八年级数学下册第一章三角形的证明1.1等腰三角形1.1.1等腰三角形提高导学案无答案新版北师大版

合集下载

八年级数学下册 第一章 三角形的证明 1.1 等腰三角形 1.1.2 等腰三角形课件

八年级数学下册 第一章 三角形的证明 1.1 等腰三角形 1.1.2 等腰三角形课件
你的猜想加以证明。
第五页,共十三页。
即时(jíshí)训练:
证:等腰三角形两腰上的中线相等;
已知:如图,在△ABC中,AB=AC,CD⊥AB垂足(chuízú)为D,
BE⊥AC垂足为E.
求证:BE=CD.
A
D
B
第六页,共十三页。
E C
例题2 如图,在△ABC中,AB=AC=BC,则∠A= ,∠B= ,
巩固 新知 (gǒnggù)
1. 在△ABC中,∠B=∠C,AB=5,则AC的长为( )
A.2
B.3
C.4
D.5
2. 等腰但不等边的三角形的角平分线、高线、中线(zhōngxiàn)的总条数是( )
A.3
B.5
C.7
D.9
3. 等腰三角形的一个外角为110°,则底角的度数可能是_______.
4. 在△ABC中,若∠A=80°,∠B=50°,AC=5,则AB =_______.
如图,在△ABC 中,AB=AC 。
(1)、若AD是△ABC的中线(zhōngxiàn),则∠B=
,
BD= ,AD ,
=∠DAC ;
(2)、若AD是△ABC的高,且BD=3cm ,
∠DAB=30°则BC=
,
∠BAC= , ∠C= 。
(3)、若∠BAC=50°,则∠C= ;
若∠B=70°,则∠BAC= 。
第一章 三角形的证明(zhèngmíng)
§1.1.2等腰三角形(2)
第一页,共十三页。
学习 目标 (xuéxí)
1.了解等腰三角形的特殊性质(xìngzhì); 2. 掌握等边三角形的性质并加以证明。
第二页,共十三页。
温故知新(wēn gù zhī xīn) 1、等腰三角形的性质(xìngzhì)有哪些?

北师大版八年级数学下册第一章 三角形的证明1 第1课时 等腰三角形的性质

北师大版八年级数学下册第一章 三角形的证明1 第1课时 等腰三角形的性质
三角形 的证明
新知一览
等腰三角形
等腰三角形的性质 等边三角形的性质
直角三角形
线段的垂直 平分线
角平分线
等腰三角形的判定 与反证法
等边三角形的判定 及含 30° 角的
直角三角形的性质
第一章 三角形的证明
1.1 等腰三角形
第1课时 等腰三角形的性质
图中有你熟悉的图形吗?它们有什么共同特点?
埃及金字塔
已知:如图,∠A =∠D,∠B =∠E,BC = EF.
求证:△ABC≌△DEF.
证明:∵∠A +∠B +∠C = 180°,
∠D +∠E +∠F = 180° (三角形的内角和等于 180°),
∴∠C = 180°-(∠A +∠B),∠F = 180°-(∠D +∠E).
∵∠A =∠D,∠B =∠E (已知),
B DF E C 图②
证明:(1) 如图①,过 A 作 AG⊥ቤተ መጻሕፍቲ ባይዱC 于 G. A
∵ AB=AC,AD=AE, ∴ BG=CG,DG=EG.
图①
∴ BG-DG=CG-EG. ∴ BD=CE.
B
D GE C
(2) ∵ BD=CE,F 为 DE 的中点,
∴ BD+DF=CE+EF.
A
∴ BF=CF.
想一想,不构造辅
问题3:你还记得我们探索过的等腰三角形的性质吗? 定理:等腰三角形的两个底角相等. 推论:等腰三角形顶角的平分线,底边上的中线, 底边上的高互相重合(三线合一).
问题4:你能利用基本事实或已知的定理证明这些结论吗?
议一议:在七下学习轴对称时,我们利用折叠的方 法说明了等腰三角形是轴对称图形,且两个底角相 等,如下图,实际上,折痕将等腰三角形分成了两 个全等的三角形. 由此,你得到了解题什么的启发?

