第十章 第一节 分类加法计数原理与分步乘法计数原理(理)

合集下载

第十章 第一节 分类加法计数原理与分步乘法计数原理课件 理 新人教版课件

第十章 第一节 分类加法计数原理与分步乘法计数原理课件 理 新人教版课件

5.(教材习题改编)5名毕业生报考三所中学任教,每人仅报 一所学校,则不同的报名方法的种数是________. 解析 共有3×3×3×3×3=35=243. 答案 243
[关键要点点拨] 1.两个原理的联系与区别:
两个原理都是对完成一件事的方法种数而言的.区别在 于:(1)分类加法计数原理是“分类”,分步乘法计数原理 是“分步”;(2)分类加法计数原理中每类方法中的每一种 方法都能独立完成这件事,分步乘法计数原理中每步中 每种方法都只能做这件事的一步,不能独立完成这件 事. 2.对于较复杂的问题有时要两个原理综合使用,即先分类 再分步或先分步再分类.
[规律方法] 用两个原理解决计数问题时,关键是明确需要分类还是分 步. (1)分类要做到“不重不漏”,分类后再分别对每一类进行计数, 最后用分类加法计数原理求和得到总数;分步要做到“步骤 完整”. (2)对于复杂问题,可同时运用两个计数原理或借助列表、画 圈的方法来帮助分析.
[跟踪训练] 3.已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从
D.10
B [因为a,b∈{-1,0,1,2},可分为两类:①当a=0时, b可能为-1或1或0或2,即b有4种不同的选法;②当a≠0时, 依题意得Δ=4-4ab≥0,所以ab≤1.当a=-1时,b有4种不同 的选法,当a=1时,b可能为-1或0或1.即b有3种不同的选法, 当a=2时,b可能为-1或0,即b有2种不同的选法.根据分 类加法计数原理,(a,b)的个数共有4+4+3+2=13.]
(2)(2014·湖南长郡中学、衡阳八中等十二校一联)用红、黄、 蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如 图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同, 且标号为1、5、9的小正方形涂相同的颜色,则符合条件的 所有涂法共有________种.

第十章 第1节 分类加法计数原理与分步乘法计数原理

第十章 第1节 分类加法计数原理与分步乘法计数原理

11
知识衍化体验
考点聚焦第突十一破页,编辑于星期日:二十点 十二分。
@《创新设计》
6.已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为________(用数字作 答). 解析 分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有 5×4=20种走法. 答案 20
4
知识衍化体验
考点聚焦第突四页破,编辑于星期日:二十点 十二分。
@《创新设计》
[常用结论与易错提醒] 1.应用两个计数原理的难点在于明确分类还是分步.
在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选 择合理的标准处理事情,可以避免计数的重复或遗漏.
2.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理
7
知识衍化体验
考点聚焦第突七页破,编辑于星期日:二十点 十二分。
@《创新设计》
2.(2018·上海卷)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的
四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱 的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )
A.4
B.8
15
知识衍化体验
考点聚焦第突十五破页,编辑于星期日:二十点 十二分。
【训练 1】 (1)如图,从 A 到 O 有______种不同的走法(不重复过一点).
@《创新设计》
(2)若椭圆xm2+yn2=1 的焦点在 y 轴上,且 m∈{1,2,3,4,5},n∈{1,2,3, 4,5,6,7},则这样的椭圆的个数为__________(用数字作答).
②当a≠0时,则Δ=4-4ab≥0,ab≤1, (ⅰ)若a=-1时,b=-1,0,1,2有4种不同的选法; (ⅱ)若a=1时,b=-1,0,1有3种可能; (ⅲ)若a=2时,b=-1,0,有2种可能. ∴有序数对(a,b)共有4+4+3+2=13(个). 答案 (1)B (2)B

第一节 分类加法计数原理与分步乘法计数原理(知识梳理)

第一节 分类加法计数原理与分步乘法计数原理(知识梳理)

