九年级数学 第1讲 二次函数探究—二次函数与相似三角形的综合问题教案
九年级数学下册《相似三角形的性质》教案、教学设计
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。
二次函数与相似三角形经典教学案
二次函数与相似三角形一、二次函数的系数问题【例1】 ⑴ 二次函数2y ax bx c =++的图象如下左图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号.⑵(福州)如下右图所示,二次函数2(0)y ax bx c a =++≠的图象经过点()12-,坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1b <-;④284b a ac +>.其中正确的有( ) A.1个 B.2个 C .3个 D .4个【巩固】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断24a b c a b c a b c b ac ++-+-、、、、、的符号. 【例2】 (甘肃)如图为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的其中一根为x=-1;③a+b+c=0; ④当1x >时,y 随x 值的增大而减小;⑤当0y >时,13x -<<.其中,正确的说法有 _______.(请写出所有正确说法的序号)【巩固】(湖北黄石)已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B .①③④C .①②③⑤D .①②③④⑤【例3】 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:① 0abc >;②b ac <+;③ 420a b c ++>;④ 23c b <;⑤ ()a b m am b +>+,(1m ≠的实数)其中正确的结论有( ) A. 2个 B. 3个 C. 4个 D. 5个【巩固】(08天门)已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③0a b c -+<;④0a c +>,其中正确结论的个数为( )A. 4个B. 3个C. 2个D. 1个【例4】 已知函数2y ax bx c =++(0a≠)的图象,如图所示.求证:22()a c b +<【例5】 2y ax bx c =++的图象如图所示.并设|||||2||2|M a b c a b c ab a b =++--+++--则() A .0M > B .0M =C .0M <D .不能确定M 为正,为负或为0【例6】 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围【巩固】 已知抛物线2y ax bx c =++的一段图象如图所示.⑴确定a 、b 、c 的符号;⑵求a b c ++的取值范围.【例7】 设二次函数2(0)y ax bx c a =++≠的图象如图所示,若OA OB =,求abc 的取值范围.二、二次函数图像特征【例8】 (09烟台)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )【例9】 若二次函数c bx ax y ++=2的图象的开口向下,顶点在第一象限,抛物线交于y 轴的正半轴;则点⎪⎭⎫ ⎝⎛b c a P ,在( ).(A)第一象限 (B)第二象限限 (C) 第三象限 (D) 第四象限【例10】 ⑴(09湖北荆门)函数1y ax =+与()210y ax bx a =++≠的图象可能是( )(2) (09兰州)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是【巩固】(09嘉兴)已知,在同一直角坐标系中,函数与的图象有可能是( )ABCDDCB A 0≠a ax y =2ax y =1. ⑴ 下左图所示为二次函数2y ax bx c =++的图象,则一次函数by ax c=-的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 ⑵ 二次函数2y ax bx c =++的图象的一部分如下右图所示,试求a b c ++的取值范围.⑶(2008天津)已知,如图所示为二次函数2y ax bx c =++的图象,则一次函数y ax bc =+的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2. (092()0y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数( )A .4个 B .3个 C .2个 D .1个3. (1) 已知二次函数2y ax bx c =++(其中a 是正整数)的图象经过点()14A -,和()21B ,,且与x 轴 有两个不同的交点,求b c +的最大值.(2)二次函数2y ax bx c =++的图象一部分如下图,求a 的取值范围.4. ⑴ 函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( )A. 右移三个单位,下移四个单位B. 右移三个单位,上移四个单位C. 左移三个单位,下移四个单位D. 左移四个单位,上移四个单位 ⑵ (07萧山)二次函数2241y x x =-++的图象如何移动就得到22y x =-的图象( )A习题精讲A.向左移动1个单位,向上移动3个单位.B.向右移动1个单位,向上移动3个单位.C.向左移动1个单位,向下移动3个单位.D.向右移动1个单位,向下移动3个单位.2.如图,抛物线y=12x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断ABC△的形状,证明你的结论;(3)点(0)M m,是x轴上的一个动点,当MC+MD的值最小时,求m的值.三、相似三角形一、相似三角形的判定定理(1)有两个角对应相等的两个三角形相似;(2)两边对应成比例,且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)直角边和一条斜边对应成比例的两个直角三角形相似.二、相似三角形的性质(1)相似三角形对应的高线、中线、角平分线的比等于相似比;(2)相似三角形的周长之比等于相似比;(3)相似三角形的面积比等于相似比的平方.【例1】(2007年北师大附中期末试题)如图,D、E是ABC∆的边AC、AB上的点,且AD AC⋅=AE AB⋅,求证:ADE B∠=∠.巩固:如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,∠ADE=∠ACE, ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.A ED CBA EDC。
