The temperature dependence of soil organic matter decomposition, and the effect of global warming

合集下载

生态学专业术语英汉对照2

生态学专业术语英汉对照2

Ecology 生态学individuals 个体population 种群communities 群落ecosystems 生态系统behavioral ecology 行为生态学physiological ecology 生理生态学evolutionary ecology 进化生态学molecular ecology 分子生态学fitness 适合度natural selection 自然选择adaptation 适应genotype 基因型phenotype 表型phenotypic plasticity 表型可塑性offspring 后代genes 基因nongenetic factors 非遗传因素not inherited 不遗传conditions 条件resources 资源environmental variation 环境变异internal regulation 内调节homeostasis 稳态negative feedback 负反馈tolerance 耐受性temperature 温度not depletable 不能耗掉solar radiation 太阳辐射decouple 退耦niche 生态位habitat 栖息地multidimensional niche space多维生态位空间Fundamental niche基础生态位Realized niche 实际生态位Prey 猎物Foraging 觅食Dimension 轴或维Global wind pattern 地球的风型The circulation of oceans 洋流Rain 降雨Havoc['hævək]灾害Hurricane 飓风Latitude 纬度Irradiance[i'reidiəns,-si]辐射度Summer solstice 夏至Winter solstice 冬至Adiabatic cooling 绝热冷却Scale 尺度Coriolis effect 科里奥利效应Intertropical convergence zone热带辐合带Jet streams 急流Albedo 反照率Gulf stream 墨西哥湾流Lee of a continent 背风面Upwelling 上涌流Adiabatic lapse rate 绝热温度递减率Inversion 逆温Heat of condensation 凝结热Heat 热Temperature profiles温度剖面Relative humidity 相对湿度Saturated water 饱和水water vapor 水蒸汽microclimate 微气候thermal['θə:məl]conductivity 热传导chemical properties of water 水的化学特性penetration of light through water光线穿透水Energy transfer and water phases能量转化和水相Deplete 耗竭Ions 离子Electropositive 正电性的Electronegative 负电性的Beer’s law 比尔定律Heat capacity 热容量Maximum density 最大密度Latent heat of vaporization增发潜热Heat of fusion 溶解热Sublimation 升华Soil water 土壤水Field capacity 田间持水量The uptake of water by roots根对水的吸收Aquatic plants 水生植物Water availability 水的可利用性Plant productivity 植物生产力Permanent wilting point 永久萎焉点Potential evapotranspiration rate潜在蒸发蒸腾速率Capillary pores 毛细管孔隙Resource depletion zone 资源枯竭区Halophytes 盐生植物Water balance in fish 鱼类的水平衡Amphibians 两栖类Water conservation by terrestrial animals 陆生动物的水保持Mammalian 哺乳动物Kidneys 肾脏Bladder 膀胱Beavers 河狸Osmoregulation 渗透调节Countercurrent exchange 逆流调节Hypertonic 高渗的Homeotherms 恒温动物Poikilotherms 变温动物Ectotherms 外温动物Endotherms 内温动物Temperature thresholds 温度阀Mechanisms 机理Enzyme 酶The thermoneutral zone 热中性区Dehydration 脱水Rates of development and growth发育和生长速度Acclimation and acclimatization 驯化和气候驯化Developmental threshold Temperature 发育温度阀Physiological time 生理时间Vernalization 春化Species distribution 物种分布Evolved response 进化反应Mean temperature 平均温度Isotherm 等温线Radiant energy 辐射能Photosynthesis 光合作用Efficiency of radiant energy conversion 辐射能的转换效率Changes in the intensity of radiation 辐射强度的变化Strategic and tactical response of plants to radiation 植物对辐射的战略和战术响应Compensation point 补偿点Photosynthetically active radiation (PAR)光和活性辐射Efficiency of Photosynthesis 光合作用效率Photosynthetic capacity 光合能力Diurnal and annual rhythms of solar radiation 太阳辐射日节律和年节律Resource depletion zone 资源耗竭带Strategic difference 战略差异Tactical response 战术响应Transpiration 蒸腾Net assimilation 净同化量Nutrient sources 营养物资源Nutrient budgets 营养预算Terrestrial communities 陆地群落Aquatic communities 水生群落Geochemistry 地球化学Global biogeochemical cycles 全球生物地球循环Mechanical weathering 机械风化Chemical weathering 化学腐蚀Wetfall 湿降落Dryfall 干降落Rainout component 雨水冲失成分Washout component 水冲失成分Streamflow 溪流Denitrification 脱氮Endorheic内陆湖泊Biogeochemistry 生物地球化学Hydrosphere carbon 水圈的碳Weathering 风化作用Nitrogen cycle 氮循环Phosphorus 氮Sediment 沉积型Lithospheric 岩石圈Sulfur 硫The fate of matter in the community群落中物质的命运Producers 生产者Consumers 消费者Decomposers 分解者Autotrophs 自养生物Grazing mammals 草食哺乳动物Phytoplankton 浮游植物Zooplankton 浮游动物Bacteria 细菌Fungi 真菌Nonliving 无生命Food chains 食物链Primary and secondary production 初级和次级生产力Net Primary production 净初级生产力Aphotic zone 无光区Photic zone 透光区Primary consumers 初级消费者Secondary consumer 次级消费者Soil formation 土壤形成The soil profile 土壤剖面Primary classification:the great soil groups 主要分类:大土壤群Higher vegetation 高等植物Dynamic mixture 动态混合物Organic matter 有机质Cells 细胞Pedology 土壤学Subsoil 亚土壤Mineral soil 矿物质土壤Parent material 母质Soil series 土系Soil surveyor 土壤勘测员Succession 演替Ecosystem patterns 生态系统格局Soil horizons 土层Humic acids 腐植酸Great soil groups 土壤群Population size 种群大小Age and stage structure 年龄和时期结构Zygote 受精卵Unitary organism 单体生物Modular organism 构件生物Ramets 无性系分株Clone 无性系Genet 基株Evolutionary individuals 进化个体Immediate ecological impact 直接生态作用Stable age distribution 稳定年龄分布Age pyramid 年龄金字塔Stationary age distribution 固定的年龄分布Stage structure 时期结构Sizes classes 个体大小群Natality 出生率Mortality 死亡率Survivorship 存活率Life tables 生命表K-factor analysis k-因子分析The fecundity schedule 生殖力表Population growth 种群增长Density-independent Population growth 非密度制约性种群增长Density-dependent growth-the logistic equation 密度制约性种群增长:逻辑斯缔方程Life expectancy 生命期望Survivorship curve 存活曲线Cohort 同生群Age-specific survival rate 特定年龄存活率Key factors 关键因子Killing factor 致死因子Basic reproduction rate 基础繁殖率Carrying capacity 环境容纳量Estimating density 估计密度Mark release recapture 标记重捕法H3Density dependence密度制约Equilibrium population density 平衡种群密度Relative density相对密度Allee effect阿利效应Exactly compensating准确补偿Undercompensating补偿不足Overcompensating过度补偿H4Population fluctuations 种群波动Chaos 混沌Expanding and contracting populations 增长种群和收缩种群Stable limit cycle 稳定极限环I1Competition 竞争Predation 捕食Parasitism 寄生Mutualism互利共生Intraspecific competition种内竞争Interspecific competition种间竞争Exploitation competition利用性竞争Interference competition干扰性竞争Cannibalism 自相残杀Altruism 利他主义Commensualism 偏利共生Amensualism偏害共生I2Dispersal扩散Territoriality领域性Niche shift生态位转移Allelopathy异株克生Competive asymmetry 竞争不对称Scramble competition争夺竞争Contest competition格斗竞争Zero net growth isocline零增长等斜线Self-thinning自疏Inbreeding近亲繁殖Reproductive value繁殖价值Leks 求偶场I3Competitive exclusion 竞争排斥Limiting similarity 极限相似性Competitive release 极限释放Character displacement 性状替换Apparent competition 表观竞争Enemy-free space 无敌空间Highly heterogeneous 高度异质性Gaps 断层Probability refuge 隐蔽机率J1Herbivores 食草动物Carnivores 食肉动物Omnivores 杂食动物Chemical defences 化学防御Behavioral strategies 行为对策Specialists 特化种Generalist 泛化种Monophagous单食者Oligophagous寡食者Polyphagous 多食者Parasites 寄生者J2Predator switching 捕食者转换Profitability of prey 猎物收益率Plant defence 植物防御The ideal free distribution 理想自由分布Functional response 功能反应Superpredation 超捕食K1Parasites 寄生物Modes of transmission 传播方式Social parasites 社会性寄生物Helminth worms 寄生蠕虫Insects 昆虫Necrotrophs 食尸动物Parasitoids 拟寄生物The cellular immune response 细胞免疫反应Vectors 媒介Optimal habitat use 最佳生境利用Brood parasitism 窝寄生Evolutionary constraint 进化约束K2Immunity 免疫Cevolution协同进化Gene for gene 基因对基因Mimics 模仿Herd immunity 群体免疫Antigenic stability 抗原稳定L1Pollination 传粉Symbiotic 共生性Obligate 专性Lichens 地衣Outcrossing 异型杂交Mitochondria 线粒体Chloroplasts 叶绿体M1Reproductive values 生殖价Hypothetical organism 假定生物Migration 迁移Senescence衰老Diapause 滞育Dormancy 休眠Longevity 寿命Enormous variation 巨大变异Energy allocation 能量分配Semelparity 单次生殖Iteroparity 多次生殖Carrying capacity 容纳量Current/future reproduction当前/未来繁殖Habitat disturbance 环境干扰The current/future reproductive output 当前/未来繁殖输出A high/low cost of reproduction 高/低繁殖付出Seed bank 种子库Torper蛰伏Hibernation 冬眠Cryptobiosis 隐生现象Aestivation 夏眠Migration 迁徙Morphological forms 形态学性状Generations世代Mechanistic level 机制水平N1Cooperation 合作Grouping-benefits 集群-好处Altruism 利他行为Group defens e 群防御Inclusive fitness 广义适合度Eusociality 真社会性Hymenoptera 膜翅目Haplodiploid 单倍二倍体Venomous sting毒刺N2Sex 性The costs of inbreeding 近交的代价Self-fertilization 自体受精Sexual versus asexual reproduction 有性和无性生殖Sex ratio 交配体制Monogyny 单配制Polygyny 一雄多雌制Polyandry 一雌多雄制Inbreeding depression 近交衰退Hermaphrodite 雌雄同体Recombine 重组Rare type advantage 稀少型有利Equal investment 相等投入Local mate competition局域交配竞争Epigamic 诱惑性Intrasexual selection 性内选择Intersexual selection 性间选择O1Alleles 等位基因Polymorphism 多型Genetic drift 遗传漂变Genetic bottleneck 遗传瓶颈Rare species 稀有物种Extinction 灭绝Chromosome染色体Genotype 遗传型Phenotype 表现型Gene pool 基因库Gel electrophoresis 凝胶电泳O2Gene flow 基因流Differentiation 分化Sibling species 姊妹种Genetic revolution 遗传演变Peripheral isolates 边缘隔离PTransfer efficiencies 转换效率(net)primary productivity (净)初级生产力Respiratory heat 呼吸热Grazer system 牧食者系统Food chains 食物链Pathways of nutrient flow营养物流Food webs 食物网QCommunity structure 群落结构Community boundaries 群落边界Guilds同资源种团Community organization 群落组织Species diversity 物种多样性Energy flow 能量流Superorganism 超有机体Species-poor/rich 物种贫乏/丰富Biomass stability 生物量稳定性Tundra 冻原Island biogeography 岛屿生物地理学Turnover rate 周转率Source of colonists 移植者源Relaxation松弛Edgespecies 边缘物种Interior species 内部物种Corridor 走廊Greenways 绿色通道Community assembly群落集合Grazers 食草动物Carnivores 食肉动物Keystone species 关键物种Dominance control 优势控制Habitat affinity生境亲和力Prey switching 猎物转换RSuccession 演替Climax Community 顶级群落Pioneer species 先锋物种Primary succession 原生演替Alluvial deposit 冲积层Secondary succession 次生演替Acidifying effect 酸化作用Opportunistic机会主义Cellulose 植物纤维素Lignin 木质素Resource ratio hypothesis 资源比假说Fluctuations 波动Cyclic succession 循环演替Disturbance 干扰Patch dynamics板块动态Mini-succession 微型演替Cambium 形成层Neotropical forest 新热带雨林Priority effect 优先效应SVegetation 植被Ecotones 群落交错区Climate map 气候图Biomes 生物群系Heat budget 热量预算Zonation 分带Grassland 草地Primary regions 基本区域Desertification 荒漠化Arctic tundra 北极冻原Alpine tundra 高山冻原Permafrost 永冻层Coniferous boreal forest北方针叶林Temperature forest 温带森林Tropical forest 热带森林Salinization 盐渍化Primary saltwater regions 基本盐水区域Opens oceans 开阔海洋Continental shelves 大陆架The intertidal zone 潮间带Salt marsh 盐沼Mudflats淤泥滩Mangroves 红树林Pelagic 浮游生物Photic zone 有光带Phyto plankton 浮游植物Nekton 自泳动物Benthic 底栖Rocky shore 岩岸Zonation 分带Streams 溪流Ponds 池塘Environmental concerns 环境关系Catchment area 集水区Temperature inversion 温度逆转Biomanipulation 生物处理TThe goals of harvesting 收获目标Quota limitation 配额限制Environmental fluctuation环境波动Maximum possible yiel最大可能产量Net recruitment 净补充量Surplus yield 过剩产量Age structure 年龄结构Population data 种群数据Stable equilibrium 稳定平衡Harvesting effort 收获努力Gun licences 猎枪执照Rod licences钓鱼许可证Upwelling of cold water冷水上升流Fisheries 渔业Ocean productivity 大洋生产力The tragedy of the common公共灾难Overexploitation 过捕Pollution 污染Global decline 全球性下降By-catch 附带收获Community perturbations 群落扰动Oil spills 原油泄漏Eutrophication 富营养化Algal blooms 水华Red tides 赤潮Biomagnification 生物放大作用UPest 有害生物Natural enemies 天敌Ruderal 杂草型Economic/aesthetic injury level 经济/美学损害水平Cultural 栽培Biological control 生物防治‘Silent spring’寂静的春天Chemical toxicity 化学毒性Evolution of resistance抗性进化Microbial insecticide微生物杀虫剂Inoculation接种Augmentation扩大Inundation 爆发VRare species 稀有种Genetic diversity 遗传多样性Extinction 灭绝Endemic species 特有种Habitat fragmentation 生境片段化Insularization 岛屿化Biodiversity 生物多样性Strategies for conservation保育对策Antarctic treaty 南极协议Ecotourism生态旅游WAir pollution空气污染Acid rain 酸雨Water pollutants 水体污染物Soil pollution 土壤污染Acid deposition 酸降Pathogens病源体Chemical oxygen demand 化学需氧量Anaerobes 厌氧菌The greenhouse effect 温室效应Carbon dioxide 二氧化碳Ozone 臭氧Photochemical smog 光化学烟雾XOverview 概述Soil erosion 土壤侵蚀Soil compaction 土壤硬结Contour ploughing等高耕作Cover crops 覆盖作物No-till farming 免耕农业。