八下数学第一章三角形的证明讲义

八下数学第一章三角形的证明讲义

第一章三角形的证明1.1等腰三角形(一)一、问题引入:列举我们已知道的公理:.(1)公理:同位角,两直线平行.(2)公理:两直线,同位角.(3)公理:的两个三角形全等.(4)公理:的两个三角形全等.(5)公理:的两个三角形全等.(6)公理:全等三角形的对应边,对应角. 注:等式的有关性质和不等式的有关性质都可以看作公理.二、基础训练:1. 利用已有的公理和定理证明:“两角及其中一角的对边对应相等的两个三角形全等.”2. 议一议:(1)还记得我们探索过的等腰三角形的性质吗?(2)等边对等角三线合一三、例题展示:在△ABC中,AD是角平分线,DE⊥AB, DF⊥AC,试猜想EF与AD之间有什么关系?并证明你的猜想.四、课堂检测:1. 如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A.∠A=∠B ; B . BF=CE; C. AE∥DF; D. AE=DF.2. 如果等腰三角形的一个内角等于500则其余两角的度数为.3.(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为.(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为.4. △ABC中,AB=AC, 且BD=BC=AD,求∠A的度数.5. 如图,已知D.E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE中考真题:已知:如图,△ABC中,AD是高,CE是中线,DC=BE, DG⊥CE,G 是垂足,求证:(1)G是CE中点.(2)∠B=2∠BCE.1.1 等腰三角形(二)一、问题引入:1. 在等腰三角形中作出一些相等的线段(角平分线.中线.高),你能发现其中一些相等的线段吗?你能证明你的结论吗?2.等腰三角形的两底的角平分线相等吗?怎样证明.已知:求证:证明:得出定理: .问题:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明二、基础训练;1. 请同学们阅读P6的问题(1).(2),由此得到什么结论?2. 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?得出定理: ;简称: .三、例题展示:如图,△ABC 中,D.E 分别是AC.AB 上的点,BD 与CE相交于点O ,给出下列四个条件①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD;④OB=OC,上述四个条件中,哪两个条件可判定是等腰三角形,请你写出一种情形,并加以证明.四、课堂检测:1. 已知:如图,在直角△ABC 中,角C 为45度,AD 垂直于BC,DE 垂直于AB,则图中等腰直角三角形共有( )A.3个B.4个C.5个D.6个2. 已知:如图,在△ABC 中,AB=AC, ∠BAC=1200, D.E 是BC上两点,且第1题 第2题 第3题 第4题AD=BD,AE=CE,猜想△ADE是三角形.3. 如图,在△ABC中,∠ABC与∠ACB的平分线交与点O,若AB=12,AC=18,BC=24,则△ABC的周长为()A.30B.36C.39D.424. 在△ABC中,AB=AC, ∠A=360,BD.CE是三角形的平分线且交于点O,则图中共有个等腰三角形.5. 如图:下午14:00时,一条船从处出发,以28海里/小时的速度,向正北航行,16:00时,轮船到达B处,从A处测得灯塔C在北偏西280,从B处测得灯塔C在北偏西560,求B处到灯塔C的距离.1.1 等腰三角形(三)一、问题引入:1. 已知△ABC中,AB=AC=5cm,请增加一个条件使它变为等边三角形.2. 有一个角是600的等腰三角形是等边三角形吗?试着证明你的结论.得出定理:有一个角是的三角形是等边三角形.二、基础训练:做一做:用两个含300角的三角板,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由.根据操作,思考:在直角三角形中,300角所对直角边与斜边有什么关系?并试着证明.得出定理:在直角三角形中,300角所对直角边等于斜边的.三、例题展示:1. 等腰三角形的底角为150,腰长为2a,求腰上的高.2. 判断:(1)在直角三角形中,直角边是斜边的一半.()(2)有一个角是600的三角形是等边三角形.()3. 证明三个角都相等的三角形是等边三角形.四、课堂检测1. 等腰三角形的底边等于150,腰长为20,则这个三角形腰上的高是.2. 在Rt△ABC中,∠ACB=900,∠A =300,CD⊥AB,BD=1,则AB= .3. 在△ABC中,AB=AC,∠BAC=1200,D是BC的中点,DE⊥AC,则AE:EC= .4. 如图,在Rt△ABC中,∠C=900,沿B点的一条直线BE折叠△ABC,使点C恰好落在AB的中点D处,则∠A= .5. 在Rt△ABC中,∠C=300,AD⊥BC,你能看出BD与BC的大小关系吗?中考真题:已知:如图,△ABC中,BD⊥AC,DE⊥AC,点D是AB的中点,∠A=300,DE=1.8,求AB的长.1.3 线段的垂直平分线(一)一、问题引入:“线段的垂直平分线上的点到这条线段的两个端点的距离相等”你能证明这一结论吗?二、基础训练:议一议:写出“线段的垂直平分线上的点到这条线段的两个端点的距离相等”这一命题的逆命题?它是真命题吗?如果是,请证明,并与同伴交流.三、例题展示:例:如图在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB.BC 延长线于F.E求证:(1)∠EAD=∠EDA ;(2)DF ∥AC(3)∠EAC=∠B四、课堂检测:1. 已知:线段AB 及一点P ,PA=PB ,则点P 在 上.2. 已知:如图,∠BAC=1200,AB=AC,AC 的垂直平分线交BC 于D 则∠ADC= .3. △ABC 中,∠A=500,AB=AC ,AB 的垂直平分线交AC 于D 则∠DBC 的度数 .4. △ABC 中,DE.FG 分别是边AB.AC 垂直平分线,则∠B ∠BAE ,∠C ∠GAF ,若∠BAC=1260,则∠EAG= .5. 如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 .6. 有特大城市A 及两个小城市B.C ,这三个城市共建一个污水处理厂,使得该厂到B.C 两城市的距离相等,且使A 市到厂的管线最短,试确定污水处理厂的位置.第1题 第4题 第5题中考真题:已知:如图,DE是△ABC的AB边的垂直平分线,分别交AB.BC 于D.E,AE平分∠BAC,若∠B=300,求∠C1.3 线段的垂直平分线(二)一、问题引入:1. 等腰三角形的顶点一定在上.2. 在△ABC中,AB.AC的垂直平分线相交于点P,则PA.PB.PC的大小关系是.3. 在△ABC中,AB=AC,∠B=580,AB的垂直平分线交AC于N,则∠NBC= .4. 已知线段AB,请你用尺规作出它的垂直平分线.A B二、基础训练:1. 三角形的三边的垂直平分线是否相交于一点,这一点到三个顶点的距离是否相等?上面的问题如何证明?定理:三角形三条边的垂直平分线相交于,这一点到三个顶点的距离.三、例题展示:(1)如图,在△ABC中,∠A=400,O是AB.AC的垂直平分线的交点,求∠OCB 的度数;(2)如果将(1)中的的∠A度数改为700,其余的条件不变,再求∠OCB的度数;(3)如果将(1)中的的∠A度数改为锐角a,其余的条件不变,再求∠OCB 的度数.你发现了什么规律?请证明;(4)如果将(1)中的的∠A度数改为钝角a,其余的条件不变,是否还存在同样的规律?你又发现了什么?四、课堂检测:1. 在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A. 三角形三条角平分线的交点;B. 三角形三条垂直平分线的交点;C. 三角形三条中线的交点;D. 三角形三条高的交点.2. 已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状为()A. 锐角三角形;B. 直角三角形;C. 钝角三角形;D. 不能确定3. 等腰Rt△ABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是.4. 已知线段a.b,求作以a为底,以b为高的等腰三角形.a b中考真题:已知:如图,Rt△ABC中,∠ACB=900, ∠BAC=600,DE垂直平分BC,垂足为D,交AB于点E,点F在DE的延长线上,且AF=CE,试探究图中相等的线段.1.4角平分线(一)一、提出问题:1. 角平分线的定义:______________________________________2. 问题1:还记得角平分线上的点有什么性质吗?你是怎样得到的?你能证明它吗?定理归纳:问题2:你能写出这个定理的逆命题?它是真命题吗?如果是,你能证明它?定理归纳:二、基础训练:用尺规怎样做已知角的平分线呢?并对自己的做法加以证明.三、例题解释:例:如图,已知AD为△ABC的角平分线,∠ABC=90°,EF⊥AC,交BC于点D,垂足为F,DE=DC,求证:BE=CF.四、课堂检测1. OM平分∠BOA,P是OM上的任意一点,PD⊥OA,PE⊥OB,垂足分别为D.E,下列结论中错误的是()A:PD=PE B:OD=OE C:∠DPO=∠EPO D:PD=OD2、如图所示,AD平分∠BAC,DE⊥AB,垂足为E,DF⊥AC,垂足为F,则下列结论不正确的是()A:△AEG≌△AFG B:△AED≌△AFD C:△DEG≌△DFG D:△BDE≌△CDFFEDC BA3. △ABC中, ∠ABC.∠ACB的平分线交于点O,连结AO,若∠OBC=25°,∠OCB=30°,则∠OAC=_____________°4. 与相交的两直线距离相等的点在()A:一条直线上B:一条射线上C:两条互相垂直的直线上D:以上都不对5. ∠AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为_________.6. 在RT△ABC中,∠C=90°,AD是∠BAC的平分线,若BC=16,BD=10,则D到AB的距离是________.7. 如图在两条交叉的公路L1与L2之间有两家工厂A.B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试.中考真题:如图,梯形ABCD,ABCD,AD=DC=CB,AD.BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由.1.4 角平分线(二)基础训练:1. 如图:设△ABC的角平分线交于P,求证:P点在∠BAC的平分线上定理:三角形的三条角平分线交于点,并且这一点到三条边的距离.引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a.b.c,则三角形的面积S= .2. 已知:△ABC中,BP.CP分别是∠ABC和∠ACB的角平分线,且交于P,若P到边AB的距离为3cm,△ABC的周长为18cm,则△ABC的面积为.3. 到三角形三边距离相等的点是()A.三条中线的交点;B.三条高的交点;C.三条角平分线的交点D.不能确定三、例题展示:例:△ABC中,AC=BC, ∠C=900,AD是△ABC的角平分线,DE⊥AB于E. (1)已知:CD=4cm,求AC长(2)求证:AB=AC+CD四、课堂检测:1. 到一个角的两边距离相等的点在.2. △ABC中,∠C=900,∠A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D 到AB的距离为.3. Rt△ABC中,AB=AC,BD平分∠ABC,DE⊥BC于E,AB=8cm,则DE+DC= cm.4. △ABC中,∠ABC和∠BCA的平分线交于O,则∠BAO和∠CAO的大小关系为.5.Rt△ABC中,∠C=900,BD平分∠ABC,CD=n,AB=m,则△ABD的面积是.6. 已知:OP 是∠MON 内的一条射线,AC ⊥OM ,AD ⊥ON ,BE ⊥OM ,BF ⊥ON ,垂足分别为C.D.E.F ,且AC=AD 求证:BE=BF中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置.第一章 单 元 检 测一、填空题(每小题3分):1.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB 的长度为80米,那么点B 离水平面的高度BC 的长为 米.2. 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形是 三角形.3. 如图,已知AC=DB ,要使△ABC ≌△DCB ,只需增加的一个条件是 或 .4. 命题:“全等三角形的对应角相等”的逆命题是 ___________________________________ ___.这条逆命题是______命题(填“真”或“假”)5. 如图,一个顶角为40º的等腰三角形纸片,剪去顶角后,得到一个四边形,则=∠+∠21_________ ;6. 在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm ,则∠BAC = ,∠DAC = ,BD = cm ;第18题图C B A 第1题 第5题7. 已知,如图,O 是△ABC 的∠ABC.∠ACB 的角平分线的交点,OD ∥AB交BC 于D ,OE ∥AC 交BC 于E ,若BC = 10,则△ODE 的周长为 .8. 如图,在Rt △ABC 中,∠B=90°,∠A=40°,AC 的垂直平分线MN 与AB 相交于D 点,则∠BCD 的度数是 .9. △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D.若DC=7,则D 到AB 的距离是 .10. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD的长为 .二、选择题(每小题3分)1.等腰三角形底边上的高与底边的比是1∶2,则它的顶角等于( )A.90°B.60°C.120°D.150°2.下列两个三角形中,一定全等的是 ( )A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形3. 到△ABC 的三个顶点距离相等的点是△ABC 的( )A.三边中线的交点B.三条角平分线的交点C.三边上高的交点D.三边垂直平分线的交点4. △ABC 中,∠A ∶∠B ∶∠C=1∶2∶3,CD ⊥AB 于点D 若BC=a ,则AD 等于( ) A.21a B.23a C.23a D.3a 5. 如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD ,则∠A 的度数为( )A.30°B.36°C.45°D.70°三、解答题(每题12分)1. 如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°.求:(1)∠ABC 的度数(2)AD 和CD 的长.2.已知:如图,△ABC 中,AB=AC ,∠A=120°.(1)用直尺和圆规作AB 的垂直平分线,分别交BC. AB 于点M.N(保留作图痕迹,不写作法).(2)猜想CM 与BM 之间有何数量关系,并证明你的猜想.四、证明题(每题10分)1.已知:如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD.求证:D 在∠BAC 的平分线上.2. 已知:如图,在等边三角形ABC 的AC 边上取中点D ,BC 的延长线上取一点E ,使 CE = CD .求证:BD = DE .五、(本题11分)阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法提示,请任意选择其中一种,对原题进行证明.。

