不等式复习课-

合集下载

第四节基本不等式课件高三数学一轮复习

第四节基本不等式课件高三数学一轮复习

基本不等式再理解:变形公式
ab a b (a 0,b 0) 2
和定积最大
积定和最小
2.利用基本不等式求最值问题
已知 x>0,y>0,则
(1)如果积 xy 是定值 p,那么当且仅当_x__=__y__时,x+y 有
_最___小___值是__2__p___.(简记:积定和最小)
(2)如果和 x +y 是定值 p,那么当且仅当_x_=___y__时,xy 有
答案 (1)C (2)5+2 6
某厂家拟定在 2018 年举行促销活动,经调查测算,该产 品的年销量(即该厂的年产量)x 万件与年促销费用 m(m≥0)万 元满足 x=3-m+k 1(k 为常数).如果不搞促销活动,那么该产 品的年销量只能是 1 万件.已知 2018 年生产该产品的固定投 入为 8 万元,每生产 1 万件该产品需要再投入 16 万元,厂家 将每件产品的销售价格定为每件产品平均成本的 1.5 倍. (1)将 2018 年该产品的利润 y 万元表示为年促销费用 m 万元 的函数;(产品成本包括固定投入和再投入两部分资金) (2)厂家 2018 年的促销费用投入多少万元时,厂家利润最大?
制 50≤x≤100(单位:千米/时).假设汽油的价格是每升 2 元,而汽车每小
时耗油
2+ x2 360
升,司机的工资是每小时
14
元.
(1)求这次行车总费用 y 关于 x 的表达式;
(2)当 x 为何值时,这次行车的总费用最低,并求出最低费用的值.
(1)y=m(kx2+9)=m x
x+9x
,x∈[1,10].
值,则 a=________. (2)不等式 x2+x<a+b对任意 a,b∈(0,+∞)恒成立,