TPO 59 Listening

TPO 59 Listening

1.What are the speakers mainly discussing?A.Students'concerns about the quality of life on campusB.Funding for new equipment for the gymnasiumC.The university's academic reputationD.A survey that the student wants to conduct2.Why does the woman conduct the survey?A.The dean of admissions asked her to conduct the surveyB.The survey fulfills a requirement for one of her classesC.The survey is part of her new job dutiesD.The Campus Life staff conducts a survey every year3.What situation does the man think is related to the poor quality of life on campus?A.The rise in the use of the athletics centerB.The decline in the quality of student s'academic workC.The decrease in the number of applicants for admissionD.The increase in the number of students who transfer to other schools4.According to the survey results,what aspects of campus life are the students least satisfied with?Click on2answersA.The auditoriumB.The loungesC.The cafeteriaD.The gymnasium5.Why does the man say thisA.To indicate that he is not certain about the resultsB.To indicate that ho thinks the results are obviousC.To help the student interpret the resultsD.To point out an error in the results1.What is the lecture mainly about?A.Differences between tundra and grassland ecosystemsB.Reasons seabirds prosper in an island ecosystemC.Why introduced species have difficulty adapting to a new ecosystemD.How introduced species can affect ecosystems2.What initially caused the ecosystem of some of the Aleutian Islands to change?A.Traders brought a new species of mammal to some of the islandsB.Scientists introduced a new species of grass on some of the islandsC.The temperature of the soil suddenly decreased on some of the islandsD.The population of nest‐building seabirds increased on some of the islands3.The professor mentions that some of the Aleutian Islands were deprived of ocean‐derived nutrients.What was the direct result of the deprivation?A.A rise in the fox populationB.An absence of seabirdsC.A change in the vegetationD.The exposure of volcanic rock4.What does the professor imply when she points out that most seabirds have only one offspring per year?A.It will take many years for the Aleutian ecosystem to be restoredB.Many species of seabirds are in danger of becoming extinctC.Scientists should have been able to predict the foxes'impactD.The seabirds would have become endangered even without the foxes5.What is the professor's opinion regarding the introduction of nonnative species into an ecosystem?A.It is almost always disastrous for the species native to that habit atB.Its risks can be minimized if it is done with sufficient forethoughtC.Its consequences are impossible to predictD.Its scientific usefulness is questionable6.What does the professor imply when she says thisA.She is excited by the implications of the student's ideaB.She wants the student to explain better what he meansC.The student's theory does not fit the factsD.The student's explanation is probably correctListening L21.What does the professor mainly discuss?A.The popularity of city scenes in nineteenth century paintingsB.A popular nineteenth‐century art form that is little known todayC.Techniques developed by nineteenth‐century artists to make t heir work lookrealisticD.Reasons that art became a popular form of entertainment in the nineteenthcentury2.What was one significant contribution that Robert Barker made to the development of panoramas?A.He was the first person to create a panorama from photographsB.He determined how to enlarge miniature panoramasC.He constructed buildings for panoramas throughout EuropeD.He designed a building suitable for viewing panoramas3.According to the professor,what are some of the reasons that panoramas seemed so realistic to viewers?Click on3answersA.They were displayed without framesB.They were painted by skilled artists.C.They were copied from photographsD.They were shown in spaces with only artificial lightE.They were sometimes displayed together with plants4.According to the professor,why were so many spectators interested in seeing a panorama titled A View of Paris from the Roof of the Tuileries?A.It was a rare opportunity for London residents to see a realistic depiction of ParisB.It was the first time that an artist had created a p ainting while working on theroof of a high‐rise buildingC.They had heard that it offered a view of Pans that no one had ever seen beforeD.They knew that they would be able to confirm the accuracy of the painting'sdetails for themselves5.Why does the professor mention the practice of charging admission to buildings that displayed panoramas?A.To help explain why many panoramas no longer existB.To illustrate the high construction costs typical of the periodC.To describe how artists were paid for their paintingsD.To explain why panoramas were not popular6.Why does the professor say thisA.To suggest that the development of panoramas could not have been predictedB.To give examples of nineteenth‐century inventions that were more importantthan the panoramaC.To emphasize the point that people were beginning to see their surroundings ina new wayD.To indicate that he is not certain which of the inventions he mentions came first1.What are the speakers mainly discussing?A.The student's opinion of the professors classB.The student's grade on a recent testC.The professors idea about starting a French clubD.The upcoming events scheduled for the French club2.How does the student know about the Spanish club?A.He has seen flyers about the club's eventsB.He helped start the club last semesterC.His Spanish professor asked him to join itD.His roommate told him about it3.What does the student imply about his high school French classes?A.They were not as comprehensive as the currentB.They were more interesting than the current classC.They did not help prepare him for college‐level classes.D.They helped him become interested in French films4.How does the student first react when the professor asks him to organize a French club?A.He is enthusiastic about planning activitiesB.He is afraid that the professor will not help himC.He is confident that many students will joinD.He is doubtful that he has enough time5.What factors influence the student's decision to start the club?Click on2answersA.He wants to get a good grade in the classB.He wants to improve his resumeC.He enjoys speaking French outside of the classroomD.He has prior experience running a club1.What is the lecture mainly about?A.The various well‐known effects of mass wastingB.The processes involved in slower types of mass wastingC.The characteristics of mass wasting in permafrost regionsD.The practice of building in areas where mass wasting occurs2.What is one condition that the professor mentions that is necessary for creep to occur?A.A hill or mountain has a steep slopeB.Water is present to move loose soil down the slopeC.There must be trees growing on the side of the slopeD.There is a soil layer that expands and contracts on a periodic basis3.According to the professor,how is solifluction different from creep?Click on2answersA.Solifluction requires less soil moisture than creepB.Solifluction is more difficult to measureC.Solifluction moves soil in one massD.Solifluction requires cold temperatures4.What does the professor imply when he apologizes for using Spitsbergen as an example?A.He does not think it is the best example of the process of solifluctionB.He knows that the students would prefer to hear about the local areaC.He has talked about Spitsbergen in previous classesD.He is sorry that the students are unfamiliar with Spitsbergen5.What does the professor think is the reason for slow solifluction rates in some areas of Spitsbergen?A.Differences in the thickness of the permafrostB.The effect of wind on the accumulation of snowfallC.The varying amount of snowfall from year to yearD.The use of slope stabilization techniques m those areas6.What is the professor's opinion of the construction of buildings in permafrost areas?A.It is well worth the risksB.It always speeds up the process of solifluctionC.It should be done only if specific guidelines are followedD.It's safe because the ground is permanently frozen1.What aspect of the Middle Ages is the lecture mainly about?A.Ways in which craftspeople improved their productivityB.The increasing dependence of towns on one another for economic stabilityC.Reasons why trade expanded in medieval societyD.How businesses were organized and regulated2.According to the professor,what was one of the benefits that guilds provided?A.They established rules for how things should be madeB.They established a standardized system of bankingC.They promoted competition between merchants from different towns.D.They paid wages to retired craftspeople3.The professor describes the process by which someone m the Middle Ages became a master of a trade Put the steps in the correct orderClick on a phrase Then drag it to the space where it belongs1.2.3.4.Answer ChoicesBecome a guild memberWork as a journeymanPerform seven years of apprenticeshipProduce a masterpiece4.What does the professor imply about women guild membersA.They were required to pay higher membership fees than menB.Their jobs were often related to their husbands jobsC.They were restricted to food‐making guildsD.Their apprenticeship took longer than that of men5.Why does the student say thisA.He thinks the professor may have made a mistakeB.He would like the professor to speak more slowlyC.He is surprised by what the professor just saidD.He wants to know the professors opinion of the practice she describesA B C BD BD A C A B CB D ABE D A CC D A D BDB D CDC B CD A CBDA B C。

环境与自然资源英语词汇大全

环境与自然资源英语词汇大全

环境与自然资源英语词汇大全Environmental and Natural Resources VocabularyIntroduction:In today's globalized world, environmental conservation and sustainable use of natural resources have become crucial. This article aims to provide a comprehensive list of English vocabulary related to the environment and natural resources to enhance understanding and communication in this field.1. Biodiversity:Biodiversity refers to the variety and variability of life on Earth. It encompasses the diversity of species, ecosystems, and genetic resources within a particular region or on a global scale. Biodiversity is essential for maintaining ecological balance and providing various ecosystem services.2. Ecosystem:An ecosystem is a dynamic system comprising living organisms (plants, animals, microorganisms) and their physical environment (air, water, soil). Ecosystems can be terrestrial (forests, grasslands) or aquatic (oceans, lakes) and play a crucial role in maintaining environmental stability.3. Conservation:Conservation involves the sustainable management and protection of natural resources to ensure their long-term availability for future generations. Conservation efforts aim to preserve biodiversity, protect habitats, and mitigate environmental degradation caused by human activities.4. Renewable Resources:Renewable resources are natural resources that can replenish or regenerate over time. These resources include solar energy, wind power, hydropower, biomass, and geothermal energy. Unlike non-renewable resources, renewable resources have sustainable and environmentally friendly characteristics.5. Non-Renewable Resources:Non-renewable resources are finite in nature and cannot be replaced or regenerated once depleted. Fossil fuels such as coal, oil, and natural gas are examples of non-renewable resources. Efficient utilization and alternative energy sources are key considerations in reducing dependence on non-renewable resources.6. Pollution:Pollution refers to the introduction of harmful substances or pollutants into the environment, causing adverse effects on human health and ecological balance. Types of pollution include air pollution, water pollution, soil pollution, noise pollution, and light pollution.7. Climate Change:Climate change refers to long-term alterations in temperature patterns, weather conditions, and precipitation levels. It is primarily caused by human activities, such as increasing greenhouse gas emissions from burning fossil fuels and deforestation. Climate change poses significant challenges to global sustainability.8. Deforestation:Deforestation is the clearing, removal, or destruction of forests primarily for agricultural or industrial purposes. It leads to habitat destruction, loss of biodiversity, and contributes to climate change by reducing carbon storage capacity.9. Sustainable Development:Sustainable development aims to meet present needs without compromising the ability of future generations to meet their own needs. It focuses on balancing economic growth, social well-being, and environmental protection. Sustainable development ensures the efficient use of resources and minimizes negative impacts on the environment.10. Extinction:Extinction occurs when a species ceases to exist. It can be caused by natural factors or human activities such as habitat destruction, pollution, overexploitation, and climate change. The loss of species has significant ecological and environmental implications.11. Organic Farming:Organic farming refers to agricultural practices that avoid the use of synthetic pesticides, fertilizers, and genetically modified organisms (GMOs). It promotes biodiversity conservation, soil health, and sustainable farming methods.12. Conservationist:A conservationist is an individual or organization dedicated to protecting and preserving natural resources, ecosystems, and biodiversity. Conservationists advocate for sustainable development, environmental policies, and raising public awareness about environmental issues.Conclusion:This comprehensive compilation of environmental and natural resources vocabulary provides an essential foundation for understanding and discussing various aspects of environmental conservation, sustainable development, and biodiversity. Effective communication using this vocabulary is crucial for addressing environmental challenges and finding innovative solutions to protect our planet for future generations.。

海南植胶区砖红壤土类有机质变化趋势

海南植胶区砖红壤土类有机质变化趋势

海南植胶区砖红壤土类有机质变化趋势唐群锋;曹启民;杨全运【摘要】针对海南植胶区土壤肥力普遍下降,以海南植胶区砖红壤亚类和黄色砖红壤亚类为研究对象,采用不同年代耕型和非耕型土属有机质含量对比的方法,研究了土壤有机质的变化趋势.结果表明,耕型砖红壤土属有机质含量平均下降幅度为26.09%,非耕型砖红壤土属有机质含量平均下降幅度为23.36%;3种耕型黄色砖红壤土属有机质含量平均上升幅度为41.77%,6种耕型黄色砖红壤土属有机质含量平均下降幅度为22.77%;4种非耕型黄色砖红壤土属有机质含量平均上升幅度为51.50%,5种非耕型黄色砖红壤土属有机质含量平均下降幅度为19.67%.说明砖红壤亚类耕型和非耕型土属有机质平均含量均表现出明显的下降趋势,黄色砖红壤亚类有机质平均含量变化趋势:3种耕型土属明显上升,6种明显下降;4种非耕型土属明显上升,5种明显下降.【期刊名称】《西南农业学报》【年(卷),期】2014(027)002【总页数】4页(P715-718)【关键词】砖红壤亚类;黄色砖红壤亚类;土壤有机质;变化趋势;海南植胶区【作者】唐群锋;曹启民;杨全运【作者单位】海南省农垦中心测试站,海南海口570206;海南省农垦科学院,海南海口570206;海南省农垦科学院,海南海口570206;海南省农垦中心测试站,海南海口570206【正文语种】中文【中图分类】S153.61;S714.5全球陆地土壤有机质中碳的储量比存在于大气和植物体中的碳要多大约3倍[1],而森林土壤有机质占据陆地土壤有机质80%左右。

