质点动力学2
大学物理_第2章_质点动力学_习题答案
第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
《大学物理》第2章 质点动力学
TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律
第2章 质点动力学
b
mg
也可以写成
∫ mg ⋅ dr = 0
17
2.4 势能 机械能守恒定律
3. 弹性力的功
f O xA
xB
fx = −kx
AAB = ∫ fx ⋅ dx =
xA xB
xB
x
∫ (−kx) ⋅ dx
xA
1 1 2 2 = kxA − kxB 2 2
弹性力对运动质点所做的功与质点运动的路径无 弹性力对运动质点所做的功与质点运动的路径无 只与其始、末位置有关。 关,只与其始、末位置有关。
=
( L) ra
rb
∫ ∫
b
FG ⋅ dr
GMm − 3 r ⋅ dr r
r
ra
rb
a
GMm = ∫ − 2 dr ( L) ra r GMm GMm = − rb ra
r ⋅ dr = r⋅ | dr | ⋅ cosϕ
= r ⋅ dr
15
2.4 势能 机械能守恒定律
万有引力的功
GMm GMm 1 1 A = − = −GMm( − ) ab rb ra ra rb
势 参 点 能 考
若选末态为势能零点
EPa =
∫f
(a)
保
⋅dr
20
2.4 势能 机械能守恒定律
常见的势能函数 1)重力势能 1)重力势能
EP = mgh
地面为势能零点 末态为势能零点
2)弹性势能 2)弹性势能
1 2 EP = kx 以弹簧原长为势能零点 2
M m 以无限远为势能零点 3)万有引力势能 3)万有引力势能 EP = −G r
12
2.3 动 能 定 理
第2章习题解
第二章 动量守衡 质点动力学2-1 一个原来静止的原子核,经放射性衰变,放出一个动量为9.22×10-16g ⋅cm/s 的电子,同时该核在垂直方向上又放出一个动量为5.33×10-16g ⋅cm/s 的中微子,问蜕变后原子核的动量的大小和方向。
解: 衰变过程是: e v e B A ++→-,由动量守衡得 .0=++v e B P P P 大小:e B P P =--==s cm g s cm g /1065.10/1033.522.9161622⋅⨯=⋅⨯+=--.方向:3022.933.511===--tgtgθ;15030180=-=ϕ,1203090=+=φ.2-2 质量为M 的木块静止在光滑的水平桌面上。
质量为m ,速率为v 0的子弹水平地入射到木块内(见本题图)并与它一起运动。
求 (1)子弹相对于木块静止后,木块的速率和动量,以及子弹的动量;(2)在此过程中子弹施于木块的冲量。
解:(1)设木块的速率为v , 由动量守衡: v m M mv )(0+=;得0v mM m v +=, 木块的动量0v m M Mm mv p +==木,子弹的动量02v mM mmv p +==子.(2)子弹施予木块的冲量为 00v mM Mm P I +=-=木木.2-3 如本题图,已知绳的最大强度T 0 = 1.00 kg ,m = 500g , l = 30.0cm ,开始时m 静止。
水平冲量I 等于多大才能把绳子打断? 解: 要求向心力mg T evmF ->=02,即要求l mmg T v ->0,l mmg T mmv I ->-=00.故 l mg T m I )(0-=s m kg /86.0]100.30)8.9105008.91(10500[21233⋅=⨯⨯⨯⨯-⨯⨯=---2-4 一子弹水平地穿过两个前后并排在光滑水平桌面上的静止木块。
木块的质量分别为m 1和m 2;设子弹透过两木块的时间间隔为t 1和t 2,子弹在木块中所受阻力为恒力f ,求子弹穿过时两木块各以多大的速度运动.解: 当子弹穿出m 1时, m 1与 m 2一起运动, 故 1211)(v m m ft +=; 2111m m ft v +=.当子弹穿出m 2时, 12222v m v m ft -=,解得 222112212m ft m m ft m ft v v ++=+=.2-5 质量70kg 的渔人站在小船上,设船和渔人的总质量为200kg .若渔人在船上向船头走4.0m 后停止。