第一节分类加法计数原理与分步乘法计数原理复习目标学法指导1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. 运用计数原理解决问题时,要明确完成一件事情可以有不同类的方法还是需要分几步才能完成,并且要准确确定出每一类或每一步的方法数;对于复杂问题可同时应用两个原理.一、分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.二、分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.概念的理解(1)分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.(2)有些较复杂的问题往往不是单纯的“分类”或“分步”可以解决的,而要将“分类”和“分步”结合起来运用.(3)两个原理的地位有差别,分类计数更具有一般性,故通常是先“分类”,然后再在每一类中“分步”,分类时标准要明确,做到不重不漏,适当画出示意图或树形图,使问题的分析更直观、清楚.1.为便民惠民,某通信运营商推出“优惠卡活动”.其内容如下:卡号的前七位是固定的,后四位从“0000”到“9999”共10 000个号码参与该活动,凡卡号后四位带有“6”或“8”的一律作为“优惠卡”,则“优惠卡”的个数是( C )(A)1 980 (B)4 096 (C)5 904 (D)8 020解析:卡号后四位不带“6”和“8”的个数为84=4 096,故带有“6”或“8”的“优惠卡”有5 904个.故选C.2.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有( C )(A)1种(B)3种(C)6种(D)9种3.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( D )(A)10种(B)20种 (C)25种(D)32种解析:因为规定每个同学必须报名,则每人只有2个选择.报名方法有2×2×2×2×2=32种.故选D.4.所有两位数中,个位数字比十位数字大的两位数共有( B )(A)45个(B)36个(C)30个(D)50个5.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有( B )(A)5种(B)2种(C)3种(D)4种6.6名同学争夺3项冠军,获得冠军的可能性有种.解析:根据分步乘法计数原理获得冠军的可能性有6×6×6=216种. 答案:2167.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300考点一分类加法计数原理的应用[例1] 如图,一条电路从A处到B处接通时,可有条不同的线路.解析:根据图形可知,电路从A处到B处接通时可以有3+1+2×2=8条不同的线路.答案:8运用分类加法计数原理的关键是分类标准恰当;分类时应注意完成这件事情的任何一种方法必须属于某一类,且只能属于某一类(即标准明确,不重不漏).1.某校高三年级5个班进行拔河比赛,每2个班都要比赛一场.到现在为止,(1)班已经比了4场,(2)班已经比了3场,(3)班已经比了2场,(4)班已经比了1场,则(5)班已经比了( B )(A)1场(B)2场(C)3场(D)4场解析:设①②③④⑤分别代表(1)(2)(3)(4)(5)班,①比了4场,则①和②③④⑤均比了1场;由于④只比了1场,则一定是和①比的;②比了3场,是和①③⑤比的;③比了2场,是和①②比的.所以此时⑤比了2场,是和①②比的.5个班的比赛情况可以用如图表示.故选B.2.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( B )(A)14 (B)13 (C)12 (D)10解析:当a=0时,b=-1,0,1,2,有4种可能.当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)若a=-1时,b=-1,0,1,2有4种可能;(ⅱ)若a=1时,b=-1,0,1有3种可能;(ⅲ)若a=2时,b=-1,0,有2种可能.所以有序数对(a,b)共有4+4+3+2=13个.故选B.考点二分步乘法计数原理的应用[例2] 有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).利用分步乘法计数原理解决问题(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)分步要做到“步骤完整”,即只有完成了所有步骤,才完成任务;(3)对完成各步的方法数要准确确定.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则:(1)P可表示平面上个不同的点.(2)P可表示平面上个第二象限的点.解析:(1)因为P(a,b)(a,b∈M),所以a,b都有6种不同的取法,根据分步乘法计数原理得这样的点有6×6=36种.(2)当a<0,b>0时,点(a,b)就在第二象限,此时a有3种不同取法,b有2种不同的取法,所以共有3×2=6种.答案:36 6考点三两个计数原理的综合应用[例3] 用0,1,2,3,4,5,6这7个数字可以组成个无重复数字的四位偶数.(用数字作答)思路点拨:按首位数字的奇偶性分类,在每一类中根据特殊位置(末位)优先原则进行分步.解析:当首位数字为奇数时,首位取法有3种,末位取法有4种,百位取法有5种,十位取法有4种,根据分步乘法计数原理,有3×4×5×4=240种取法,当首位数字为偶数时,首位取法有3种,末位取法有3种,百位取法有5种,十位取法有4种,根据分步乘法计数原理,有3×3×5×4=180种取法,根据分类加法计数原理,共可组成240+180=420个无重复数字的四位偶数.答案:420(1)应用两个计数原理的难点在于明确分类还是分步.(2)分类要做到“不重不漏”,正确把握分类标准是关键.(3)分步要做到“步骤完整”,步步相连才能将事件完成.(4)较复杂的问题可借助图表完成.[例4] 用n种不同颜色为下列两块广告牌着色(如图(1)、图(2)),要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色.(1)若n=6,为图(1)着色时共有多少种不同的方法?(2)若为图(2)着色时共有120种不同的方法,求n.解:(1)为A着色有6种方法,为B着色有5种方法,为C着色有4种方法,为D着色也有4种方法,所以,共有着色方法6×5×4×4=480(种).(2)图(2)与图(1)的区别在于与D相邻的区域由2块变成了3块,同理,不同的着色方法种数是n(n-1)(n-2)(n-3).因为n(n-1)(n-2)(n-3)=120,又120<480,所以可分别将n=4,5代入得n=5时上式成立.所以n=5.涂色问题的实质是分类与分步的综合运用,一般是整体分步,分步过程中若出现某一步需要分情况说明时,还要进行分类.1.若数列{a n}满足规律:a1>a2<a3>…<a2n-1>a2n<…,则称数列{a n}为余弦数列,现将1,2,3,4,5排列成一个余弦数列,则不同的排法种数为( C )(A)12 (B)14 (C)16 (D)18解析:先分类再分步,首位排2时,有21435,21534共2种;首位排3时,有31425,31524,32415,32514共4种;首位排4时,有41325,41523,42315,42513,43512共5种;首位排5时,有51324,51423,52314,52413,53412共5种;所以总共有16种.故选C.2.若一个无重复数字的四位数的各位数字之和为10,则称该数为“完美四位数”,如数字“2 017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2 017的“完美四位数”有( D )(A)53个(B)59个(C)66个(D)71个解析:无重复数字且相加等于10的四个数字分别是(0,1,2,7),(0,1,3,6),(0,1,4,5),(0,2,3,5),(1,2,3,4),共五组.其中第一组(0,1,2,7)中,7排首位有3×2=6(种)情况;2排首位,1或7排在第二位,有2×2=4(种)情况;2排首位,0排第二位,7排第三位有1种情况.共6+4+1=11(种)情况符合题设.第二、三组中3,6与4,5分别排首位,各有2×3×2=2×6=12(种)情况,共有2×12=24(种)情况符合题设.第四、五组中2,3,5与2,3,4分别排首位,各有3×3×2=3×6=18(种)情况,共有2×18=36(种)情况符合题设.依据分类加法计数原理可知,符合题设条件的“完美四位数”共有11+24+36=71(个),选D.。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理分类加法计数原理是指将一个计数问题分成若干个子问题,然后将子问题的计数结果相加得到最终的计数结果。

其基本思想是将问题中的元素分成若干个不重叠的类别,然后分别计数各个类别的元素个数,最后将各类别的计数结果相加。

这个原理常用于解决包含多个步骤的计数问题。

举个例子来说明分类加法计数原理的应用:假设有一个盒子,里面有红球、蓝球和绿球,分别有3个、4个和5个。

现在要从盒子中任选3个球,问有多少种选择方法。

我们可以将这个问题分为三个子问题:选取3个红球的方法数、选取3个蓝球的方法数和选取3个绿球的方法数。

然后分别计数这三个子问题的方法数,最后将它们相加得到总的方法数。

与分类加法计数原理相对应的是分步乘法计数原理。

分步乘法计数原理是指将一个计数问题分成若干个步骤,然后将各个步骤的计数结果相乘得到最终的计数结果。

这个原理常用于解决包含多个独立步骤的计数问题。

举个例子来说明分步乘法计数原理的应用:假设有一个密码锁,需要输入5位密码,每位密码都是从0到9的数字。

问一共有多少种可能的密码组合。

我们可以将这个问题分为5个步骤:第一位密码的选择、第二位密码的选择、第三位密码的选择、第四位密码的选择和第五位密码的选择。

然后计数每个步骤的可能性,最后将它们相乘得到总的可能性。

分步乘法计数原理也可以用于解决其他的计数问题,例如从一个字母表中选择若干个字母组成单词的方法数、从一个数列中选择若干个数的方法数等等。

总的说来,分类加法计数原理和分步乘法计数原理是解决组合数学中计数问题的重要方法。

它们可以帮助我们系统地分析和解决各种计数问题,提高我们的计算能力和思维能力。

无论是在学术研究还是在实际应用中,这两个原理都有着广泛的应用价值。

2020高考数学一轮复习:第十章 第1讲分类加法计数原理与分步乘法计数原理(讲义)

2020高考数学一轮复习:第十章  第1讲分类加法计数原理与分步乘法计数原理(讲义)

