∵ABC DEB △△≌,8DE =,5BC =,∴8A B D E ==,5BE BC ==,∴853AE AB BE =-=-=;(2)解:∵ABC DEB △△≌,35D Ð=°,60C Ð=°,∴60DBE C Ð=Ð=°,35A D Ð=Ð=°,ABC DEB Ð=Ð,∴18085ABC A C Ð=°-Ð-Ð=°,∴85DEB Ð=°,∴95AED Ð=°,∴3595130AFD A AED Ð=Ð+Ð=°+°=°.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,三角形外角的性质,熟练掌握全等三角形的性质是解题的关键.17.()0,1【分析】此题考查了全等三角形的性质,根据点A 的坐标推出1OA =,结合全等三角形对应边相等,即可解答【详解】解:∵()1,0A ,∴1OA =,∵AOB COD V V ≌,∴1OC OA ==,∴C (0,1),故答案为:(0,1).18.(1)证明见解析;(2)365.【分析】(1)利用全等三角形的性质,得到ABO CDO Ð=Ð,再根据对顶角相等,得到DCO BCE Ð=Ð,进而得到90ABO BCE Ð+Ð=°,即可证明结论;(2)利用直线1l :24y x =-+,求出A 、B 两点坐标,得到2OA =,4OB =,再利用全等三角形的性质,得到2OC OA ==,4OD OB ==,进而得到C 、D 两点坐标,从而求出直线2l :122y x =+,联立方程组,求出点E 坐标,即可求出ADE V 的面积.【详解】(1)证明:AOB COD QV V ≌,ABO CDO \Ð=Ð,DCO BCE Ð=ÐQ ,90CDO DCO ABO BCE \Ð+Ð=Ð+Ð=°,()18090BEC ABO BCE \Ð=°-Ð+Ð=°,AB CD \^;(2)解:2a =-Q ,4b =,\直线1l :24y x =-+,令0x =,得4y =;令0y =,得240x -+=,解得2x =,()2,0A \,()0,4B ,2OA \=,4OB =,AOB COD QV V ≌,2OC OA \==,4OD OB ==,()0,2C \,()4,0D -,240d c d =ì\í-+=î,解得:122c d ì=ïíï=î,\直线2l :122y x =+,联立方程组12224y x y x ì=+ïíï=-+î,解得:45125x y ì=ïïíï=ïî,\点E 的坐标为412,55æöç÷èø,ADE \V 的面积为()111236242255E AD y ×=´+´=.【点睛】本题考查了全等三角形的性质,一次函数与坐标轴交点,待定系数法求一次函数解析式,两直线交点与二元一次方程组的解等知识,熟练掌握一次函数性质和全等三角形的性质是解题关键.19.C【分析】本题考查了三角形内角和定理,全等三角形性质的应用,主要考查学生的推理能力,难度不大.根据三角形内角和定理求出C Ð,根据全等三角形性质推出F C Ð=Ð,即可得出答案.【详解】解:80A Ð=°Q ,40B Ð=°,18060C A B \Ð=°-Ð-Ð=°,ABC DEF QV V ≌,60F C \Ð=Ð=°,故选:C .20.B【分析】本题考查全等三角形的性质,三角形内角和定理.直接利用全等三角形的性质得出对应角相等进而得出答案.【详解】解:∵ABC FDE ≌△△,50C Ð=°,100F Ð=°,∴100BAC F Ð=Ð=°,∴1801005030B Ð=°-°-°=°.故选:B .21.A【分析】根据全等三角形的对应边相等推知7BD AC ==,然后根据线段的和差即可得到结论.【详解】解:ABC DCB QV V ≌,7BD AC \==,5BE =Q ,2DE BD BE \=-=,故选:A .【点睛】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.22.C【分析】本题主要考查真假命题,利用对顶角的性质、平行线的性质、全等三角形的性质及确定直线的条件即可确定正确的选项.