第2章 质点动力学 习题答案
2-8. 长为l的轻绳,一端固定,另一端系一质量为m的小 长为 的轻绳,一端固定,另一端系一质量为 的小 的轻绳 开始运动, 球,使小球从悬挂着的位置以水平初速度 v 0 开始运动, 求小球沿逆时针转过 解:法向方程 角度时的角速度和绳子张力。 角度时的角速度和绳子张力。 θ
T − mg cos θ = m ω 2 l m v + 2 gl (cos θ − 1) = l
r2
r
2
,求电子从 r1 运动到 r2 ( r1 > r2 )
r1
r r r2 k 1 1 f ⋅dr = − ∫ 2 dr = k − r r r1 r 2 1
2-14. 质量为 m = 2 × 10 −3 kg的子弹,在枪筒中前进时受到 的子弹, 的合力为 F = 400 − 300m/s,试计算枪筒的长度。 ,试计算枪筒的长度。 解:设枪筒的长度为
其速度是? 其速度是?
r 2-3. 一物体质量为 一物体质量为10kg,受方向不变的力 F = 30 + 40t ,
的作用,在开始的 内 此力的冲量大小为? 的作用,在开始的2s内,此力的冲量大小为?若物体的 方向与力同向,则在2s末物体 初速度大小为 10 m ⋅ s ,方向与力同向,则在 末物体 速度的大小等于? 速度的大小等于?
r r 2-2. 一质量为 一质量为10kg的物体在力 f = (120t + 40) i 作用 的物体在力 r r v0 = 6i m ⋅ s −1 ,则t=3时 轴运动, 时其速度 下,沿x轴运动,t=0时其速度 轴运动 时
r r r r f (120t + 40)i = = (12t + 4) i 解:a = m 10 r r r t r t r 2 v = ∫ adt = ∫ (12t + 4) i dt =(6t + 4t ) i + v0 0 0 r = ( 6t 2 + 4t + 6) i r r v ( 3) = 72i m ⋅ s −1
02 质点动力学答案
第二章 质点动力学答案1,【基础训练1 】、一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是(A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [ A ]解答:()()()()3/2,3/,)(00000a g a a a g a ma a m M g m M a a m mg T MaT Mg +=+∴-=++=-+=-=-2,【基础训练3】 图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮 轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) mg 21.(C) 2mg . (D) 3mg / 4. [ D ]解:mg −T +ma =ma‘,T =ma’,mg +mg/2=2ma ’.a ’=3g/4,T=3mg/4, 3,【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有(A) N =0. (B) 0 < N < F .(C) F < N <2F . (D) N > 2F . [ B ] 解:2F=(m 1+m 2)a,F+N=m 2a,2N=(-m 1+m 2)a=2F(-m 1+m 2)/ (m 1+m 2) 4,【自测1】、在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断?(A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [ C ]解:适合用非惯性系做。
第二章--质点动力学2
W W1 W2
o
r
r1 dr r2
(3)功是过程量:功总是和质点旳某个运
动过程相联络
W dW F dr F cos d r
2、重力、引力、弹性力旳功
(1)重力作功
物体m沿途径 A 过B程中重力
旳功
W
B
dW
B mg dr
y2 mgdy
W
A
mgy2A
mgy1
y1
t1
i1 若 Fi合 0