九年级数学上册《相似三角形的判定》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例作为导入,例如,展示一组相似的图形,如不同大小的三角形装饰品,并提出问题:“你们观察这些图形,它们之间有什么共同之处?”通过引导学生观察和思考,激发学生对相似三角形的兴趣。
1.教学策略:
-采用直观演示与抽象讲解相结合的方式,通过动态几何软件或实物模型,让学生直观感受相似三角形的形成和性质。
-引导学生通过自主探索、小组讨论等形式,发现并理解相似三角形的判定条件。
-设计层次分明的练习题,从基础到提高,逐步深化学生对知识点的掌握。
2.教学过程:
-导入新课:通过生活实例或几何图形,引发学生对相似三角形的好奇心,激发学习兴趣。
-小组展示:每组选取一道典型问题,进行解题思路和答案的展示,培养学生表达能力和逻辑思维能力。
4.家庭作业:
-布置适量的课后作业,涵盖相似三角形的判定方法和性质应用,要求学生在规定时间内完成,家长签字确认。
-鼓励学生在完成作业过程中,遇到问题主动向同学和老师请教,培养自主学习和解决问题的能力。
5.作业评价:
-对学生的作业进行及时批改,给予反馈,关注学生在作业中反映出的薄弱环节,进行针对性辅导。
-开展优秀作业展示活动,激发学生的学习积极性,营造良好的学习氛围。
2.学生在运用相似三角形的判定方法时,可能会出现混淆和错误,教师应针对这一问题进行针对性的讲解和练习。
3.学生的空间想象能力和逻辑思维能力存在差异,教师应充分关注这一点,设计不同难度的教学活动,使每位学生都能得到提高。
4.学生在小组合作学习中,沟通能力和团队协作能力有待提高,教师应引导学生积极参与讨论,学会倾听他人意见。
九年级数学上册《探索二次函数的性质》教案、教学设计
3.拓展提高题:针对学有余力的同学,可以尝试完成课本第XX页的拓展题11-15题,深入研究二次函数的性质及其在实际问题中的应用。
4.数学写作:请同学们结合本节课所学,撰写一篇关于二次函数性质与应用的小论文,要求观点明确、论据充分,字数在500字左右。
4.培养学生的创新意识,鼓励学生勇于尝试、善于发现、敢于创新,为未来的发展奠定基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,对函数的概念和一次函数的性质有了初步的了解。在此基础上,学习二次函数的性质,他们需要将已学的知识进行拓展和深化。然而,学生在面对二次函数图像的变换、最值问题的求解等方面可能存在困难。因此,在教学过程中,应关注以下几个方面:
(四)课堂练习
课堂练习环节,我会设计以下几类题目:
1.基础题目:求解给定二次函数的顶点、对称轴、开口方向等。
2.应用题目:利用二次函数的性质解决实际问题,如最大(小)值问题、曲线交点问题等。
3.拓展题目:研究二次函数图像的变换规律,以及在实际问题中的应用。
(五)总结归纳
在总结归纳环节,我会带领学生一起回顾本节课所学的内容,总结二次函数的定义、性质、图像变换规律以及最值问题的求解方法。同时,我会强调数形结合的数学思想在解决二次函数问题中的重要性。
3.对于拓展提高题,同学们可以自主选择题目进行研究和探讨,培养自己的创新意识和解决问题的能力。
4.数学写作要注重逻辑性和条理性,通过论文撰写,提高自己的数学表达和归纳总结能力。
5.小组讨论要积极参与,分享自己的学习心得和经验,互相学习,共同进步。
九年级数学上册《相似三角形的性质》教案、教学设计
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
九年级数学上册《相似三角形》教案、教学设计
3.总结目标:
帮助学生巩固所学知识,培养他们的概括总结能力和应用意识,为后续学习打下基础。
五、作业布置
1.基础巩固题:针对本节课的基础知识,设计以下作业题,以巩固学生对相似三角形性质和判定方法的理解。
(1)判断给定三角形是否相似,并说明理由;
(2)利用相似三角形的性质,计算给定图形的边长或角度;
(3)阶段性评价:通过阶段测试,评估学生对本章节知识的掌握程度,为后续教学提供参考。
4.教学策略:
(1)注重分层教学,针对不同学生的学习需求,提供适当难度的教学内容;
(2)关注学生的情感态度,鼓励他们积极参与课堂活动,增强自信心;
(3)注重培养学生的几何直观和空间想象能力,提高他们解决几何问题的能力;
3.组织小组合作学习,让学生在讨论和交流中,提高解决问题的能力;
4.设计丰富的例题和练习题,巩固所学知识,提高学生的应用能力。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,使他们感受到数学在生活中的重要作用;
2.培养学生独立思考、勇于探究的精神,增强他们的自信心;
3.通过小组合作学习,培养学生的团队协作能力,使他们学会倾听、尊重他人意见;
3.讲解目标:
让学生掌握相似三角形的定义、判定方法和性质,为解决实际问题奠定基础。
(三)学生小组讨论
1.教学活动设计:
将学生分成小组,针对以下问题进行讨论:
(1)相似三角形在实际生活中的应用;
(2)如何利用相似三角形的性质和判定方法解决几何问题;
(3)相似三角形与其他数学知识之间的联系。
2.小组讨论:
(2)鼓励学生思考问题,勇于探索,培养解决问题的能力;
(3)作业完成后,学生需认真检查,确保答案正确;
九年级数学上册《相似三角形的综合应用》教案、教学设计
2.教学过程:
(1)导入新课:通过生活中的实例,如地图比例尺、照片放大缩小等,引出相似三角形的概念;
(2)新课展开:引导学生复习旧知,如全等三角形的判定,自然过渡到相似三角形的判定方法;
(3)实例讲解:结合实际问题,讲解相似三角形的性质和判定方法,让学生体会数学与生活的联系;