有些土壤有机质具有持续上万年的稳定性,但有些很快就会分解。

有研究表明,分子结构并不是控制有机质稳定性的唯一因素,事实上,环境和生物因素对有机质稳定性更具有主导性[2],众多研究表明,土壤有机质受气候和局部环境变化的重要影响[3],温度和降雨量、地理因素或土地利用方是影响土壤有机质含量的关键因子[4~6]。

砒砂岩区典型坡面土壤水分空间分布特征

砒砂岩区典型坡面土壤水分空间分布特征

中国水土保持科学Science o£ Soil and Water Conservation第19卷第1期2021年2月Vol. 19 No. 1Feb.2021砒砂岩区典型坡面土壤水分空间分布特征辛军伟尚振坤1,王俊鹏1,朱世雷1,甄 庆23,张兴昌心,马炳召2」(1•西北农林科技大学资源环境学院,712100,陕西杨凌;2.西北农林科技大学水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室,712100,陕西杨凌;3.中国科学院水利部水土保持研究所,712100,陕西杨凌)摘要:土壤水分是水文循环的重要组成部分,是干旱半干旱地区植被重建和生态环境修复的重要影响因素。

探明坡面土壤水分的空间分布特征,对于植被重建具有指导意义。

采用经典统计学和地统计学相结合的方式,分析坡面土壤水分的分布规律、变异特征和空间结构。

结果表明:1)坡面0~ 200 cm 土壤平均含水量介于9. 93% ~13. 88%之间,随土层深度的增加而增大,各层土壤水分均为中等程度变异,变异系数随深度的增加呈现减小趋势。

2)坡面不同深度土壤水分的差异与坡位有关。

浅层土壤水分坡中和坡下高于坡上,而在60 cm 以下正好相反,土壤水分坡上高于坡下。

3)高斯模型和球状模型能拟合大部分土层的空间结构,除60-80 cm 土层以外,其他土层土壤含水量均为强空间依赖性。

4)最小变程为15.60 m,可以为后续样点布设提供参考依据。

该研究结果有助于了 解砒砂岩地区土壤水分分布特征,对该地区土壤水资源评价和植被重建具有重要意义。

0 ~40 cm 土层坡中和坡下的土壤含水量比坡上高,坡下和坡中更有利于植被的恢复。

关键词:土壤水分;植被重建;空间变异;深剖面;砒砂岩区中图分类号:S152.7文献标志码:A 文章编号:2096-2673(2021)01 -0052-08DOI : 10.16843/j. sswc. 2021.01.007Spatial distribution characteristics of soil moisture on a typical slopein the feldspathic sandstone area of Inner MongoliaXIN Junwei 1, SHANG Zhenkun 1 ,WANG Junpeng 1 ,ZHU Shilei 1 ,ZHEN Qing 2-3,ZHANG Xingchang 1,2,3, MA Bingzhao 2,3(1. College of Natural Resources and Environment , Northwest A&F University , 712100, Yangling, Shaanxi , China ;2. State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau , Institute of Soil and Water Conservation ,Northwest A&F University , 712100, Yangling, Shaanxi , China ; 3. Institute of Soil and Water Conservation ,Chinese Academy of Sciences and Ministry of Water Resources , 712100, Yangling , Shaanxi, China )Abstract : [ Background ] Soil moisture is an important part of hydrological cycle , and significantlyinfluences vegetation recovery and ecological environment restoration in arid and semiarid area. Understanding the spatial distribution characteristics of soil moisture on the slope is crucial for vegetationrestoration in the feldspathic sandstone area, which is widely distributed in the border of Shanxi ,Shaanxi , and Inner Mongolia in the north of the Loess Plateau. [ Methods ] A case study was conducted to reveal the spatial distribution characteristics of soil moisture , and 0 - 600 cm deep layer soil moisturesamples were obtained by soil drill sampling. Soil samples were collected at 10 cm intervals in the surface0-20 cm layer , and 20 cm intervals under 20 cm layer , and totally 862 samples were obtained . Classical收稿日期:2020-01-16修回日期:2020-02-13项目名称:国家重点研发计划“鄂尔多斯高原砒砂岩区生态综合治理技术” (2017YFC0504504)第一作者简介:辛军伟(1994—),男,硕士研究生。

地基阻抗力时域递归参数的计算方法及程序实现

地基阻抗力时域递归参数的计算方法及程序实现

第30卷 第1期 岩 土 工 程 学 报 Vol.30 No.1 2008年 1月 Chinese Journal of Geotechnical Engineering Jan., 2008 地基阻抗力时域递归参数的计算方法及程序实现赵建锋1,杜修力2(1.青岛理工大学土木工程学院,山东 青岛 266033;2.北京工业大学城市与工程安全减灾省部共建教育部重点实验室,北京 100022)摘 要:基于笔者提出的考虑基础动力阻抗函数频率相关特性的地基阻抗力时域计算方法,对时域递归参数的拟合方法和所选系统稳定条件进行了研究,编制了阻抗力时域递归参数的计算程序。

基于通用有限元软件和地基阻抗力时域差分形式,完成了考虑土–结构动力相互作用影响的结构时程分析程序二次开发。

最后,通过数值算例验证了该方法的有效性,并初步讨论了土–结构相互作用系统动力响应分析中基础动力阻抗函数频率相关性的影响。

关键词:土–结构动力相互作用;动力阻抗函数;频率相关;稳定性;时域差分中图分类号:TU470 文献标识码:A 文章编号:1000–4548(2008)01–0034–07作者简介:赵建锋(1976–),男,河南叶县人,讲师,博士,主要从事结构动力分析方面的研究工作。

E-mail: zhaojf@。

Computation method and realization procedure for time-domain recursiveparameters of ground resistanceZHAO Jian-feng1, DU Xiu-li2(1. College of Civil Engineering, Qingdao Technological University, Qingdao 266033, China; 2. Key Lab for Urban Security & DisasterEngineering of Ministry of Education, Beijing University of Technology, Beijing 100022, China)Abstract: Based on the time-domain approach of computing foundation resistance with the frequency dependence of foundation impedance, the parameter fitting method and system stability were studied, and the computation procedure for time-domain recursive parameters of ground resistance was developed. By use of general FEM software and the time-domain difference of ground resistance, the structure history analysis programs with consideration of soil-structure dynamic interaction was developed. Finally, a numerical example was presented to verify the validity of the proposed method. The effect of impedance frequency dependence of foundation on the dynamic response of soil-structure system was preliminary discussed.Key words: soil-structure dynamic interaction; foundation dynamic impedance; frequency dependent; stability; time-domain difference0 引 言目前我国抗震计算中常采用刚性地基假定,即把地基或岩土看作为刚性,地震时建筑物基础的运动与其邻近自由场地一致,未考虑土和建筑物间的相互作用及地基辐射阻尼的影响。

托福阅读备考之长难句分析:地球上的二氧化碳

托福阅读备考之长难句分析:地球上的二氧化碳

托福阅读备考之长难句分析:地球上的二氧化碳下面给大家分享托福阅读备考之长难句分析:消失的化石记录的相关内容,希望你们喜欢。

托福阅读备考之长难句分析:地球上的二氧化碳The answer to the first question is that carbon dioxide is still found in abundance on Earth, but now, instead of being in the form of atmospheric carbon dioxide, it is either dissolved in the oceans or chemically bound into carbonate rocks, such as the limestone and marble that formed in the oceans. ( TPO41, 53) abundance /?'b?nd(?)ns/ n. 丰富,充裕atmospheric /?tm?s'fer?k/ adj. 大气的dissolve /d?'z?lv/ v. 溶解limestone /?la?m?st??n/ n. 石灰石marble /'mɑ?b(?)l/ n. 大理石大家自己先读,不回读,看一遍是否能理解The answer to the first question is ( that carbon dioxide is still found in abundance on Earth), but now, (instead of being in the form of atmospheric carbon dioxide), it is either dissolved in the oceans or chemically bound into carbonate rocks, (such as the limestone and marble) (that formed in the oceans.) ( TPO41, 53) 托福阅读长难句分析:这个句子的主干是:The answer to the first question is 从句 , but now, it is either dissolved in the oceans or chemically bound into carbonate rocks 修饰一:(that carbon dioxide is still found in abundance on Earth) ,从句中文:在地球上二氧化碳依然可以大量被找到修饰二:(instead of being in the form of atmospheric carbon dioxide) ,介词短语中文:它不是以大气中的二氧化碳的形式出现修饰三:(such as the limestone and marble that formed in the oceans.) ,介词短语中文:例如在海洋中形成的石灰石和大理石修饰四:(that formed in the oceans.) ,从句中文:在海洋中形成的参考翻译:第一个问题的答案是,在地球上二氧化碳依然可以大量被找到,但是现在,它不是以大气中的二氧化碳的形式出现,它溶解在海洋里或者通过化学作用进入碳酸盐岩中,例如在海洋中形成的石灰石和大理石。

科技英语翻译1

科技英语翻译1

增译翻译练习This action externally appears like the discharge of a capacitor.这一作用从表面上看起来像是电容器的放电现象。

Once out of the earth's gravity, an astronaut is affected by still another problem — weightlessness.一经摆脱了地球的引力束缚,宇航员又会遭遇到另一个问题—失重。

By minimizing the microscopic imperfections scientists are making far stronger ceramics.科学家们正通过最大限度地减少微观瑕疵来制造强度高得多的陶瓷。

Atomic cells are small and very light, as compared to ordinary dry ones.与普通干电池相比,原子电池体积小,而且重量特轻。

Transistors can make previously large equipment much smaller.晶体管能使原先体积很大的设备大为缩小。

Astronomers have evidence of a few other stars too, which might have black holes as companions.天文学家们有证据表明,还存在一些其他的恒星,这些恒星可能以黑洞为伴星。

The key to the new materials is researchers‘ increasing ability to manipulate substances at the molecular level.开发新材料的关键在于增强研究人员在分子层次操纵物质的能力。

The largest and most expensive products cannot, because of their size, be testable in the factory.体积最庞大价格最昂贵的产品正是由于其体积太大,不能在厂里测试。

氡在空气中的运移

氡在空气中的运移

收稿日期:2003202219 基金项目:自然科学基金(20021075) 作者简介:刘鸿福(1957-),男,河北天津人,博士,教授,主要从事地球探测与信息技术工作。

第23卷 第3期2003年9月 山 西 煤 炭SHANXI COALVol 123 No.3 Sep.2003氡在空气中的运移刘鸿福(太原理工大学,山西太原030024)摘 要:氡在理想条件下的空气中运移究竟是什么规律,通过在较理想条件下的实验,氡在空气中“自身”固有的运移现象是:自氡源产生氡气开始,氡气就具有很强的向上运移能力。

其运移规律是:氡向上运移能力大于向下及横向运移能力,并随着运移距离加大,与横向运移和向下运移相比,这一能力仍在加强。

关键词:氡;运移规律;α杯;活性炭中图分类号:TQ 11614+6 文献标识码:A 自Fl ügge 和Zimens [1.2](1939年)提出氡气扩散运移机制以来,人们相继又提出了众多氡气运移假说[2-10],如氡气的对流运移、渗流运移、搬运机制、潮汐作用、大气压的纵深效应、将各作用合而为一的“多棒接力传递”机制、其它气体流动向上的带动及微气泡的携带等,但均不能解释在距地面上千米的高空为何含有大量的氡及其子体,以及氡又是如何从地下深部运移到地表附近的。

就氡的运移,Schery 等[4,9,11](1984),О.Б.Нещеткин[4](1987),Krister Kristiansson 等[12](1990),M.M.Соколов等[13](1980),A.Tidjani 等[14](1984),Somogyi 和L én rt [8,11](1986),A.Varhegyi [15](1992),T.T.Vandergraaf [16](1995)等均做过大量的的实验。

Clements [17](1974),D.J.Holford 等[17,18](1993),Loureiro 等[17](1990)曾用一维、二维、三维数学模型进行了氡气的运移模拟,并提出了氡运移的模型。