八年级数学下册 第一章 三角形的证明 1.1.3 等腰三角形导学案 (新版)北师大版-(新版)北师大

八年级数学下册 第一章 三角形的证明 1.1.3 等腰三角形导学案 (新版)北师大版-(新版)北师大

等腰三角形导学案学习目标1、会运用等腰三角形的判定定理其进行简单的证明.2、能用反证法的基本证明思路简单应用.学习重点:等腰三角形的判定定理,并会运用其进行简单的证明.学习难点:反证法的证明方法.一、自学释疑根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题.二、合作探究探究点一、等腰三角形的判定定理问题1:前面我们证明了等腰三角形有两个角相等.反过来有两个角相等的三角形是等腰三角形吗?问题2:如图在△ABC中,∠B=∠C,要证明AB=AC,你是怎样构造的两个三角形全等的,你是怎样证明的?与同伴交流.结论:定理 .简述为:.变式训练1.满足下列条件不是等腰三角形的是()的三角形2.有一个三角形不同顶点的外角的度数比是3:2:3,则这个三角形是三角形.探究点二、运用定理问题:已知:如图,AB=DC,BD=CA,BD与CA相交于点E,△AED是等腰三角形吗?请你说明理由,并与同伴交流.变式训练1.如图,在△ABC中,AB=AC=8,D是BC上的动点(D与B、C不重合),且DE∥AC,DF∥AB,则四边形DEAF的周长是.2.如图,三角形ABC中,AB=AC,∠A=36 º, ∠ACB的平分线交AB于点E,D为AC的中点,连接ED.(1)求∠AED的度数;(2)若CE=5,求BC的长.探究点三、反正法问题:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?.强化训练:反证法证明:一个三角形中不能有两个角是直角.三、随堂检测1.在△ABC中,∠B=∠C,AB=5,则AC的长()A.2 B.3C.4 D.52.用反证法证明“a<b”时,应该假设()A.a>b B.a≥b C.a=b D.a≤b3.如图,在△ABC中,AD平分∠EAC,且AD∥BC,则△ABC一定是()A.任意三角形 B.等边三角形 C.等腰三角形 D.直角三角形4.如图,在已知三角形ABC中,BD是∠ABC平分线,∠ABD=360,∠C=720,则图中等腰三角形的个数.5.如图,在△ABC中,AB=AC,BD和CD平分∠△DBC是等腰三角形.6.用反证法证明:在一个三角形中,至少有一个角大于或等于60°7.如图,△ABC的边AB的延长线上有一点D,过D作DF⊥AC于点F,交BC于点E,且BD=BE,求证:△ABC是等腰三角形.参考答案探究点一、等腰三角形的判定定理问题2:解:可作BC边上的高或∠A的平分线都可以构造两个全等三角形,已知:在△ABC中,∠B=∠C,求证:AB=AC.证法一:作AD⊥BC于点D.(如图所示)在△ABD和△ACD中,∵∠B=∠C, ∠BDA=∠CDA, AD=AD,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).证法二:作△ABC顶角的平分线AD交BC于点D.(如图所示)在△ABD和△ACD中,∵∠B=∠C, ∠BAD=∠CAD, AD=AD,∴△ABD≌△ACD (AAS).∴ AB=AC (全等三角形的对应边相等).结论:定理:有两个角相等的三角形是等腰三角形简述为:等角对等边.变式训练1.C探究点二、运用定理问题:解:△AED是等腰三角形.理由如下:∵AB=DC,BD=CA,AD=DA,,∴△ABD≌△DCA(SSS)∴∠ADB=∠DAC(全等三角形的对应角相等)∴AE=DE(等角对等边)∴△AED是等腰三角形.变式训练2.(1)∠AED =54 º,(2)BC=5探究点三、反正法问题:假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC,结论成立.强化训练已知:△ABC,求证:∠A、∠B、∠C中不能有两个角是直角.证明:假设∠A、∠B、∠C中有两个角是直角,不妨设∠A和∠B是直角,即∠A=90°, ∠B=90°,于是∠A+∠B+∠C=90°+90°+∠C>1 80°这与三角形内角和定理相矛盾,因此“∠A和∠B都是直角”的假设不成立. 所以,一个三角形中不能有两个角是直角.三、随堂检测1.D2.B3.C5.证明:∵AB=AC内角和小于180°,与三角形中三内角和等于180°矛盾,故假设不成立.原命题成立.7.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA-∠D,∠C=∠EFC-∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.。