在我们的生活中,相似三角形的应用无处不在。比如,设计师在设计图案时,摄影师在拍摄照片时,都会用到相似变换。现在,让我们一起来看看这张图片(展示一张包含相似三角形的图片,如建筑物的立面图),你们能发现其中的相似三角形吗?它们有什么特别之处?通过这个导入,我希望大家能够感受到相似三角形在现实生活中的重要性,激发起对今天新课的兴趣。
5.完成课后在线练习,包括相似三角形的相关知识点,巩固课堂所学。同学们可以利用学校提供的在线学习平台,进行自主学习,提高自己的数学素养。
在完成作业的过程中,同学们应注意以下几点:
1.认真审题,注意题目中的关键信息,确保解题过程的准确性;
2.规范书写,保持解答过程的简洁、清晰,养成良好的学习习惯;
3.遇到问题,主动与同学、老师交流,积极寻求帮助,提高解决问题的能力;
1.学生在解决相似三角形问题时,可能对判定方法和性质的应用存在困惑,需要教师耐心引导和解答;
2.学生的几何直观能力有待提高,教师应设计丰富的教学活动,帮助学生通过观察、画图等方式,提高几何直观能力;
3.学生在小组合作中,可能存在交流不畅、分工不明确等问题,教师需引导学生积极参与,提高合作效率;
4.针对不同学生的认知水平,教师应设计有梯度的教学任务,使每个学生都能在课堂上得到锻炼和提升;
(4)巩固练习:设计不同难度的练习题,让学生在练习中掌握知识,形成技能;
九年级数学上册二次函数教案模板优秀8篇
有一个现象是普遍存在的,就是“学的越多感觉不会的越多,背的越多忘的越快”,这个问题困扰着很多同学。
今天,这次帅气的小编为您整理了九年级数学上册二次函数教案模板优秀8篇,您的肯定与分享是对小编最大的鼓励。
二次函数教案篇一一、由实际问题探索二次函数某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。
根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。
(1) 问题中有哪些变量?其中哪些是自变量?哪些因变量(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式。
果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子,因此果园橙子的总产量y=(100+z)(6005x)=-5x2+100x+ 60000.二、想一想在上述问题中,种多少棵橙子树,可以使果园橙子的产量最多?我们可以列表表示橙子的总产量随橙子树的增加而变化情况。
你能根据表格中的数据作出猜测吗 ?自己试一试。
x/棵y/个三。
做一做银行的储蓄利率是随时间的变化而变化的。
也就是说,利率是一个变量。
在我国利率的调整是由中国人民银行根据国民经济发展的情况而决定的。
设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).四、二次函数的定义一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数叫做x的二次函数(quadratic function)注意:定义中只要求二次项系数不为零,一次项系数、常数项可以为零。
例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函数。
我们以前学过的正方形面积A与边长a的关系A=a2,圆面积s与半径r的关系s=Try2等也都是二次函数的例子。
九年级数学上册《二次函数》教案、教学设计
2.培养学生运用二次函数解决实际问题的能力,如最优化问题、几何图形问题等,并通过实际问题进一步理解二次函数的性质。
讨论过程中,我会巡回指导,关注学生的讨论进展,适时给予提示和引导,确保每个学生都能积极参与讨论。
(四)课堂练习
课堂练习环节,我会设计以下几类题目:
1.基础题目:主要考察学生对二次函数定义、图像、性质的掌握,以及基本的求解方法。
2.提高题目:涉及二次函数在实际问题中的应用,如最值问题、几何图形问题等,提高学生的应用能力。
5.写作任务:要求学生撰写一篇关于二次函数在实际问题中应用的小论文,字数在500字左右。论文可以围绕二次函数在生活中的应用、二次函数与其他数学知识的联系等方面展开,旨在培养学生的数学表达能力和逻辑思维。
1.完成教材课后练习题:第1题、第3题、第5题,巩固二次函数的基础知识。
2.解决实际问题:根据课堂所学,选择一个实际问题,建立二次函数模型并求解,将解题过程和结果写在作业本上。
三、教学重难点和教学设想
(一)教学重难点
1.重点:二次函数的定义、图像特征、性质以及在实际问题中的应用。
2.难点:
(1)理解并掌握二次函数的图像与性质之间的关系,如开口方向、顶点、对称轴等。
(2)灵活运用二次函数求解最值问题,特别是顶点公式的运用。
(3)将二次函数的知识应用于解决实际问题,提高学生的数学建模能力。
3.学生在讨论、练习过程中遇到的困难和问题,以及如何克服这些困难。
五、作业布置
为了巩固学生对二次函数知识的掌握,提高他们的应用能力,我将在课后布置以下几类作业:
九年级数学上册《相似三角形的性质及应用》教案、教学设计
4.培养学生严谨、踏实的学术态度,使其养成良好的学习习惯。
5.通过相似三角形的学习,引导学生体会几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何基础,对三角形的性质、全等三角形的判定和应用有较为深入的了解。在此基础上,学习相似三角形的性质及应用,对学生来说是一个新的挑战。此时,学生正处于抽象逻辑思维逐渐成熟的阶段,对几何图形的观察、分析和解决问题的能力有待提高。因此,在教学过程中,要关注以下几点:
3.实践应用题:鼓励学生从生活中发现相似三角形的应用,拍摄照片或画图,并简要说明相似三角形在其中的作用。例如,建筑物的立面图、桥梁的支撑结构等。这样的作业既有助于学生将所学知识应用于实际,又能激发学生的学习兴趣。
4.小组合作题:布置一道小组合作题目,要求学生在课后分组讨论,共同完成。题目可以涉及相似三角形在实际问题中的应用,如测量距离、计算面积等。通过合作完成作业,培养学生的团队协作能力和沟通表达能力。
5.思考题:提出一些富有挑战性的问题,引导学生深入思考相似三角形的性质及应用。例如:“在相似三角形中,如何求解一个未知角的度数?”这类题目可以激发学生的探究欲望,提高学生的自主学习能力。
作业布置要求:
1.学生在完成作业时,要注意书写规范,保持解答过程的简洁和清晰。
2.鼓励学生在解题过程中尝试不同的方法,培养解题的灵活性和创新意识。