【详解】解:A 、两点确定一条直线, 该命题是真命题,故本选项不符合题意;B 、对顶角相等,该命题是真命题,故本选项不符合题意;C 、两直线平行,同旁内角互补,故原命题是假命题,故本选项符合题意;D 、全等三角形的面积相等,该命题是真命题,故本选项不符合题意;故选:C .23.D【分析】先根据“全等三角形对应角相等”得出100B ADE Ð=Ð=°,再根据三角形内角和定理即可求出C Ð的度数.本题主要考查了全等三角形的性质和三角形内角和定理,熟练掌握以上知识是解题的关键.【详解】∵ABC ADE △△≌,100B ADE \Ð=Ð=°,在ABC V 中,55BAC Ð=°,100B Ð=°,180C BAC B\Ð=°-Ð-Ð18055100=°-°-°25=°.故选:D24.C【分析】根据全等三角形的概念、性质定理和判定定理判断即可.【详解】解:①全等三角形的形状相同、大小相等,故①正确;②全等三角形的对应边相等、对应角相等,故②正确;③面积相等的两个三角形不一定是全等三角形,故③错误;④全等三角形的周长相等、面积相等,故④正确.故选:C .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的概念和判定定理是解题的关键.25.A【分析】本题考查了全等三角形的性质,二元一次方程组的应用.由全等三角形的性质求得==AD CD y ,BD DE x ==,根据题意得到方程组,解之即可求解.【详解】解:设DE x =,CD y =,∵CED ABD V V ≌,∴==AD CD y ,BD DE x ==,∵14DE DC +=,2DA DB -=,∴14x y +=①,2y x -=②,-①②得212x =,解得6x =,即6DE =,故选:A .26.58°##58度【分析】此题考查三角形内角和定理和全等三角形的性质等知识,根据三角形内角和定理得到180108BAC B C Ð=-Ð-Ð=°°,由全等三角形的性质得到108DAE BAC Ð=Ð=°,作差即可求出BAE Ð.【详解】解:∵42B Ð=°,30C Ð=°,∴180108BAC B C Ð=-Ð-Ð=°°,∵ABC ADE △≌△,∴108DAE BAC Ð=Ð=°,∴1085058BAE DAE BAD Ð=Ð-Ð=°-°=°.故答案为:58°.27.6【分析】本题考查了全等三角形的性质,理解性质“全等三角形对应边相等.”是解题关键.【详解】解:Q ABC DEF ≌△△,6AC DF \==,故答案:6.28.48【分析】本题考查的是全等三角形的性质、平移的性质,掌握全等形的面积相等是解题的关键.根据平移的性质分别求出BE 、DE ,根据题意求出OE ,根据全等三角形的性质、梯形的面积公式计算,得到答案.【详解】解:由平移的性质知,6BE =,10DE AB ==,1046OE DE DO \=-=-=,ABC DEF QV V ≌,ABC DEF S S \=△△,()()1110664822ODFC ABEO S S AB OE BE \==+×=´+´=四边形梯形,故答案为4829.(1)4AE =(2)10DBC Ð=°【分析】(1)由全等三角形的性质可得10AB DE \==,6BE BC ==,即可求解;(2)由全等三角形的性质可得30BAC Ð=°,70DBE Ð=°,再利用三角形内角和定理求得80ABC Ð=°,即可求解.【详解】(1)解:ABC DEB @Q △△,10DE =,6BC =,10AB DE \==,6BE BC ==,4AE AB BE \=-=;(2)解:ABC DEB @Q △△,30D Ð=°,70C Ð=°,30BAC D °\Ð=Ð=,70DBE C Ð=Ð=°,180180307080ABC A C \Ð=°-Ð-Ð=°-°-°=°,807010DBC ABC DBE °°°\Ð=Ð-Ð=-=.【点睛】本题考查全等三角形的性质、三角形内角和定理,熟练掌握全等三角形的性质是解题的关键.30.(1)3AE =(2)80AED Ð=°【分析】本题主要考查了全等三角形的性质,三角形内角和的定理.