第一章 三角形的证明

第一章 三角形的证明

第一章三角形的证明1.1等腰三角形导学案基础知识基本技能1.等腰三角形(1)概念:有两边相等的三角形叫等腰三角形,其中相等的两边叫腰,另一条边叫底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角.(2)理解:①等腰三角形是特殊的三角形,它具备三角形所有的性质,如内角和是180°,两边之和大于第三边等.②等腰三角形是轴对称图形,这既是等腰三角形的特点也是研究它的重要方法.破疑点等腰三角形有关概念的认识(1)对于等腰三角形问题,我们说角或边时,一般都要指明是顶角还是底角,是底边还是腰,没说明则都有可能,要讨论解决,这是解决等腰三角形最容易忽视和错误的地方;(2)等腰三角形顶角可以是直角,是钝角或锐角,而底角只能是锐角.【例1】等腰三角形两边长分别是5 cm和11 cm,则它的周长是().A.27 cm B.22 cmC.27 cm或22 cm D.无法确定2.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便.(3)适用条件:必须在同一个三角形中.(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.【例2-1】已知等腰三角形的一个角为40°,则其顶角为().A.40°B.80°C.40°或100°D.100°哦,不指明是底角还是顶角时,要分类讨论,还要看三角形内角和是否是180°啊!【例2-2】如图,AD、BC相交于O,AB∥CD,OA=OB,求证:∠C=∠D.3.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质.(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛.(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.(4)应用模式:如图,在△ABC中,解技巧“三线合一”的应用因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活.【例3】如图,在△ABC中,AB=AC,AD⊥BC,交BC于D,BD=5 cm,求底边BC的长.分析:因为是等腰三角形,所以底边上的高也是底边上的中线,所以BC=2BD,即可求出BC的长.4.等腰三角形的判定(1)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).(2)与性质的关系:判定定理与性质定理是互逆的,性质:→;判定:→.(3)理解:性质和判定应用的前提都是在同一三角形中,并且不经过三角形全等的证明,直接由等边得等角或由等角得等边,所以应用起来更简单、便捷.破疑点等腰三角形的判定方法的理解教材中涉及等腰三角形的判定方法主要有两种:一是判定定理;二是定义.另外还有很多方法,如在同一个三角形中,三线中两线重合,也能说明是等腰三角形.但不常用,一般是通过推理得出角相等或边相等,再得出是等腰三角形.【例4】如图,BE平分∠ABC,交AC于E,过E作DE∥BC,交AB于D.试证明△BDE是等腰三角形.5.等边三角形的概念和性质(1)等边三角形①概念:三边都相等的三角形是等边三角形.②认识:它是特殊的等腰三角形,具备等腰三角形的所有性质.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°.(3)拓展:等边三角形是轴对称图形,它有三条对称轴,它三边相等,三个内角相等,各边上的高、中线,对应的角平分线重合,且长度相等.【例5】如图,点M、N分别在等边△ABC的边BC、AC上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.6.等边三角形的判定(1)判定定理:①三个角都相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形.(2)判定方法:等边三角形的判定方法有三种:一是定义,另运用两个定理.(3)拓展理解:对于判定定理①,有时候在一个三角形中只要有两个角是60°也可判定是等边三角形.解技巧巧用条件证明等边三角形在证明三角形是等边三角形时,根据所给已知条件确定选择用哪个方法证明.若已知三边关系,一般选定义法;若已知三角关系,一般选判定定理①;若已知该三角形是等腰三角形,则选判定定理②.【例6】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.基本方法基本能力7.等腰三角形性质和判定的综合应用类似于全等三角形的性质和判定的关系,等腰三角形的性质和判定很多时候也是综合运用的.一方面等腰三角形是特殊的三角形,由等腰三角形性质,可以知道许多相等的线段,相等的角,还能知道垂直关系,成倍数关系的线段或角,所以有时通过判定是等腰三角形来证明角相等、线段相等或垂直关系等;另一方面通过等腰三角形性质和判定的运用,直接由线段相等得到角相等,由角相等到线段相等,省去了全等的证明,简化了过程,因此很多时候,等腰三角形性质和判定的应用更广泛.注意:等腰三角形性质和判定的应用前提是在同一个三角形中.【例7】如图1,在△ABC中,∠B=2∠C,AD是BC边上的高,求证:CD=AB+BD.图1 图28.巧用“三线合一”性质解题(1)性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称“三线合一”性质;(2)应用:它是等腰三角形特有的性质,这条线段是中线、高,也是角平分线,它包含有线段相等、角相等、垂直等关系,涉及量多,应用广泛,是证明线段相等、线段的倍数关系、角相等、角的倍数关系、垂直等常用的方法.构造“三线合一”解决等腰三角形问题在等腰三角形问题中,最常添加的辅助线就是作底边上的高,或作顶角的平分线,或作底边上的中线,这样就可以由其中一线得到其他两线,从而知道更多的条件,以便更好地完成计算、证明.【例8】已知:如图a所示,△ABC中,AB=AC,BF是AC边上的高,求证:∠FBC=∠BAC.图a 图b9.等边三角形的应用等边三角形也称正三角形,它是最特殊的三角形,它除了三边相等,三个内角相等,且每个角都是60°外,还具有很多特殊的性质:如,证明两个等边三角形全等只要有一边相等即可;同一个等边三角形的高、中线、角平分线都相等,并且任何一条高(或中线、顶角的平分线)将等边三角形都分成全等的两个含有30°角的直角三角形;它的高和边长也存在着特殊的比例关系,因此已知是等边三角形,就可以知道其中的许多等量关系.等边三角形的判定也具有自己独特的特点,可以由普通三角形满足条件直接判定,也可以在等腰三角形的基础上进行判定.【例9】(学科内综合题)如下图所示,在等边三角形ABC中,∠B、∠C的角平分线交于点O,OB和OC的垂直平分线分别交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.思维拓展创新应用10.面积法证明等腰三角形的性质面积法是解决几何问题常用的一种的方法,它巧妙地运用面积之间的关系,通过计算的方式,求线段的长度,或用来证明线段之间的数量关系,有时它比运用线段之间的等量关系证明、计算更简捷,更巧妙,因而在特定条件下能出奇制胜,是一种很好的方法.面积法的运用,一般以同一个三角形的面积是相等的为基础,运用不同求法,即底不同、高不同、但面积都等于底×高的一半,或将一个图形分解成不同的图形来求面积,但面积之和相等.通过面积相等联系起各量之间的关系,再运用等式的性质,通过化简求出某些线段的长,或计算出某些线段之间的数量(如比例)关系.解技巧巧用面积法证明线段的关系因为直角三角形的特殊性,所以面积法最常用在直角三角形中求斜边上的高,有时也用在等腰三角形中证明线段相等或求线段的和.11.等腰三角形中的“二推一”模式应用在等腰三角形问题中,“等边、角平分线(等角)、平行”是出现最多,最常见的数量与位置关系,若这三个关系出现在同一图中,一般以其中任意两个条件为题设,推导、证明出第三个条件成立,因此我们称它为等腰三角形中的“二推一”.(1)基本图形:等腰三角形中的“二推一”一般有两种情况,一种是角平分线在外,要用到一个外角等于和它不相邻的两内角和;另一种是角平分线在内,基本图形如图①和图②所示,演变图形类型较多,主要有以下几种:(2)方法:通过角相等作为纽带,将线段相等、线段平行联系起来,在此过程中要用到等量代换得出的角相等,方式一般是:→→;→→.【例11-1】如图1,已知,在△ABC中,AB=AC,BD为腰AC上的高,G为底边BC上任一点,GF⊥AB,GE⊥AC,垂足分别为F、E.求证:GF+GE=BD.分析:要证明BD=GF+GE,按常规思路将BD分成两段,如图2,证明BH=GF,DH=GE.所以过G作BD的垂线,通过证明三角形全等和判定是矩形完成,既复杂又超出现在所学,但用面积法却简单得多.如图3,连接AG,运用面积法,分别表示出△ABG和△ACG的面积,由于同一三角形面积是相等的,所以S△ABC=S△ABG+S△ACG,所以AB·GF+AC·GE=AC·BD,由于AB =AC,经过等量代换和化简即可得到GF+GE=BD.【例11-3】如图,已知△ABC中,AC+BC=24,AO、BO分别是∠BAC、∠ABC的角平分线,MN过O点,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为___.【例11-4】如图,△ABC中,∠ABC、∠ACB的平分线BO、CO相交于点O,OE∥AB,OF ∥AC,△OEF的周长=10,求BC的长.直角三角形学习过程:一、课前准备1.每个命题都是由、两部分组成。

八年级数学下册第一章三角形的证明114等腰三角形教案北师大版

八年级数学下册第一章三角形的证明114等腰三角形教案北师大版

1.1等腰三角形课题 1.1等腰三角形(4)授课时间年月日教学目标知识与技能:理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。

过程与方法经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.情感与价值:在数学活动中获得成功的体验,锻炼克服困难的意志,建立信心.教学重点①等边三角形判定定理的发现与证明.②含30°角的直角三角形的性质定理的发现与证明.教学难点含30°角的直角三角形性质定理的探索与证明.教学准备多媒体课件教学方法讲解和小组讨论教学过程备注第一环节:提问问题,引入新课教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。

第二环节:自主探索学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结:由于有了第1环节的铺垫,学生多能探究出:顶角是60°的等腰三角形是等边三角形;底角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形;三条边都相等的三角形是等边三角形。

对于前两个定理的形式相近,教师可以进一步提出要求:能否用更简捷的语言描述这个结论吗?从而引导学生得出:有一个角是60°的等腰三角形是等边三角形。

第三环节:实际操作提出问题活动内容:教师直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形。

拿出三角板,做一做:用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.第四环节:变式训练巩固新知活动1:直接提请学生思考刚才命题的逆命题:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°吗?如果是,请你证明它.活动2 :呈现例题,在师生分析的基础上,运用所学的新定理解答例题。

北师大版八年级数学下册第一章三角形的证明1.1等腰三角形(教案)

北师大版八年级数学下册第一章三角形的证明1.1等腰三角形(教案)
(3)等腰三角形在实际问题中的应用:利用等腰三角形的性质解决实际问题。
举例:在平面几何中,当一个三角形是等腰三角形时,可1)等腰三角形性质的理解与应用:学生需要理解并熟练掌握等腰三角形的性质,能将其应用于解决问题。
难点解析:学生可能会混淆等腰三角形底边中线、高、角的平分线的关系,需要通过实例和练习加深理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等腰三角形的基本概念、重要性质和应用。同时,我们也通过实践活动和小组讨论加深了对等腰三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次等腰三角形的教学中,我发现学生们对于等腰三角形的定义和性质掌握得相对较好,但在实际应用和判定方法上还存在一些问题。通过这次教学,我有以下几点思考:
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指有两边长度相等的三角形。它的重要性体现在其独特的性质和应用方面。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了等腰三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的定义和性质这两个重点。对于难点部分,如等腰三角形的判定方法,我会通过举例和比较来帮助大家理解。
5.教学过程中,我发现部分学生对等腰三角形在实际问题中的应用感到困惑。针对这个问题,我计划在今后的教学中增加一些与生活密切相关的实例,让学生更好地理解等腰三角形在实际生活中的应用。
6.总结回顾环节,我要求学生对所学知识进行梳理,并鼓励他们提出疑问。从学生的提问来看,他们在某些知识点上还存在盲点。在今后的教学中,我要更加关注学生的疑问,及时解答,帮助他们巩固所学知识。

北师大初二数学8年级下册 第1章(三角形的证明)1.1 等腰三角形 同步练习(含答案)

北师大初二数学8年级下册 第1章(三角形的证明)1.1 等腰三角形  同步练习(含答案)