可持续发展建议英语作文

可持续发展建议英语作文

可持续发展建议英语作文Sustainable Development: A Pathway to a Brighter FutureThe concept of sustainable development has gained significant attention in recent years as the world grapples with the pressing challenges of environmental degradation, resource depletion, and the need to ensure a better future for generations to come. Sustainable development is a holistic approach that aims to balance economic growth, social well-being, and environmental protection, creating a harmonious and resilient ecosystem that can sustain itself over the long term. As we navigate the complex and interconnected issues facing our planet, it is crucial that we embrace sustainable development as a guiding principle to secure a prosperous and equitable future for all.One of the key pillars of sustainable development is the transition to renewable energy sources. The reliance on fossil fuels has had a detrimental impact on the environment, contributing to climate change, air pollution, and the depletion of natural resources. By investing in and promoting the use of renewable energy technologies such as solar, wind, and hydropower, we can significantly reduce our carbon footprint and mitigate the effects ofclimate change. This not only benefits the environment but also creates new job opportunities in the growing renewable energy sector, stimulating economic growth and reducing our dependence on non-renewable resources.Another crucial aspect of sustainable development is the adoption of sustainable agricultural practices. The current industrial agricultural system has led to soil degradation, water scarcity, and the loss of biodiversity, negatively impacting the long-term viability of our food production systems. Sustainable agriculture, which emphasizes organic farming, crop rotation, and the conservation of natural resources, can help to restore the balance of our ecosystems and ensure food security for generations to come. By supporting local and regional food systems, we can also reduce the environmental impact of long-distance food transportation and promote community resilience.Sustainable urban development is another area where significant progress can be made. As the world's population continues to urbanize, it is essential that we design and build cities that are environmentally friendly, socially inclusive, and economically vibrant. This can be achieved through the implementation of green building practices, the development of efficient public transportation systems, and the creation of green spaces and urban forests that enhance the livability and sustainability of our cities. By prioritizing sustainableurban planning, we can create cities that are more livable, resilient, and adaptable to the challenges of the future.The transition to a circular economy is another crucial component of sustainable development. The traditional linear economy, where resources are extracted, used, and then discarded, is no longer sustainable. A circular economy, on the other hand, aims to keep materials and resources in use for as long as possible, minimizing waste and maximizing the value of products and materials. This can be achieved through strategies such as product design for longevity, the implementation of reuse and recycling systems, and the development of new business models that prioritize the circular flow of resources.Sustainable development also requires a focus on social equity and inclusion. Ensuring that the benefits of sustainable practices are equitably distributed and that marginalized communities are not disproportionately impacted by environmental challenges is essential for creating a just and resilient society. This can be achieved through policies and programs that address issues such as poverty, access to education and healthcare, and the empowerment of vulnerable populations.Finally, the successful implementation of sustainable development requires a global collaborative effort. No single country ororganization can tackle the complex challenges we face alone. By fostering international cooperation, sharing best practices, and aligning policies and initiatives, we can create a more coordinated and effective approach to sustainable development. This will require strong leadership, the involvement of all stakeholders, and a commitment to long-term thinking and action.In conclusion, sustainable development offers a comprehensive and holistic approach to addressing the pressing environmental, social, and economic challenges of our time. By embracing renewable energy, sustainable agriculture, green urban planning, circular economy principles, and social equity, we can create a more sustainable and equitable future for all. This journey will require a collective effort, but the rewards of a healthier, more resilient, and prosperous world are well worth the investment. Let us all take responsibility and play our part in shaping a sustainable future for generations to come.。

2011理工职称英语阅读理解背诵版

2011理工职称英语阅读理解背诵版

(3)第一篇 Ford Abandons Electric Vehicles (3)第二篇(新增)World Crude Oil Production May Peak a Decade Earlier Than Some Predict (3)第三篇 Citizen Scientists (4)第四篇Motoring Technology (4)第五篇Late-Night Drinking (5)第六篇(新增)Weaving with Light (6)第七篇Sugar Power for Cell Phones (6)第八篇Eiffel Is an Eyeful (7)第九篇 Egypt Felled by Famine (7)第十篇Young Female Chimps Outlearn Their Brothers (8)第十一篇 The Net Cost of Making a Name for Yourself (8)第十二篇 Florida Hit by Cold Air Mass (9)第十三篇Invisibility Ring (9)第十四篇 Japanese Car Keeps Watch for Drunk Drivers (10)第十五篇Winged Robot Learns to Fly (10)第十六篇Japanese Drilling into Core of Earth (11)第十七篇 A Sunshade for the Planet (11)第十八篇Thirst for Oil (12)第十九篇 Prolonging Human Life (13)第二十篇Explorer of the Extreme Deep (13)第二十一篇Plant Gas (14)第二十二篇Snowflakes (14)第二十三篇Powering a City? It's a Breeze (15)第二十四篇 Underground Coal Fires -- a Looming Catastrophe (15)第二十五篇Eat to Live (16)第二十六篇Male and Female Pilots Cause Accidents Differently (16)第二十七篇Driven to Distraction (17)第二十八篇Sleep Lets Brain File Memories (17)第二十九篇Food Fright (18)第三十篇Digital Realm (19)*第三十一篇Hurricane Katrina (19)*第三十二篇 Mind-reading Machine (20)*第三十三篇 Experts Call for Local and Regional Control of Sites for Radioactive Waste (B级) (20)*第三十四篇(新增) Batteries Built by Viruses (21)*第三十五篇Putting Plants to work (21)*第三十六篇 Listening Device Provides Landslide Early Warning (22)*第三十七篇"Don't Drink Alone" Gets New Meaning (23)*第三十八篇(新增) Longer Lives for Wild Elephants(理B) (23)*第三十九篇Clone Farm (24)*第四十篇 Air Pollution Cloud Measured on Both Sides of Pacific (24)+第四十一篇Too Little for Global Warming (25)+第四十二篇Renewable Energy Sources (25)+第四十三篇Forecasting Methods (26)+第四十四篇Defending the Theory of Evolution Still Seems Needed (26)+第四十五篇(新增) Some People Do Not Taste Salt Like Others (27)+第四十六篇(新增)Marvelous Metamaterials (28)+第四十七篇 Listening to Birdsong (28)+第四十八篇"Hidden" Species May Be Surprisingly Common (29)+第四十九篇 U.S. Scientists Confirm Water on Mars (29)+第五十篇 Cell Phones Increase Traffic, Pedestrian Fatalities (30)2011年职称英语(理工类)阅读理解中英文背诵模板第六篇(新增)Weaving with Light*第三十四篇(新增) Batteries Built by Viruses+第四十五篇(新增) Some People Do Not Taste Salt Like Others+第四十六篇(新增)Marvelous Metamaterials。

生态学专业术语英汉对照2

生态学专业术语英汉对照2

Ecology 生态学individuals 个体population 种群communities 群落ecosystems 生态系统behavioral ecology 行为生态学physiological ecology 生理生态学evolutionary ecology 进化生态学molecular ecology 分子生态学fitness 适合度natural selection 自然选择adaptation 适应genotype 基因型phenotype 表型phenotypic plasticity 表型可塑性offspring 后代genes 基因nongenetic factors 非遗传因素not inherited 不遗传conditions 条件resources 资源environmental variation 环境变异internal regulation 内调节homeostasis 稳态negative feedback 负反馈tolerance 耐受性temperature 温度not depletable 不能耗掉solar radiation 太阳辐射decouple 退耦niche 生态位habitat 栖息地multidimensional niche space 多维生态位空间Fundamental niche基础生态位Realized niche 实际生态位Prey 猎物Foraging 觅食Dimension 轴或维Global wind pattern 地球的风型The circulation of oceans 洋流Rain 降雨Havoc['hævək] 灾害Hurricane 飓风Latitude 纬度Irradiance [i'reidiəns,-si]辐射度Summer solstice 夏至Winter solstice 冬至Adiabatic cooling 绝热冷却Scale 尺度Coriolis effect 科里奥利效应Intertropical convergence zone热带辐合带Jet streams 急流Albedo 反照率Gulf stream 墨西哥湾流Lee of a continent 背风面Upwelling 上涌流Adiabatic lapse rate 绝热温度递减率Inversion 逆温Heat of condensation 凝结热Heat 热Temperature profiles温度剖面Relative humidity 相对湿度Saturated water 饱和水water vapor 水蒸汽microclimate 微气候thermal['θə:məl]conductivity 热传导chemical properties of water 水的化学特性penetration of light through water光线穿透水Energy transfer and water phases能量转化和水相Deplete 耗竭Ions 离子Electropositive 正电性的Electronegative 负电性的Beer’s law 比尔定律Heat capacity 热容量Maximum density 最大密度Latent heat of vaporization增发潜热Heat of fusion 溶解热Sublimation 升华Soil water 土壤水Field capacity 田间持水量The uptake of water by roots根对水的吸收Aquatic plants 水生植物Water availability 水的可利用性Plant productivity 植物生产力Permanent wilting point 永久萎焉点Potential evapotranspiration rate 潜在蒸发蒸腾速率Capillary pores 毛细管孔隙Resource depletion zone 资源枯竭区Halophytes 盐生植物Water balance in fish 鱼类的水平衡Amphibians 两栖类Water conservation by terrestrial animals 陆生动物的水保持Mammalian 哺乳动物Kidneys 肾脏Bladder 膀胱Beavers 河狸Osmoregulation 渗透调节Countercurrent exchange 逆流调节Hypertonic 高渗的Homeotherms 恒温动物Poikilotherms 变温动物Ectotherms 外温动物Endotherms 内温动物Temperature thresholds 温度阀Mechanisms 机理Enzyme 酶The thermoneutral zone 热中性区Dehydration 脱水Rates of development and growth发育和生长速度Acclimation and acclimatization 驯化和气候驯化Developmental threshold Temperature 发育温度阀Physiological time 生理时间Vernalization 春化Species distribution 物种分布Evolved response 进化反应Mean temperature 平均温度Isotherm 等温线Radiant energy 辐射能Photosynthesis 光合作用Efficiency of radiant energy conversion 辐射能的转换效率Changes in the intensity of radiation 辐射强度的变化Strategic and tactical response of plants to radiation 植物对辐射的战略和战术响应Compensation point 补偿点Photosynthetically active radiation (PAR)光和活性辐射Efficiency of Photosynthesis 光合作用效率Photosynthetic capacity 光合能力Diurnal and annual rhythms of solar radiation 太阳辐射日节律和年节律Resource depletion zone 资源耗竭带Strategic difference 战略差异Tactical response 战术响应Transpiration 蒸腾Net assimilation 净同化量Nutrient sources 营养物资源Nutrient budgets 营养预算Terrestrial communities 陆地群落Aquatic communities 水生群落Geochemistry 地球化学Global biogeochemical cycles 全球生物地球循环Mechanical weathering 机械风化Chemical weathering 化学腐蚀Wetfall 湿降落Dryfall 干降落Rainout component 雨水冲失成分Washout component 水冲失成分Streamflow 溪流Denitrification 脱氮Endorheic内陆湖泊Biogeochemistry 生物地球化学Hydrosphere carbon 水圈的碳Weathering 风化作用Nitrogen cycle 氮循环Phosphorus 氮Sediment 沉积型Lithospheric 岩石圈Sulfur 硫The fate of matter in the community 群落中物质的命运Producers 生产者Consumers 消费者Decomposers 分解者Autotrophs 自养生物Grazing mammals 草食哺乳动物Phytoplankton 浮游植物Zooplankton 浮游动物Bacteria 细菌Fungi 真菌Nonliving 无生命Food chains 食物链Primary and secondary production 初级和次级生产力Net Primary production 净初级生产力Aphotic zone 无光区Photic zone 透光区Primary consumers 初级消费者Secondary consumer 次级消费者Soil formation 土壤形成The soil profile 土壤剖面Primary classification:the great soil groups 主要分类:大土壤群Higher vegetation 高等植物Dynamic mixture 动态混合物Organic matter 有机质Cells 细胞Pedology 土壤学Subsoil 亚土壤Mineral soil 矿物质土壤Parent material 母质Soil series 土系Soil surveyor 土壤勘测员Succession 演替Ecosystem patterns 生态系统格局Soil horizons 土层Humic acids 腐植酸Great soil groups 土壤群Population size 种群大小Age and stage structure 年龄和时期结构Zygote 受精卵Unitary organism 单体生物Modular organism 构件生物Ramets 无性系分株Clone 无性系Genet 基株Evolutionary individuals 进化个体Immediate ecological impact 直接生态作用Stable age distribution 稳定年龄分布Age pyramid 年龄金字塔Stationary age distribution 固定的年龄分布Stage structure 时期结构Sizes classes 个体大小群Natality 出生率Mortality 死亡率Survivorship 存活率Life tables 生命表K-factor analysis k-因子分析The fecundity schedule 生殖力表Population growth 种群增长Density-independent Population growth 非密度制约性种群增长Density-dependent growth-the logistic equation 密度制约性种群增长:逻辑斯缔方程Life expectancy 生命期望Survivorship curve 存活曲线Cohort 同生群Age-specific survival rate 特定年龄存活率Key factors 关键因子Killing factor 致死因子Basic reproduction rate 基础繁殖率Carrying capacity 环境容纳量Estimating density 估计密度Mark release recapture 标记重捕法Density dependence密度制约Equilibrium population density平衡种群密度Relative density相对密度Allee effect阿利效应Exactly compensating准确补偿Undercompensating补偿不足Overcompensating过度补偿H4Population fluctuations 种群波动Chaos 混沌Expanding and contracting populations 增长种群和收缩种群Stable limit cycle 稳定极限环I1Competition 竞争Predation 捕食Parasitism 寄生Mutualism互利共生Intraspecific competition种内竞争Interspecific competition种间竞争Exploitation competition利用性竞争Interference competition干扰性竞争Cannibalism 自相残杀Altruism 利他主义Commensualism 偏利共生Amensualism偏害共生I2Dispersal扩散Territoriality领域性Niche shift生态位转移Allelopathy异株克生Competive asymmetry 竞争不对称Scramble competition争夺竞争Contest competition格斗竞争Zero net growth isocline零增长等斜线Self-thinning自疏Inbreeding近亲繁殖Reproductive value繁殖价值Leks 求偶场Competitive exclusion 竞争排斥Limiting similarity 极限相似性Competitive release 极限释放Character displacement 性状替换Apparent competition 表观竞争Enemy-free space 无敌空间Highly heterogeneous 高度异质性Gaps 断层Probability refuge 隐蔽机率J1Herbivores 食草动物Carnivores 食肉动物Omnivores 杂食动物Chemical defences 化学防御Behavioral strategies 行为对策Specialists 特化种Generalist 泛化种Monophagous单食者Oligophagous寡食者Polyphagous 多食者Parasites 寄生者J2Predator switching 捕食者转换Profitability of prey 猎物收益率Plant defence 植物防御The ideal free distribution 理想自由分布Functional response 功能反应Superpredation 超捕食K1Parasites 寄生物Modes of transmission 传播方式Social parasites 社会性寄生物Helminth worms 寄生蠕虫Insects 昆虫Necrotrophs 食尸动物Parasitoids 拟寄生物The cellular immune response 细胞免疫反应Vectors 媒介Optimal habitat use 最佳生境利用Brood parasitism 窝寄生Evolutionary constraint 进化约束Immunity 免疫Cevolution协同进化Gene for gene 基因对基因Mimics 模仿Herd immunity 群体免疫Antigenic stability 抗原稳定L1Pollination 传粉Symbiotic 共生性Obligate 专性Lichens 地衣Outcrossing 异型杂交Mitochondria 线粒体Chloroplasts 叶绿体M1Reproductive values 生殖价Hypothetical organism 假定生物Migration 迁移Senescence衰老Diapause 滞育Dormancy 休眠Longevity 寿命Enormous variation 巨大变异Energy allocation 能量分配Semelparity 单次生殖Iteroparity 多次生殖Carrying capacity 容纳量Current/future reproduction当前/未来繁殖Habitat disturbance 环境干扰The current/future reproductive output 当前/未来繁殖输出A high/low cost of reproduction 高/低繁殖付出Seed bank 种子库Torper蛰伏Hibernation 冬眠Cryptobiosis 隐生现象Aestivation 夏眠Migration 迁徙Morphological forms 形态学性状Generations世代Mechanistic level 机制水平Cooperation 合作Grouping-benefits 集群-好处Altruism 利他行为Group defens e 群防御Inclusive fitness 广义适合度Eusociality 真社会性Hymenoptera 膜翅目Haplodiploid 单倍二倍体Venomous sting毒刺N2Sex 性The costs of inbreeding 近交的代价Self-fertilization 自体受精Sexual versus asexual reproduction 有性和无性生殖Sex ratio 交配体制Monogyny 单配制Polygyny 一雄多雌制Polyandry 一雌多雄制Inbreeding depression 近交衰退Hermaphrodite 雌雄同体Recombine 重组Rare type advantage 稀少型有利Equal investment 相等投入Local mate competition局域交配竞争Epigamic 诱惑性Intrasexual selection 性内选择Intersexual selection 性间选择O1Alleles 等位基因Polymorphism 多型Genetic drift 遗传漂变Genetic bottleneck 遗传瓶颈Rare species 稀有物种Extinction 灭绝Chromosome染色体Genotype 遗传型Phenotype 表现型Gene pool 基因库Gel electrophoresis 凝胶电泳O2Gene flow 基因流Differentiation 分化Sibling species 姊妹种Genetic revolution 遗传演变Peripheral isolates 边缘隔离PTransfer efficiencies 转换效率(net)primary productivity (净)初级生产力Respiratory heat 呼吸热Grazer system 牧食者系统Food chains 食物链Pathways of nutrient flow营养物流Food webs 食物网QCommunity structure 群落结构Community boundaries 群落边界Guilds同资源种团Community organization 群落组织Species diversity 物种多样性Energy flow 能量流Superorganism 超有机体Species-poor/rich 物种贫乏/丰富Biomass stability 生物量稳定性Tundra 冻原Island biogeography 岛屿生物地理学Turnover rate 周转率Source of colonists 移植者源Relaxation松弛Edgespecies 边缘物种Interior species 内部物种Corridor 走廊Greenways 绿色通道Community assembly群落集合Grazers 食草动物Carnivores 食肉动物Keystone species 关键物种Dominance control 优势控制Habitat affinity生境亲和力Prey switching 猎物转换RSuccession 演替Climax Community 顶级群落Pioneer species 先锋物种Primary succession 原生演替Alluvial deposit 冲积层Secondary succession 次生演替Acidifying effect 酸化作用Opportunistic机会主义Cellulose 植物纤维素Lignin 木质素Resource ratio hypothesis 资源比假说Fluctuations 波动Cyclic succession 循环演替Disturbance 干扰Patch dynamics板块动态Mini-succession 微型演替Cambium 形成层Neotropical forest 新热带雨林Priority effect 优先效应SVegetation 植被Ecotones 群落交错区Climate map 气候图Biomes 生物群系Heat budget 热量预算Zonation 分带Grassland 草地Primary regions 基本区域Desertification 荒漠化Arctic tundra 北极冻原Alpine tundra 高山冻原Permafrost 永冻层Coniferous boreal forest北方针叶林Temperature forest 温带森林Tropical forest 热带森林Salinization 盐渍化Primary saltwater regions 基本盐水区域Opens oceans 开阔海洋Continental shelves 大陆架The intertidal zone 潮间带Salt marsh 盐沼Mudflats淤泥滩Mangroves 红树林Pelagic 浮游生物Photic zone 有光带Phyto plankton 浮游植物Nekton 自泳动物Benthic 底栖Rocky shore 岩岸Zonation 分带Streams 溪流Ponds 池塘Environmental concerns 环境关系Catchment area 集水区Temperature inversion 温度逆转Biomanipulation 生物处理TThe goals of harvesting 收获目标Quota limitation 配额限制Environmental fluctuation环境波动Maximum possible yiel最大可能产量Net recruitment 净补充量Surplus yield 过剩产量Age structure 年龄结构Population data 种群数据Stable equilibrium 稳定平衡Harvesting effort 收获努力Gun licences 猎枪执照Rod licences钓鱼许可证Upwelling of cold water冷水上升流Fisheries 渔业Ocean productivity 大洋生产力The tragedy of the common公共灾难Overexploitation 过捕Pollution 污染Global decline 全球性下降By-catch 附带收获Community perturbations 群落扰动Oil spills 原油泄漏Eutrophication 富营养化Algal blooms 水华Red tides 赤潮Biomagnification 生物放大作用UPest 有害生物Natural enemies 天敌Ruderal 杂草型Economic/aesthetic injury level 经济/美学损害水平Cultural 栽培Biological control 生物防治‘Silent spring’寂静的春天Chemical toxicity 化学毒性Evolution of resistance抗性进化Microbial insecticide微生物杀虫剂Inoculation接种Augmentation扩大Inundation 爆发VRare species 稀有种Genetic diversity 遗传多样性Extinction 灭绝Endemic species 特有种Habitat fragmentation 生境片段化Insularization 岛屿化Biodiversity 生物多样性Strategies for conservation保育对策Antarctic treaty 南极协议Ecotourism生态旅游WAir pollution空气污染Acid rain 酸雨Water pollutants 水体污染物Soil pollution 土壤污染Acid deposition 酸降Pathogens病源体Chemical oxygen demand 化学需氧量Anaerobes 厌氧菌The greenhouse effect 温室效应Carbon dioxide 二氧化碳Ozone 臭氧Photochemical smog 光化学烟雾XOverview 概述Soil erosion 土壤侵蚀Soil compaction 土壤硬结Contour ploughing等高耕作Cover crops 覆盖作物No-till farming 免耕农业。