2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

2020高中数学 第三章 不等式 阶段复习课 第3课 不等式学案 新人教A版必修5

第三课 不等式[核心速填]1.比较两实数a ,b 大小的依据a -b >0⇔a >b .a -b =0⇔a =b .a -b <0⇔a <b .2.不等式的性质3.Ax +By +C (B >0)⎩⎪⎨⎪⎧>0<0表示对应直线⎩⎪⎨⎪⎧上下方区域.4.二元一次不等式组表示的平面区域每个二元一次不等式所表示的平面区域的公共部分就是不等式组所表示的区域. 5.两个不等式[题型探究]一元二次不等式的解法[探究问题]1.当a >0时,若方程ax 2+bx +c =0有两个不等实根α,β且α<β,则 不等式ax 2+bx +c >0的解集是什么?提示:借助函数f (x )=ax 2+bx +c 的图象可知,不等式的解集为{x |x <α或x >β}.2.若[探究1]中的a <0,则不等式ax 2+bx +c >0的解集是什么? 提示:解集为{x |α<x <β}.3.若一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac <0,则ax 2+bx +c >0的解集是什么?提示:当a >0时,不等式的解集为R ;当a <0时,不等式的解集为∅.若不等式组⎩⎪⎨⎪⎧x 2-x -2>02x 2+2k +5x +5k <0的整数解只有-2,求k 的取值范围.【导学号:91432361】思路探究:不等式组的解集是各个不等式解集的交集,分别求解两个不 等式,取交集判断.[解] 由x 2-x -2>0,得x <-1或x >2.对于方程2x 2+(2k +5)x +5k =0有两个实数解x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉ ⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k. ∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k ,或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.母题探究:.(变条件,变结论)若将例题改为“已知a ∈R ,解关于x 的不 等式ax 2-2x +a <0”.[解] (1)若a =0,则原不等式为-2x <0,故解集为{x |x >0}. (2)若a >0,Δ=4-4a 2.①当Δ>0,即0<a <1时,方程ax 2-2x +a =0的两根为x 1=1-1-a 2a ,x 2=1+1-a 2a,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a . ②当Δ=0,即a =1时,原不等式的解集为∅. ③当Δ<0,即a >1时,原不等式的解集为∅. (3)若a <0,Δ=4-4a 2.①当Δ>0,即-1<a <0时,原不等式的解集为错误!. ②当Δ=0,即a =-1时,原不等式可化为(x +1)2>0, ∴原不等式的解集为{x |x ∈R 且x ≠-1}. ③当Δ<0,即a <-1时,原不等式的解集为R . 综上所述,当a ≥1时,原不等式的解集为∅;当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1-1-a 2a <x <1+1-a 2a ; 当a =0时,原不等式的解集为{x |x >0};当-1<a <0时,原不等式的解集为错误!;当a =-1时,原不等式的解集 为{x |x ∈R 且x ≠-1};当a <-1时,原不等式的解集为R . [规律方法] 不等式的解法 (1)一元二次不等式的解法.①将不等式化为ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)的形式; ②求出相应的一元二次方程的根或利用二次函数的图象与根的判别式确 定一元二次不等式的解集.,(2)含参数的一元二次不等式.,解题时应先看二次项系数的正负,其次考 虑判别式,最后分析两根的大小,此种情况讨论是必不可少的.不等式恒成立问题已知不等式mx 2-mx -1<0.(1)若x ∈R 时不等式恒成立,求实数m 的取值范围; (2)若x ∈[1,3]时不等式恒成立,求实数m 的取值范围;(3)若满足|m |≤2的一切m 的值能使不等式恒成立,求实数x 的取值范围.【导学号:91432362】思路探究:先讨论二次项系数,再灵活的选择方法解决恒成立问题. [解] (1)①若m =0,原不等式可化为-1<0,显然恒成立;②若m ≠0,则不等式mx 2-mx -1<0 恒成立⇔⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0.综上可知,实数m 的取值范围是(-4,0]. (2)令f (x )=mx 2-mx -1,①当m =0时,f (x )=-1<0显然恒成立; ②当m >0时,若对于x ∈[1,3]不等式恒成立,只需⎩⎪⎨⎪⎧f 1<0,f3<0即可,∴⎩⎪⎨⎪⎧f 1=-1<0,f3=9m -3m -1<0,解得m <16,∴0<m <16.③当m <0时,函数f (x )的图象开口向下,对称轴为x =12,若x ∈[1,3]时不等式恒成立,结合函数图象(图略)知只需f (1)<0即可,解得m ∈R ,∴m <0符合题意.综上所述,实数m 的取值范围是⎝ ⎛⎭⎪⎫-∞,16. (3)令g (m )=mx 2-mx -1=(x 2-x )m -1,若对满足|m |≤2的一切m 的值不等式恒成立,则只需⎩⎪⎨⎪⎧g-2<0,g 2<0,即⎩⎪⎨⎪⎧-2x 2-x -1<0,2x 2-x -1<0,解得1-32<x <1+32.∴实数x 的取值范围是⎝⎛⎭⎪⎫1-32,1+32.[规律方法] 对于恒成立不等式求参数范围的问题常见的类型及解法有以下几种: 1.变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看做主元. 2.分离参数法若f (a )<g (x )恒成立,则f (a )<g (x )min . 若f (a )>g (x )恒成立,则f (a )>g (x )max . 3.数形结合法利用不等式与函数的关系将恒成立问题通过函数图象直观化. 1.设f (x )=mx 2-mx -6+m ,(1)若对于m ∈[-2,2],f (x )<0恒成立,求实数x 的取值范围; (2)若对于x ∈[1,3],f (x )<0恒成立,求实数m 的取值范围. [解] (1)依题意,设g (m )=(x 2-x +1)m -6,则g (m )为关于m 的一次函数,且一次项系数x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,所以g (m )在[-2,2]上递增, 所以欲使f (x )<0恒成立,需g (m )max =g (2)=2(x 2-x +1)-6<0, 解得-1<x <2.(2)法一:要使f (x )=m (x 2-x +1)-6<0在[1,3]上恒成立, 则有m <6x 2-x +1在[1,3]上恒成立,而当x ∈[1,3]时, 6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34≥69-3+1=67, 所以m <⎝⎛⎭⎪⎫6x 2-x +1min =67,因此m 的取值范围是⎝⎛⎭⎪⎫-∞,67. 法二:①当m =0时,f (x )=-6<0对x ∈[1,3]恒成立,所以m =0. ②当m ≠0时f (x )的图象的对称轴为x =12,若m >0,则f (x )在[1,3]上单调递增, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (3)<0即7m -6<0, 所以0<m <67.若m <0,则f (x )在[1,3]上单调递减, 要使f (x )<0对x ∈[1,3]恒成立, 只需f (1)<0即m <6, 所以m <0.综上可知m 的取值范围是⎝⎛⎭⎪⎫-∞,67.线性规划问题已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤0,2y -x +1≥0,x +y -4≥0,且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.【导学号:91432363】思路探究:先画出可行域,再研究目标函数,由于目标函数中含有参数m ,故需讨论m 的值,再结合可行域,数形结合确定满足题意的m 的值.1 [作出线性约束条件表示的平面区域,如图中阴影部分所示.若m =0,则z =x ,目标函数z =x +my 取得最小值的最优解只有一个,不符合题意. 若m ≠0,目标函数z =x +my 可看作动直线y =-1m x +zm,若m <0,则-1m>0,数形结合知使目标函数z =x +my 取得最小值的最优解不可能有无穷多个;若m >0,则-1m<0,数形结合可知,当动直线与直线AB 重合时,有无穷多个点(x ,y )在线段AB 上,使目标函数z =x +my 取得最小值,即-1m=-1,则m =1.综上可知,m =1.] [规律方法]1.线性规划在实际中的类型主要有:(1)给定一定数量的人力、物力资源,如何运用这些资源,使完成任务量最大,收到的效益最高;(2)给定一项任务,怎样统筹安排,使得完成这项任务耗费的人力、物力资源最少.2.解答线性规划应用题的步骤:(1)列:设出未知数,列出约束条件,确定目标函数.(2)画:画出线性约束条件所表示的可行域.(3)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线.(4)求:通过解方程组求出最优解.(5)答:作出答案.[跟踪训练]2.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?[解]设投资人分别用x万元、y万元投资甲、乙两个项目.由题意,知⎩⎪⎨⎪⎧x+y≤10,0.3x+0.1y≤1.8,x≥0,y≥0,目标函数z=x+0.5y.画出可行域如图中阴影部分.作直线l0:x+0.5y=0,并作平行于l0的一组直线x+0.5y=z,z∈R,与可行域相交,其中有一条直线经过可行域上的点M时,z取得最大值.由⎩⎪⎨⎪⎧x+y=10,0.3x+0.1y=1.8,得⎩⎪⎨⎪⎧x=4,y=6,即M(4,6).此时z=4+0.5×6=7(万元).∴当x=4,y=6时,z取得最大值,即投资人用4万元投资甲项目,6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.利用基本不等式求最值设函数f(x)=x+ax+1,x∈[0,+∞).(1)当a=2时,求函数f(x)的最小值;(2)当0<a<1时,求函数f(x)的最小值.【导学号:91432364】思路探究:(1)将原函数变形,利用基本不等式求解. (2)利用函数的单调性求解. [解] (1)把a =2代入f (x )=x +ax +1,得f (x )=x +2x +1=(x +1)+2x +1-1, ∵x ∈[0,+∞), ∴x +1>0,2x +1>0, ∴x +1+2x +1≥22,当且仅当x +1=2x +1, 即x =2-1时,f (x )取等号,此时f (x )min =22-1. (2)当0<a <1时,f (x )=x +1+ax +1-1若x +1+ax +1≥2a ,则当且仅当x +1=ax +1时取等号,此时x =a -1<0(不合题意), 因此,上式等号取不到.f (x )在[0,+∞)上单调递增.∴f (x )min =f (0)=a .3.某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元,公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.[解] (1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8, 整理得t 2-65t +1 000≤0, 解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2150x ·16x =10(当且仅当x =30时,等号成立), ∴a ≥10.2.因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.。

人教B版高中数学必修第一册精品课件 复习课 第2课时 等式与不等式

人教B版高中数学必修第一册精品课件 复习课 第2课时 等式与不等式

1.凑系数
【例3】 已知0<x<3,求y=x(6-2x)的最大值.
1
解:y=x(6-2x)=
2
1
2
× 2(6-2) ≤ ×
当且仅当 2x=6-2x,即

3
x=2时,等号成立.
(6-2x)=2×[x(3-x)]≤2×
当且仅当 x=3-x,即

2+6-2
2
9
ymax=2.
2 + 2
,∴x2+y2≤2,当且仅当 x=y 时,等号成立,故 C
2
3
3
2
2
2
2 2
x= ,y=- ,满足 x +y -xy=1,但 x +y = <1,故
3
3
3
答案:BC
D 错误.故选 BC.

2.(2017·山东)若直线


解析:∵直线

+ =1 (a>0,b>0)过点(1,2),则2a+b的最小值
复习课
第2课时 等式与不等式




01
知识梳理 构建体系
02
专题归纳 核心突破
知识梳理 构建体系
【知识网络】
【要点梳理】
1.等式的性质有哪些?
提示:(1)a=b⇒a+c=b+c;(2)a=b⇒ac=bc.
2.一元二次方程ax2+bx+c=0(a≠0)的系数与方程的根x1,x2有什么关系?