第1讲 分类加法计数原理与分步乘法计数原理1.两个计数原理 两个计数原理 目标 策略 过程方法总数 分类加法计数原理 完 成一件 事 有两类 不同的 方案 在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法 N =m +n 种不同的方法 分步乘法计数原理需要两 个步骤 做第1步有m 种不同的方法,做第2步有n 种不同的方法N =m ×n 种不同的方法 分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.导师提醒关注三个易错点(1)应用两个计数原理首先要弄清楚先分类还是先分步.(2)分类要做到“不重不漏”,正确把握分类标准.(3)分步要做到“步骤完整”,步步相连.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事件是分两步完成的,其中任何一个单独的步骤都能完成这件事.()答案:(1)×(2)√(3)√(4)×已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为() A.16 B.13C.12 D.10解析:选C.由分步乘法计数原理可知,走法总数为4×3=12.故选C.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30 B.20C.10 D.6解析:选D.从0,1,2,3,4,5六个数字中,任取两个不同数字和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为________.解析:3个新节目一个一个插入节目单中,分别有7,8,9种方法,所以不同的插法种数为7×8×9=504.答案:504(教材习题改编)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从书架上任取1本书,不同的取法种数为________,从第1,2,3层分别各取1本书,不同的取法种数为________.解析:由分类加法计数原理知,从书架上任取1本书,不同的取法总数为4+5+6=15.由分步乘法计数原理知,从1,2,3层分别各取1本书,不同的取法总数为4×5×6=120.答案:15120如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.解析:不同路线共有3×4+4×5=32(条).答案:32分类加法计数原理(典例迁移)(1)椭圆x 2m +y 2n=1(m >0,n >0)的焦点在x 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为( )A .10B .12C .20D .35(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为________.【解析】 (1)因为焦点在x 轴上,m >n ,以m 的值为标准分类,由分类加法计数原理,可分为四类:第一类:m =5时,使m >n ,n 有4种选择;第二类:m =4时,使m >n ,n 有3种选择;第三类:m =3时,使m >n ,n 有2种选择;第四类:m =2时,使m >n ,n 有1种选择.故符合条件的椭圆共有10个.故选A.(2)根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合条件的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】 (1)A (2)36[迁移探究1] (变条件)在本例(1)中,若m ∈{1,2,…,k },n ∈{1,2,…,k }(k ∈N *),其他条件不变,这样的椭圆有多少个?解:因为m >n .当m =k 时,n =1,2,…,k -1.当m =k -1时,n =1,2,…,k -2.…当m=3时,n=1,2.当m=2时,n=1.所以共有1+2+…+(k-1)=k(k-1)2(个).[迁移探究2](变条件)若本例(2)条件变为“个位数字不小于十位数字”,则这样的两位数的个数是多少?解:分两类:一类:个位数字大于十位数字的两位数,由本例(2)知共有36个;另一类:个位数字与十位数字相同的有11,22,33,44,55,66,77,88,99,共9个.由分类加法计数原理知,共有36+9=45(个).分类加法计数原理的两个条件(1)根据问题的特点能确定一个适合它的分类标准,然后在这个标准下进行分类.(2)完成这件事的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.1.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5(种)不同的走法.答案:52.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数共有2+6+12+20+30+42+56+72=240(个).答案:240分步乘法计数原理(典例迁移)(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12 D.9(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.【解析】(1)由题意可知E→F共有6种走法,F→G共有3种走法,由分步乘法计数原理知,共有6×3=18种走法,故选B.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【答案】(1)B(2)120[迁移探究1](变条件)若本例(2)中将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解:每人都可以从这三个智力项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).[迁移探究2](变条件)若将本例(2)条件中的“每人至多参加一项”改为“每人参加的项目数不限”,其他不变,则有多少种不同的报名方法?解:每人参加的项目数不限,因此每一个项目都可以从六人中任选一人,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).利用分步乘法计数原理解题的策略(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总方法数.[提醒]分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.1.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P 表示坐标平面上第二象限的点的个数为()A.6 B.12C.24 D.36解析:选A.确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.2.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:633.从-1, 0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数学作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6两个计数原理的综合应用(多维探究)角度一涂色、种植问题如图,用6种不同的颜色分别给图中A,B,C,D四块区域涂色,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.400种B.460种C.480种D.496种【解析】完成此事可能使用4种颜色,也可能使用3种颜色.当使用4种颜色时:从A开始,有6种方法,B有5种,C有4种,D有3种,完成此事共有6×5×4×3=360种方法;当使用3种颜色时:A,D使用同一种颜色,从A,D开始,有6种方法,B有5种,C有4种,完成此事共有6×5×4=120种方法.由分类加法计数原理可知:不同的涂法有360+120=480(种).【答案】 C角度二与几何有关的问题(1)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.24(2)如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).【解析】(1)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.(2)把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).【答案】(1)B(2)40角度三排数与排队问题(1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)生产过程中有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A.24种B.36种C.48种D.72种【解析】(1)①首位为5,末位为0:4×3×2=24(个);②首位为5,末位为2:4×3×2=24(个);③首位为5,末位为4:4×3×2=24(个);④首位为4,末位为0:4×3×2=24(个);⑤首位为4,末位为2:4×3×2=24(个).由分类加法计数原理,得共有24+24+24+24+24=120(个).故选B.(2)分两类:①第一道工序安排甲时有1×1×4×3=12(种);②第一道工序不安排甲时有1×2×4×3=24(种).所以共有12+24=36(种).故选B.【答案】(1)B(2)B利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.1.在如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24 B.48C.72 D.96解析:选C.分两种情况:(1)A,C不同色,先涂A有4种,C有3种,E有2种,B,D有1种,有4×3×2=24(种).(2)A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48(种).综上两种情况,不同的涂色方法共有48+24=72(种).2.如果一条直线与一个平面垂直,那么称此直线与该平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48 B.18C.24 D.36解析:选D.分类讨论:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).计数原理中的新定义问题定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【解析】由题意,“规范01数列”有偶数项,即2m项,且所含0与1个数相等,首项为0,末项为1,若m=4,说明数列有8项,得必有a1=0,a8=1,则具体的排法如下:00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101共14个.【答案】 C组数、组点、组线、组队及抽取问题的解题思路(1)组数、组点、组线、组队问题:一般按特殊位置由谁占领分类,每类中再分步计数,当分类较多时,也可用间接法求解.(2)有限制条件的抽取问题:一般根据抽取的顺序分步或根据选取的元素特点分类,当数目不大时,可用枚举法,当数目较大时,可用间接法求解.用a代表红球,b代表蓝球,c代表黑球,由分类加法计数原理及分步乘法计数原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab 表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球,而“ab”则表示把红球和蓝球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)解析:选A.因为无区别,所以取红球的方法数为1+a+a2+a3+a4+a5;因为蓝球要都取出,或都不取出,所以方法为1+b5,因为黑球有区别,因此,取黑球的方法数为(1+c)5,所以所有取法数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5.故选A.[基础题组练]1.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是()A.30B.42C.36 D.35解析:选C.因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16 C.13D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.3.已知集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14C.15 D.21解析:选B.因为P={x,1},Q={y,1,2},且P⊆Q,所以x∈{y,2}.所以当x=2时,y=3,4,5,6,7,8,9,共7种情况;当x=y时,x=3,4,5,6,7,8,9,共7种情况.故共有7+7=14种情况,即这样的点的个数为14.4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8解析:选D.当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理公比为12,13,23时,也有4个.故共有8个等比数列.5.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个解析:选A.将和等于11的数放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C12=2种,共有2×2×2×2×2=32个子集.故选A.6.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D 中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A.180种B.360种C.720种D.960种解析:选D.按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).7.直线l :x a +y b=1中,a ∈{1,3,5,7},b ∈{2,4,6,8}.若l 与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( )A .6B .7C .8D .16解析:选B.l 与坐标轴围成的三角形的面积为S =12ab ≥10,即ab ≥20. 当a =1时,不满足;当a =3时,b =8,即1条.当a ∈{5,7}时,b ∈{4,6,8},此时a 的取法有2种,b 的取法有3种,则直线l 的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.8.一个旅游景区的游览线路如图所示,某人从P 点处进,Q 点处出,沿图中线路游览A ,B ,C 三个景点及沿途风景,则不重复(除交汇点O 外)的不同游览线路有( )A .6种B .8种C .12种D .48种解析:选D.从P 点处进入结点O 以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A 景点,再进入另外两个景点,最后从Q 点处出有(4+4)×2=16种不同的方法;同理,若先游览B 景点,有16种不同的方法;若先游览C 景点,有16种不同的方法,因而所求的不同游览线路有3×16=48(种).9.如图所示,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种B.48种C.24种D.12种解析:选A.法一:首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C 有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.法二:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24种涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24种,D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).10.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013 是“六合数”),则首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B.依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2、2、0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计:3+6+3+3=15(个).11.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10解析:选B.当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,故选B.12.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种解析:选A.根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A或B处,若8放在B处,则可以从5,6,7这3个数字中选一个放在C处,剩余两个位置固定,此时共有3种方法,同理,若8放在A处,也有3种方法,所以共有6种方法.13.把3封信投到4种.解析:第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43=64种投法.答案:6414.从班委会5名成员中选出3名,分别担任班级学生委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析:第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人担任文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案:3615.已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=25,则符合条件的三角形共有________个.解析:根据三边构成三角形的条件可知,c<25+a.第一类:当a=1,b=25时,c可取25,共1个值;第二类,当a=2,b=25时,c可取25,26,共2个值;……当a=25,b=25时,c可取25,26,…,49,共25个值;所以三角形的个数为1+2+…+25=325.答案:32516.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 880[综合题组练]1.(2019·湖南郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有()A.4 320种B.2 880种C.1 440种D.720种解析:选A.分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320种不同的涂色方法,故选A.2.在某校举行的羽毛球两人决赛中,采用5局3胜制的比赛规则,先赢3局者获胜,直到决出胜负为止.若甲、乙两名同学参加比赛,则所有可能出现的情形(个人输赢局次的不同视为不同情形)共有()A.6种B.12种C.18种D.20种解析:选D.分三种情况:恰好打3局(一人赢3局),有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2×3=6种情形;恰好打5局(一人前4局中赢2局,=12种情形.所有可能出现的情形共有2+6+12=20种.故输2局,第5局赢),共有2×4×32选D.3.(创新型)(2019·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:3004.x+y+z=10的正整数解的组数为________.解析:可按x的值分类:当x=1时,y+z=9,共有8组;当x=2时,y+z=8,共有7组;当x=3时,y+z=7,共有6组;当x=4时,y+z=6,共有5组;当x=5时,y+z=5,共有4组;当x=6时,y+x=4,共有3组;当x=7时,y+z=3,共有2组;当x=8时,y+z=2,共有1组.由分类加法计数原理可知:共有8+7+6+5+4+3+2+1=8×9=36(组).2答案:365.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解:(1)y=ax2+bx+c表示二次函数时,a的取值有5种情况,b的取值有6种情况,c 的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)当y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.6.(综合型)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.解:法一:按所用颜色种数分类.第一类:5种颜色全用,共有A55种不同的方法;第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类:只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420(种).法二:以S,A,B,C,D顺序分步染色.第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C 是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C 与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).。