中国石油大学高级英语译文及答案

中国石油大学高级英语译文及答案

Unit 1 Sources of EnergyText APetroleumSentence structure analysis1. Instead of originating in accumulating woody matter, petroleum may be the product of the accumulating fattymatter of ocean organisms such as plankton, the myriads of single-celled creatures that float in the surface layer of the ocean. (Para.2) 石油,并不是来自于逐渐积聚的木质物质,而可能是来自于逐渐积聚的海洋生物的脂肪物质。

比如浮游生物:大量浮游在海水表层的单细胞生物。

这是一个简单句,主语petroleum,谓语动词may be,表语product,构成句子主干。

instead of 介词短语作状语,such as plankton是product一词的同位语,the myriads of single-celled creatures that float in the surface layer of the ocean是名词性短语,做plankton的同位语。

2. It is only necessary that the organisms settle down into the ooze underlying shallow arms of the ocean underconditions of oxygen shortage. (Para. 3) 生物有机体只需在缺氧的条件下沉积到海湾浅水处的淤泥里。

该句的框架为:it is +adj.+that从句,it做形式主语,真正的主语是that从句的内容。

现在分词短语underlying…做后置定语修饰ooze。

托福阅读tpo53-2WORD打印 Rain Forest Soils

托福阅读tpo53-2WORD打印 Rain Forest Soils

Rain Forest SoilsOn viewing the lush plant growth of a tropical rain forest, most people would conclude that the soil beneath it is rich in nutrients. However, although rain forest soils are highly variable, they have in common the fact that abundant rainfall washes mineral nutrients out of them and into streams. This process is known as leaching. Because of rain leaching, most tropical rain forest soils have low to very low mineral nutrient content, in dramatic contrast to mineral-rich grassland soils. Tropical forest soils also often contain particular types of clays that, unlike the mineral-binding clays of temperate forest soils, do not bind mineral ions well. Aluminum is the dominant cation (positively charged ion) present in tropical soils; but plants do not require this element, and it is moderately toxic to a wide range of plants. Aluminum also reduces the availability of phosphorus, an element in high demand by plants.Select the TWO answer choices that, according to paragraph 1, help explain the relatively low mineral nutrient content of most tropical rain forest soils. To receive credit, you must select TWO answers.•The water in the streams flowing through tropical rain forests generally has relatively low mineral content.•The range of plants that grow in tropical rain forests is so wide that almost every kind of mineral in the soil gets used up.•The clays contained in tropical rain forest soils do not bind mineral ions well.•Abundant rainfall causes minerals to leach out of the soil.According to paragraph 1, one reason that the relatively high levels of aluminum in rain forest soils present a problem for plants is that aluminum•reduces the mineral-binding capacity of soils•is somewhat toxic to plants•makes too much phosphorus available to plants•is present as a positively charged ion in tropical rain forest soilsHigh moisture and temperatures speed the growth of soil microbes that decompose organic compounds, so tropical soils typically contain far lower amounts of organic materials (humus) than do other forest or grassland soils. Because organic compounds help loosen compact clay soils, hold water, and bind mineral nutrients, the relativelack of organic materials in tropical soils is deleterious to plants. Plant roots cannot penetrate far into hard clay soils, and during dry periods, the soil cannot hold enough water to supply plant needs. Because the concentration of dark-colored organic materials is low in tropical soils, they are often colored red or yellow by the presence of iron, aluminum, and manganese oxides; when dry, these soils become rock hard. The famous Cambodian temples of Angkor Wat , which have survived for many centuries, were constructed from blocks of such hard rain forest soils.According to paragraph 2, clay soils that contain relatively low amounts of organic materials have all of the following disadvantages for plants EXCEPT•poor water retention•poor root penetrability•few soil microbes•low levels of mineral nutrientsParagraph 2 supports the idea that, as compared with rain forest soils, grassland soils•contain a greater variety of soil microbes•contain less organic material•are able to hold more water•are generally lighter coloredWhy does the author mention “Angkor Wat” ?•To show that rain forest soils are essentially the same today as they were many centuries ago•To make the point that rain forest soils have certain advantages over other types of soils •To illustrate how colorful rain forest soils can sometimes be•To emphasize how hard rain forest soils can becomeParagraph 2 suggests the idea that compared with grassland soils, tropical rain forest soils have all of the following characteristics EXCEPT•soil microbes grow more slowly•contain lower amounts of organic materials•hold less water•contain iron, aluminum and manganese oxidesGiven such poor soils, how can lush tropical forests exist? The answer is that the forest`s minerals are held in its living biomass-the trees and other plants and the animals. In contrast to grasslands, where a large proportion of plant biomass is produced underground, that of tropical forests is nearly all aboveground. Dead leaves, branches, and other plant parts, as well as the wastes and bodies of rain forest animals, barely reach the forest floor before they are rapidly decayed by abundant decomposers-bacterial and fungal. Minerals released by decay are quickly absorbedby multitudinous shallow, fine tree feeder roots and stored in plant tissues. Many tropical rain forest plants (like those in other forests) have mycorrhizal (fungus-root) partners whose delicate hyphae spread through great volumes of soil, from which they release and absorb minerals and ferry them back to the host plant in exchange for needed organic compounds. The fungal hyphae are able to absorb phosphorus that plant roots could not themselves obtain from the very dilute soil solutions, and fungal hyphae can transfer mineral nutrients from one forest plant to another. Consequently , tropical rain forests typically have what are known as closed nutrient systems, in which minerals are handed off from one organism to another with little leaking through to the soil. When mineral nutrients do not spend much time in the soil, they cannot be leached into streams. Closed nutrient systems have evolved in response to the leaching effects of heavy tropical rainfall. Evidence for this conclusion is that nutrient systems are more open in the richest tropical soils and tightest in the poorest soils.The word “multitudinous” in the passage is closest in meaning to• a great many•rapidly increasing•finely divided•extremely strongThe word “Consequently” in the passage is closest in meaning to•Nevertheless•However•As a result•In additionAccording to paragraph 3, the main advantage of a closed nutrient system is that such a system•reduces the risk of minerals being lost through leaching•ensures that all organisms in the system receive an adequate supply of nutrients•increases the amount of nutrients that plant roots can absorb from soil solutions•increases the speed with which nutrients are returned to the soilThe growth of organisms is dependent on the availability of nutrients, none of which is more important than nitrogen. Although there is an abundant supply of nitrogen in Earth`s atmosphere, it cannot be absorbed by plants unless it is "fixed," or combined chemically with other elements to form nitrogen compounds. Nitrogen-fixing bacteria help tropical rain forest plants cope with the poor soils there by supplying them with needed nitrogen. Many species of tropical rain forest trees belong to the legume family, which is known for associations of nitrogen-fixing bacteria within root nodules. Also, cycads (a type of tropical plant that resembles a palm tree) produce special aboveground roots that harbor nitrogen-fixing cyanobacteria. By growing above the ground, the roots are exposed to sunlight, which the cyanobacteria require for growth. Nitrogen fixation by free-living bacteria in tropical soils is also beneficial.The word “abundant” in the passage is closest in meaning to•valuable•plentiful•usable•obvious。