1.学生对相似三角形的概念和性质可能存在理解困难,需要教师耐心引导,通过具体实例和图形演示,帮助学生建立清晰的认识。
2.学生在解决相似三角形相关问题时的思路可能不够开阔,需要教师设计多样化的练习题,引导学生从不同角度思考问题,提高解题技巧。
2023最新-九年级数学《二次函数》教案【优秀9篇】
九年级数学《二次函数》教案【优秀9篇】备课是上好一堂课的前提。
高水平的课,一定要靠课前认真备课。
那么,老师备课要准备什么,才能上好一堂水平高的课呢?下面是整理的9篇《九年级数学《二次函数》教案》,希望朋友们参阅后能够文思泉涌。
二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法讨论探索法。
教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
沪教版(上海)初中数学九年级第一学期 本章小结 二次函数与相似三角形 教案
二次函数与相似三角形教案教学目标:1、会正确求解二次函数解析式;2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。
教学重点:1、正确求解二次函数解析式;2、相似三角形的判定与性质在二次函数综合题中的运用。
教学难点:根据条件构造相似三角形解决问题。
教学过程:一、快速反应1、已知二次函数的图象经过点(-5,-1)、(0,-4)和(1,1),求这个二次函数的解析式.2、已知抛物线的顶点坐标为(2,1),与y轴交于点(0,5),求这条抛物线的解析式。
3、已知抛物线过A(-2,0)、B(1,0)、C(0,2)三点。
求这条抛物线的解析式。
4、已知二次函数对称轴是x=1,过点(-3,0),与y轴交点为(0,5)5、已知二次函数图像顶点是(2,1),图像在x轴上截得的线段长2,求这个二次函数解析式。
二、小试牛刀1、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2, 在AC上取一点F,使以A、E、F 为顶点的三角形与△ABC相似,那么AF=________2、如图,已知A(-1,-5),B(0,-4),C(4,0),点D在x轴的正半轴上,若以点D、C、B组成的三角形与△OAB相似,试求点D的坐标.A.EB C三、例题解读例1:已知在平面直角坐标系中,抛物线与轴交于点A 、B ,与 轴交于点C ,直线经过A 、C 两点.(1)求抛物线的表达式;(2)动点M 在直线上,且△ABC 与△COM 相似,求点M 的坐标.(3)如果点P 、Q 在抛物线上(P 点在对称轴左边),PQ//AO ,PQ=2AO ,求点P 、Q 坐标。
练习:已知抛物线y =ax 2+bx -3与x 轴交于A ,B 两点,与y 轴交于点C ,O 是坐标原点,已知点B 的坐标是(3,0),tan ∠OAC =3.(1)求该抛物线的函数表达式;(2)点D 是y 轴上一动点,若以D 、C 、B 为顶点的三角形与△ABC 相似,求出符合条件的点D 的坐标.四、课堂小结:二次函数与相似三角形综合题之解题策略1、 根据题意,先求相关点的坐标和相关线段的长度;2、 待定系数法求相关函数的解析式;3、 利用同角或等角找对应点,分类讨论;4、 根据题目条件,正确画图,注意数形结合;5、 利用几何定理和性质或者代数方法建立方程求解都是常用方法。
初中数学初三数学上册《二次函数》教案、教学设计
1.学生总结:让学生回顾本节课所学内容,总结二次函数的定义、图像性质、二次方程求解方法等关键知识点。
2.教师点评:教师针对学生的总结进行点评,强调重点、难点,指出学生在学习过程中的优点和不足。
3.归纳提升:教师通过总结,引导学生认识到二次函数在生活中的广泛应用,激发学生学习数学的兴趣和热情,为后续学习打下坚实基础。
2.图像特点:利用数学软件或图形计算器,绘制二次函数图像,引导学生观察图像的开口方向、顶点、对称轴等性质,并总结规律。
3.二次方程求解:教师通过讲解、示例,让学生掌握求根公式,学会解二次方程,并强调判别式Δ=b^2-4ac的作用。
4.顶点式介绍:讲解二次函数顶点式y=a(x-h)^2+k的含义,并通过实例演示如何将一般式转换为顶点式,让学生理解其应用。
5.培养学生的创新意识,鼓励他们在解题过程中寻求多种解法,提高思维的灵活性。
二、学情分析
在学习本章节二次函数之前,学生已经掌握了线性函数的知识,具备了一定的函数基础。然而,由于二次函数在图像、性质、应用等方面与线性函数存在较大差异,学生在学习过程中可能会遇到以下困难:
1.理解二次函数定义和图像特点时,可能会感到抽象,难以把握其与线性函数的联系与区别。
-创设问题情境,引导学生从实际问题中发现二次函数的模型,培养学生的问题解决能力。
3.教学策略:
-采用探究式教学,鼓励学生主动发现、总结二次函数的性质,培养学生的探究精神。
-实施分层教学,针对不同层次的学生设计不同难度的题目,使每个学生都能在原有基础上得到提高。
-加强小组合作,让学生在讨论、交流中共同解决问题,提高团队协作能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们能够积极主动地参与二次函数的学习。
九年级数学上册《相似三角形的性质及其应用》教案、教学设计
6.课后布置综合性、实践性作业,让学生将所学知识应用于实际情境,提高学生的几何建模和解决问题的能力。
-例如,让学生设计一幅利用相似三角形原理的图案,或解决生活中的实际问题。
7.开展课后辅导和个性化教学,关注学生的个体差异,使每个学生都能在原有基础上得到提高。
(2)学生通过观察、分析,总结相似三角形的性质,如对应角相等、对应边成比例等。
(3)教师引导学生运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
(4)教师讲解相似三角形判定方法,如AA、SAS、SSS等,并结合实例进行分析。
(三)学生小组讨论
1.教学内容:相似三角形性质的应用问题。
2.教学活动设计:
-对于学习困难的学生,教师可以提供针对性的辅导,帮助他们克服难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过展示实际生活中含有相似三角形元素的图片,如建筑物的立面图、艺术作品等,引发学生对相似三角形的关注。
教师引导学生观察这些图片,并提出问题:“这些图片中有什么共同特征?它们在几何学中有什么特别之处?”