i 1 n
则 P
mivi
恒矢量
i 1
动量守恒定律:
当系统合外力为零时,系统
旳总动量保持不变。t2
nn
讨论:
Fi合dt mivi mivi0
t1
i 1
i 1
(1)合外力为零或不受外力作用系统总
动量保持不变。
(2)合外力不为零,但合力在某方向分量 为零,则系统在该方向上旳动量守恒。
W mgy2 mgy1 重力势能 Ep mgh
W
G
m'm rB
G
m'm rA
W
1 2
kx22
1 2
kx12
引力势能 弹性势能
Mm
Ep G r
Ep
1 2
kx2
所以能够得到保守力旳功与势 能旳关系式
W Ep2 Ep1 Ep
(2)势能旳讨论 势能是属于存在保守内力旳系统旳, 具有保守力才干引入势能旳概念。 势能是状态旳函数。 势能值旳相对性与势能差旳绝对性。
式
(2)直角坐标系中,定理分量式 t2
I x Fxdt px2 px1
t1 t2
I y Fydt py2 py1
大学物理第2章_质点动力学_知识框架图和解题指导和习题
第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。
二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。
难点:微积分方法求解变力做功。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1.动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。
2.保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。
(四)主要内容: 1.动量、冲量动量:p mv =u r r冲量:⎰⋅=21t t dt F I ϖϖ2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I ϖϖϖϖϖ 质点系动量定理:dtPd F ϖϖ=3.动量守恒定律:当系统所受合外力为零时,即0=ex F ϖ时,或in ex F F u r u r ? 系统的总动量保持不变,即:∑===n i i i C v m P 1ϖϖ4.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos ϖϖ(θ为)之间夹角与r d F ϖϖ直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。
)(2)质点系动能定理:∑∑==-=+ni ni E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。
质点动力学-动量及动量定理 (2)
柔绳对桌面的冲力F=-F’ 即:
M 2 2 Fv v 而 v 2 g x FM 2 g x / L L
2
而已落到桌面上的柔绳的重量为mg=Mgx/L 所以F总=F+mg=2Mgx/L+Mgx/L=3mg
fi 0
i
'
f
质点系
结论:质点系的内力之和为零
F
外力: 系统外部对质点系内部质点的作用力 约定:系统内任一质点受力之和写成 外力之和
F i fi
内力之和
二、质点系的动量定理
•两个质点的系统
m
1
f
F1
F2
d P1 F1 f dt
m
2
f
d P P 1 d 2 F f F f 1 2 d t d t
解:以链条为系统,向上为X正向,地面为原点建立 坐标系。 t时刻,系统总动量 P X v xv a d x d v dP d(xv) v x x d t d t dt dt
v ax
2
O
变质量问题
系统动量对时间的变化率为:
d P 2 3 ax v ax 2 ax ax d t t时刻,系统受合外 Iy Iz
t2 t1 t2 t1 t2 t1
F x dt F y dt F z dt
+
0 t1 t2 t
(注意可取 + -号)
冲量的几何意义:冲量
I x 在数值上等于
Fx ~ t 图线与坐标轴所围的面积。
3、质点的动量定理
d v d P F m a m d t d t
大学物理_第2章_质点动力学_习题答案