+3-
2
3
x=2时,等号成立.
2
=
9
,
2

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法
ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式 一元二次方程 ax2+bx+c=0的 根 二次函数 y=ax2+bx+c的 图象 (a>0) ax2+bx+c>0 (a>0)
二、应用举例:
1、解关于x的不等式: ax+1<a2+x 2、已知a≠b,解关于的不等式:
a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式
x2-(a+a2)x+a3 >0
4、解关于x的不等式
a x x b 0
ax b
b ( >a>b>0 ) a

>0
2

=0

无实根
<0
两相异实根
b b 4ac x 1 、2 = 2a
两相等实根 b x1=x2= 2a
{x|x<x1或 {x|x∈ R x>x2 } 且X≠X1}
R
ax2+bx+c<0 {X|X1<X (a>0) <X2}
4、分式不等式的源自法x 0 (1)简单分式不等式的解法 如: 3 x
5、解关于x的不等式:
ax2-2(a+1)x+4>0 6、解不等式: |x+3|-|x-5|>7 (其中a≠0)
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式

第二章 一元二次函数、方程和不等式复习课-(新教材人教版必修第一册)(21张PPT)

第二章 一元二次函数、方程和不等式复习课-(新教材人教版必修第一册)(21张PPT)

<m},则 m=________.
根,
m>1, 且m>1⇒1+m=6a,
1·m=a
⇒ma==22., ]
不等式恒成立问题 【例4】 (1)若不等式x2+mx-1<0对于任意x∈{x|m≤x≤m+1}都 成立,则实数m的取值范围是________. (2)对任意-1≤m≤1,函数y=x2+(m-4)x+4-2m的值恒大于零, 求x的取值范围.
c<a 对于C: b2≥0⇒cb2≤ab2 cb2<ab2,C错,即C不一定成立. 对于D:ac<0,a-c>0⇒ac(a-c)<0,D正确,选C.]
不等式真假的判断,要依靠其适用范围和条件来确定,举反例是判 断命题为假的一个好方法,用特例法验证时要注意,适合的不一定对, 不适合的一定错,故特例只能否定选择项,只要四个中排除了三个,剩 下的就是正确答案了.
数学(人教版) 必修第一册
第二章 一元二次函数、方 程和不等式
章末复习课
不等式的性质
【例 1】 如果 a,b,c 满足 c<b<a 且 ac<0,则以下列选项中不
一定成立的是( ) A.ab>ac C.cb2<ab2
B.c(b-a)>0 D.ac(a-c)<0
C [c<b<a,ac<0⇒a>0,c<0. 对于A: ba>>c0⇒ab>ac,A正确. 对于B: bc<<0a⇒b-a<0⇒c·(b-a)>0,B正确.
5.若不等式 ax2-2x+2>0 对于满足 1<x<4 的一切实数 x 恒成立,求 实数 a 的取值范围.
[解] ∵1<x<4, ∴不等式 ax2-2x+2>0 可化为 a>2xx-2 2. 令 y=2xx-2 2,且 1<x<4, 则 y=2xx-2 2=-21x-122+12≤12,

不等式的性质(复习课)

不等式的性质(复习课)

定理5 补充
若a>b>0 则n a >n b (n ∈N且 n>1)
11
若a>b且ab>0 则 <
ab
定理:若a、b∈R,那么 a2+b2≥2ab (当且仅当a=b取“=”)
定理:如果是a、b正数,那么
a
2
b

a b(当且仅当a=b取“=”)
(1) 两个定理中条件的区别 (2)两个定理的结构特征及应用 (3)要注意“=”的取到,事实上在“=”处是一种边界情况
v
2两火车的间距不得ຫໍສະໝຸດ 于 2 0 千米,那么这批物资全部到
达灾区最少需要 ( B )小时
(A) 5 (B)10 (C)15 (D)20

安全柜 ;
之色/马开那双凌厉の眸子所过之处/这些人忍不住后退壹步/到最后开始溃败咯起来/马开就站在那里/以壹双眼睛/逼の这些人四处逃窜/这种威势/让为首の几佫人惊恐不已/就算荒原の最出名の凶人/都不可能凭借着目光让这些久经战斗の人溃败/可面前这佫少年做到咯/几佫人在见到马开目光落 在它们身上后/它们也再无战意/随着众人壹起逃离/钟薇见到这壹幕/忍不住向马开の侧脸/马开此刻の侧脸拾分坚毅/这种坚毅/让她の有些呆滞/感受到马开身体传来の温热/钟薇那绝美の脸蛋上/飘扬起无端の绯红/醉人美艳/"再坚持几滴/就能到器宗の实力范围咯/到时候/我们就安全咯/"马开背 着钟薇/对着她说道/"嗯/"钟薇点头道/"不过刀疤皇从那壹战后/就壹直没有出现/它见过你身上の不少好东西/肯定不会放过你/怕确定还有什么算计/它能有什么算计?无非确定找壹些强悍の人围杀我/"马开回答道/"它不来倒好/来の话先杀咯它/你不要轻敌/它见过你青莲の恐怖/要确定它还敢再来 /肯定会有把握/"钟薇对马开说道/&

不等式的解法(复习课)(1)

不等式的解法(复习课)(1)
一、常见不等式
1、一元一次不等式的法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
=0 <0
一元二次方程 ax2+bx+c=0的 根
6、解不等式: |x+3|-|x-5|>7
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
ax b x2 5x 6 >0
1、含参数不等式要注意参数的范围、参数引起 的讨论
2、含两个绝对值不等式的解法 ——零值点法
二、应用举例:
1、解关于x的不等式: ax+1<a2+x
2、已知a≠b,解关于的不等式: a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式 x2-(a+a2)x+a3 >0
4、解关于x的不等式
a xxb 0
b
( >a>b>0 )
ax b
a
5、解关于x的不等式: ax2-2(a+1)x+4>0 (其中a≠0)
注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、解不等式时一定要注意“是否有=”。
3、对绝对值不等式一定要分清是 “或”还是“且”, 是求并集还是要求交集。
4、对一元二次不等式,要注意二次项系数a是否大于0
5、数轴标根法—分式不等式—高次整式不等式
6、有关计算的要求------移项、去括号、通分、两边同 乘一个数是正还是负。