高考数学第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步乘法计数原理理

高考数学第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步乘法计数原理理

2021/12/12
第十六页,共四十二页。
解法 2:a=b 时有 4 种情况,故椭圆个数为 4×8-4=28 个. (2)根据“凸数”的特点,中间的数字只能是 3,4,5,故分三 类,第一类,当中间数字为“3”时,此时有 2 种(132,231); 第二类,当中间数字为“4”时,从 1,2,3 中任取两个放在 4 的 两边,故有 6 种; 第三类,当中间数字为“5”时,从 1,2,3,4 中任取两个放在 5 的两边,故有 12 种; 根据分类加法计数原理,得到由 1,2,3,4,5 可以组成无重复数 字的三位“凸数”的个数是 2+6+12=20.
有 1 个;a=4 时,有 3 个;a=6 时,有 5 个;a=8 时,有 7 个,
共有 1+3+5+7=16 个.
若焦点在 y 轴上,则 b>a,b=3 时,有 1 个;b=4 时,有 1 个;b=5 时,有 2 个;b=6 时,有 2 个;b=7 时,有 3 个;b =8 时,有 3 个.共有 1+1+2+2+3+3=12 个.故共有 16+ 12=28 个.
2021/12/12
第十页,共四十二页。
4.已知某公园有 5 个门,从任一门进,另一门出,则不同的走法
的种数为 __2_0___(用数字作答).
解析:分两步,第一步选一个门进有 5 种方法,第二步再 选一个门出有 4 种方法,所以共有 5×4=20 种走法.
2021/12/12
第十一页,共四十二页。
一个旅游景区的游览线路如图所示,某人从 P 点处进,Q 点处出, 沿图中线路游览 A,B,C 三个景点及沿途风景,则不同(除交汇点 O 外)
的游览线路有____4_8____种.(用数字作答)
2021/12/12