1 等腰三角形第1课时 全等三角形和等腰三角形的性质1.如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A.SAS B.AAS C.SSS D.ASA第1题图 第2题图2.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B =.3.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.4.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.第4题图 第5题图5.如图,在△ABC中,AB=AC,点D,E在边BC上,∠BAD=∠CAE.若BC=15,DE=6,则CE的长为.6.已知:如图,在△ABC中,D是边AC上一点,AB=BD=DC,∠ABD=20°,AE ∥BD交CB的延长线于点E.求∠AEB的度数.7.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10 B.5 C.4 D.3第7题图 第8题图8.如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC,当固定点B,C到杆脚E的距离相等,且B,E,C在同一直线上时,电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.垂线段最短C.等腰三角形“三线合一”D.线段垂直平分线上的点到这条线段两端点的距离相等9.如图,在△ABC中,AB=AC,AD⊥BC于点D.若AB=6,CD=4,则△ABC的周长是.10.如图,已知在等腰三角形ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,连接BD并延长,交AC的延长线于点E,求∠E的度数.11.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13 B.17C.13或17 D.13或1012.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于.13.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°第13题图 第14题图14.如图,在△ABC中,AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行.若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°15.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且△AMK≌△BKN.若∠MKN=52°,则∠P的度数为()A.38°B.76°C.96°D.136°第15题图 第16题图16.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36度.17.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE 的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF,EF相交于点F.求证:(1)∠C=∠BAD;(2)AC=EF.18.如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.第2课时 等腰三角形的特殊性质和等边三角形的性质1.如图,在△ABC中,AB=AC,下列条件中,不能使BD=CE的是()A.BD,CE分别为AC,AB上的高B.BD,CE为△ABC的角平分线C.∠ABD=13∠ABC,∠ACE=13∠ACBD.∠ABD=∠BCE第1题图 第2题图2.如图,在△ABC中,AB=AC,BD,CE分别平分∠ABC和∠ACB,则下列结论不一定正确的是()A.BD=CE B.AE=ADC.OC=DC D.∠ABD=∠ACE3.求证:等腰三角形两腰上的高相等.4.如图,在等边△ABC中,AD⊥BC于点D.若BD=2,则AC=()A.2 B.3 C.23D.4第4题图 第5题图5.如图,在等边△ABC中,D是AC边的中点,延长BC到点E,使BD=DE,则∠CDE 的度数为()A.15°B.20°C.30°D.40°6.如图,△ABC为等边三角形,AC∥BD,则∠CBD=.第6题图 第7题图7.等边△ABC的边长如图所示,则y=.8.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=20°,则∠1=.9.如图,在等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=CD,求证:BE=AD.10.如图,△ABC是等边三角形,AD为中线,AD=AE,点E在边AC上,求∠EDC 的度数.11.如图,一个等边三角形纸片剪去一个角后变成一个四边形,则图中∠1+∠2的度数为()A.180°B.220°C.240°D.300°第11题图 第12题图12.如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1) B.(1,3)C.(3,1) D.(3,3)13.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A.45°B.60°C.75°D.90°第13题图 第14题图14.三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为.15.如图,在等边△ABC中,D是BC上的一点,延长AD至E,使AE=AC,∠BAE 的平分线交△ABC的高BF于点O.求∠E的度数.16.如图,△ABC为等边三角形,点M是线段BC上任意一点,点N是线段CA上任意一点,且BM=CN,BN与AM相交于点Q.(1)求证:AM=BN;(2)求∠BQM的度数.17.已知,如图所示,P为等边△ABC内的一点,它到三边AB,AC,BC的距离分别为h1,h2,h3,△ABC的高AM=h,则h与h1,h2,h3有何数量关系?写出你的猜想并加以证明.第3课时 等腰三角形的判定与反证法1.在△ABC中,已知∠B=∠C,则()A.AB=BC B.AB=ACC.BC=AC D.∠A=60°2.如图,在△ABC中,AD平分外角∠EAC,且AD∥BC,则△ABC一定是()A.任意三角形B.等边三角形C.等腰三角形D.直角三角形3.下列条件中不能说明三角形是等腰三角形的是()A.有两个内角分别是70°,40°的三角形B.有一个角为45°的直角三角形C.一个外角是130°,与它不相邻的一个内角为50°的三角形D.有两个内角分别是70°,50°的三角形4.如图,AC,BD相交于点O,∠A=∠D.如果请你再补充一个条件,使得△BOC是等腰三角形,那么你补充的条件不能是()A.OA=OD B.AB=CDC.∠ABO=∠DCO D.∠ABC=∠DCB第4题图 第5题图5.如图,在△ABC中,CD平分∠ACB,DE∥BC交AC于点E.若DE=5,AE=7,则AC的长为.6.如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.7.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.8.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设()A.直角三角形中两个锐角都大于45°B.直角三角形中两个锐角都不大于45°C.直角三角形中有一个锐角大于45°D.直角三角形中有一个锐角不大于45°9.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)10.如图,已知每个小方格的边长都为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个11.如图,已知△ABC,点D,E分别在边AC,AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是()A.AE=AD B.BD=CEC.∠ECB=∠DBC D.∠BEC=∠CDB第11题图 第12题图12.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E.若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.813.用反证法证明“一个三角形中最多有一个角是直角或钝角”时,应假设.14.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能将这个三角形分成两个小等腰三角形的是(填序号).,①) ,②) ,③) ,④)15.如图,在△ABC中,AB=AC,D为BC边的中点,F为CA的延长线上一点,过点F作FG⊥BC于点G,并交AB于点E,求证:(1)AD∥FG;(2)△AEF是等腰三角形.16.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE =CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.17.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D 不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=,∠DEC=;点D从B向C 运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,△ADE可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.第4课时 等边三角形的判定与含30°角的直角三角形的性质1.在△ABC中,若AB=AC,∠A=∠C,则△ABC是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定2.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A.①②③B.①②④C.①③④D.①②③④3.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD是等边三角形.第3题图 第4题图4.如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=米.5.如图,在△ABC中,点D是AB上一点,且AD=DC=DB,∠B=30°.求证:△ADC 是等边三角形.6.如图,点D,E在线段BC上,BD=CE,∠B=∠C,∠ADB=120°,求证:△ADE 为等边三角形.7.如图,在Rt△ABC中,∠C=90°,AB=8,∠A=30°,则BC=()A.8 B.6 C.4 D.2第7题图 第8题图8.如图,在△ABC中,∠C=90°,AC=2,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.2 B.3 C.4 D.59.如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30°角,那么这棵树折断之前的高度是6米.第9题图 第10题图10.如图,这是某超市自动扶梯的示意图,大厅两层之间的距离h=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v=0.5米/秒,则顾客乘自动扶梯上一层楼的时间为26秒.11.如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,BC=8 cm,求AD的长.12.如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处.已知CD=1,∠B=30°,则BD的长是()A.1 B.2C.3D.23第12题图 第13题图13.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC 为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM =PN.若MN=2,则OM=()A.3 B.4 C.5 D.6第14题图 第15题图15.如图,已知直线l1∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A在l2上.如果边AB与l1的交点D是AB的中点,那么∠1=.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB,交CD 于点E,交BC于点F.若AF=BF,求证:△CEF是等边三角形.17.在四边形ABCD中,AB=BC=CD=DA,∠B=∠D=60°,连接AC.(1)如图1,点E,F分别在边BC,CD上,且BE=CF.求证:①△ABE≌△ACF;②△AEF是等边三角形;(2)若点E在BC的延长线上,则在直线CD上是否存在点F,使△AEF是等边三角形?请证明你的结论(图2备用).参考答案:第1课时 全等三角形和等腰三角形的性质1.如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是(A) A.SAS B.AAS C.SSS D.ASA第1题图 第2题图2.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.3.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为34°.4.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.第4题图 第5题图5.如图,在△ABC中,AB=AC,点D,E在边BC上,∠BAD=∠CAE.若BC=15,DE=6,则CE的长为4.5.6.已知:如图,在△ABC中,D是边AC上一点,AB=BD=DC,∠ABD=20°,AE ∥BD交CB的延长线于点E.求∠AEB的度数.解:∵AB=BD,∠ABD=20°,∴∠ADB=80°.∵BD=DC,∴∠CBD=40°.∵AE∥BD,∴∠AEB=40°.7.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于(B)A.10 B.5 C.4 D.3第7题图 第8题图8.如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE 上一点A 往地面拉两条长度相等的固定绳AB 与AC ,当固定点B ,C 到杆脚E 的距离相等,且B ,E ,C 在同一直线上时,电线杆DE 就垂直于BC.工程人员这种操作方法的依据是(C)A .等边对等角B .垂线段最短C .等腰三角形“三线合一”D .线段垂直平分线上的点到这条线段两端点的距离相等9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D.若AB =6,CD =4,则△ABC 的周长是20.10.如图,已知在等腰三角形ABC 中,AB =AC ,∠BAC =80°,AD ⊥BC ,AD =AB ,连接BD 并延长,交AC 的延长线于点E ,求∠E 的度数.解:∵AB =AC ,∠BAC =80°,AD ⊥BC ,∴∠BAD =∠CAD =12∠BAC =40°.∵AD =AB ,∴∠BDA =12×(180°-40°)=70°.∴∠E =∠BDA -∠CAD =70°-40°=30°.11.已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为(B)A .13B .17C .13或17D .13或1012.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到的锐角为50°,则∠B等于70°或20°.13.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是(B)A.20°B.35°C.40°D.70°第13题图 第14题图14.如图,在△ABC中,AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行.若∠C=40°,则∠GAD的度数为(C) A.40°B.45°C.55°D.70°15.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且△AMK≌△BKN.若∠MKN=52°,则∠P的度数为(B)A.38°B.76°C.96°D.136°第15题图 第16题图16.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36度.17.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE 的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF,EF相交于点F.