红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化_吕茂奎

红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化_吕茂奎

应用生态学报2014年1月第25卷第1期Chinese Journal of Applied Ecology,Jan.2014,25(1):37-44红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化*吕茂奎1,2谢锦升1,2**周艳翔1,2曾宏达1,2江军1,2陈细香1,2胥超1,2陈坦1,2付林池1,2(1湿润亚热带山地生态国家重点实验室培育基地,福州350007;2福建师范大学地理科学学院,福州350007)摘要选择红壤侵蚀区本底条件相似而恢复年限不同的马尾松林为对象,以侵蚀裸地和次生林为对照,结合时空代换法对侵蚀地植被恢复过程中表层土壤非保护性有机碳(轻组有机碳和颗粒有机碳)含量、分配比例及其向保护性有机碳转化过程进行研究.结果表明:在植被恢复过程中(0 30年)土壤有机碳含量及其储量随恢复年限极显著增加.植被恢复7 11年,土壤非保护性有机碳含量显著增加,其分配比例也明显升高,而恢复至27年和30年后分配比例保持在较稳定水平,说明植被恢复初始过程主要以非保护性有机碳的形式积累,而长期恢复后土壤有机碳呈相对稳定状态;0 10cm和10 20cm土壤非保护性有机碳向保护性有机碳的转化速率常数(k)与恢复年限分别呈极显著相关和显著相关,说明植被恢复过程中土壤非保护性有机碳逐渐向保护性有机碳转化.关键词退化红壤轻组有机碳颗粒有机碳植被恢复过程碳转化速率常数马尾松林文章编号1001-9332(2014)01-0037-08中图分类号S163.621;X171.4文献标识码ADynamics of unprotected soil organic carbon with the restoration process of Pinus massoni-ana plantation in red soil erosion area.L Mao-kui1,2,XIE Jin-sheng1,2,ZHOU Yan-xiang1,2,ZENG Hong-da1,2,JIANG Jun1,2,CHEN Xi-xiang1,2,XU Chao1,2,CHEN Tan1,2,FU Lin-chi1,2(1Cultivation Base of State Key Laboratory of Humid Subtropical Mountain Ecology,Fuzhou350007,China;2School of Geographical Science,Fujian Normal University,Fuzhou350007,China).-Chin.J.Appl.Ecol.,2014,25(1):37-44.Abstract:By the method of spatiotemporal substitution and taking the bare land and secondary for-est as the control,we measured light fraction and particulate organic carbon in the topsoil under thePinus massoniana woodlands of different ages with similar management histories in a red soil erosionarea,to determine their dynamics and evaluate the conversion processes from unprotected to protec-ted organic carbon.The results showed that the content and storage of soil organic carbon increasedsignificantly along with ages in the process of vegetation restoration(P<0.01).The unprotectedsoil organic carbon content and distribution proportion to the total soil organic carbon increased sig-nificantly(P<0.05)after7-11years’restoration but stabilized after27and30years of restora-tion.It suggested that soil organic carbon mostly accumulated in the form of unprotected soil organiccarbon during the initial restoration period,and reached a stable level after long-term vegetation res-toration.Positive correlations were found between restoration years and the rate constant for C trans-ferring from the unprotected to the protected soil pool(k)in0-10cm and10-20cm soil layers,which demonstrated that the unprotected soil organic carbon gradually transferred to the protectedsoil organic carbon in the process of vegetation restoration.Key words:degraded red soil;light fraction organic carbon;particulate organic carbon;process ofvegetation restoration;rate constant for C transfer(k);Pinus massoniana plantation.*“十二五”国家基础研究发展计划项目(2012CB722203)、高等学校博士学科点科研基金专项(20113503130001)和福建省自然科学基金项目(2010J01138)资助.**通讯作者.E-mail:jshxie@163.com2013-03-26收稿,2013-10-31接受.在全球气候变化背景下,如何恢复退化土壤的固碳能力是当今生态学和土壤学关注的焦点问题和优先研究领域之一.造林和改善农林业的管理是增加退化土壤碳固定和减缓大气CO2浓度增加的重要方法[1],具有成本低、潜力大和可持续性等优点.目前我国土壤退化严重,增加退化土壤的碳汇已成为我国亟待解决的重大问题.我国南方红壤区是仅次于黄土高原的第二大侵蚀退化区,尤其是花岗岩发育的红壤大面积严重退化,碳密度低,固碳潜力大[2],增加侵蚀退化红壤的固碳能力对于我国气候变化国际谈判具有重要意义.福建省长汀县是我国南方典型的红壤侵蚀区.20世纪80年代至今,在当地政府的重视下,该区先后对该退化生态系统进行了大量的恢复与重建工作,昔日的“红色沙漠”如今已是满山翠绿,极大地改善了当地的生态环境[2].但是,有关植被恢复过程中土壤有机碳动态变化以及土壤有机碳固定的长期有效性等问题尚不清楚.因此,研究生态恢复过程中侵蚀地土壤有机碳库动态及调控过程对后续的生态恢复与保护具有重要价值.土壤有机碳(soil organic carbon,SOC)是表征土壤质量和健康状况的重要指标[3].但是在侵蚀地植被恢复过程中,土壤总有机碳积累的短期变化并不能指示生态恢复对土壤碳动态的影响.因此,识别更敏感的活性有机碳组分有助于阐明土壤有机碳的动态.土壤非保护性有机碳(unprotected SOC)是活性有机碳的一部分,由新近凋落的、部分分解的、与土壤矿质结合不紧的植物残体组成,主要包括轻组有机碳(light fraction organic carbon,LFOC)和颗粒有机碳(particulate organic carbon,POC)[4].非保护性有机碳对土地利用或植被覆盖变化的响应非常敏感,可以作为土壤有机碳库变化的灵敏指标[5-8].鉴于此,本研究应用土壤有机碳物理分组方法,结合时空代换法,探讨红壤侵蚀地不同恢复年限马尾松人工林表层土壤的轻组有机碳和颗粒有机碳含量及其分配比例的变化,以及土壤碳库的演变过程,以期为今后侵蚀地的生态恢复及重建提供科学依据.1研究地区与研究方法1.1试验地概况长汀县河田镇地处福建省西南部、汀江上游(25ʎ33'—25ʎ48'N,l16ʎ18'—116ʎ31'E),海拔300 500m.该地区属中亚热带季风气候,年均气温17.5 19.2ħ,年均降雨量1700mm,年均蒸发量1403mm,年均无霜期260d,年均日照时数1924.6h,≥10ħ积温4100 4650ħ.该地区地形为开阔的河谷盆地,四周被低山高丘所环抱;土壤主要为中粗粒花岗岩发育的红壤,可蚀性较高,原有地带性植被(常绿阔叶林)基本破坏殆尽,现有植被以马尾松(Pinus massoniana)次生林和人工林为主.花岗岩风化壳深厚,一般为10m,最深处达百米,降雨侵蚀严重,加之植被的大面积破坏,使得河田镇成为全国水土流失最严重的地区之一,许多地方的表层土壤已被剥蚀殆尽,后期植被恢复极为困难.本研究选取土壤母岩和成土条件相同、地形及地表生态过程相似的6个不同恢复年限的试验样地,其中7a与8a、10a与11a治理样地分别作为治理7a和10a的重复.以侵蚀裸地(CK1)和次生林(CK2)为恢复前、后的对照.样地治理前的土壤侵蚀状况以及土壤有机质含量与侵蚀裸地基本一致.因此,不同恢复年限马尾松林土壤有机质的差异主要由植被恢复和治理措施引起的植物生长条件及土壤生态过程的差异造成.试验地类型及基本概况为:1)侵蚀裸地(CK1):海拔315m,坡度为12ʎ,坡向NE35ʎ.土壤侵蚀度一般达强度以上,表层土壤流失殆尽,B层出露,表层土壤(0 20cm)有机质含量为1.4 2.5g·kg-1;地表植被以稀疏的马尾松小老头树(平均胸径4.3 6.6cm,平均树高3.1 4.6m)以及少量芒萁(Dicranopteris dichotoma)和野古草(Arundinclla setosa)为主;2)伯湖和乌石岽:海拔分别为318和378m,坡度18ʎ和22ʎ,坡向ES30ʎ和SW20ʎ,分别于2003和2004年开始治理,通过7 8年的封禁治理,林下植被覆盖度接近100%,马尾松平均胸径和树高分别为8.2cm和7.3m;3)石官凹和游坊:海拔分别为314和328m,坡度15ʎ和21ʎ,坡向SW20ʎ和ES25ʎ,分别于2000和2001年对原有低效马尾松林进行小水平沟整地,补植胡枝子(Lespedeza bicolor),后期封禁管护.经过10 11年的封禁治理,林下植被盖度分别达到85%和70%以上,马尾松平均胸径分别为10.4和7.5cm,树高分别为7.5和5.9m;4)水东坊:海拔310m,坡度18ʎ,坡向NE50ʎ,于1984年对其水平沟整地,补植黑荆,林下套种胡枝子,并进行封禁管护,林下植被覆盖度97%,马尾松平均胸径和树高分别为16.9cm和14.3m;5)八十里河:海拔310m,坡度18ʎ,坡向NE50ʎ,于1981年对其进行小水平沟整地,保留原有的马尾松等乔木,并在马尾松林下套种胡枝子、紫穗槐(Amorpha fruticosa).经过30年的人工恢复,林83应用生态学报25卷下植被覆盖度97%,马尾松平均胸径和树高分别为16.9cm和14.3m;6)次生林(CK2):海拔321m,坡度10ʎ,坡向WN10ʎ,主要树种为马尾松、木荷(Schi-ma superba)针阔混交林,林龄约70 110年(异林龄),林下植被覆盖度95%以上,马尾松平均胸径和树高分别为47.5cm和19.0m.1.2研究方法1.2.1土样采集2011年7月在每块试验地设3个20mˑ20m标准地,分别进行本底和生物量调查.在每个标准地上用内径5cm土钻按“S”型随机、等量、多点混合取样,取8 10个点,每个样地取3组0 10和10 20cm土层混合土样,带回室内,过2mm筛、风干后备用.土壤容重用环刀法测定.1.2.2土壤有机碳含量测定SOC含量采用浓硫酸-重铬酸钾高温外加热氧化法测定,土壤全氮采用全自动凯氏定氮法测定,轻组和颗粒有机碳氮采用碳氮元素分析仪(Elementar VarioEL III,德国)测定,SOC储量采用土壤容重和有机碳含量推算[9].1.2.3轻组有机碳的分离及分配比例参照Janzen 等[10]的分离方法,称取风干土样10g,放在100mL 离心管中,加入50mL NaI(1.7g·cm-3)重液,震荡30min后离心,然后用真空管吸取悬浮部分,通过微孔滤膜过滤,继续往离心管中加20 30mL NaI,重复上述过程2 3次,直至没有可见的轻组物质,至少用75mL0.01mol·L-1CaCl2冲洗以除去轻组中NaI,另加100 150mL去离子水冲洗轻组.然后将滤纸上的轻组洗到预先称量的器皿中,在60ħ下烘干,称量,计算烘干样品占总土壤样品质量的比例,再取出部分样品用于分析SOC含量.根据轻组质量和有机碳含量,计算LFOC数量.以LFOC数量除以SOC总量,得到LFOC的分配比例[11].1.2.4颗粒有机碳分离及分配比例称取风干土样20g,放入250mL塑料瓶中,加入100mL浓度为5g·L-1的六偏磷酸钠[(NaPO3)6]溶液,手摇15min,再用震荡器震荡18h(90r·min-1).将土壤悬液过53μm筛,用蒸馏水反复冲洗后,所有留在筛子上的物质在60ħ下烘干至恒量,计算该部分占整个土壤样品质量的比例.通过分析烘干样品中SOC,结合>53μm的颗粒质量计算POC数量.以POC数量除以SOC总量得到POC的分配比例[11].1.3数据处理土壤非保护性有机碳向保护性有机碳转化的速率常数(k)用下式计算:k=P/(TTp U)式中:U为非保护性有机碳碳库(颗粒与轻组有机碳的均值);P为保护性有机碳库(总有机碳与非保护性有机碳的差值);TTp为保护性有机碳周转时间,设为100年[11].所有数据处理和统计分析均在Excel2003和SPSS17.0软件下进行,方差分析采用LSD法,采用一元线性回归模型建立两个变量之间的相关关系,显著性水平设定为α=0.05.用Origin7.5和Excel2003软件作图.2结果与分析2.1植被恢复过程中土壤有机碳含量及其储量的变化由图1可以看出,马尾松人工林恢复过程中,侵蚀地表层(0 20cm)SOC含量和储量总体呈非线性增长,其中以0 10cm土层的增长更显著.在植被恢复7 11年时,与侵蚀裸地(CK1)相比,010cm SOC含量及其储量均极显著增加,而10 20cm SOC含量及其储量差异不显著.但在植被恢复7 11年间,0 10和10 20cm SOC含量及其储量随年限增加并无递增的趋势,且不同恢复年限之间无显著差异,可能与不同恢复年限侵蚀地的治理措图1植被恢复过程中土壤有机碳含量及储量Fig.1Storage and content of the soil organic carbon in theprocess of vegetation restoration(meanʃSD).CK1:侵蚀裸地Erosive bare land;CK2:次生林Secondary forest.下同The same below.不同小写字母表示同一土层不同恢复年限林地间的差异显著(P<0.05)Different letters in the same soil layer denoted sig-nificant difference between the woodlands with different restoration yearsat0.05level.931期吕茂奎等:红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化施不同以及试验地间的差异有关;在植被恢复27年和30年后,0 10cm SOC含量及其储量均显著高于CK1及恢复7 11年的样地;而10 20cm土层SOC含量及其储量显著高于CK1,但与恢复7 11年的样地无显著差异.这说明植被恢复优先影响0 10cm土层,随着治理年限的增加,下层土壤SOC 进一步积累.在植被恢复30年后,SOC含量及其储量仍显著低于恢复后的次生林(CK2),说明侵蚀地仍有较大的固碳潜力.2.2植被恢复过程中土壤轻组有机碳及其分配的变化植被恢复过程中LFOC并未随恢复年限呈线性上升(图2).轻组含量变化幅度较大,尤其是恢复7 11年,0 10和10 20cm土层轻组含量从CK1(1.2 2.2g·kg-1)增加到3.4 10.6g·kg-1(表1),0 10cm土层LFOC含量也极显著增加,是CK1(0.69g·kg-1)的4.5 4.7倍;而10 20cm土层与CK1无显著差异.在植被恢复27和30年后,其LFOC含量与7 11年无显著差异,但在这一阶段LFOC含量随恢复年限呈上升趋势,且逐渐趋近于CK2.植被恢复过程中,LFOC占总有机碳的比例也呈现不同程度的变化.总体上,恢复7 11年土壤轻组有机碳的分配比例(LFOC/SOC)明显高于治理27年后(图2),0 10cm土层LFOC/SOC从CK1(29.1%)增加到36.6% 41.9%,且0 10和10 20cm土层的变化趋势一致.当植被恢复7 11年,LFOC很大程度上决定了土壤总有机碳含量,且以0 10cm最为明显,其决定了总有机碳的25.9% 49.0%.植被恢复27和30年后LFOC/SOC逐渐保持在一定范围内(17.2% 21.6%),说明随着恢复年限增加,土壤有机碳组分逐渐趋于稳定.2.3植被恢复过程中土壤颗粒有机碳及其分配的变化植被恢复过程中土壤POC与LFOC的变化趋势相同(图2),且POC含量略高于LFOC含量.在植被恢复7 10年时,0 10cm土层颗粒物含量大幅度增加,与CK1(3.7g·kg-1)相比,增加了4.4 8.3倍,与恢复27和30年样地间无显著差异(表1);然而,在整个植被恢复过程中,10 20cm土层颗粒物含量的变化相对较小,不同恢复年限的样地间均无显著差异.土壤POC含量也呈相同的变化趋势,恢复前11年土壤POC大量积累,从0.22 g·kg-1增至2.99g·kg-1;而恢复至27年后,POC 的积累速率相对减小.在植被恢复27和30年后,0 10和10 20cm土层POC含量均呈增加趋势,且0 10cm土层增加较显著,比CK1(0.75g·kg-1)增加了4.8倍以上.植被恢复过程中,土壤POC分配比例(POC/ SOC)呈现不同程度的变化.总体上,恢复7 11年图2植被恢复过程中土壤轻组和颗粒有机碳含量及其占总有机碳的比例Fig.2Contents of LFOC,POC and their proportions to total soil organic carbon in the process of vegetation restoration(meanʃSD).04应用生态学报25卷表1植被恢复过程中土壤轻组和颗粒有机质组分含量及其碳(C)含量Table1Carbon contents of soil light matter and particulate organic matter in the process of the vegetation restoration (g·kg-1)组分Fraction 土层Soillayer(cm)侵蚀裸地Erosive bare land(CK1)OM C恢复年限Restoration years7OM C10OM C27OM C30OM C次生林Secondary forest(CK2)OM CLFOM0 102.2318.39.9325.510.6301.97.4300.211.7276.614.2272.710 201.2292.73.4322.03.4304.01.8301.53.0265.77.1265.6 POM0 103.7200.619.4169.630.6135.227.2133.326.4185.533.0203.310 201.4160.59.1130.922.1125.216.595.315.2106.517.0133.0 LFOM:轻组有机质Soil light fraction matter;POM:颗粒有机质Particulate organic matter.OM:有机物质Organic matter.