高中数学精品讲义第十章第一节分类加法计数原理与分步乘法计数原理Word版含解析

高中数学精品讲义第十章第一节分类加法计数原理与分步乘法计数原理Word版含解析

第十章⎪⎪⎪计数原理与概率、随机变量及其分布高中数学精品讲义第十章第一节分类加法计数原理与分步乘法计数原理Word版含解析全国卷5年考情图解高考命题规律把握1.本章在高考中一般考查1个小题和1个解答题,占12~17分.2.从考查内容来看,主要有:(1)利用计数原理解决实际问题,有时与古典概型综合考查.(2)几何概型均以选择题的形式单独考查.(3)对二项式定理的考查主要是利用通项公式求特定项.(4)对正态分布的考查,可能单独考查也可能在解答题中出现.(5)以实际问题为背景,考查分布列、期望等是高考的热点题型.3.2018年高考全国卷Ⅰ将概率问题与导数相结合且出现在第20题的位置,应引起考生的注意.第一节分类加法计数原理与分步乘法计数原理两个计数原理(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.[熟记常用结论]1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n 种不同的方法.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()答案:(1)×(2)√(3)√(4)×二、选填题1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法共有()A.16种B.13种C.12种D.10种答案:C2.小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有()A.7种B.8种C.6种D.9种解析:选A要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC 电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有2种方法.不同的买法共有2+3+2=7(种).3.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160B.720C.240D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720(种)分法.4.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数是________.解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).答案:65.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为________.解析:由分步乘法计数原理,从1,2,3层分别各取1本书不同的取法共有4×5×6=120(种).答案:120考点一分类加法计数原理[基础自学过关][题组练透]1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x2m+y2n=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m=1时,n=2,3,4,5,6,7,共6个;当m=2时,n=3,4,5,6,7,共5个;当m=3时,n=4,5,6,7,共4个;当m=4时,n=5,6,7,共3个;当m=5时,n=6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a1a2a3”满足a1<a2且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240[名师微点]应用分类加法计数原理解决实际问题的步骤(1)审题:认真阅读题设条件,理清题目要求.(2)分类:依据题设条件选择分类标准,做到不重不漏.(3)整合:整合各类情况得出结论.考点二分步乘法计数原理[师生共研过关][典例精析](1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析](1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[过关训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6考点三两个计数原理的综合应用[师生共研过关][典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[过关训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40。

分类加法计数原理与分步乘法计数原理练习题

分类加法计数原理与分步乘法计数原理练习题

第十章计数原理、概率、随机变量及其分布(理)概率(文)第一节分类加法计数原理与分步乘法计数原理(理)时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1 .教学大楼共有4层,每层都有东西两个楼梯,由一层到四层共有走法种数为()A. 6B. 23C. 42D. 44解析由一层到二层有2种选择,二层到三层有2种选择,三层到四层有2种选择f/.23 = 8.答案B2.按ABO血型系统学说,每个人的血型为A、B、0、AB型四种之一,依血型遗传学,当父母的血型中没有AB型时,子女的血型有可能是O型,若某人的血型是O型,则其父母血型的所有可能情况有()A. 6种B. 9种C. 10种D. 12 种解析找出其父母血型的所有情况分两步完成,第一步找父亲的血型,依题意有3种;第二步找母亲的血型也有3种,由分步乘法计数原理得:其父母血型的所有可能情况有3X3 = 9(种)・答案B3∙ (2014・惠州月考)2012年奥运会上,8名运动员争夺3项乒乓球冠军,获得冠军的可能有()A. 83种B. 38种D. C3种8解析把8名运动员看作8家“店” 3项冠军看作3位“客”,它们都可住进任意一家“店”,每位“客”有8种可能.根据乘法原理,共有8义8 X 8=83(种)不同的结果.答案A4.若三角形的三边均为正整数,其中一边长为4,另外两边长分别为A C,且满足bW4Wc,则这样的三角形有()A. 10 个B. 14 个C. 15个D. 21 个解析当b=1时,c = 4 ;当b=2时,c=4,5 ;当b = 3时,C =4,5,6 ;当b = 4时,c=4,5,6,7.故共有10个这样的三角形.答案A5.(2014∙湘潭月考)25人排成5义5方阵,从中选出3人,要求其中任意2人既不同行也不同列,则不同的选法有()A. 60 种B. IOo种C. 300种D. 600种解析5×5的方阵中,先从中任意取3行,有C§ = 10(种)方法,再从中选出3人,其中任意2人既不同行也不同列的情况有CleC 二5 4 3 60(种),故所选出的3人中任意2人既不同行也不同列的选法共有10X60 = 600(种).6.(2013・山东卷)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A. 243B. 252C. 261D. 279解析0~9能组成的三位数的个数为9×10×10 = 900(个),能组成的无重复数字的三位数个数为9×9×8 = 648(个),故能组成的有重复数字的三位数的个数为900 - 648=252(个),故选B.答案B二、填空题(本大题共3小题,每小题5分,共15分)7 .如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有个.解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8X4 = 32(个);第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32 + 8=40(个).8 .有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现从三名工人中选两名分别去操作以上车床,则不同的选派方法有种.解析若选甲、乙两人,则有甲操作A车床,乙操作B车床或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙两人,则只有甲操作B车床,丙操作A车床这1种选派方法;若选乙、丙两人,则只有乙操作B车床,丙操作A车床这1种选派方法..∙.共有2 + 1 +1 = 4(种)不同的选派方法.答案49 .用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是(用数字作答).解析若1在①或⑥号位,2在②或⑤号位,方法数各4种.若1在②、③、④、⑤号位,2的排法有2种,方法数各8种,故有4 + 4 + 8 + 8 + 8 + 8 = 40(个).答案40三、解答题(本大题共3小题,每小题10分,共30分)10 .某单位职工义务献血,在体检合格的人中,O型血的共有28人,A 型血的共有7人,B 型血的共有9人,AB 型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法? 解从O 型血的人中选1人有28种不同的因去,从A 型血的人 中选1人共有7种不同的选法,从B 型血的人中选1人共有9种不 同的选法,从AB 型血的人中选1人共有3种不同的选法.⑴任选1人去献血,即不论选哪种血型的哪一个人,这件“任 选1人去献血”的事情就已完成,所以用分类加法计数原理,有28 + 7 + 9 + 3 = 47(种)不同选法.(2)要从四种血型的人中各选1人,即要在每种血型的人中依次 选出1人后,这件“各选1人去献血”的事情才完成,所以用分步乘 法计数原理,有28X7X9X3 = 5 292(种)不同的选法.子里,要求每个盒子只能放一个小球,且A 球不能放在1,2号,B 球 必须放在与A 球相邻的盒子中,求不同的放法有多少种?解根据A 球所在位置分三类: d小鬼放11.编号为A, B, C, D, E 的五 如图所示的五个盒⑴若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E ,则根据分步乘法计数原理得,3X2Xl = 6(种)不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C、D、E ,则根据分步乘法计数原理得,3X2Xl = 6(种)不同的放法;⑶若A球放在4号盒子内,则8球可以放在2号、3号、5号盒子中的彳丑可一个,余下的三个盒子放球C。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理1.分类计数问题:要计算一些集合中满足其中一种条件的元素的数目。