(1)学生分享本节课的收获,教师点评并补充。
(2)教师强调相似三角形在实际生活中的重要性,激发学生学习兴趣。
(3)教师布置课后作业,巩固所学知识。
(4)教师鼓励学生继续探索相似三角形的相关知识,为后续学习打下基础。
五、作业布置
为了巩固学生对相似三角形性质的理解和应用,以及培养学生的几何思维和问题解决能力,特布置以下作业:
(二)教学难点
1.相似三角形性质的推导和应用,尤其是相似三角形面积比等于相似比的平方这一结论的理解。
二次函数与相似三角形综合题教案
O 二次函数与相似三角形综合题教学目标:教学目标:1、会求二次函数解析式;、会求二次函数解析式;2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。
度,从而得出点的坐标。
教学重点:教学重点:1、求二次函数解析式;、求二次函数解析式;2、相似三角形的判定与性质在二次函数综合题中的运用。
、相似三角形的判定与性质在二次函数综合题中的运用。
教学难点:教学难点:根据条件构造相似三角形解决问题。
根据条件构造相似三角形解决问题。
情感与态度:情感与态度:1、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。
、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。
2、使学生感受在数学学习活动中获得成功的体验,锻炼学生克服困难的意志,建立自信心。
信心。
3、培养学生科学探索的精神。
、培养学生科学探索的精神。
教学过程:教学过程:一、复习巩固一、复习巩固如图,抛物线y=ax 2+b x -2与x 轴交于点A (-(-11,0),B (m ,0)两点,与y 轴交于C 点,且∠点,且∠ACB=90ACB=90ACB=90°,求抛物线的解析式°,求抛物线的解析式°,求抛物线的解析式. .分析:OC 2=OA·=OA·OB OB ∴4=1×4=1×m m ,m=4 ∴B (4,0)设抛物线解析式为y=a(x+1)(x -4) 代入C 点(0,-2) ∴抛物线解析式为213222y x x =--. 二、新授二、新授例题、如图,直线y =-x+3与x 轴、y 轴分别相交于B 、C ,经过B 、C 两点的抛物线y=ax 2+bx+c与x 轴另一交点为A ,顶点为P ,且对称轴是直线x=2x=2,,(1)求抛物线解析式;)求抛物线解析式;(2)连结AC AC,请问在,请问在x 轴上是否存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△为顶点的三角形与△ACB ACB 相似,若存在,请求出Q 点坐标;若不存在,说明理由点坐标;若不存在,说明理由. .(3)D 点为第四象限的抛物线上一点,过点D 作DE ⊥x 轴,交CB 于E ,垂足于H ,过D 作DF ⊥CB ,垂足为F ,交x 轴于G ,试问是否存在这样的点D ,使得△DEF 的周长恰好被x 轴平分?若能,请求出D 点坐标;若不能,请说明理由. [解] (1) 直线3y x =-+与x 轴相交于点B , \当0y =时,3x =,\点B 的坐标为(30),. 又 抛物线过x 轴上的A B ,两点,且对称轴为2x =,根据抛物线的对称性,根据抛物线的对称性, \点A 的坐标为(10),. 3y x =-+ 过点C ,易知(03)C ,,3c \=.又 抛物线2y ax bx c =++过点(10)(30)A B ,,,, ∴(1)(3)y a x x =--,经过C 点(0,3)243y x x \=-+. (2)连结PB ,由2243(2)1y x x x =-+=--,得(21)P -,,设抛物线的对称轴交x 轴于点M ,在Rt PBM △中,1PM MB ==,452PBM PB \== ,∠. 由点(30)(03)B C ,,,易得3OB OC ==,在等腰直角三角形OBC 中,中,45ABC = ∠,由勾股定理,得32BC =.假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与ABC △相似.相似. ①当BQ PB BC AB=,45PBQ ABC == ∠∠时,PBQ ABC △∽△. 即2232BQ=,3BQ \=, 又3BO = ,\点Q 与点O 重合,1Q \的坐标是(00),.②当QB PB AB BC=,45QBP ABC == ∠∠时,QBP ABC △∽△. 即2232QB=,23QB \=. A B C P O xy2x =21P 273333OB OQ OB QB =\=-=-= ,, 2Q \的坐标是703æöç÷èø,. 180********PBx BAC PBx BAC =-=<\¹ ,,∠∠∠∠.\点Q 不可能在B 点右侧的x 轴上.轴上.综上所述,在x 轴上存在两点127(00)03Q Q æöç÷èø,,,,能使得以点P B Q ,,为顶点的三角形与ABC △相似.相似.(3)设D (a ,a 2-4a+34a+3)),则E (a ,-a+3) △DFE ∽△BOC ∴DE :BC=L △DEF :L △BOC ∴2332a a -+=632DFE L D + ∴L △DEF =(21+)×(-a 2+3a) ∴DH+DG=12DFE L D = (21)DH += 2(21)(43)a a +-+- = 12(21+)×(-a 2+3a) ∴243a a -+-=21(3)2a a -+ ∴a 1=2,a 2=3(舍) ∴D (2,-1)应用变式:应用变式:1、在此抛物线上是否存在P 点?使得∠1+∠2=45°,若存在,请求出P 点坐标;若不存在,请说明理由. 分析:分析:(1)延长CP 与x 轴交于E 点,∠1+∠2=45°=∠ABC=∠E+∠2 ∴∠1=∠E ,E E N 的坐标为(113,169)的坐标为(,39)2x -(,24)。
九年级数学第1讲二次函数探究—二次函数与相似三角形的综合问题教案(2021-2022学年)
2。
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题3。
逆定理:如果三角形的三边长:a,b,c,则有关系a 2+b 2=c2,那么这个三角形是直角三角形。
4。
用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边为c。
(2)验证c 2和a 2+b 2是否具有相等的关系,若a 2+b 2=c2,则△ABC 是以∠C 为直角的直角三角形。
三、知识讲解考点1 二次函数的基础知识1。
一般地,如果y=ax 2+bx+c(a,b,c 是常数且a≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据. 当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx +c(a,b,c 是常数,a≠0)的三种表达形式分别为: 一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式; 顶点式:y=a (x-h )2+k,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a(x-x 1)(x-x 2),通常要知道图像与x 轴的两个交点坐标x1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-,).对于y=a(x-h)2+k而言其顶点坐标为(h,k),由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点. 考点2 相似三角形的概念及其性质1。