求证:(1)∠C=∠BAD;(2)AC=EF.证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC.∴∠C+∠DAC=90°.∵∠BAC =90°,∴∠BAD +∠DAC =90°.∴∠C =∠BAD.(2)∵AF ∥BC ,∴∠FAE =∠AEB.∵AB =AE ,∴∠B =∠AEB.∴∠B =∠FAE.∵EF ⊥AE ,∴∠AEF =90°=∠BAC.在△ABC 和△EAF 中,{∠B =∠FAE ,AB =EA ,∠BAC =∠AEF ,∴△ABC ≌△EAF(ASA).∴AC =EF.18.如图,在△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE.求证:(1)△AEF ≌△CEB ;(2)AF =2CD.证明:(1)∵AD ⊥BC ,CE ⊥AB ,∴∠AEF =∠CEB =∠ADC =90°.∴∠AFE +∠EAF =∠CFD +∠ECB =90°.又∵∠AFE =∠CFD ,∴∠EAF =∠ECB.在△AEF 和△CEB 中,{∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,∴△AEF ≌△CEB(ASA).(2)∵△AEF ≌△CEB ,∴AF =BC.在△ABC 中,AB =AC ,AD ⊥BC ,∴CD =BD.∴BC =2CD.∴AF =2CD.第2课时 等腰三角形的特殊性质和等边三角形的性质1.如图,在△ABC中,AB=AC,下列条件中,不能使BD=CE的是(D) A.BD,CE分别为AC,AB上的高B.BD,CE为△ABC的角平分线C.∠ABD=13∠ABC,∠ACE=13∠ACBD.∠ABD=∠BCE第1题图 第2题图2.如图,在△ABC中,AB=AC,BD,CE分别平分∠ABC和∠ACB,则下列结论不一定正确的是(C)A.BD=CE B.AE=ADC.OC=DC D.∠ABD=∠ACE3.求证:等腰三角形两腰上的高相等.已知:如图,在△ABC中,AB=AC,CE⊥AB于点E,BD⊥AC于点D.求证:CE=BD.证明:∵CE⊥AB,BD⊥AC,∴∠AEC=∠ADB=90°.又∵AC=AB,∠A=∠A,∴△ACE≌△ABD(AAS).∴CE=BD.4.如图,在等边△ABC中,AD⊥BC于点D.若BD=2,则AC=(D)A.2 B.3 C.23D.4第4题图 第5题图5.如图,在等边△ABC中,D是AC边的中点,延长BC到点E,使BD=DE,则∠CDE 的度数为(C)A.15°B.20°C.30°D.40°6.如图,△ABC为等边三角形,AC∥BD,则∠CBD=120°.第6题图 第7题图7.等边△ABC的边长如图所示,则y=3.8.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD 是等边三角形,∠A=20°,则∠1=40°.9.如图,在等边△ABC中,点D为BC延长线上一点,点E为CA延长线上一点,且AE=CD,求证:BE=AD.证明:∵△ABC是等边三角形,∴AB=CA,∠BAC=∠ACB=60°.∴∠EAB=∠DCA=120°.在△EAB和△DCA中,{AE=CD,∠EAB=∠DCA,AB=CA,∴△EAB≌△DCA(SAS).∴BE=AD.10.如图,△ABC是等边三角形,AD为中线,AD=AE,点E在边AC上,求∠EDC的度数.解:∵△ABC是等边三角形,AD为中线,∴AD⊥BC,∠CAD=30°.∵AD=AE,∴∠ADE=∠AED=12(180°-∠CAD)=75°.∴∠EDC=∠ADC-∠ADE=90°-75°=15°.11.如图,一个等边三角形纸片剪去一个角后变成一个四边形,则图中∠1+∠2的度数为(C)A.180°B.220°C.240°D.300°第11题图 第12题图12.如图,等边△OAB的边长为2,则点B的坐标为(B)A.(1,1) B.(1,3)C.(3,1) D.(3,3)13.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为(B) A.45°B.60°C.75°D.90°第13题图 第14题图14.三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为60°.15.如图,在等边△ABC 中,D 是BC 上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC 的高BF 于点O.求∠E 的度数.解:∵△ABC 是等边三角形,BF 是△ABC 的高,∴∠ABO =12∠ABC =30°,AB =AC.∵AE =AC ,∴AB =AE.∵AO 为∠BAE 的平分线,∴∠BAO =∠EAO.在△ABO 和△AEO 中,{AB =AE ,∠BAO =∠EAO ,AO =AO ,∴△ABO ≌△AEO(SAS).∴∠E =∠ABO =30°.16.如图,△ABC 为等边三角形,点M 是线段BC 上任意一点,点N 是线段CA 上任意一点,且BM =CN ,BN 与AM 相交于点Q.(1)求证:AM =BN ;(2)求∠BQM 的度数.解:(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =60°,AB =BC.在△AMB 和△BNC 中,{AB =BC ,∠ABM =∠C ,BM =CN ,∴△AMB ≌△BNC(SAS).∴AM =BN.(2)∵△AMB ≌△BNC ,∴∠MAB =∠NBC.∴∠BQM =∠MAB +∠ABQ=∠NBC +∠ABQ=∠ABC=60°.17.已知,如图所示,P 为等边△ABC 内的一点,它到三边AB ,AC ,BC 的距离分别为h 1,h 2,h 3,△ABC 的高AM =h ,则h 与h 1,h 2,h 3有何数量关系?写出你的猜想并加以证明.解:猜想:h 1+h 2+h 3=h.证明:连接PA ,PB ,PC.∵S △PAB =12AB·h 1,S △PAC =12AC·h 2,S △PBC =12BC·h 3,S △ABC =12BC·h ,S △PAB +S △PAC +S △PBC =S △ABC ,∴12AB·h 1+12AC·h 2+12BC·h 3=12BC·h.∵△ABC 是等边三角形,∴AB =AC =BC.∴h 1+h 2+h 3=h.第3课时 等腰三角形的判定与反证法1.在△ABC 中,已知∠B =∠C ,则(B)A .AB =BCB .AB =AC C .BC =ACD .∠A =60°2.如图,在△ABC中,AD平分外角∠EAC,且AD∥BC,则△ABC一定是(C)A.任意三角形B.等边三角形C.等腰三角形D.直角三角形3.下列条件中不能说明三角形是等腰三角形的是(D)A.有两个内角分别是70°,40°的三角形B.有一个角为45°的直角三角形C.一个外角是130°,与它不相邻的一个内角为50°的三角形D.有两个内角分别是70°,50°的三角形4.如图,AC,BD相交于点O,∠A=∠D.如果请你再补充一个条件,使得△BOC是等腰三角形,那么你补充的条件不能是(C)A.OA=OD B.AB=CDC.∠ABO=∠DCO D.∠ABC=∠DCB第4题图 第5题图5.如图,在△ABC中,CD平分∠ACB,DE∥BC交AC于点E.若DE=5,AE=7,则AC的长为12.6.如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.证明:∵DE∥AC,∴∠CAD=∠ADE.∵AD平分∠BAC,∴∠CAD=∠DAE.∴∠DAE=∠ADE.∵AD⊥BD,∴∠DAE+∠B=90°,∠ADE+∠BDE=90°.∴∠B=∠BDE.∴BE=DE.∴△BDE是等腰三角形.7.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,{AB=DC,∠B=∠C,BF=CE,∴△ABF≌△DCE(SAS).∴∠AFB=∠DEC,即∠GFE=∠GEF.∴GE=GF.8.用反证法证明“直角三角形中至少有一个锐角不大于45°”,应先假设(A)A.直角三角形中两个锐角都大于45°B.直角三角形中两个锐角都不大于45°C.直角三角形中有一个锐角大于45°D.直角三角形中有一个锐角不大于45°9.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)证明:假设AB与EF不垂直,则∠AME≠90°.∵AB∥CD,∴∠AME=∠CNE.∴∠CNE≠90°,与已知条件CD⊥EF相矛盾.∴假设不成立.∴AB⊥EF.10.如图,已知每个小方格的边长都为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有(A)A.8个B.7个C.6个D.5个11.如图,已知△ABC,点D,E分别在边AC,AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是(D)A.AE=AD B.BD=CEC.∠ECB=∠DBC D.∠BEC=∠CDB第11题图 第12题图12.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过点O作DE∥BC,分别交AB,AC于点D,E.若BD+CE=5,则线段DE的长为(A) A.5 B.6 C.7 D.813.用反证法证明“一个三角形中最多有一个角是直角或钝角”时,应假设_这个三角形中至少有两个角是直角或钝角.14.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能将这个三角形分成两个小等腰三角形的是②(填序号).,①) ,②) ,③) ,④)15.如图,在△ABC中,AB=AC,D为BC边的中点,F为CA的延长线上一点,过点F作FG⊥BC于点G,并交AB于点E,求证:(1)AD∥FG;(2)△AEF是等腰三角形.证明:(1)∵AB=AC,D是BC的中点,∴AD⊥BC.∴∠ADC=90°.∵FG⊥BC,∴∠FGC=90°.∴∠ADC=∠FGC.∴AD∥FG.(2)∵AB=AC,D是BC的中点,∴∠BAD=∠CAD.∵AD∥FG,∴∠F=∠CAD,∠AEF=∠BAD.∴∠F=∠AEF.∴AF=AE.∴△AEF是等腰三角形.16.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE =CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.解:(1)∵BD是等边△ABC的中线,∴BD ⊥AC ,AD =CD.∵AB =6,∴AD =3.在Rt △ABD 中,由勾股定理,得BD =AB 2-AD 2=33.(2)证明:∵BD 是等边△ABC 的中线,∴BD 平分∠ABC.∴∠DBE =12∠ABC =30°.∵∠ACB =60°,∴∠ACE =120°.又∵CE =CD ,∴∠E =∠CDE =180°-120°2=30°.∴∠DBE =∠E.∴BD =ED.又∵DF ⊥BE ,∴BF =EF.17.如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B ,C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E.(1)当∠BDA =115°时,∠EDC =25°,∠DEC =115°;点D 从B 向C 运动时,∠BDA 逐渐变小(填“大”或“小”);(2)当DC 等于多少时,△ABD ≌△DCE ?请说明理由;(3)在点D 的运动过程中,△ADE 可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.解:(2)当DC =2时,△ABD ≌△DCE.理由:∵∠C =40°,∴∠DEC +∠EDC =140°.∵∠ADE =40°,∴∠ADB +∠EDC =140°.∴∠ADB =∠DEC.又∵AB =DC =2,∴△ABD ≌△DCE(AAS).(3)可以,∠BDA 的度数为110°或80°.第4课时 等边三角形的判定与含30°角的直角三角形的性质1.在△ABC中,若AB=AC,∠A=∠C,则△ABC是(B)A.等腰三角形B.等边三角形C.不等边三角形D.不能确定2.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是(D)A.①②③B.①②④C.①③④D.①②③④3.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD是等边三角形.第3题图 第4题图4.如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC=60°,∠ACB=60°,BC=48米,则AC=48米.5.如图,在△ABC中,点D是AB上一点,且AD=DC=DB,∠B=30°.求证:△ADC 是等边三角形.证明:∵DC=DB,∠B=30°,∴∠DCB=∠B=30°.∴∠ADC=∠DCB+∠B=60°.又∵AD=DC,∴△ADC是等边三角形.6.如图,点D,E在线段BC上,BD=CE,∠B=∠C,∠ADB=120°,求证:△ADE 为等边三角形.证明:∵∠B=∠C,∴AB=AC.又∵BD=CE,∴△ABD≌△ACE(SAS).∴AD=AE.∵∠ADB=120°,∴∠ADE=60°.∴△ADE为等边三角形.7.如图,在Rt△ABC中,∠C=90°,AB=8,∠A=30°,则BC=(C)A.8 B.6 C.4 D.2第7题图 第8题图8.如图,在△ABC中,∠C=90°,AC=2,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是(D)A.2 B.3 C.4 D.59.如图,在一次暴风灾害中,一棵大树在离地面2米处折断,树的另一部分倒地后与地面成30°角,那么这棵树折断之前的高度是6米.第9题图 第10题图10.如图,这是某超市自动扶梯的示意图,大厅两层之间的距离h=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v=0.5米/秒,则顾客乘自动扶梯上一层楼的时间为26秒.11.如图,在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D,BC=8 cm,求AD的长.解:∵∠ACB=90°,∠A=30°,BC=8 cm,∴∠B=60°,AB=2BC=16 cm.∵CD⊥AB,∴∠BDC=90°.∴∠DCB=30°.∴DB=12BC=4 cm.∴AD=AB-DB=12 cm.12.如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处.已知CD=1,∠B=30°,则BD的长是(B)A.1 B.2C.3D.23第12题图 第13题图13.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC 为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是(A) A.平行B.相交C.垂直D.平行、相交或垂直14.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM =PN.若MN=2,则OM=(C)A.3 B.4 C.5 D.6第14题图 第15题图15.如图,已知直线l1∥l2,含30°角的三角板的直角顶点C在l1上,30°角的顶点A 在l2上.如果边AB与l1的交点D是AB的中点,那么∠1=120°.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB,交CD 于点E,交BC于点F.若AF=BF,求证:△CEF是等边三角形.证明:∵AF平分∠CAB,∴∠CAF=∠BAF.∵AF=BF,∴∠BAF=∠B.∴∠CAF=∠BAF=∠B.∵∠ACB=90°,∴∠CAF+∠BAF+∠B=90°.∴∠BAF=∠B=30°.∵CD⊥AB,∴∠ADE=∠CDB=90°.∴∠BCD=∠DEA=60°.∴∠CEF=60°.∴∠CFA=∠CEF=∠ECF=60°.∴△CEF是等边三角形.17.在四边形ABCD中,AB=BC=CD=DA,∠B=∠D=60°,连接AC.(1)如图1,点E,F分别在边BC,CD上,且BE=CF.求证:①△ABE≌△ACF;②△AEF是等边三角形;(2)若点E在BC的延长线上,则在直线CD上是否存在点F,使△AEF是等边三角形?请证明你的结论(图2备用).解:(1)证明:①∵AB=BC,∠B=60°,∴△ABC是等边三角形.∴AB=AC.同理,△ADC也是等边三角形,∴∠B=∠ACF=60°.又∵BE=CF,∴△ABE≌△ACF(SAS).②∵△ABE≌△ACF,∴AE=AF,∠BAE=∠CAF.∵∠BAE+∠CAE=60°,∴∠CAF+∠CAE=60°,即∠EAF=60°.∴△AEF是等边三角形.(2)存在.证明:在CD的延长线上取点F,在BC的延长线上取点E,使CF=BE,连接AE,EF,AF.与(1)①同理,可证△ABE≌△ACF,∴AE=AF,∠BAE=∠CAF.∴∠BAE-∠CAE=∠CAF-∠CAE,即∠BAC=∠EAF=60°.∴△AEF是等边三角形.。