可以将该集合分为若干个子集,分别计算每个子集中满足条件的元素的数目,然后将这些数目相加即可得到最终的结果。

例如,一些班级有30个学生,其中有10个男生和20个女生,要计算全班学生中身高超过1.7米的男生的人数。

可以将问题分解为两个部分,分别计算身高超过1.7米的男生和身高不超过1.7米的男生的人数,然后将这两个数目相加即可得到最终的结果。

2.多重条件计数问题:要计算满足多个条件的元素的数目。

可以将满足不同条件的元素分为不同的类别,然后计算每个类别中满足条件的元素的数目,最后将这些数目相加得到最终的结果。

例如,一些商店有3种颜色的衬衫(红色、蓝色和绿色),每种颜色的衬衫分别有5件、3件和4件。

要计算购买2件衬衫的方法数目,其中要求至少购买一件红色的衬衫。

可以将购买2件衬衫分为两种情况:一种是购买一件红色的衬衫和一件其他颜色的衬衫,另一种是购买两件红色的衬衫。

然后分别计算这两种情况下的购买方法数目,最后将这两个数目相加即可得到最终的结果。

分步乘法计数原理是指将一个计数问题分解为若干个步骤,每个步骤的计数独立进行,最后将每个步骤的计数结果相乘得到最终的结果。

该方法的基本思想是通过分步骤计数来简化问题,使得每个步骤的计数更加直观和容易。

分步乘法计数原理通常适用于以下两种情况:1.顺序计数问题:要计算一些事件发生的不同顺序的可能性。

可以将该事件分为若干个步骤,分别计算每个步骤的可能性,然后将这些可能性相乘得到最终的结果。

例如,一些球队有10名队员,要计算选择3名队员组成一支首发阵容的方法数目。

可以将选择队员分为三个步骤:先选择首发中锋(有10种选择),然后选择首发后卫(有9种选择),最后选择首发前锋(有8种选择)。

然后将这三个步骤的选择数目相乘即可得到最终的结果。

2.分步限制问题:要计算满足多个条件的元素的数目。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.分类加法计数原理的理解分类加法计数原理中的“完成一件事有两个不同方案”,是指完成这件事的所有方法可以分为两类,即任何一类中的任何一种方法都可以完成任务,两类中没有相同的方法,且完成这件事的任何一种方法都在某一类中.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.分步乘法计数原理的理解分步乘法计数原理中的“完成一件事需要两个步骤”,是指完成这件事的任何一种方法,都需要分成两个步骤.在每一个步骤中任取一种方法,然后相继完成这两个步骤就能完成这件事,即各个步骤是相互依存的,每个步骤都要做完才能完成这件事.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( )答案:(1)×(2)√(3)√(4)√某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )A.3种B.4种C.7种D.12种答案:C已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( ) A.1 B.3C.6 D.9答案:D某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有________种.答案:3加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,每两道工序中可供选择的人各不相同,如果从中选3人每人做一道工序,则选法有________种.答案:120探究点1 分类加法计数原理[学生用书P2]在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).[变问法]在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).利用分类加法计数原理计数时的解题流程某校高三共有三个班,各班人数如下表:男生人数女生人数总人数高三(1)班30 20 50 高三(2)班30 30 60 高三(3)班 35 20 55(1)(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80(种)不同的选法.探究点2 分步乘法计数原理[学生用书P2]从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,则可以组成抛物线的条数为多少?【解】 由题意知a 不能为0,故a 的值有5种选法; b 的值也有5种选法;c 的值有4种选法.由分步乘法计数原理得:5×5×4=100(条).1.[变问法]若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a 有2种方法,第二步确定b 有5种方法,第三步确定c 有4种方法,故可组成2×5×4=40条抛物线.2.[变条件、变问法]若从本例的六个数字中选2个作为椭圆x 2m +y 2n=1的参数m ,n ,则可以组成椭圆的个数是多少?解:据条件知m >0,n >0,且m ≠n ,故需分两步完成,第一步确定m ,有3种方法,第二步确定n ,有2种方法,故确定椭圆的个数为3×2=6(个).利用分步乘法计数原理计数时的解题流程从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)分三步:第1步,排个位,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.故共有4×3×2=24个满足要求的三位数.(2)第1步,排个位,只能从2,4中选1个,有2种方法;第2步,排十位,从剩下的3个数中选1个,有3种方法;第3步,排百位,只能从剩下的2个数字中选1个,有2种方法.故共有2×3×2=12个满足要求的三位偶数.探究点3 两个计数原理的综合应用[学生用书P3]甲同学有5本不同的数学书、4本不同的物理书、3本不同的化学书,现在乙同学向甲同学借书,(1)若借1本书,则有多少种借法?(2)若每科各借1本书,则有多少种借法?(3)若任借2本不同学科的书,则有多少种借法?【解】(1)需完成的事情是“借1本书”,所以借给乙数学、物理、化学书中的任何1本,都可以完成这件事情.根据分类加法计数原理,共有5+4+3=12种借法.(2)需完成的事情是“每科各借1本书”,意味着要借给乙3本书,只有从数学、物理、化学三科中各借1本,才能完成这件事情.根据分步乘法计数原理,共有5×4×3=60种借法.(3)需完成的事情是“从三种学科的书中借2本不同学科的书”,可分三类:第1类,借1本数学书和1本物理书,只有2本书都借,事情才能完成,根据分步乘法计数原理,有5×4=20种借法;第2类,借1本数学书和1本化学书,有5×3=15种借法;第3类,借1本物理书和1本化学书,有4×3=12种借法.根据分类加法计数原理,共有20+15+12=47种借法.利用两个计数原理的解题策略用两个计数原理解决具体问题时,首先,要分清是“分类”还是“分步”,区分分类还是分步的关键是看这种方法能否完成这件事情.其次,要清楚“分类”或“分步”的具体标准,在“分类”时要遵循“不重不漏”的原则,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性;有些题目中“分类”与“分步”同时进行,即“先分类后分步”或“先分步后分类”.现有3名医生、5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?解:(1)分三类:第一类,选出的是医生,有3种选法;第二类,选出的是护士,有5种选法;第三类,选出的是麻醉师,有2种选法.根据分类加法计数原理,共有3+5+2=10(种)选法.(2)分三步:第一步,选1名医生,有3种选法;第二步,选1名护士,有5种选法;第三步,选1名麻醉师,有2种选法.根据分步乘法计数原理知,共有3×5×2=30(种)选法.1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为( )A.8 B.15C.18 D.30解析:选A.共有5+3=8种不同的选法.2.已知集合A={1,2},B={3,4,5},从集合A、B中先后各取一个元素构成平面直角坐标系中的点的横、纵坐标,则可确定的不同点的个数为( )A.5 B.6C.10 D.12解析:选B.完成这件事可分两步:第一步,从集合A中任选一个元素,有2种不同的方法;第二步,从集合B中任选一个元素,有3种不同的方法.由分步乘法计数原理得,一共有2×3=6种不同的方法.3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有( )A.12种B.7种C.14种D.49种解析:选D.要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法;第二步出门也有4+3=7种方法,由分步乘法计数原理知进、出门的方案有7×7=49种.4.现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?解:(1)从高一选1人作总负责人有50种选法;从高二选1人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50×42×30=63 000种选法.(3)①高一和高二各选1人作中心发言人,有50×42=2 100 种选法;②高二和高三各选1人作中心发言人,有42×30=1 260种选法;③高一和高三各选1人作中心发言人,有50×30=1 500种选法.故共有2 100+1 260+1 500=4 860种选法.[A 基础达标]1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是( )A.5 B.4C.9 D.20解析:选C.由分类加法计数原理求解,5+4=9(种).故选C.2.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是( )A.18 B.16C.14 D.10解析:选C.分两类:第一类M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.3.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.4.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15.5.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( )A.24种B.16种C.12种D.10种解析:选C.完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:77.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.答案:548.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),即所求的不同的直线共有22条.答案:229.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(1)如图,在由电键组A与B所组成的并联电路中,要接通电源且仅闭合其中一个电键,使电灯C发光的方法有多少种?(2)如图,由电键组A,B组成的电路中,要闭合两个电键接通电源,使电灯C发光的方法有几种?解:(1)只要闭合图中的任一电键,电灯即发光.由于在电键组A中有2个电键,电键组B 中有3个电键,且分别并联,应用分类加法计数原理,所以共有2+3=5(种)接通电源使电灯发光的方法.(2)只有在闭合A组中2个电键中的一个之后,再闭合B组中3个电键中的一个,才能使电灯的电源接通,电灯才能发光.根据分步乘法计数原理,共有2×3=6(种)不同的接通方法使电灯发光.[B 能力提升]11.(2018·郑州高二检测)从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.(2018·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.13.已知集合M={-3,-2,-1,0,1,2},点P(a,b)表示平面上的点(a,b∈M).(1)点P可以表示平面上的多少个不同点?(2)点P可以表示平面上的多少个第二象限的点?(3)点P可以表示多少个不在直线y=x上的点?解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,点P可以表示平面上6×6=36(个)不同点.(2)根据条件,需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,点P 可以表示平面上3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,点P可以表示6×5=30(个)不在直线y=x上的点.14.(选做题)某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