(1)利用全等的性质即可求出3BE BC ==,然后根据线段的和差即可求出AE .(2)利用全等的性质求出ABC DEB Ð=Ð,然后根据三角形的内角和定理即可求出100ABC DEB Ð=Ð=°,然后利用角的和差即可求出AED Ð.【详解】(1)(1)∵ABC DEB V V ≌,3BC =,∴3BE BC ==,∴633AE AB BE =-=-=.(2)∵ABC DEB V V ≌,∴ABC DEB Ð=Ð.∵25A Ð=°,55C Ð=°,∴1801802555100ABC A C Ð=°-Ð-Ð=°-°-°=°,∴100DEB Ð=°,∴180********AED DEB Ð=°-Ð=°-°=°.31.(1)2(2)90°【分析】此题考查了全等三角形的性质,熟练掌握全等三角形的对应边相等和对应角相等是解题的关键.(1)根据全等三角形的性质得到3AD CE ==,5AE BD ==,即可得到答案;(2)根据平行线的性质得到BDE CEA Ð=Ð,根据全等三角形的性质得到ADB CEA Ð=Ð,ABD CAE Ð=Ð,则ADB BDE Ð=Ð,由平角的定义及等量代换即可得到BAC Ð的度数.【详解】(1)解:∵ABD CAE △△≌,5BD =,3CE =,3\==AD CE ,5AE BD ==,2DE AE AD \=-=;(2)∵BD CE ∥,BDE CEA \Ð=Ð,∵ABD CAE △△≌,ADB CEA \Ð=Ð,ABD CAEÐ=ÐADB BDE \Ð=Ð,180ADB BDE Ð+Ð=°Q ,90ADB \Ð=°,90ABD BAD \Ð+Ð=°,90BAC BAD CAE BAD ABD \Ð=Ð+Ð=Ð+Ð=°.32.(1)()40A ,,()02B ,;(2)当2t =时,COM AOB △△≌,此时M 的坐标是()20,;或6t =时,COM AOB △△≌,此时M 的坐标是()20-,.【分析】(1)由直线l 的函数解析式,令0y =求A 点坐标,0x =求B 点坐标;(2)若COM AOB △△≌,则2OM OB ==,分情况求出t 值,并得到M 点坐标.【详解】(1)解:122y x =-+,当0x =时,2y =.当0y =时,1202x -+=,解得4x =.所以()40A ,,()02B ,;(2)解:因为COM AOB △△≌,所以2OM OB ==.当04x <<时,42OM t =-=,所以2t =,当>4x 时,42OM t =-=.所以6t =,即当2t =时,COM AOB △△≌,此时M 的坐标是()20,;或6t =时,COM AOB △△≌,此时M 的坐标是()20-,.【点睛】此题考查了一次函数的图象和性质,三角形面积计算,全等三角形的性质等,正确分类讨论是解题的关键.33.(1)70°(2)80°(3)3或3.5【分析】(1)根据三角形内角和算出60AEB Ð=°,再根据平角定义算出60,FEC Ð=°最后再运用三角形内角和即可求解;(2)根据V V ≌ABE AFE 得出150,2BAE EAF BAF Ð=Ð=Ð=°再由三角形内角和即可求解;(3)根据ABE ECF ≌△△和ABE FCE △≌△分类讨论即可求解;【详解】(1)50,70B BAE Ð=°Ð=°Q ,180,B BAE AEB Ð+Ð+Ð=°60AEB \Ð=°,60,AEF Ð=°Q 180AEB AEF FEC Ð+Ð+Ð=°,60,FEC \Ð=°50,C Ð=°Q 180FEC C CFE Ð+Ð+Ð=°,70EFC \Ð=°;(2)∵,100ABE AFE BAF Ð=°V V ≌,150,2BAE EAF BAF \Ð=Ð=Ð=°180B BAE AEB Ð+Ð+Ð=°Q ,180505080AEB \Ð=°-°-°=°.(3)当ABE ECF ≌△△时,则2,5AB EC ==,6,BC =Q 6 2.5 3.5,BE BC EC \=-=-=当ABE FCE △≌△时,则BE CE =,6BC BE CE ==+Q ,1 3.2BE CE BC \===综上可得:BE 为3或3.5.