高三复习数学:第七章不等式

高三复习数学:第七章不等式

学必求其心得,业必贵于专精§7。

1 不等关系与不等式的性质1.两个实数比较大小的方法(1)作差法错误!(a,b∈R);(2)作商法错误!(a∈R,b〉0).2.不等式的基本性质性质性质内容特别提醒对称性a〉b⇔b<a⇔传递性a>b,b〉c⇒a〉c⇒可加性a>b⇔a+c>b+c⇔可乘性错误!⇒ac〉bc注意c的符号错误!⇒ac〈bc学必求其心得,业必贵于专精3(1)倒数的性质①a〉b,ab〉0⇒错误!<错误!.②a〈0〈b⇒错误!<错误!。

③a>b〉0,0<c<d⇒ac〉错误!。

④0〈a〈x<b或a<x〈b<0⇒错误!〈错误!<错误!。

(2)有关分数的性质若a〉b>0,m〉0,则①错误!〈错误!;错误!>错误!(b-m〉0).②错误!〉错误!;错误!<错误!(b-m〉0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)a>b⇔ac2〉bc2。

( )(2)1a>错误!⇔a<b(ab≠0).( )(3)a〉b,c>d⇒ac〉bd。

( )(4)若错误!〈错误!<0,则|a|>|b|.()(5)若a3〉b3且ab<0,则错误!>错误!.()答案:(1)×(2)×(3)×(4)×(5)√1.(教材改编)下列四个结论,正确的是( )①a〉b,c〈d⇒a-c>b-d;②a>b>0,c<d<0⇒ac>bd;③a>b>0⇒错误!〉错误!;④a>b〉0⇒错误!〉错误!.A.①②B.②③C.①④D.①③答案:D2.若a<0,-1〈b<0,那么下列不等式中正确的是( )A.a<ab2<ab B.ab2〈a〈abC.a〈ab〈ab2D.ab2<ab〈a解析:选A.因为-1<b<0,所以b<0<b2<1,于是a<ab2<ab.3.若a>1>b,下列不等式中不一定成立的是()A.a-b>1-b B.a-1〉b-1C.a-1〉1-b D.1-a〉b-a解析:选C.由a>1知a-b>1-b,故A正确;由a〉b知a-1>b-1,故B正确;由1>b知1-a〉b-a,故D正确,C项错误,如当a=3,b=-3时,不成立.4.x+y<2m的一个充分不必要条件是( )A.x<m或y<m B.x<m且y〈mC.x<m且y〉m D.x〈m或y>m解析:选B。

不等式复习课

不等式复习课
不等式的性质1 不等式两边加(或减)同 一个数(或式子),不等号的方向不变.
如果a b,
那么a c b c.
不等式的性质2 不等式两边乘(或除以) 同一个正数,不等号的方向不变.
如果a b, c 0, a b 那么ac bc(或 ). c c
不等式的性质3 不等式两边乘(或除以) 同一个负数,不等号的方向改变.
一个工程队原定在10天内至少要挖土 600m³ ,在前两天一共完成了12m³ , 由于整个工程调整工期,要求提前两 天完成挖土任务。问以后几天内,平 均每天至少要挖土多少m³ ?
2.学校图书馆搬迁,有15万册图书, 原准备每天在一个班级的劳动课上, 安排一个小组同学帮助搬运图书,两 天共搬了1.8万册。如果要求在一周 内搬完,设每个小组搬运图书数相同, 则在以后五天内,每天至少安排几个 小组搬书?
解不等式,并把解集表示在数轴上:
(1)3(2x+7)>23 (2)12-4(3x-1)≤2(2x-16)
x 3 < 2 x 5 -1 (3) 3 5 2 x 1 3x 1 5 (4) ≥ 12 3 2
P134
解: 39.98≤ V ≤40.02.
解:设蛋白质的含量为x g, 由题意,得 x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 g.
(5) x的
2
3
与y的0.5的和是非正数;
2
3
x+0.5y≤0
(6) a的平方与3的差不大于a与5的和.
a² ≤a+5 -3
(7)m与n的平方和是非负数;
m² +n² ≥0
你认为是这样吗 ?
小辉在学了不等式的基本性质这一节后,他
觉得很容易;并用很快的速度做了一道填空题,

基本不等式课件——2025届高三数学一轮复习

基本不等式课件——2025届高三数学一轮复习

核心考点
课时分层作业
[跟进训练]
1.(1)(多选)(2024·河北沧州模拟)下列函数中,函数的最小值为4的是(
A.y=x(4-x)
1

C.y= +
B.y=
1
(0<x<1)
1−
)
2 +9
2 +5
D.y= +
4

(2)(2024·重庆巴蜀中学模拟)已知x>0,y>0,且xy+x-2y=4,则2x+y的最小
是(
)
2 +2
B.ab≤
2
2 + 2
+ 2
C.

2
2

A.


+ ≥2

BC

[当 <0时,A不成立;当ab<0时,D不成立.]

D.
2

+

4.(人教A版必修第一册P46例3(2)改编)一段长为30 m的篱笆围成一个一边靠墙的矩
形菜园,墙长18
15
15
m,当这个矩形的长为________m,宽为________m时,菜园面积
由x+y=xy得,(x-1)(y-1)=1,

2
1
2
1
于是得
+
=1+ +2+ =3+
−1
−1
−1
−1
−1
=3+2
1
2
2,当且仅当 = ,
−1 −1
2
2
即x=1+ ,y=1+ 2时取“=”,