5本,从中选出不属于同一学科的书2本,则不同的选法
有 ( )
AB.315种
D.153种
3.从5位同学中选派4位同学在星期五、星期六、星期日
参加公益活动,每人一天,要求星期五有2人参加,星 期六、星期日各有1人参加,则不同的选派方法共有 ( A.40种 B.60种 )
C.100种
完成一件事需要两个步骤,做第1步有m种不同的方
法,做第2步有n种不同的方法,那么完成这件事共有 N= m×n 种不同的方法.
[思考探究] 在解决具体问题时,如何选择分类加法计数原理和分步乘法 计数原理? 提示:如果已知的每类办法中的每一种方法都能完成这件 事,应该用分类加法计数原理;如果每类办法中的每一种 方法只能完成事件的一部分,就用分步乘法计数原理.
解析:由题意可列式为
D.120种
=60(种).
答案:B
4.若x、y∈N*,且x+y≤6,则有序自然数对(x,y)共有 ________个. 解析:当x=1,2,3,4,5时,y值依次有5,4,3,2,1个,由 分类计数原理,不同的数对(x,y)共有5+4+3+2+ 1=15(个). 答案:15
5.如图用6种不同的颜色把图中A、 B、C、D四块区域分开,若相
[特别警示]
在解题时,应首先分清楚怎样才算完成这件事,
有些题目在解决时需要进行分类讨论,分类时要适当地确
定分类的标准,按照分类的标准进行,做到不重不漏.
在所有的两位数中,个位数字大于十位数字的两 位数共有多少个?
[思路点拨]
[课堂笔记] 法一:根据题意,将十位数上的数字分别是
1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的 两位数分别是8个,7个,6个,5个,4个,3个,2个,1 个. 由分类计数原理知:符合题意的两位数的个数共有:

第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)