【点睛】该题主要考查了三角形内角和定理以及全等三角形的性质,解题的关键是分类讨论思想的运用.34.(1)①AF BE =;②90°;(2)AF BE =,ABE a Ð=.理由见解析;(3)BE 的长为1或2.【分析】(1)由“SAS”△ADF ≌△EDB ,可得AF=BE ,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF ,∠ABE=a .由“SAS”△ADF ≌△EDB ,即可解决问题;(3)分当点D 在线段BC 上和当点D 在BC 的延长线上两种情形讨论,利用平行线分线段成比例可求解.【详解】解:(1)如图1中,设AB 交DE 于O .∵∠ACB=90°,AC=BC ,∴∠ABC=45°,∵DF ∥AC ,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB ,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB ,且DA=DE ,DF=DB∴△ADF ≌△EDB (SAS ),∴AF=BE ,∠DAF=∠E ,∵∠AOD=∠EOB ,∴∠ABE=∠ADO=90°故答案为AF=BE ,90°.(2)AF BE =,ABE a Ð=.理由:∵//DF AC ,∴FDB ACB a Ð=Ð=,CAB DFB Ð=Ð.∵AC BC =,∴ABC CAB Ð=Ð.∴ABC DFB Ð=Ð.∴DB DF=∵ADE FDB a Ð==Ð,ADF ADE FDE Ð=Ð-Ð,EDB FDB FDE Ð=Ð-Ð,∴ADF EDB Ð=Ð.又∵AD DE =,∴ADF EDB D @D .∴AF BE =,AFD EBD Ð=Ð.∴AFD ABC FDB Ð=Ð+Ð,DBE ABD ABE Ð=Ð+Ð,∴ABE FDB a Ð=Ð=.(3)1或2.解:当点D 在线段BC 上时,过点D 作//DF AC 交直线AB 于点F ,如图(1).∵//DF AC ,∴3BF BD AF CD==.∵4AB BF AF =+=,∴1AF =.∵//DF AC ,∴BDF C ADE a Ð=Ð=Ð=,DFB CAB Ð=Ð.∵ADF ADE FDE Ð=Ð-Ð,EDB FDB FDE Ð=Ð-Ð,∴ADF EDB Ð=Ð.∵AC BC =,∴CAB CBA Ð=Ð.∴DFB DBF Ð=Ð.∴DF DB =.又AD DE =,∴ADF EDB D @D ,1BE AF ==.当点D 在线段BC 的延长线上时,过点D 作//DF AC ¢交BA 的延长线于点F ¢,如图(2).∵//DF AC ¢,∴2AB BC AF CD==¢.∴24AB AF ¢==.∴2AF ¢=.同理可得2BE AF ¢==.综上可得,BE 的长为1或2.【点睛】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.1全等三角形
1.下面图形中有哪些是全等的?
(1) (2) (3)
(4) (5) (6)
(7) (8) (9)
(10) (11) (12)
2.如图,已知图中的两个三角形全等,填空:
(1)点A
的对应点是
,点B 的对应点是 ,点C 的对应点是 ; (2)这两个三角形全等,记作 △ABC ≌ .
3.如图,已知图中的两个三角形全等,填空:
(1)OA 的对应边是 , AC 的对应边是 ,
CO 的对应边是 ; (2)∠A 的对应角是 ,
∠C 的对应角是 ,∠AOC 的对应角是 ; (3)这两个三角形全等,记作 △ACO ≌ .
4.如图,已知图中的两个三角形全等,填空: (1)AB 与 是对应边, BC 与 是对应边, CA 与 是对应边; (2)∠A 与 是对应角, ∠ABC 与 是对应角, ∠BAC 与 是对应角; (3)这两个三角形全等,记作 △ABC ≌ .
5.选做题:如图,图中有两对三角形全等,填
空:
(1)△BOD ≌ ;
(2)△ACD ≌ .
A
B C
D
E
F O
B
D
A
C D A
B C
O
E
A
B C
D。

相关文档
最新文档