第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
第2章 质点动力学2
2-12 小球在外力作用下,由静止开始从A 点出发作匀加速直线运动,到达B 点时撤消外力,小球无摩擦地冲上竖直的半径为R 的半圆环,达到最高点C 时恰能维持在圆环上作圆周运动,并以此速度抛出而刚好落回原来的出发点A 处,如图所示,试求:(1)小球在AB 段运动的加速度大小;(2)小球又落到A 点前的瞬时,切向加速度的大小。
分析 小球在C 点恰能维持圆周运动,重力提供向心力,由此求得C v ;BC 段机械能守恒,由C v 求得B v ,CA 段小球平抛运动,可求C 到A 的水平距离,即AB S 。
进一步可由B v ,AB S 求AB 段小球运动的加速度。
小球落到A 点,其在A 点加速度为重力加速度g ,其在切向方向的投影即为τa 。
解 (1)小球达到最高点C 时,恰能维持圆周运动,因而有 m g Rmc=vgR C =v 在BC 段,小球只受重力作功,根据机械能守恒定律,有R mg m m C B 2212122⋅+=v v 得gR B 5=v小球在CA 段作平抛运动,因而有2212gt R = gRt 4=所以AB 段长为R t S C 2==v在AB 段,小球作匀加速度运动,因而有aS B 22=v小球在AB 段的加速度为)m/s (3.1245222===g S a B v(2)小球落到A 点瞬时速度的水平、竖直分量分别为 gR C ==v v 11gR gRggt 44===⊥v 因而瞬时速度大小为gR 52112=+=⊥v v v小球做平抛运动,落到A 点的加速度即为重力加速度,其方向垂直向下,切向方向54cos ==⊥v v θ 因而切向加速度大小为g g a 552cos ==θτ 说明 本题综合运用了运动学规律,牛顿运动定律、机械能守恒定律。
求解本题关键在于分析清楚小球在各段的规律。
另外,注意理解小球平抛落到A 点的切向加速度为重力加速度沿切向的分量。
2-13 如图所示,一链静止跨于一光滑圆柱上,圆柱轴为水平,链长为圆柱周长的一半。
大学物理第2章 质点动力学习题解答
第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-=ρ(单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+==ρρ, j ia m F ˆ12ˆ24+==ρρ 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+=ρ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a ρρρ2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F ρρρ2ω-==, ∴作用于质点的合力总指向原点。
2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1 N 1 m 1g TaFN 2 m 2gTaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
第2章_质点动力学
重点掌握变力的问题!
11
例:一根长为L,质量为M的柔软的链条,开始时链条 静止,长为L-l 的一段放在光滑的桌面上,长为l 的一段 铅直下垂。(1)求整个链条刚离开桌面时的速度;(2)求 链条由刚开始运动到完全离开桌面所需要的时间。 M dv dv dx dv xg 解: F xg Ma , a v L dt dt dx L dx
(1) F合 ma (2) a a a0
在加速平动参照系中: F惯 ma0 此时,F F惯 ma (4)
(4)式就在形式上与牛顿第二定律保持一致。
18
在加速平动参照系中:F惯 ma0
惯性力大小: 运动质点的质量m与非惯性系加速度 a的乘积。
*2.1.4 非惯性系 惯性力 非惯性系:相对于惯性系做加速运动的参考系。
在非惯性系内牛顿定律不成立。 1.平动加速系
设有一质点质量为m,相对于某一惯性系S,根据 牛顿第二定律,有: (1) F ma
合
设有另一参照系S/,相对于惯性系S以加速度