表2土壤总有机碳和非保护性有机碳与恢复年限及其相互之间的相关方程Table2Correlation equations between the total SOC,unprotect SOC and restoration years土壤有机碳SOC(g·kg-1)0 10cm10 20cm轻组有机碳LFOC(g·kg-1)0 10cm10 20cm颗粒有机碳POC(g·kg-1)0 10cm10 20cm年限Year(a)y=0.463x+3.340(r=0.972,P=0.016)y=0.144x+1.980(r=0.986,P=0.005)y=0.018x+2.277(r=0.670,P=0.225)y=0.011x+0.678(r=0.787,P=0.075)y=0.041x+2.377(r=0.929,P=0.027)y=0.017x+0.827(r=0.914,P=0.038)土壤有机碳SOC(g·kg-1)y=0.116x+1.499(r=0.791,P=0.071)y=0.126x+0.335(r=0.809,P=0.056)y=0.210x+0.946(r=0.993,P=0.000)y=0.223x+0.167(r=0.975,P=0.004)轻组有机碳LFOC(g·kg-1)y=0.725x+0.033(r=0.941,P=0.002)y=0.415x+0.104(r=0.861,P=0.022)图3土壤非保护性有机碳向保护性有机碳转化速率常数(k)与植被恢复年限的相关关系Fig.3Correlation between rate constant for C transfer from theunprotected to the protected soil pool(k)and restoration years.的变化幅度明显大于恢复27和30年后(图2),且两个土层变化趋势相似.植被恢复7 11年时,POC占据土壤有机碳的主要部分,0 10和10 20cm土层分别占总有机碳的38.3%和30.7%;随着植被恢复年限的增加,POC/SOC逐渐降低,恢复至27和30年后,两个土层POC/SOC分别减少至26.7%和29.5%,接近于CK2(25.3%和23.5%).这说明植被恢复27和30年后,土壤POC占SOC的比例逐渐趋于稳定.2.4恢复年限对土壤非保护性有机碳的影响相关分析表明,土壤轻组与颗粒有机碳含量在很大程度上取决于土壤总有机碳的含量(62.6%98.7%)(表2),且0 10cm土层POC含量与总有机碳含量呈极显著线性相关,说明LFOC和POC占据了总有机碳重要的部分;尤其是植被恢复7 11年,土壤总有机碳的13.2% 41.9%由非保护碳构成.两个土层有机碳含量与恢复年限呈显著或极显著线性相关.土壤非保护性有机碳含量与恢复年限之间呈线性相关(表2).其中POC含量与恢复年限之间达到显著相关水平.随恢复年限的增加,010cm土层非保护性有机碳向保护性有机碳的转化速率常数增加,而10 20cm土层达到显著相关水平(图3).这说明随着植被恢复年限增加,土壤中非保护性有机碳逐渐向保护性有机碳转化.3讨论3.1植被恢复对土壤有机碳及非保护性有机碳的影响本研究中,随着植被恢复年限的增加,SOC含量及其储量均呈增加趋势,且在植被恢复前11年,林地SOC含量及其储量发生不同程度的变化.这是因为植被恢复过程中,林地植被覆盖度明显增加,促进14 1期吕茂奎等:红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化了马尾松生长.这一方面直接减少了SOC的流失,另一方面,通过凋落物及死亡根系的养分归还,增加了土壤有机物质的输入量[2,12].SOC积累的最大速率通常发生在土地利用方式或土地管理变化的初期[13],因此,在植被恢复初期SOC含量的变化较大.另外,生态恢复过程中土壤理化性质得到明显改善,微生物随恢复年限的增加发生显著变化,经过20 30年处于基本稳定[14].每年大量的枯枝落叶和营养元素等物质重新返回到生态系统中,且随着植被恢复演替的进行,有机物质输入量逐渐增多,为微生物提供了可利用的碳源、氮源,促进了微生物活性及微生物生物量的升高;另一方面,微生物数量的增加加速了枯落物及死细根的分解,促进养分归还,从而显著提高了SOC含量及其储量.LFOC对植被类型、土地利用方式、施肥及经营措施等非常敏感[15].本研究发现,植被恢复过程中土壤LFOC含量呈非线性增加趋势,可能与不同恢复年限样地治理措施及施肥制度的差异有关.其中0 10和10 20cm土层LFOC含量变化范围分别为0.69 3.24和0.35 1.13g·kg-1,均逐渐接近CK2,但相对低于川西典型植被类型(0.84 10.85 g·kg-1)[16]、暖温带次生林(0.86 15.21 g·kg-1)、落叶松人工林(0.54 14.17g·kg-1)[6]和亚热带格氏栲天然林(<9g·kg-1)[7].在植被恢复初期,施肥、整地等治理措施促进了马尾松和林下植被的快速生长[17],林地植被覆盖率明显提高,建立了凋落物和细根的物质循环途径,为轻组有机质提供了物质来源,因此土壤LFOC含量显著增加.此外,轻组有机碳占总有机碳29.1% 41.9%,接近落叶松人工林(29.3% 32.8%)[6],但高于暖温带次生林(19.0% 23.1%)[6]和川西典型植被类型(4.0% 13.4%)[16].植被恢复27年后LFOC分配比例开始下降,且保持在16.9%左右,接近于CK2(16.5%)和暖温带次生林(19.0% 23.1%)[6]的水平.这可能是植被恢复到一定程度后,土壤中物质来源与土壤微生物的分解保持在一个相对平稳的状态;植被恢复过程中土壤和轻组有机质C/N呈先增加后降低的趋势(图4),这反映了植被恢复过程中土壤有机碳的分解程度[9,18],同时,在分解过程中常发生N的微生物固定[19],因此土壤中轻组有机碳的积累速率明显高于总有机碳,引起植被恢复初期轻组有机碳分配比例较高及C/N比值升高.植被恢复过程中土壤POM与LFOM含量及其分配比例呈基本一致的趋势(图2).土壤POM含量(0.22 5.83g·kg-1)与山地常绿阔叶林和常绿落叶阔叶混交林(1.11 8.96g·kg-1)[16]、暖温带次生林(0.76 8.8g·kg-1)和落叶松人工林(0.89 10.64g·kg-1)[6]土壤颗粒有机碳含量相接近.颗粒有机碳占总有机碳的比例(17.0% 43.7%)接近于Degryze等[20](17% 38%)、Jr Garten[21](9% 27%)及Conant等[22](13% 31%)的研究结果.颗粒有机碳对气候条件、农业耕作与管理方式、土地利用类型变化及施肥等外界条件十分敏感[23],而且土壤有机质短期内的变化与波动主要发生在易氧化分解的那一部分[24-25],导致植被恢复初期土壤颗粒含量波动也较大.3.2土壤非保护性有机碳与植被恢复年限的耦合作用植被恢复过程中,土壤非保护性有机碳的积累速度明显高于土壤总有机碳,且土壤LFOM和POM 与土壤总有机碳呈线性正相关关系.土壤轻组和颗粒有机碳尽管是由不同测定方法获得,但两者之间呈显著线性相关关系(表2),表明它们在一定程度上能够指示土壤碳库及其稳定性的变化[6-8,26].因图4植被恢复过程中土壤、轻组和颗粒有机质C/N的变化Fig.4Changes of the C/N ratio of LFOM,POM and SOM in the process of vegetation restoration(meanʃSD).24应用生态学报25卷此,土壤非保护性有机碳可以反映植被恢复过程土壤有机碳的变化.植被恢复过程中土壤非保护性有机碳占总有机碳的比例先增加后趋于平缓,在恢复27年后土壤非保护性有机碳逐渐接近于CK2,说明土壤有机碳的输入与微生物分解过程逐渐达到相对平衡状态,植被恢复过程中土壤、轻组和颗粒有机质C/N的变化(图4)也可以证实这一点.因为高C/N的土壤有机质分解缓慢,微生物活性低,利于有机质的积累,而且土壤碳积累的最大速率通常发生在土地利用或土地管理变化的初期[13,18].另外,0 10和10 20cm 层土壤非保护性有机碳向保护性有机碳转化速率常数(k)与植被恢复年限显著相关(图3),即植被恢复过程中非保护性有机碳逐渐向保护性有机碳转化,说明在红壤侵蚀区,依靠人工生态修复和自肥作用来恢复土壤有机碳库质量,以及维持土壤有机碳的长期有效性是可能的.然而,土壤碳库需要漫长的时间才能达到平衡状态,因此仍需加强林地管理及合理疏伐来减少土壤水分胁迫,同时还应引入演替后续物种,促进植物群落的拓殖与更替[14].参考文献[1]IPCC.Land use,land-use change,and forestry//Wat-sonRT,Noble LR,Bolin B,eds.A SpecialReport ofthe Intergovernmental Panel on Climate Change.Cam-bridge:Cambridge University Press,2000[2]Xie JS,Guo JF,Yang ZJ,et al.Rapid accumulation of carbon on severely eroded red soils through afforestationin subtropical China.Forest Ecology and Management,2013,300:53-59[3]Ding G,Novak JM,Amarasiriwardena D,et al.Soil organic matter characteristics as affected by tillage man-agement.Soil Science Society of America Journal,2002,66:421-429[4]Six J,ConantRT,Paul EA,et al.Stabilization mecha-nisms of soil organic matter:Implications for C-satura-tion of soils.Plant and Soil,2002,241:155-176[5]Skjemstad JO,Taylor JA,Janik LJ,et al.Soil organic carbon dynamics under long-term sugarcane monocul-ture.Australian Journal of SoilResearch,1999,37:151-164[6]Wu J-G(吴建国),Zhang X-Q(张小全),Wang Y-H (王彦辉),et al.The effects of land use changes on thedistribution of soil organic carbon in physical fraction ofsoil.Scientia Silvae Sinicae(林业科学),2002,38(4):19-29(in Chinese)[7]Yang Y-S(杨玉盛),Liu Y-L(刘艳丽),Chen G-S(陈光水),et al.Content and distribution of unprotectedsoil organic carbon in natural and monoculture plantationforests of Castanopsis kawakamii in subtropical China.Acta Ecologica Sinica(生态学报),2004,24(1):1-8(in Chinese)[8]Jiang P-K(姜培坤).Soil active carbon pool under dif-ferent types of vegetation.Scientia Silvae Sinicae(林业科学),2005,41(1):10-13(in Chinese)[9]State Forestry Administration(国家林业局).Forest Soil Analysis Methods:Determination of Organic Matterin Forest Soil and Calculation of Carbon-NitrogenRatio(LY-T12371999).Beijing:China Standards Press,1999(in Chinese)[10]Janzen HH,Campbell CA,Brandt SA,et al.Light-fraction organic matter in soils from long-term crop rota-tions.Soil Science Society of America Journal,1992,56:1799-1806[11]Jr Garten CT,Post WM,Hanson PJ,et al.Forest soil carbon inventories and dynamics along an elevation gra-dient in the southern Appalachian Mountains.Biogeo-chemistry,1999,45:115-145[12]Li G-D(李国栋),Liu G-Q(刘国群),Zhuang S-Y (庄舜尧),et al.Changes of organic matter in soilsplanted Lei bamboo with different years.Chinese Journalof Soil Science(土壤通报),2010,41(4):245-249(in Chinese)[13]Smith P,Powlson DS.Glendining MJ,et al.Potential for carbon sequestration in European soils:Preliminaryestimates for five scenarios using results from long-termexperiments.Global Change Biology,1997,3:67-79[14]Xue S(薛?),Liu G-B(刘国彬),Dai Q-H(戴全厚),et al.Dynamic changes of soil microbial biomassin the restoration process of shrub plantations in loesshilly area.Chinese Journal of Applied Ecology(应用生态学报),2008,19(3):517-523(in Chinese)[15]Xie J-S(谢锦升),Yang Y-S(杨玉盛),Xie M-S(谢明曙),et al.Advance of research on light fraction or-ganic matter in soil.Journal of Fujian College of Forest-ry(福建林学院学报),2006,26(3):281-288(inChinese)[16]Xiang C-H(向成华),Luan J-W(栾军伟),Luo Z-S (骆宗诗),et al.Labile soil organic carbon distributionon influenced by vegetation types along an elevation gra-dient in west Sichuan,China.Acta Ecologica Sinica(生态学报),2010,30(4):1025-1034(in Chi-nese)[17]Xie J-S(谢锦升),Chen G-S(陈光水),He Z-M(何宗明),et al.Growth characteristics of Pinus massoni-ana under different improving patterns in degraded redsoil.Bulletin of Soil and Water Conservation(水土保持341期吕茂奎等:红壤侵蚀地马尾松人工林恢复过程中土壤非保护性有机碳的变化通报),2001,21(6):24-27(in Chinese)[18]Fissore C,Giardina CP,KolkaRK,et al.Temperature and vegetation effects on soil organic carbon qualityalong a forested mean annual temperature gradient inNorth America.Global Change Biology,2008,14:193-205[19]Recous S,Aita C,Mary B.In situ changes in gross N transformations in bare soil after addition of straw.SoilBiology and Biochemistry,1999,31:119-133[20]Degryze S,Six J,Paustian K,et al.Soil organic carbon pool changes following land-use conversions.GlobalChange Biology,2004,10:1120-1132[21]Jr Garten CT.Soil carbon storage beneath recently es-tablished tree plantation in Tennessee and South Caro-lina,USA.Biomass and Bioenergy,2002,23:93-102[22]ConantRT,Six J,Paustian K.Land use effects on soil carbon fractions in the southeastern United States.I.Management-intensive versus extensive grazing.Biologyand Fertility of Soils,2003,38:386-392[23]Xie J-S(谢锦升),Yang Y-S(杨玉盛),Chen G-S(陈光水),et al.Advances on soil particulate organicmatter.Journal of SubtropicalResources and Environ-ment(亚热带资源与环境学报),2009,4(4):43-52(in Chinese)[24]Biederbeck BO,ZentnerRP.Labile soil organic matter as influenced by cropping practices in an arid environ-ment.Soil Biology and Biochemistry,1994,26:1647-1656[25]Kalbitz K,Solinger S,Park JH,et al.Controls on the dynamics of dissolved organic matter in soils:A review.Soil Science,2000,165:277-304[26]Tang G-M(唐光木),Xu W-L(徐万里),Sheng J-D (盛建东),et al.The variation of soil organic carbonand soil particle-size in Xinjiang oasis farmland of differ-ent years.Acta Pedologica Sinica(土壤学报),2010,47(2):279-285(in Chinese)作者简介吕茂奎,男,1986年生,硕士研究生.主要从事森林水文与生态恢复研究.E-mail:228lmk@163.com责任编辑李凤琴44应用生态学报25卷。