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
2。
性质定理:(1)相似三角形的对应角相等; (2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比; (4)相似三角形的周长比等于相似比; (5)相似三角形的面积比等于相似比的平方. 考点3 探究三角形相似的一般思路解答三角形相似的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及到动态问题要以静制动,动中求静,具体如下:2ba244ac b a(1)假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应角(尤其是以文字形式出现让证明两个三角形相似的题目)或涉及到动点问题,因动点问题中点的位置不确定,此时应考虑不同的对应关系,从而分情况讨论;(2)确定分类标准:在分类时,先要找出分类的标准,看两个三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角来分类讨论;(3)建立关系式并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标;四、例题精析考点一 在函数中运用“S AS"判定定理构造相似三角形例1 直线分别交x轴、y 轴于A 、B两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD,抛物线y =ax2+bx+c 经过A 、C、D 三点. (1) 写出点A 、B、C 、D 的坐标;(2) 求经过A 、C、D 三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG 上是否存在点Q,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q的坐标;若不存在,请说明理由.ﻬ例2如图,已知点A (-2,4) 和点B (1,0)都在抛物线上.(1)求m 、n;(2)向右平移上述抛物线,记平移后点A 的对应点为A′,点B的对应点为B′,若四边形A A′B′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′ 的交点为C ,试在x 轴上找一个点D,使得以点B′、C 、D 为顶点的三角形与△ABC 相似.113y x =-+22y m x m xn =++考点二运用相似三角形的性质解决二次函数综合问题例3如图,已知直线AB :y=k x+2k+4与抛物线y=x2交于A ,B两点.(1)直线AB总经过一个定点C,请直接出点C 坐标;(2)当k =﹣时,在直线AB 下方的抛物线上求点P,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB=90°,求点D 到直线AB 的最大距离.ﻬ 例4如图,已知在平面直角坐标系xOy 中,O 是坐标原点,抛物线y=﹣x 2+b x+c(c>0)的顶点为D,与y 轴的交点为C,过点C作CA∥x 轴交抛物线于点A ,在AC 延长线上取点B,使BC=AC,连接O A,OB,B D和A D.(1)若点A 的坐标是(﹣4,4) ①求b,c 的值;②试判断四边形A OBD 的形状,并说明理由;(2)是否存在这样的点A,使得四边形A OBD 是矩形?若存在,请直接写出一个符合条件的点A 的坐标;若不存在,请说明理由.ﻬ课程小结有针对性的对勾股定理、相似三角形的性质及二次函数的基础知识进行复习,有助于为研究二次函数与相似三角形的综合问题提供有利的依据。
人教版九年级数学二次函数与相似三角形综合教案导学案
二次函数与相似三角形综合学习目标通过二次函数背景下的相似三角形问题的探究学习,能体验、掌握基本的数学思想,如数形结合思想、分类讨论思想等.【预习案】如图,抛物线y=-14x2+x-1的顶点为A(2,0),与y轴的交点为B(0,-1),AB⊥AC,交抛物线于点C,求点C的坐标.【探究案】问题:如图,已知抛物线()122+--=xy的图像与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)试判断△AOC与△COB是否相似;(2)若点D是抛物线的顶点,DH垂直于x轴,垂足为H,试判断直角三角形DHA与直角三角形COB是否相似?说明理由.变式1:若点M在抛物线上且在x轴上方,过点M作MG垂直于x轴,垂足为点G,是否存在M,使得△AMG与△AOC相似.变式2:若点D是抛物线的顶点,点M在抛物线上且在x轴上方,过点M做x轴的垂线,垂足为点G,是否存在M,使得△AMG与△DCB相似.【训练案】1.如图,在平面直角坐标系中,已知抛物线y=x2-4x-5与x轴交于A,B两点,与y轴交于点C.若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标.2.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=-x+3恰好经过B,C两点.(1)写出点C的坐标;(2)求出抛物线y=x2+bx+c的表达式,并写出抛物线的对称轴和点A的坐标;(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.6221-2++=x x y 课外作业1. 如图所示,已知二次函数y = a x 2+bx +2 的图像与x 轴相交于点A ,B ,与y 轴相交于点C , 经过点A 的直线y =kx -2与y 轴相交于点D ,与直线BC 垂直于点E ,已知AB =3,求这个二次函数的解析式.2.已知一个二次函数的图象经过A (﹣1,0)、B (0,3)、C (4,﹣5)三点.(1)求这个二次函数的解析式及其图象的顶点D 的坐标;(2)这个函数的图象与x 轴有两个交点,除点A 外的另一个交点设为E ,点O 为坐标 原点.在△AOB 、△BOE 、△ABE 和△BDE 这四个三角形中,是否有相似三角形?如果有,指出哪几对三角形相似,并加以证明;如果没有,要说明理由.3.在平面直角坐标系中,二次函数的图像经过点 A (4,0)、 C (0,2).(1)试求这个二次函数的解析式,并判断点是否在该函数的图像上;(2)设所求函数图像的对称轴与 x 轴交于点 D ,点 E 在对称轴上,若以点 C 、D 、E 为顶点的三角形与△ ABC 相似,试求点 E 的坐标.4.如图,二次函数图象的顶点为坐标原点O ,且经过点A (3,3),一次函数的图象经过点A 和点B (6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y 相交于点C ,点D 在线段AC 上,与y 轴平行的直线DE 与二次函数图象相交于点E ,∠CDO =∠OED ,求点D 的坐标.5如图,二次函数 的图像与x 轴相交于A 、B 两点,与y 轴交于点C ,顶点为点D ,该二次函数图像的对称轴与直线BC 相交于点E ,与x 轴交于点F ; (1)求直线BC 的解析式;(2)试判断△BFE 与△DCE 是否相似?并说明理由.(3)在坐标轴上是否存在这样的点P ,使得以点P 、B 、C 为顶点的三角形与△DCE 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.。