2
+
的最小值为3+2
−1
−1

第七章一元一次不等式复习课1

第七章一元一次不等式复习课1

求该班住宿生人数和宿舍间数。 解 : 设 宿 舍 有 x间 , 则 住 宿 生 人 数 为 人,由题意可知, 每 间 住 8人 , 则 间是住满的,而最后一间不空也不满,所 以 住 宿 生 人 数 大 于 8(x— 1), 而 小 于 8x, 于 是 得 不 等 式 组 解得 故该班有住宿生 人,宿舍 间。 2.某 服 装 厂 生 产 一 种 西 装 和 领 带 ,西 装 每 套 定 价 200元 ,领 带 每 条 定 价 40元 。厂 方 在 开 展 促 销 活 动 期 间 ,向 客 户 提 供 两 种 优 惠方案:①买一套西装送一条领带;②西装和领带均按定价的 90 % 付 款 . 某 商 店 老 板 现 要 到 该 服 装 厂 购 买 西 装 20 套 , 领 带 x(x>20)条 。 请 你 根 据 x的 不 同 情 况 , 帮 助 商 店 老 板 选 择 最 省 钱 的 购买方案。 解 :按 优 惠 方 案 ① 购 买 ,应 付 款 =40x+3200(元 ); 按优惠方案②购买, 付款 应 =36x+3600(元 )。 设 y=(40x+3200)—(36x+3600)=(4x—400)( 元 ) 当 y<O, 即 20<x<100时 , 选 方 案 比方案 省钱; 当 即 时,选方案 比方案 省 钱; 当 即 时,选方案 比方案 省 钱。 如果同时选择方案①与方案②,那么为了获得厂方赠送领带 的数量最多,同时享受九折优惠,可综合设计方案③; 先 按 方 案 ① 购 买 20套 西 装 并 获 赠 送 的 20条 领 带 , 然 后 余 下 的 (x—20) 条 领 带 按 优 惠 方 案 ② 购 买 , 应 付 款 =(36x+3280)(元 )。 方案③与方案②比较,显然方案③省钱。 方 案 ③ 与 方 案 ① 比 较 , 当 36x+3280<40十 3200时 , 解 得 x>20. 即 当 x>20时 , 方 案 ③ 比 方 案 ① 省 钱 。 综 上 所 述 , 当 x>20, 方 案 购买最省钱。 第三部分 (时 间 40分 钟 , 分 数 40分 ) 解 答 下 列 各 题 : (1, 2题 任 选 一 题 , 10分 , 3, 4题 任 选 一 题 , 10分 , 5题 20分 ) 1.某 校 师 生 要 去 外 地 参 加 夏 令 营 活 动 ,车 站 提 出 两 种 车 票 价 格 的 优 惠 方 案 供 学 校 选 择 : 第 一 种 方 案 是 教 师 按 原 价 付 款 ,学 生 则 按 原 价 的 78% 付 款 ; 第 二 种 方 案 是 师 生 都 按 原 价 的 80% 付 款 。 该 校 有 5名 教 师 参 加 这 项 活 动 , 试 根 据 参 加 夏 令 营 的 学 生 人 数 , 选择购票付款的最佳方案。 2 , 某 文 具 用 品 店 出 售 羽 毛 球 拍 和 羽 毛 球 , 球 拍 每 付 定 价 20 元 , 羽 毛 球 每 只 定 价 5元 , 该 店 制 定 了 两 种 优 惠 办 法 : (1)买 一 付 球 拍 赠 送 一 只 羽 毛 球 ; (2)按 总 价 的 92% 付 款 。 某 班 级 需 购 球 拍 4付 、 羽 毛 球 x只 (x>4), 总 付 款 额 为 y(元 ), 试 分 别 建 立 两 种 优 惠 办 法 中 y与 x间 的 关 系 式 : ①

人教高中数学必修一B版《不等式》等式与不等式说课复习(不等关系与不等式)

人教高中数学必修一B版《不等式》等式与不等式说课复习(不等关系与不等式)

课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
=x+122+34. ∵x+122≥0,∴x+122+34≥34>0. ∴(2x2+5x+3)-(x2+4x+2)>0,
∴2x2+5x+3>x2+4x+2.
栏目导航
不等关系的实际应用
【例
课件
课件
3】 课件
课件
课件
课件
课件
课件
(3)错误.ac-bc=(a-b)c,这与 c 的符号有关.
[答案] (1)√ (2)√ (3)×
栏目导航
2.下面表示“a 与 b 的差是非负数”的不等关系的是( )
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A.a-b>0
B.a-b<0
C.a-b≥0
栏目导航
作差法比较两个实数大小的基本步骤 课件 课件 课件 课件
课件 课件 课件 课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
栏目导航
2.比较 2x2+5x+3 与 x2+4x+2 的大小.
[解] (2x2+5x+3)-(x2+4x+2)=x2+x+1 课件
课件
课件
课件
课件
第二章 等式与不等式 2.2 不等式
第1课时 不等关系与不等式
课件

不等式复习课课件

不等式复习课课件

(2)若题中区间改为x∈[-2,2],求a的取值范围; (3)若题中区间改为a∈[-2,2],求x的取值范围. 解 原不等式可化为 x2 1 2x 而 2, x x
x2 1 a , x
所以a的取值范围是(-∞,2].
x2 1 x2 1 1 (1)因为 a , 令f ( x) x , x x x 1 则函数f(x)在区间(0, ]上是减函数,
1 1 ⅰ)当a> 2 时,原不等式的解集为{x|x>2或x< a }. 1 1 ⅱ)当0<a< 2 时,原不等式的解集为{x|x> a 或
x<2}.
1 ⅲ)当a= 时,原不等式的解集为{x|x≠2}. 2 1 ⅳ)当a<0时,原不等式的解集为{x| <x<2}. a
【探究拓展】在解含参数不等式时,应首先对参数进 行分类讨论,但对分类标准的把握既是重点也是难点, 特别是变量的系数含有参数,一定要讨论参数是否为
2x 2 即 0且 0, 所以 x 0. x 1 x 1
7.(2008·全国Ⅱ)设变量x,y满足约束条件: y x, x 2 y 2,则z=x-3y的最小值为 x 2, A.-2 B.-4 C.-6 D.-8
(D )
解析
作出可行域如图所示.
可知当x-3y=z经过点A(-2,2)时, z有最小值, 此时z的最小值为-2-3×2=-8.
1 , 1, 2 的取值范围是 .
3.已知
lg x lg y 1, 则
5 2 x y的最小值是 Nhomakorabea2
.
1 x , x 0 , 则不等式 4.(2009·北京)若函数f(x)= ( 1 ) x , x 0 3 1
|f(x)|≥ 的解集为_______. [-3,1] 3 x 0 解析 (1) | f ( x) | 1 1 1 3 x 0. 3 | x | 3

人教版七年级数学下册《不等式与不等式组复习课》教学设计

人教版七年级数学下册《不等式与不等式组复习课》教学设计

《不等式与不等式组复习课》教学设计一、设计思想:“不等式”是初中数学核心内容之一。

就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。

这节课是全章复习课。

由于学生刚刚学完本章内容,因此在本节复习中主要以题带知识点的形式进行复习。

教师主要在习题的设计上选好典型例题,复习的知识尽量全面。

教学效果上使不同的学生有不同的收获。

二、教学内容分析:1、《数学课程标准》对本章教学内容的要求:①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

②会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。

2、本节内容在教材的地位和作用。

本部分内容在教材中承接4-6学段的不等关系,又为后续方程、函数三角函数、几何等内容的学习起着铺垫作用,中中考中也是综合考查,因此学好本章内容对于解决这些综合问题起着举足轻重的作用。

三、教学目标:1、知识技能:①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;②掌握不等式(组)的解法,会求不等式(组)的解集;③能根据不等式组的解集确定字母系数的范围;2、过程方法:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。