1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册

1-1等腰三角形1-2直角三角形复习2022-2023学年北师大版数学八年级下册
(1)如图1,若∠BAC=∠DAE=60°,则△BEF是___等__边__三
角形;
(2)若∠BAC=∠DAE≠60° ①如图2,当点D在线段BC上移动,判断△BEF的形状并证明; ②当点D在线段BC的延长线上移动,△BEF是什么三角形?请 直接写出结论并画出相应的图形.
解:(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°, ∴△AED和△ABC为等边三角形, ∴∠C=∠ABC=60°,∠EAB=∠DAC, ∴△EAB≌△DAC, ∴∠EBA=∠C=60°, ∵EF∥BC, ∴∠EFB=∠ABC=60°, ∵在△EFB中,∠EFB=∠EBA=60°,
B
30°
的正北方向,此时它与灯塔的距离是
_2_0___3_海里(结果保留根号).
A
C

小结(2分钟)
(考点)
1、等腰三角形的性质与判定: 等边对等角、三线合一
2、等边三角形的性质定理及其判定定理 3、直角三角形的性质定理及其判定定理 4、反证法的证明步骤,互逆命题、互逆定理的概念
(易错点) 1.做没有图形的几何问题求边长或角度时应注意:
是否进行分类讨论
2.做互逆命题的问题应注意:
注意互逆命题的语言的准确性
当堂训练(15分钟) 1、如图,长方形纸片ABCD,AD∥BC,将长方
形纸片折叠,使点D与点B重合,点C落在点C’ 处,折痕为EF,则 △BEF为 等腰 三角形.
2.如图,已知∠AOB=60°,点P在边OA上,OP=8, 点M,N在边OB上,PM=PN,若MN=2,则ON=( B )
②AB=AC,点D为射线BC上一个动点(不与B、C重合),
以AD为一边向AD的左侧作△ADE,使AD=AE,
∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连 接BE.