动,在S/参照系中,质点的加速度为
由运动的相对性,有:a a a0
2
牛顿第二定律:物体受到外力作用时,它所获得的加 速度的大小与合外力的大小成正比,与物体的质量成 反比,加速度的方向与合外力的方向相同。
数学形式:F ma 或 F m dv dt
在直角坐标系Oxyz中: 在自然坐标系中 :
Fix max Fiy ma y Fiz maz
在匀角速转动参考系中应用牛顿定律, 必须设想物体又受到另外一个与拉力大小相 等但方向相反的惯性力的作用,
2 Fi mω r
大学物理 第二章 质点动力学
A Fs cos
A F s
(2-27)
式中为力F与位移 s之间的夹角。 根据矢量标积的定义,上式可以写成:
(2-28) 注意:如果力为变力,或质点作曲线运动,力作的功就不 能用上式来计算,而应该应用微积分的方法来计算力作的功。
设质点在变力 F 的作用下,沿曲线从A点运动到B点。将A 到B 的路径分成许多小段,任取一小段位移,用 d r 来表示。由 于 d r 非常微小,可以认为质点在这段位移元上所受的力为恒 力,则力对质点作的元功为:
A
在直角坐标系中:
A Fx dx Fy dy Fz dz Fx dx Fy dy Fz dz
二、质点的动能定理:
dr vB B 1 2 1 2 dv A m dr m dv mvdv mvB mvA A A vA dt dt 2 2 即:合力对质点所作的功等于质点始、末两状态的动能 的增量。 所以说:功是动能变化的量度。
F dv 解: 6t m dt
dx v 3t dt
2
dx 3t 2dt
A
x
0
3 36 t F 3 t d t Fdx dt 144J
2 0
t
2
0
2 P F v 12t 3t 288W
补充例题
例4 已知用力 F从竖直方向缓慢拉质量为m 的小球,且 F 保持方向不变。 求 = 0 时,F 作的功。 L θ 解: F T sin θ 0 T cosθ mg 0 T
B
课后思考及作业
阅读:P60-68 作业:习题2-25、习题2-26
2 2 2 4 2 2
由点(2,0) 到点(2,4)由于x=2为常量,dx=0,所以:
第02章 质点动力学问题2:变质量火箭问题及其解答★★
1
喷出气体相对火箭的速度u 为常数模型:
一方面,记火箭开始飞行初始时刻为0t ,记火箭开始飞行初始时刻0t 的火箭质量为00)(M t m =,记火箭开始飞行初始时刻0t 的火箭速度为00)(V t v =。
另一方面,记火箭燃料用尽时刻为1t ,记火箭燃料用尽时刻1t 的火箭质量为M t m =)(1,记火箭燃料用尽时刻1t 的火箭速度为V t v =)(1。
记火箭消耗燃料行时刻10,
t t t t
≤≤ 的火箭质量及火箭速度分别为
)(,)(t v v t m m ==
这里,0d ,0d ><v m 。
假设喷出气体相对火箭的速度为u ,则有
厦门大学《普通物理》课程
质点动力学的变质量火箭问题及其解答
2
证明: 当10,
d t t t t
t t ≤≤+→时;利用“动量守恒定律”
,有 v m v v u m v v m m ⋅≡++-⋅-++⋅+]d [)d ()d ()d (
整理之,等价地表达为
0d d ≡⋅+⋅m u v m
等价地表达为
0]ln d[≡⋅+m u v
于是得到解答
)(ln )()(ln )(00t m u t v t m u t v ⋅+=⋅+
特别地,得到
)(ln )()(ln )(0011t m u t v t m u t v ⋅+=⋅+
等价地表达为
M
M u V V M u V M u V 000
0ln
ln ln ⋅+=⇔
⋅+=⋅+
证明完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mω − ∫T d T = ∫r rdr l
2 0 l
Mω 2 2 2 T (r ) = (l − r ) 2l
张力T在杆中不同位置处是不同的。在 杆的末端附近,张力最小,在杆的固定端附 近,张力最大。
返回
6
§2.3 力学相对性原理 非惯性系中的力学定律
一、力学相对性原理 一、力学相对性原理 在经典力学中,质量、时间、空间和 力与参照系无关。则在任何相对惯性系K 作匀速直线运动的参照系K '中,牛顿定律 都成立。