英语作文保护环境高级句型

英语作文保护环境高级句型

Protecting the Environment: A Call for Action In the contemporary era, the significance of safeguarding our environment has never been more pronounced. The fragile balance of nature, once taken for granted, is now at the brink of collapse, prompting a urgent need for collective action. The very survival of our planet hingeson our willingness to adopt sustainable practices and mitigate the impact of human activities.The environment, a repository of life, is underconstant assault from industrialization, urbanization, and unchecked consumption. Toxic emissions contaminate our air and water, while deforestation and soil degradation erode the fertility of our land. These anthropogenic activities not only imperil the biodiversity of our planet but also threaten the well-being of future generations.The urgency to protect the environment is underscoredby the alarming rate of climate change. Rising temperatures, extreme weather events, and melting ice caps are but a fewof the telltale signs of a warming planet. These changesare not just environmental in nature; they have profound social, economic, and political implications as well. Thepoorest and most vulnerable communities are disproportionately affected, highlighting the inequitable impact of environmental degradation.In the face of these challenges, it is imperative that we adopt a multifaceted approach to environmental protection. Firstly, we must prioritize the use of renewable energy sources and reduce our dependence onfossil fuels. This will help mitigate greenhouse gas emissions and slow down the pace of climate change. Secondly, we need to promote sustainable agriculture and forestry practices that conserve natural resources and enhance biodiversity. Thirdly, education and awareness are crucial in fostering a culture of environmental responsibility. By educating the masses on the importance of conservation and sustainability, we can encourage them to make informed choices that benefit the environment.Moreover, government policies and international agreements play a pivotal role in environmental protection. Stringent environmental regulations and incentives for sustainable practices can encourage businesses and individuals to adopt eco-friendly behaviors. At the globallevel, cooperation and collaboration among nations are essential in addressing the shared challenges of climate change and environmental degradation.In conclusion, protecting the environment is not just a responsibility; it is a moral imperative that we owe to ourselves and future generations. By adopting sustainable practices, promoting awareness, and fostering global cooperation, we can ensure a healthier, safer, and more habitable planet for all.**保护环境:行动的呼唤**在当代社会,保护环境的重要性日益凸显。

高二英语地球科学探索单选题30题

高二英语地球科学探索单选题30题

高二英语地球科学探索单选题30题1.The process by which water changes from a liquid to a gas is called _____.A.evaporationB.condensationC.precipitationD.sublimation答案:A。

evaporation 是蒸发;condensation 是冷凝;precipitation 是降水;sublimation 是升华。

题干中说水从液态变为气态的过程叫什么,很明显是蒸发。

2.The outermost layer of the Earth is called _____.A.crustB.mantleC.coreD.lithosphere答案:A。

crust 是地壳;mantle 是地幔;core 是地核;lithosphere 是岩石圈。

地球的最外层是地壳。

3.A large body of water surrounded by land is called a _____.keB.seaC.oceanD.river答案:A。

lake 是湖;sea 是海;ocean 是海洋;river 是河。

被陆地包围的大片水域是湖。

4.The study of the Earth's physical structure and substance is known as _____.A.geologyB.geographyC.astronomyD.biology答案:A。

geology 是地质学;geography 是地理学;astronomy 是天文学;biology 是生物学。

研究地球物理结构和物质的是地质学。

5.The movement of tectonic plates causes _____.A.earthquakesB.volcanoesC.mountainsD.all of the above答案:D。

环境保护与可持续发展智慧树知到答案章节测试2023年青岛科技大学

环境保护与可持续发展智慧树知到答案章节测试2023年青岛科技大学

第一章测试1.Provide food for human is the indirect value of biodiversity.()A:对B:错答案:B2.Waste treatment is the direct value of biodiversity. ()A:错B:对答案:A3.Desertification is the development of desertlike areas, it is caused by loss ofvegetation.()A:错B:对答案:B4.Introduction of exotic Species may cause biodiversity loss。

()A:对B:错答案:A5.ecosystem diversity refers to a measure of the number of kinds ofecosystems present in an area.()A:对B:错答案:A第二章测试1.Biomass energy is one nonrenewable energy source.()A:错B:对答案:A2.Nuclear energy is renewable energy source.()A:对B:错答案:B3.Underground mining of coal may cause subsidence.()A:错B:对答案:B4.Resources are smaller than reserves.()A:对答案:B5.Surface mining of coal may cause landscape disturbance。

()A:对B:错答案:A第三章测试1.For fish growth in the aquatic ecosystem, dissolved oxygen is a()。

A:abiotic factorB:general ecological factorC:limiting factorD:biotic factor答案:C2.Which of the following factors is not the limiting factor for fish growth in theaquatic ecosystem?()A:DOB:SiltC:Soil nutrientsD:Temperature答案:C3.Humans raising cattle for food is what kind of relationship?()A:predationB:parasitismC:mutualismD:intraspecific competition答案:A4.Which is the abiotic factor of an organism’s environment?()A:plantsB:fungiC:weatherD:bacteria答案:C5.Which is not the typical habitat of mosses?()A:moistB:shadyC:droughtD:cool答案:C第四章测试1.Forest soil has a thin topsoil layer.()A:对答案:A2.Grassland soil has a deep layer of subsoil. ()A:对B:错答案:B3.Black soil and red soil are different soil types.()A:错B:对答案:B4.Desert soil has a well developed soil layers. ()A:对B:错答案:B5.Soil erosion is the wearing away and transportation of soil by wind or water.()A:对B:错答案:A第五章测试1.Which is the secondary Pollutant?()A:SO2B:HNO3C:COD:NO答案:B2.Particulate matter and Ozone are primary pollutants. ()A:错B:对答案:A3.Acid rain is mainly caused by SO2 and NO2.()A:错B:对答案:B4.Chlorofluorocarbon (CFC) is one kind of greenhouse gas. Also, CFC candamage ozone layer.()A:对B:错答案:A5.Photochemical smog is a mixture of primary pollutants and secondarypollutants.()A:对B:错答案:A第六章测试1.The value of COD is higher than BOD.()A:错B:对答案:B2.Municipal and industrial sources are good examples of nonpoint sources.()A:错B:对答案:A3.Groundwater is in saturated zone, which is under the water table.()A:对B:错答案:A4.Agricultural sources are points sources. They are difficult to control.()A:对B:错答案:B5.Thermal pollution is caused by cooling water from industry. ()A:错B:对答案:B第七章测试1.The first step for solid waste treatment is()。

PRI-8800应用案例分享:更优选的VCM模式(变温培养+连续测定)

PRI-8800应用案例分享:更优选的VCM模式(变温培养+连续测定)

PRI-8800应用案例分享:更优选的VCM模式(变温培养+连续测定);; ;; ;; ;;上一期我们与大家分享了土壤呼吸室内模拟实验的三代不同技术,本期我们将继续与大家分享——为什么目前VCM模式(变温培养+连续测定)是更优选的实验方案。

;;关于土壤呼吸室内培养模拟实验方案,可点击链接查看PRI-8800——助力发展SOM分解对温度响应的新培养和测定模式;;;; ;; ;; ;;土壤与大气之间通过光合作用和呼吸作用的碳交换是全球碳循环的一个组成部分。

土地利用或管理的变化会频繁的改变光合作用输入和土壤呼吸消耗之间的平衡,导致生态系统尺度的碳净积累或净损失。

与光合作用和/或呼吸作用密切相关的因素也起到重要的调节作用,其中温度的控制一直是人们关注的重点。

有大量的文献以及模型用于计算或解释观察到的呼吸对温度升高的反应。

;; ;; ;; ;;由于土壤呼吸受温度、湿度、反应底物等多重的相互作用控制,野外呼吸速率对温度具有高度的离散性,许多不同的理论和经验公式将给出相似的拟合优度。

呼吸的温度响应也可以在实验室中测量,但通常受限于实验条件,研究人员通常只在3-5个温度点(大约相隔5-10℃)进行呼吸测量。

同样,有限数量的离散温度往往导致相似的拟合优度,不同的方程之间几乎没有能力分离。

;; ;; ;; ;;2017年,Robinson等经过实验发现至少需要20个点来拟合温度响应曲线,他们建议,应更大程度地考虑由于设置温度点太少而造成的拟合误差,特别是在测试不同的理论模型或随后在模型中使用拟合参数时。

;;图1.离散温度样点与呼吸速率测量值的灵敏性分析(Robinson,et al.,2017) ;; ;; ;; ;;x轴是测量呼吸的离散温度的数量,y轴是土壤呼吸速率值在57条InRS-T曲线上95%置信区间的标准化范围(均值;±;std);;图2.3种模式示意(Liu Y,et al.,2019);; ;; ;; ;;CDM模式(恒温培养+间断测定模式):通常,根据不同实验目的或实验室条件,研究人员先设置3-6个恒定温度对土壤进行培养(如5、10、15、20、25、30℃等),然后在天、周、月间隔,测定Rs;在测试方法上,大多采用碱液吸收法或气相色谱法进行测定,然后再利用所测定的Rs和对应温度计算Q10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档