初三.二次函数教案
个性化教案3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如: 已知抛物线2y ax bx c =++(a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标. 5.考查代数与几何的综合能力,常见的作为专项压轴题。
【例题经典】由抛物线的位置确定系数的符号例1 (1)二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( )A .第一象限B .第二象限C .第三象限D .第四象限(2)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个(1) (2)【点评】弄清抛物线的位置与系数a ,b ,c 之间的关系,是解决问题的关键.例2.已知二次函数y=ax 2+bx+c 的图象与x 轴交于点(-2,O)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在点(O ,2)的下方.下列结论:①a<b<0;②2a+c>O;③4a+c<O;④2a -b+1>O ,其中正确结论的个数为( ) A 1个 B. 2个 C. 3个 D .4个会用待定系数法求二次函数解析式例3.已知:关于x 的一元二次方程ax 2+bx+c=3的一个根为x=2,且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( )A(2,-3) B.(2,1) C(2,3) D .(3,2) 答案:C例4、如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为y m 2. (1)写出y 与x 的关系式;(2)当x=2,3.5时,y 分别是多少? (3)当重叠部分的面积是正方形面积的一半时, 三角形移动了多长时间?求抛物线顶点坐标、 对称轴. 例5、已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.【点评】本题(1)是对二次函数的“基本方法”的考查,第(2)问主要考查二次函数与一元二次方程的关系.例6、 “已知函数c bx x y ++=221的图象经过点A (c ,-2), 求证:这个二次函数图象的对称轴是x=3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合问题;教学过程 一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,难度较大。
主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。
此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。
就本节二次函数与相似三角形的点存在性问题,主要考查了学生能否将相似三角形的性质与判定融入到二次函数,在函数图像中构造相似图形的能力。
二、复习预习 勾股定理及逆定理1.定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)2.勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边和另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题3.逆定理:如果三角形的三边长:a ,b ,c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
4.用勾股定理的逆定理判定一个三角形是否是直角三角形应注意: (1)首先确定最大边,不妨设最长边为c 。
(2)验证c 2和a 2+b 2是否具有相等的关系,若a 2+b 2=c 2,则△ABC 是以∠C 为直角的直角三角形。
三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据. 当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为: 一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式; 顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.考点2 相似三角形的概念及其性质1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
2.性质定理:(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方.考点3 探究三角形相似的一般思路解答三角形相似的存在性问题时,要具备分类讨论的思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及到动态问题要以静制动,动中求静,具体如下:(1)假设结论成立,分情况讨论。
探究三角形相似时,往往没有明确指出两个三角形的对应角(尤其是以文字形式出现让证明两个三角形相似的题目)或涉及到动点问题,因动点问题中点的位置不确定,此时应考虑不同的对应关系,从而分情况讨论;(2)确定分类标准:在分类时,先要找出分类的标准,看两个三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角来分类讨论;(3)建立关系式并计算。
由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标;四、例题精析考点一在函数中运用“SAS”判定定理构造相似三角形例1直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.例2如图,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.考点二运用相似三角形的性质解决二次函数综合问题例3如图,已知直线AB:y=kx+2k+4与抛物线y=12x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣12时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.例4如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4)①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.课程小结有针对性的对勾股定理、相似三角形的性质及二次函数的基础知识进行复习,有助于为研究二次函数与相似三角形的综合问题提供有利的依据。