2 2
向上
25
第二章 第二章
以地面参照系,向上为正,由动量定理
I = ∫ dp = ∫
p0
p
t
0
∑ F dt
t 0
Δp = I = ∫ ( N − mg )dt = ∫ madt
0
t
或由物体动量的增量
d p = d ( mv) = m d v = ma d t
Δp = m ∫ (3 + 5t ) d t = 160(N⋅ s)
2
F
Fi
方向垂直转轴向外
ϕ P
14
惯性力Fi与引力F之比
第二章 第二章
Fi ω 2 R cos ϕ cos ϕ = ≈ << 1 F g0 290
F>>Fi
重力P方向:近似与引力F同向,指向地心(P 与F之间的夹角非常小) 重力P大小:引力F减去惯性力Fi的分量Fi cosϕ cos 2 ϕ ω P = mg ≈ F − Fi cos ϕ = mg 0 (1 − ) N 290 Fi cos 2 ϕ F g = g 0 (1 − ) 重力加速度 290 地球视为质量均匀分布的球体
练习
13
第67页 【例】2.10
第二章 第二章
地面上纬度ϕ处,有一质量为m的静止物 体。考虑地球自转的影响,求物体的重力和 该处的重力加速度。
【解】在地球非惯性系中,物体受力:万
惯 性 力
有引力F、惯性离心力Fi和地面支持力N。重 力P = F+Fi与支持力N等大反向。 ω mM 方向指 N 引力 F = G 2 = mg 0 m 向地心 R 惯性离心力 Fi = man = mω R cos ϕ
o θ
以角 θ 表示小球的位置,最 低点θ=0 ,逆时针为正方向,采 用自然坐标系,方程分量式为:
RT mg
v
1
第二章 第二章
切向 法向 作变换
dv − mg sin θ = mat = m dt v2 T − mg cosθ = man = m R
① ②
T mg
θ
dv dv dθ dv dv v = = ω= dt dθ dt dθ dθ R
标,选取距o点r至r+dr之间一段细杆微元 作为研究对象。 受力分析,设r处受力为T,r+dr处受 力为T+dT,此段细杆的运动方程为:
5
T − (T + dT ) = dm ⋅ an
第二章 第二章
v2 M − dT = d m⋅ = dr ⋅ ω 2 r r l
边界条件,r =l 时,T(l)= 0,积分得
t0
21
t
质点系动量的增量等于合外力的冲量
三、动量守恒定律 三、动量守恒定律 动量守恒定律 若质点系所受合外力为零,则质点系 的总动量保持不变。
第二章 第二章
F =0
P = ∑ mv = 常矢量
分 分 量 量 Py=Σmiviy=恒量(Fy=0时,在y方向上守恒) 式 式
Pz=Σmiviz=恒量(Fz=0时,在z方向上守恒)
t
0
冲量I:力的 I = 时间累积效应
∫t F d t
0
t
单位 牛·秒(N·s)
17
质点动量定理 Δt时间内,质点所受合力的冲量等 于Δt时间内质点动量的增量:
第二章 第二章
I = p − p0 = Δp
动量定理分量式 动量定理分量式 动量定理微分式 动量定理微分式
I x = ∫t0 Fx d t = mv x − mv0 x
Fi=ma
θ
a
θ
T
a θ = arctan g
mg
返回
16
§2.4 动量定理 动量守恒定律
一、质点动量定理 一、质点动量定理 牛顿定律是力和效果之间的瞬时关系, 考虑力持续作用一段时间的效应。 牛顿定律变形
Fdt = dp
第二章 第二章
作用的持续时间为t0~t,积分
∫t F d t = p − p 0 = m v − m v 0
8
二、非惯性系中的力学定律 二、非惯性系中的力学定律 如果参照系相对惯性系加速平动或转 动,那么,在这个系中牛顿定律不成立。 凡是牛顿定律不成立的参照系都是非惯性系 凡是牛顿定律不成立的参照系都是非惯性系 1.加速平动非惯性系 车厢加速度a0 物体m受合力F 地面参照系中 牛顿定律成立 物体相对车厢加速度a′
F = ma = m(a '+ a0 )
m
第二章 第二章
a
a'
a0
F
9
第二章 第二章
在以车厢为参照系观察时,物体受力 仍为F,但加速度为却为a′,F≠ma′,(比 如m相对车厢静止,a′=0,合力F为车厢对 m的摩擦力)牛顿定律不成立。