第十章 第一节 分类加法计数原理与分步乘法计数原理  课件(共30张PPT)
主,难度将会变小.
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案: B
返回
[冲关锦囊] 利用分类加法计数原理解题时注意 1.根据问题的特点确定一个合适的分类标准,分类标准 要统一,不能遗漏. 2.分类时,注意完成这件事情的任何一种方法必须属于
某一类,不能重复.
返回
[精析考题] [例2] (2011· 天津高考)如图,用四种 不同颜色给图中的A,B,C,D,E, F六个点涂色,要求每个点涂一种颜色, 且图中每条线段的两个端点涂不同颜色.则不同的涂
________.
返回
2 解析:若 3 人中有一人来自甲企业,则共有 C1C4种情况, 2 3 若 3 人中没有甲企业的,则共有 C4种情况,由分类加法
原理可得, 3 人来自 3 家不同企业的可能情况共有 C1C2 这 2 4
3 +C4=16(种).
答案: 16
返回
[冲关锦囊] 解答与排列、组合有关的应用题时,要遵循先特 殊后一般的原则、先取后排的原则、先分类后分步的 原则.基本题型包括:排列中的“在与不在”问题;组
[答案]
C
返回
本例中条件变为“从这六个数字中选出一个偶数和两个 奇数,组成无重复数字的三位数”有多少个?
解:共有C1C2A3=54(个) 3 3 3
返回
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012· 临沂模拟)2010年广州亚运会的篮球比赛中场 休息时,为活跃现场气氛,组委会想从拉拉队的5名 男队员和5名女队员中选出3名队员表演一个临时性的
第十 章 概率 (文) 计数 原理、 概率、 随机 变量 及其 分布 (理)
第一 节 分类 加法 计数 原理 与分 步乘 法计 数原 理 (理)
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
提 能 力
[备考方向要明了] 考 什 么 1.理解分类加法计数原理和分步乘法计数原理. 2.会用分类加法计数原理和分步乘法计数原理解决一些简 单的计数应用问题.
A.10种
C.15种
B.12种
D.16种
返回
解析:依题意,可将所有的投放方案分成三类,①使用甲原料,有
1 C1· A2 3 1=3种投放方案;②使用乙原料,有C 3 · 2 =6种投放方案;③甲、
乙原料都不使用,有A2=6种,所以共有3+6+6=15种投放方案. 3
答案: C
返回
2.(2012· 佛山模拟)五名篮球运动员比赛前将外衣放在
返回
[巧练模拟]———————(课堂突破保分题,分分必保!)
3.(2011· 绍兴期末)一植物园参观路径 如图所示,若要全部参观并且路线 不重复,则不同的参观路线共有( A.6种 C.36种 B.8种 D.48种 )
返回
解析:如图,在A点可先参观区域1, 也可先参观区域2或3,共有3种不同 选法.每种选法中又有2×2×2×2=16
色方法共有
A.288种 C.240种 B.264种 D.168种
(
)
返回
[自主解答]
先涂A、D、E三个点,共有4×3×2=24
种涂法,然后再按B、C、F的顺序涂色,分为两类:一
类是B与E或D同色,共有2×(2×1+1×2)=8种涂法; 另一类是B与E或D不同色,共有1×(1×1+1×2)=3种 涂法.所以涂色方法共有24×(8+3)=264种. [答案] B
合中的“有与没有”问题、“相邻与不相邻”问题等.
返回
返回
易错矫正
因相同情况重复计算致误
返回
[考题范例]
(2011· 北京高考)用数字2,3组成四位数,且数字2,3至少都
出现一次,这样的四位数共有________个(用数字作答).
返回
[失误展板] 错解:这样的四位数可以分为 3 类: 第 1 类,含有三个 2 和一个 3,共有 A4个; 4 第 2 类,含有两个 2 和两个 3,共有 A4个; 4 第 3 类,含有一个 2 和三个 3,共有 A4个. 4
答案: B
返回
2.在所有的两位数中,个位数字大于十位数字的两位 数共有 A.50个 C.36个 B.45个 D.35个 ( )
解析:利用分类加法原理8+7+6+5+4+3+2+1 =36(个). 答案: C
返回
3.5名应届毕业生报考三所高校,每人报且仅报一所院 校,则不同的报名方法的种数是 A.35 C.A3 5 B.53 D.C3 5 ( )
2.对于较复杂的事件计数时有时要两个原理交替使
用,即先分类再分步或分步中再分类.
返回
返回
[精析考题]
[例1] (2011· 大纲全国卷)某同学有同样的画册2本,同
样的集邮册3本,从中取出4本赠送给4位朋友,每位朋 友1本,则不同的赠送方法共有 A.4种 B.10种 ( )
C.18种
D.20种
返回
序的. (2)各步中的方法互相依存,缺一不可,只有各步骤都 完成才算完成这件事. (3)对完成每一步的不同方法数要根据条件准确确定.
返回
[精析考题]
[例3] (2011· 四川高考)由1、2、3、4、5、6组成没有重
复数字且1、3都不与5相邻的六位偶数的个数是 ( A.72 C.108 B.96 D.144 )
种不同线路.
∴共有3×16=48种不同的参观路线. 答案: D
返回
4.(2012· 郑州模拟)在2012年伦敦奥运选手选拔赛上,8 名男运动员参加100米决赛.其中甲、乙、丙三人 必须在1、2、3、4、5、6、7、8八条跑道的奇数号 跑道上,则安排这8名运动员比赛的方式共有_____ 种
返回
解析:分两步安排这8名运动员. 第一步:安排甲、乙、丙三人,共有1、3、5、7四条跑
二、分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法, 做第2步有n种不同的方法,那么完成这件事共有N=
m×n 种不同的方法. 返回
返回
1.(教材习题改编)从3名女同学和2名男同学中选1人主 持主题班会,则不同的选法种数为 A.6 C.3 B.5 D.2 ( )
解析:不同的选法有3+2=5种.3+2=5.
[自主解答] 依题意,就所剩余的一本画册进行分类计 数:第一类,剩余的是一本画册,此时满足题意的赠送 方法共有 4 种;第二类,剩余的是一本集邮册,此时满 足题意的赠送方法共有 C2=6(种).因此,满足题意的赠 4 送方法共有 4+6=10(种).
[答案]
B
返回
[巧练模拟]——————(课堂突破保分题,分分必保!) 1.(2012· 日照模拟)某化工厂生产中需依次投放2种化工 原料,现已知有5种原料可用,但甲、乙两种原料不 能同时使用,且依次投料时,若使用甲原料,则甲必 须先投放,则不同的投放方案有 ( )
法二:符合题意的四位数共有24-2=14个. 答案:14
返回
点击此图进入
返回
节目,则其中至少有1名女队员入选的方案数为(
A.180 C.110 B.120 D.100
)
返回
解析:法一:(分类加法计数法)当有1名女队员和2名男队员时,不同
1 2 的方案数为C5C5=5×10=50; 2 1 当有2名女队员和1名男队员时,不同的方案数为C5C5=5×10=50;
当有3名女队员时,不同的方案数为C3=10. 5 根据分类加法计数原理可得,不同的方案数共有50+50+10=110. 法二:(排除法)从10名队员中任选3名队员的方案数为C
返回
[自主解答]
从2,4,6三个偶数中选一个数放在个位,有C1种方法, 3
将其余两个偶数全排列,有A2种排法,当1,3不相邻且不与5相邻时 2
2 有A3种方法,当1,3相邻且不与5相邻时有A2· 3种方法,故满足题意 A2 3 2 的偶数个数有C1· 2(A3+A2· 2)=108(个). 3A 3 2 A3
休息室,比赛后都回到休息室取衣服.由于灯光暗 淡,看不清自己的外衣,则至少有两人拿对自己的 外衣的情况有 A.30种 B.31种 ( )
C.35种
D.40种
返回
解析:分类:第一类,两人拿对:2×C
2 5
=20种;第二类,三人拿
对:C 3 =10种;第三类,四人拿对与五人拿对一样,所以有1种.故 5 共有20+10+1=31种.
4 因此,这样的四位数共有 3A4=72 个.
返回
错因:上述解法中的分类标准是没有问题的,没有重复 和遗漏,但是在每一类的计算中,都犯有重复计算的错 误,如第一类中,含有三个2和一个3的四位数字共有4个,
4 而非A 个,同样,第2、3类中都有类似重复的计算. 4
返回
[正确解答] 法一:符合要求的四位数字可以分为 3 类. 第一类,含有三个 2 和一个 3,共有 4 个; 第 2 类,含有两个 2 和二个 3,共有 C2=6 个; 4 第 3 类,含有一个 2 和三个 3,共有 4 个. 因此,符合要求的四位数字共有 4+6+4=14 个.
3 10
=120;只从5
名男队员中选取3名队员的方案数为C 3 =10.所以至少有1名女队员入选的 5 方案数为120-10=110.
答案: C
返回
6.(2012· 上海模拟)上海某区政府召集5家企业的负责 人开年终总结经验交流会,其中甲企业有2人到会, 其余4家企业各有1人到会,会上推选3人发言,则 这3人来自3家不同企业的可能情况的种数为
返回
怎 么 考
1.两个计数原理在高考中单独命题较少,一般与排列组合
相结合考查. 2.多为选择、填空题,着重考查学生分析问题解决问题的 能力.
返回
返回
一、分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不 同的方法,在第2类方案中有n种不同的方法.那么完 成这件事共有N=×3×3×3×3=35. 答案: A
返回
相关文档
最新文档