在探究二次函数与相似三角形的综合问题时,抓住已有的信息及条件在函数图像中构造出相似三角形,并能运用相似三角形的性质解决问题,掌握此类问题的解题思路及技巧是解决问题的关键。
解析例1(1)A(3,0),B(0,1),C(0,3),D(-1,0).(2)因为抛物线y=ax2+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,所以930,3,0.a b cca b c++=⎧⎪=⎨⎪-+=⎩解得1,2,3.abc=-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4).(3)如图2,直线BG的解析式为y=3x+1,直线C D的解析式为y=3x+3,因此CD//BG.因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ=90°.因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么BQ==.Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况:①当3BQBA=3=.解得3x=±.所以1(3,10)Q,2(3,8)Q--.②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.【总结与反思】1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标. 3.第(3)题判断∠ABQ =90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.例2【规范解答】(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=如图2,由AM//CN ,可得''''B N B CB M B A=,即28=.解得'B C =AC =菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D ='B D=,解得'3B D =.此时OD =3,点D 的坐标为(3,0). ②如图4,当''A B B D A C B C ==,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).【总结与反思】1.点A与点B的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B′的坐标、AC和B′C的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC与△B′CD相似,根据菱形的性质,∠BAC=∠CB′D,因此按照夹角的两边对应成比例,分两种情况讨论.例3【规范解答】解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.∴直线AB:y=kx+2k+4必经过定点(﹣2,4).∴点C的坐标为(﹣2,4).(2)∵k=﹣,∴直线的解析式为y=﹣x+3.联立,解得:或.∴点A的坐标为(﹣3,),点B的坐标为(2,2).过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示.设点P的横坐标为a,则点Q的横坐标为A.∴y P=a2,y Q=﹣a+3.∵点P在直线AB下方,∴PQ=y Q﹣y P=﹣a+3﹣a2∵AM+NB=a﹣(﹣3)+2﹣a=5.∴S△APB=S△APQ+S△BPQ=PQ•AM+PQ•BN=PQ•(AM+BN)=(﹣a+3﹣a2)•5=5.整理得:a2+a﹣2=0.解得:a1=﹣2,a2=1.当a=﹣2时,y P=×(﹣2)2=2.此时点P的坐标为(﹣2,2).当a=1时,y P=×12=.此时点P的坐标为(1,).∴符合要求的点P的坐标为(﹣2,2)或(1,).(3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,作BF⊥EF,垂足为F,如图2.∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°﹣∠BDF=∠DBF.∵∠AED=∠BFD,∠ADE=∠DBF,∴△AED∽△DFB.∴.设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2.AE=y A﹣y E=m2﹣t2.BF=y B﹣y F=n2﹣t2.ED=x D﹣x E=t﹣m,DF=x F﹣x D=n﹣t.∵,∴=.化简得:mn+(m+n)t+t2+4=0.∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.∴m+n=2k,mn=﹣4k﹣8.∴﹣4k﹣8+2kt+t2+4=0,即t2+2kt﹣4k﹣4=0.即(t﹣2)(t+2k+2)=0.∴t1=2,t2=﹣2k﹣2(舍).∴定点D的坐标为(2,2).过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示.∵点C(﹣2,4),点D(2,2),∴CG=4﹣2=2,DG=2﹣(﹣2)=4.∵CG⊥DG,∴DC====2.过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时,点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2.【总结与反思】(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.例4【规范解答】(1)①∵AC∥x轴,A点坐标为(﹣4,4).∴点C的坐标是(0,4)把A、C代入y═﹣x2+bx+c得,得,解得;②四边形AOBD是平行四边形;理由如下:由①得抛物线的解析式为y═﹣x2﹣4x+4,∴顶点D的坐标为(﹣2,8),过D点作DE⊥AB于点E,则DE=OC=4,AE=2,∵AC=4,∴BC=AC=2,∴AE=BC.∵AC∥x轴,∴∠AED=∠BCO=90°,∴△AED≌△BCO,∴AD=BO.∠DAE=∠BCO,∴AD∥BO,∴四边形AOBD是平行四边形.(2)存在,点A的坐标可以是(﹣2,2)或(2,2)要使四边形AOBD是矩形;则需∠AOB=∠BCO=90°,∵∠ABO=∠OBC,∴△ABO∽△OBC,∴=,又∵AB=AC+BC=3BC,∴OB=BC,∴在Rt△OBC中,根据勾股定理可得:OC=BC,AC=OC,∵C点是抛物线与y轴交点,∴OC=c,∴A点坐标为(c,c),∴顶点横坐标=c,b=c,∵将A点代入可得c=﹣+c•c+c,∴横坐标为±c,纵坐标为c即可,令c=2,∴A点坐标可以为(2,2)或者(﹣2,2).【总结与反思】(1)①将抛物线上的点的坐标代入抛物线即可求出b、c的值;②求证AD=BO和AD∥BO即可判定四边形为平行四边形;(2)根据矩形的各角为90°可以求得△ABO∽△OBC即=,再根据勾股定理可得OC=BC,AC=OC,可求得横坐标为±c,纵坐标为C.。