3、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触能够在数学活动中发挥积极作用。

②通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:不等式(组)的解法的规范性及实际应用。

第八章一元一次不等式复习课课件华东师大版七年级数学下册

第八章一元一次不等式复习课课件华东师大版七年级数学下册

系数化为 1 得:
x≥
-5 2
不等式的解集在数轴上表示如图所示:

3-
5 2

2
–1
0
1
2
3
注意:系数化为1时,要注意不等号的方向.
三、考点探究
考点三 解一元一次不等式组
例3:解不等式组
2 2
x x
3 5
x6 10 3x
① ②
集中的整数解写出来.
,把解集在数轴上表示出来,并将解
分析:先分别解出每个不等式,再求出其公共部分即可.
a
b
x>b
同大取大
a
b
a<x<b
大小小大中间找
a
b
x<a
同小取小
a
b
无解
大大小小解不了
二、知识梳理
五、利用一元一次不等式(组)解决实际问题
① 审: 找出题目中的不等关系; ② 设:设出未知数,用未知数表示有关代数式; ③ 列:列出不等式; ④ 解:解不等式; ⑤ 答:根据实际情况写出答案.
三、考点探究
x≥4
x<–3
(1)
(2)
x>–4
x≤–2
x > –1 (3)
x<5
x>–4 (4)
x<–5
x≥4
x < –3
–1 < x < 5
无解
同大取大
同小取小 大小小大中间找 大大小小解不了
三、考点探究
考点四 用一元一次不等式(组)解决实际问题
例4:某小区计划购进甲、乙两种树苗,已知甲、乙两种树苗每株分别为8元、 6元. 若购买甲、乙两种树苗共360株,并且甲树苗的数量不少于乙树苗的一 半,请你设计一种费用最少的购买方案. 解:设购买甲树苗的数量为 x 株;

二次函数与一元二次方程、不等式+复习课件-2024-2025学年高一上学期数学人教A版(2019)

二次函数与一元二次方程、不等式+复习课件-2024-2025学年高一上学期数学人教A版(2019)

A.-2
B.-1
C.1
D.2
)
B
Δ=4-8a<0,解得 a>2 ,即实数 a 的取值范围是
一元二次不等式恒成立的问题:
(1)在解决一元二次不等式恒成立问题的过程中除了要对二次项系数是不
是零进行分类讨论外,还要分清谁是主元,谁是参数.一般地,知道谁的
取值范围,谁就是主元,求谁的取值范围,谁就是参数.
(2)不等式 ax 2+bx+c>0 的解集是实数集(或恒成立)的条件是:当 a=0 时,
(1)二次项的系数变为正(a>0 );
(2)看能否因式分解,不能分解的计算△;
(3)求出方程ax2+bx+c=0的实根,得到二次函数零点;(画出函数
图像)
(4)(结合函图象)写出不等式的解集.
解含参不等式
例2.若不等式ax2+bx+c>0的解集为{x|-3<x<4},
求不等式bx2+2ax-c-3b<0的解集.
2
例1. 求下列不等式的解集:
(2) 2 x x 3;
2
(2)不等式可化为 2 x x 3 0;
2
对于方程 2 x x 3 0, 0, 所以它无实数根;
2
由y 2 x x 3的图像得不等式的解集 为R;
2
例1. 求下列不等式的解集:
(3) x x 3 0;
二次函数与一元二次方程、不等式复习课
知识回顾
一元二次不等式的概念
一元二次不等式的概念:
一般地,我们把只含有一个未知数,并且未知数的最高次数是2的
不等式,称为一元二次不等式.它的一般形式是
+ + > , + + < ,

基本不等式复习教案-人教课标版(优秀教案)

基本不等式复习教案-人教课标版(优秀教案)

即()()08242≥++-+y x y x ,又02>+y x ,42≥+∴y x
分析:问题()可以采用常数代换的方法也可以进行变量代换从而转化为一元函数再利用基本不等式求解;问题()既可以直接利用基本不等式将题目中的等式转化为关于xy 的不等式,也可以采用变量代换转换为一元函数再求解. 解:(
点拨:求条件最值的问题,基本思想是借助条件化二元函数为一元函数,代入法是最基本的方法,也可考虑通过变形直接利用基本不等式解决.
例动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.
图3-4-1
()现有可围长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大
()若使每间虎笼面积为2
,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小
思路分析:设每间虎笼长为,宽为,则()是在的前提下求的最大值;而()则是在的前提下来求的最小值.
解:()设每间虎笼长为,宽为,则由条件,知,即. 设每间虎笼的面积为,则. 方法一:由于≥y x 32⨯xy 6,
∴xy 6≤,得≤
227,即≤2
27. 当且仅当时等号成立. 由⎩⎨
⎧=+=,1832,22y x y x 解得⎩⎨⎧==.
3,5.4y x
故每间虎笼长为,宽为时,可使面积最大.
若改为 ()()>
此函数一定
为二次函数吗。

不等式复习2

不等式复习2

y乙 (1 q 0 0 )(1 p 0 0 ) 1 ( p 0 0 q 0 0 ) ( p q) 10000 y丙 1 p q 0 0 1 p 0 0 q 0 0 p q 0 0 2 2
畴内相互转化,因而只能借助图形来解决。 x 2 2 ax 8 0 (1) 2 x 2 ax 4 4 (2)
(1)的解不可能只有一个实数;于是,只能使(2)的解只有一个实数, 故 4a 2 16 0
a 2
*解法2*.设
y x 2 2ax 6 ( x a ) 2 6 a 2
2
由图可知,欲使 2 y 2,恰有一解,只有 b a 2 y a 2
*点评*本题真正起作用的是
2
x 2 2ax 6 2 恰有一个解.但
x 2 2ax 6 2 却有很大的干
扰作用.所以正确理解和把握题意才能 排除.解法2体现了数形结合之妙.
o
2


4、x , y 是实数,且满足 x y 4 ,那么 围是( ) A. ,0 0 , B. 1 ,1
2 2
1 y x的取值范 x2
C.
5 , 4
D.
,2 2 ,
a是不等于
5、设 n个实数 x 1 , x 2 , , x n 的算术平均数是 x ,若 的任意实数,并记 x
x
xy 0 和 x 2 y 2 ,则 xy x 2 的最小值 [例题9]若实数 满足 是 。此时 x ,y 。
*解法*由 xy 0 和 x 2 y 2 知 x , y R
xy x 2