a'
m
F
F ≠ ma '
10
惯性力
a' m
第二章 第二章
为了使以车厢 F惯 作参照系时牛顿定律 F 仍能成立,假想物体 还受到一个惯性力的 作用,F惯 = – ma0。 F惯 = − ma0 则车厢参照系中牛顿 定律成立。 牛顿定律F + F惯 = ma ' 成立 惯性力是非惯性系中假想的力,是为使 非惯性系中的方程和惯性系中的一致,反映 了非惯性系的加速效应。惯性力没有施力 者,也没有反作用力。
第二章 第二章
∫
t
t0
F (t )dt
F 称为平均冲力
∫ F (t) d t = F=
t0
t
Δt
I Δt
冲量
I = F Δt
19
二、质点系动量定理 二、质点系动量定理 质点系(组):若干质点组成的系统。各 质点可受到外力和内力的作用。
F1 f12 m1 f13 f31 m3 f21 m2 F2 f23 f32 F3
第二章 第二章
F1、F2、F3
外力(合力) 内力
20
f12、f13、f21、f23、f31、f32
对每一质点应用质点动量定理
( F1 + f12 + f13 )dt = dp1 ( F2 + f 21 + f 23 )dt = dp2 ( F3 + f 31 + f 32 )dt = dp3
第二章 第二章
t
dI = F d t = d p
I y = ∫t0 Fy d t = mv y − mv0 y
t
dI x = Fx dt = dp x
dI y = Fy dt = dp y
18
I z = ∫t0 Fz d t = mv z − mv0 z dI z = Fz dt = dp z
t
冲力、平均冲力 冲力、平均冲力 F一般是时间t的函数,在碰撞、打击等 过程中物体之间的作用力称为冲力,冲力通 常持续时间短,变化大,难确定F(t)和t的关 系,常用平均冲力的概念,图中阴影面积与 力F曲线下的面积相等。 F F o t0 Δt t t
11
a0
2.转动非惯性参照系 惯性离心力 转动非惯性系 参照系相对惯性系只有转动 时,称为转动非惯性参照系。 惯性离心力 设水平转台绕固定于地面的坚 直轴以匀速 ω 转动,小球m用长r的线连在转 轴上相对转台静止。 ω
T = man = mω 2 ren 地面参照系
r m T
第二章 第二章
转台参照系 设 Fi = − man
0
26
2
冲 量 动 量
小球在水平面内以角速度 ω 匀速转动。 在转动一周的过程中,求: (1)小球动量增量; (2)小球所受重力的冲量; m (3)小球所受绳子拉力的冲量。
【例】 图示一圆锥摆,质量为m的
第二章 第二章
【解】 小球受力:重力mg和绳子
拉力F;F在竖直方向上的分量与重 力抵消,水平方向上的分量提供向心 力。转动一周后,小球又回到初始状 态,动量的增量为零;一周内向心力第二章
(4)守恒定律公式中的各质点速度必须相 对于同一参照系,在非惯性系中必须考虑惯 性力和惯性力的冲量。 (5)动量定理、动量守恒定律是自然界最 基本、最普遍的规律之一,虽然是从牛顿第 二定律导出,但在微观领域中仍然适用,在 高速时也成立。
练习
24
【例】一吊车底板上放一质量为10kg的物
ϕ P
15
【例】 火车在水平直轨道上以加速度a向
右行驶。在车中用细线悬挂一小球,悬线相 对于火车静止时与竖直方向成 θ 角,如图所 示。试以车厢为参照系,列出动力学方程, 并求出θ角。(本题5分)
惯 性 力
第二章 第二章
【解】重力mg、绳子拉力T
和惯性力Fi= ma ,小球静止 动力学方程 T + mg + Fi = 0 水平方向 T sin θ − ma = 0 垂直方向 T cosθ − mg = 0 得
体,若吊车加速上升,加速度为a = 3 + 5t (SI),则2秒内吊车底板给物体的冲量大 ;2秒内物体动量的增量大小 小I = Δp = 。(本题4分) a
第二章 第二章
【解】 以吊车为参照系,物体受
冲 量 、 动 量
N
到重力mg、惯性力ma和底板支持力 N的作用而相对吊车静止。 ma mg 底板对物体的作用力 方向向上 N = m( a + g ) = 128 + 50t 冲量 I = ∫0 Ndt = ∫0 (128 + 50t )dt = 356( N ⋅ s)