八年级数学下册 第一章 三角形的证明 1.1 等腰三角形(

八年级数学下册 第一章 三角形的证明 1.1 等腰三角形(
第一章 三角形的证明 1 等腰三角形 第1课时
【基础梳理】 一、全等三角形的判定和性质 1.三角形全等的判定方法有SSS,SAS,ASA和_A_A_S_. 2.全等三角形的性质是对应边_相__等__,对应角_相__等__.
二、等腰三角形性质定理及推论 1.等腰三角形的性质定理:等腰三角形的两底角_相__等__, 简述为:_等__边__对__等__角__. 2.等腰三角形性质定理的推论:等腰三角形_顶__角__的__平__分__ 线、_底__边__上__的__中__线及_底__边__上__的__高__线互相重合,即_三__线__ _合__一__.
知识点一 全等三角形在证明中的应用 【示范题1】如图,点D是AB上一点,DF交AC于点E, DE=FE,FC∥AB. 求证:AE=CE.
【备选例题】 (2017·平凉一模)如图,AC=AE,∠1=∠2,AB=AD.求 证:BC=DE.
【证明】∵∠1=∠2,
∴∠CAB=∠DAE,
AC AE,
在△BAC和△DAE中, CAB=DAE,
AB=AD,பைடு நூலகம்
∴△BAC≌△DAE(SAS),∴BC=DE.
【微点拨】 判定两个三角形全等的一般思路
1.已知两边对应相等→SSS或SAS. 2.已知两角和一边对应相等→ASA或AAS. 注意:(1)至少要有一组边对应相等. (2)不能用“AAA”或“SSA”判定两个三角形全等.
【自主解答】(1)∵BD平分∠ABC, ∴∠ABD=∠DBC, 又∵AB=AD,∴∠ADB=∠ABD. ∴∠ADB=∠DBC,∴AD∥BC.
(2)∵BD平分∠ABC,∴∠ABC=2∠ABD=70°, ∵AD∥BC, ∴∠ACB=∠DAC=70°,∴∠BAC=180°-∠ABC-∠ACB =180°-70°-70°=40°.

北师大版八年级下数学第一章三角形的证明1.1等腰三角形1导学案

北师大版八年级下数学第一章三角形的证明1.1等腰三角形1导学案

北师大版八年级下数学第一章三角形的证明等腰三角形(1)模块一预习反馈( P2— P6)一.知识点1、两角及其中一角的对边对应相等的两个三角形全等(AAS)。

(论证)2、全等三角形的对应边相等, 对应角相等。

3、等腰三角形性质定理:(等边对等角)。

(论证)4、推论(三线合一):。

(论证)5、等边三角形性质定理:。

(论证)论证要求(画图、写出已知、求证、证明过程)模块二基础训练1.如图,已知∠ D =∠C,∠ A =∠B,且 AE = BF。

求证: AD = BC。

DCAEF B2.如图,在△ ABC中, AB = AC,AD⊥AC∠ BAC = 100°。

求∠ 1、∠ 3、∠ B 的度数。

BA 1 2 3D C3.如图,在△ ABC中,D为 AC上一点,并且 AB = AD,DB= DC,若∠ C = 29°,求∠A。

ADB C模块三能力提升1.填空:(1)如图,在△ ABC中, AB = AC,点 D 在 AC上,且 BD = BC =AD。

请找出所有的等腰三角形。

A (2)等腰三角形的顶角为 50°,则它的底角为。

(3)等腰三角形的一个角为 40°,则另两个角为。

(4)等边三角形的三个角都相等,并且每个角都等于60°。

DB C2.如图,在△ ABC中,AB = AC,D是BC边上的中点,且DE⊥AB, DF⊥AC。

求证:∠ 1 = ∠2。

AE2 F1 BD C模块四:课下练习☆能力提升1.△ABC中,AB=AC,∠A= 50°,P 是△ ABC 内一点,且∠ PBC=∠ ACP,求∠BPC的度数_________ .2.已知:如图,在△ ABC中,AB=AC,BD,CE是△ ABC的角平分线.求证:BD=CE.AE D12BC3.如图, A、B、F、D 在同一直线上, AB=DF, AE=BC,且 AE∥ BC.求证:⑴△ AEF≌△ BCD,⑵EF∥CD.ECABFD。

八年级数学下册第一章三角形的证明1.1.2等腰三角形导学案北师大版(2021年整理)

八年级数学下册第一章三角形的证明1.1.2等腰三角形导学案北师大版(2021年整理)

八年级数学下册第一章三角形的证明1.1.2 等腰三角形导学案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第一章三角形的证明1.1.2 等腰三角形导学案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第一章三角形的证明1.1.2 等腰三角形导学案(新版)北师大版的全部内容。

1.1。

2 等腰三角形导学案学习目标1、能够证明等腰三角形的判定定理,并会运用其定理进行证明.2、掌握特殊的等腰三角形—-—等边三角形的性质定理并会证明.学习重点:等腰三角形中重要线段相等推导过程,等边三角形的性质定理的证明。

学习难点:运用“等角对等边"解决实际应用问题及相关证明。

一、自学释疑运用“等角对等边”解决实际应用问题中,应该注意些什么?二、思学质疑把你在本次课程学习中的困惑与建议填写在下面,与同学交流后,由组长整理后并拍照上传平台讨论区.______________________________________________________________ ____________________________________________________________________________三、合作探究探究点一:等腰三角形的角平分线特征.问题1:在等腰三角形中,画出三个角的角平分线,你能发现其中有相等的线段吗?你能说明理由吗?已知:如图,△ABC中,AB=AC,BD,CE分别∠ABC,∠ACB的角平分线.求证:BD=CE,即等腰三角形的两底角的平分线相等问题2:已知:△ABC中,AB=AC,(1)如果∠ABD=13∠ABC,∠ACE=13∠ACB.BD=CE吗?(2)如果∠ABD=14∠ABC,∠ACE=14∠ACB.BD=CE吗?(3)如果∠ABD=1n∠ABC,∠ACE=1n∠ACB.BD=CE吗?请你说明理由,与同伴交流.探究点二:等腰三角形两腰上的中线的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.1 等腰三角形(一)学
习目标1.进一步理解掌握等腰三角形的有关性质及其证明;
2.掌握证明的基本步骤和书写格式。

自主导学温故知新(全等三角形的性质与判定)
1、三角形全等的判定定理有:“”、“”、“”、“”。

2、①已知:如图1,AB=AC,BD=DC. ②已知:如图1,AB=AC,AD为∠BAC的角平分线.
求证:∠B=∠C. 求证:∠B=∠C.
自主探究:请你先看课本p2,然后解答下列问题。

(1)还记得我们探索过的等腰三角形的性质吗?有哪些性质呢?
(2)请你选择等腰三角形的一条性质进行证明。

并与同伴交流.
例题1:已知:如图2,在△ABC中,AB=AC
求证:∠B=∠C
辅助线的作用:①②化繁为易③发挥特殊点的作用
你还有其他证明方法吗?与同伴交流
推论等腰三角形顶角的、底边上的及的高线互相重合.(简称:三线合一)
即时训练
1.如图,△ABC中,AC=BC,直线l经过点C,则()
A.l垂直AB B.l平分AB
C.l垂直平分AB D.l与AB的关系不能确定
A
B C
D
图1
图2
B C
A
第1题图
2、在△ABC中, AB=AC,若∠A=40°,则∠C= ;若∠B=72°,则∠A= 。

3、如图,在△ABD中,AC⊥BD,垂足为C,AC=BC=CD.
(1)求证:△ABD是等腰三角形
(2)求∠BAD的度数
巩固作业1.等腰三角形的一个角是80°,则它顶角的度数是()
A.80° B.80°或20° C.80°或50° D.20°
2.已知等腰三角形的两边长分别是3和5,则该三角形的周长是()
A.8 B.9 C.10或12 D.11或13
3.在△ABC中,AB=AC,∠A=44°,则∠B=度.
4.在△ABC中,AB=AC,∠BAC=120°,延长BC到D,使CD=AC,
则∠C DA=度.
5. 已知:如图7,AB=AC,AD为△ABC的高.(用三角形全等的方法证明)
求证:∠B=∠C.
6.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:∠ABD=∠ACD.
7、等腰ΔABC中,底边BC上的高AD =1
2
BC,试求∠B AC的度数。

A
B C D
A
B C
D
图7。

相关文档
最新文档