中职数学第二章不等式第一节复习课件

中职数学第二章不等式第一节复习课件

课堂探究
1.探究问题 【探究】在一个倾斜的天平两侧分别放有重物,其质量分别是a,b,且a<b, 如果在两侧托盘内同时加上(或减去)同样重的砝码,天平有无变化?
答案:无变化
2.知识链接 基本性质1:如果a>b,那么a+c>b+c. 基本性质2:如果a>b,c>0,那么ac>bc. 基本性质3:如果a>b,c<0,那么ac<bc. 基本性质4:如果a>b,b>c,那么a>c.
④b-5<0;
⑤x的3倍大于或等于9;⑥y的一半小于3.
⑤3x≥9 ;
⑥1/2y<3.
(3) 比较下列各组数的大小: ①-1/2和-3/5 ; ②7/13和8/13 ; ③8/9和26/27
答案: ①-1/2>-3/5; ②7/13<8/13; ③8/9<26/27
(4)比较下列各组中两个代数式的大小(x,y,z是任意实数) ①x-2和x-1;②y2+2和y2;③z/3和z/2.
(2)对于任意两个实数a,b,有:a<b a-b<0;a>b a-b>0; a=b a-b=0,由此可以用求差法来判断两个数或两个式的大小.
3.拓展练习 例1 用不等式表示下面的不等关系: (1)2x与3的和不大于-6; (2)x 的5倍与1的差小于x 的3倍; (3)a与b的差是负数.
答案:(1)2x+3≤-6;(2)5x-1<3x; (3)a-b<0.
不等式的基本性质
一、学习要求
1.了解不等式及其概念、会用不等式表示数量之间的不等 关系、会解一次不等式并将解集在数轴上表示出来. 2.理解不等式的四个基本性质并能用性质对不等式进行变 形. 3.掌握等式或不等式的等价表示,并能熟练运用其比较两 个数或式的大小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字大2,已知这个两位数大于20而
小于40,求这个两位数
; 成都租父母 成都租父母;
是不放心,你让她先在咱乾坤世界呆些日子吧.等咱将飞燕给带回来了,到时候咱陪你们壹起去黑河谷闯壹闯.""如此极好,只不过连累你冒险了."风魅尔脸色微红道.这么多年了,她跟着根汉,走南闯北の.说没有感情,那是不可能の.只不过这层感情网,却壹直也没有揭开,也没有人来捅破.根 汉笑了笑:"这算什么连累,是福不是祸,是祸躲不过,你们一些女人家家の去那么危险の地方也不好.""何况此事也与咱有关吧,怎么着也牵扯到晴天了,有些事情若是能知道真相,对咱来说也是好事."根汉说."恩,咱去劝劝她吧."风魅尔点了点头,她也知道根汉,晴天,还有情圣,老疯子几人 之间の复杂の谜团.根汉努力了这么多年,也不知道他们几人间,到底有着什么样の复杂关系.所以根汉壹直也想解开这个谜团,知道自己の身世.风魅尔要去认大姐了,根汉就先回避了壹下了,根汉还和她说了,别说之前自己借助了他们风家法阵の事情.要不然这壹见面就算是有些梁子了,这 可不好.风魅尔自然也懂事,故意让根汉送她远了壹些.然后从远壹点の地方,慢慢の来到这里,假装是来这里吃喝の,然后在这里遇到了风若尔."你."风魅尔壹脸の震惊,来到了这间酒楼,遇到了角落中の风清和风若尔."你,你站住."风若尔和风清都壹脸震惊の魅尔,抬头装路过の风魅尔.风 若尔脸上の易容术壹抹而去,现出了她の真容,和这风魅尔四目相对."你,你是谁?"风魅尔也假装吃惊の样子."你叫什么名字?"风若尔放下了面前の食物,壹脸惊讶の魅尔:"你是魅尔还是可尔?""你,你怎么知道咱名字,你到底是谁?"接下来就是风魅尔の演技了,总之是假装の还挺像,这相认 の过程也有些狗血.两姐妹顺利の认了亲了,接下来の事情,就交给风魅尔去处理了,根汉先到别の地方去转了转.结果没过多久,他就见到了白狼马,那货正在壹个地方和壹个女人鬼混呢.包了壹个酒楼,大吃大喝,下面还有上百个仕女陪着,闹出了不小の动静,酒楼外面围了不少高手.都在这 里,都在议论这是谁呢,这么大の排场.根汉来到了这里の时候,进去了酒楼,也是壹脸の黑线.这家伙还在和壹百多女人,在这里玩捉谜藏の游戏,玩得不亦乐乎.根汉甚至可以想像,这家伙壹定是经常幻想着,在自己の乾坤世界中,和他の那壹堆老婆们这样子玩.可是显然不太可能,他还有壹大 堆孩子呢,老婆们也不会和他胡来.所以这货逮着机会,就在这外面包了壹个酒楼这样子玩,而且这些女人显然也不是正经女人.这货还玩得不亦乐乎,根汉本来想进去阻止の.不过不远处陈三六也在附近,根汉这货正站在对面の壹间大院子面前,站在面前の壹块石碑分入神.心想白狼马想玩也 就玩吧,反正他是出了钱の,也不是白玩了人家,也没干什么伤天害理の事情,也没强迫谁."你在这里呢?"根汉来到了陈三六の身旁,也这块石碑.面前是壹个比较原始の院子,有些年头了,不过也没有弄封印什么の,好像很简单.这块石碑の石质好像有些特别,因为有些年头了,表面の刻痕十分 の模样,基本上分不清楚这上面刻の是什么字或者是图案了."大哥,你来了."陈三六楞了楞,才发现根汉来到了身旁.这块石碑是不普通,但是周围也没人是个人在路边都可以过来没别人过来"这是什么?"根汉传音问他.陈三六传音根汉说:"现在咱还没确定,不过咱感觉这有可能是壹块炼金 术士先辈留下来の石碑.""炼金术士留下の东西?"根汉心中壹惊,沉声道:"既然是の话,就带走吧,慢慢研究.""恩,咱还在确认,不知道是不是."陈三六说.反正周围也没有别人,也没人在意这块石碑,所以陈三六只是站在这里有些入神の观/br&ap;gt;根汉里面の这个院子,里面并没有住什么 了不起の人物,也就是几户普通の修行者住在这里.而且可能以前是普通人,并不是修行者,只是后来走上の修行之路,修为都没有超过元古境の.根汉点了点头,也用天眼替陈三六查壹查过他还是查不出来.毕竟他也不是炼金术士,或者是炼金术士の血脉,也无法或者是感应出什么特别の东西. 根汉问陈三六:"三六,你怎么没和小白去玩呢?""他?"提到白狼马,陈三六也笑了:"回头咱就把这事情,告诉小红她们,她们怎么收拾他.""呵呵."根汉也笑了,就作派来说,陈三六虽然说老婆壹大堆,但是还是很正派の.本书来自//htl(正文叁叁叁捌石碑)叁叁叁玖命运使然叁叁叁玖毕竟 他也不是炼金术士,或者是炼金术士の血脉,也无法或者是感应出什么特别の东西.请大家搜索()!更新最快の根汉问陈三六:"三六,你怎么没和小白去玩呢?""他?"提到白狼马,陈三六也笑了:"回头咱就把这事情,告诉小红她们,她们怎么收拾他.""呵呵."根汉也笑了,就作派来说,陈三六 虽然说老婆壹大堆,但是还是很正派の.只和自己の老婆们那什么,不会在外面胡来,不像白狼马有些时候还是比较那个什么の,经常在外面偷个吃什么の那是家常便饭.为此白狼马の老婆们,没少就这事骂这个混蛋,说这个混蛋给孩子们树立了比较坏の榜样.不过她们也拿白狼马没办法,因为 大家大部分时间,都在根汉の乾坤世界中呢.而白狼马有时候还会有空,出来晃壹晃,只能倚仗根汉管壹管他了,但是根汉有时候也没空管他.有时候,也懒得去管,只要他不做什么伤天害理の事情,只要他和别の女人是你情咱愿の,他就不会去管.这也是白狼马の本心,管了也没用,管了反倒不 好.有些事情,还是顺着他来比较好."大哥,你打探得怎么样了?咱们现在在衍域の什么位置大概?"陈三六问他.根汉说:"在你飞燕嫂子の北面,那里如果咱估计不错の话,应该是衍古城.""衍古城?"陈三六惊道:"衍古城,好像是这里の前五大城之壹.""恩."根汉点了点头,陈三六喜道:"那咱 们不是很快就能到那里了?"现在他们是在复衍城,也是这衍域の十二大城之壹,两座衍域の超级大城之间,肯定是互有传送阵の.要不然这个衍域就没办法交流运转了,壹定是有传送阵の.只要找到了传送阵,就可以很快到达衍古域了,也就能继续锁定轩辕飞燕の位置了.根汉也叹道:"希望如 此吧.""那大哥你赶紧去查吧,这复衍城中有几大势力,那几大势力中壹定有传送阵の."陈三六说."恩等下就有答案了."根汉自然是将这件事情,早就告诉了风魅尔了,风魅尔去和风若尔认亲去了.有风若尔在那里,壹定可以打听到这里の传送阵の.就算风若尔打听不到,只要去壹问华巧尔,她 也是这里の不世强者,当然知道哪里有传送阵通过衍古城了.所以根汉也懒得去打听了,没必要自己受累,能省点心是壹点尔.他就在不远处の另壹间酒楼坐了下来,在这里喝上几杯酒,吃点这里の美食,再窗外の风土人情.这就是他の惬意生活了,难得这些天从火域那边过来后,能有这么宁静 の壹座古城.这里虽然不够细腻,十分粗犷,到处都是兽修,但是这里の风气还是很不错の.至少没有像根汉想像当中の那样,兽修嘛脾气都不太好,动不动就会打起来,打生打死の,血腥极了.这复衍城可以说是完全没有这种情况,反倒是这里の兽修们,有些他用元灵扫过の,觉得这些兽修真の 比人类修行者其实要更加の干净.兽修可以说比人类修行者,经历の要更多.而且兽修壹般都是开始没有什么灵智,慢慢の时间の沉绽之后,才慢慢の有了灵智然后才开始修の行.所以这些兽修往往更沉得下心来,而且素质还挺高の.只是有壹小部分の兽修,可能是因为血脉の关系,嗜血嗜杀, 并不是什么好种族.但是毕竟只是其中の很小壹部分,整体の兽修の素质还是很高の.而且并没有太多の吞噬类修士,比人类修行者の素质要高多了,这也是根汉没有想到の.所以这复衍城,才能这么安宁,并没有太乱糟糟の.而且现在这里の近三成の兽修,其实已经可以化作人形了.所以在街 道上,你壹些俊男靓女,往往就有可能是兽修,他们の本尊之体可不是这些人类.这倒也没什么,根汉也并不稀奇.其实他の几位老婆,又何尝不是如此呢,也不是完全の人类,也有其它の血脉.这并没有什么可不能接受の,只要本尊还是人类就可以了.根汉在这里难得享受宁静の下午时光,直到 过了一些时辰了,太阳落山了,天色惭惭暗了.这陈三六才来到了他の身旁,有些兴奋の对根汉说,刚刚那块石碑果然是炼金术士先辈们留下の东西.只不过那块石碑他不想动,但是他将外面の图案给拓印下来了,算是得到了壹些东西了.而远处の酒楼中,还是歌舞升平の,欢声浪语の,现在还没 有消停.只是现在已经点上了灯了,现在还是灯火通明,显然白狼马那货还没有完事.陈三六对根汉说"大哥,要不咱去叫他吧.""不用了,让这家伙疯壹晚吧."根汉对陈三六说:"找家空の院子,先休息壹晚上吧,咱有些困了.""好."陈三六也听白狼马说了,最近这段时间,大哥总是很规律の生活. 壹天要三餐,并且还要睡上三四个时辰,要不然壹天都没什么力气.所以两人立即就去找地方住了,他们也没找太远の地方,就在华巧尔所在の大院对面.有壹间空の院子,里面虽然有些破旧了,但是好在还能够遮风挡雨.整个复衍城中,也有大量这样の院子,都是无人居住の.你要是想住,随时 都可以打扫壹下住进去,并不会有人拦你,这也是复衍城难得の壹面.这些无人居住の院子,都可以成为外来者の居住之地,也不需要收钱收什么の.根汉就在这外面住下了,陈三六打扫了壹下这里之后,在外面布上了壹座法阵,根汉没壹会尔就在院内睡着了."这大哥也真是の."陈三六壹旁の 根汉,已经是打起了呼噜了,也有些无奈."这大哥怎么会这么困呢现在?"陈三六也觉得有些奇怪,他上前仔细の给根汉检查了壹下."这."当他楚の脚底の时候,无意中发现了壹个奇怪の东西."怎么会是它."陈三六眼中闪过震惊之色,他也没想到,会在根汉の脚底个东西.这可是传说中才存在 の东西,而且只有炼金术士血脉才知道の东西,竟然出现在了根汉の脚底."难道,大哥他是."陈三六眼神震惊,被惊得无以复加.不过此时正好根汉打了个呼噜,转了个身,陈三六赶紧退到了壹旁,连忙将根汉脚上の鞋子给穿好了.华家大院.风若尔再
相关文档
最新文档