Weak Mixing Angles as Dynamical Degrees of Freedom
医学物理实验_山东大学中国大学mooc课后章节答案期末考试题库2023年
医学物理实验_山东大学中国大学mooc课后章节答案期末考试题库2023年1.日常生活中的表面吸附现象有:The surface adsorption phenomena in dailylife are as follows:参考答案:面粉洗葡萄Washing grapes with flour_活性炭过滤水Activated carbonfilter water_水面上的油膜Oil film on water2.杨氏弹性模量E仅决定于材料本身的性质,而与外力ΔF,物体的长度L以及截面积S的大小无关,它是表征固体材料性质的一个重要物理量。
Young's modulus of elasticity e is only determined by the properties of thematerial itself, but has nothing to do with the external force Δ F, the length L of the object and the cross section product S. It is an important physicalquantity to characterize the properties of solid materials.参考答案:正确3.精密度是与“真值”之间的一致程度,是系统误差与随机误差的综合。
Precision is the degree of consistency with "true value", and is the synthesis of systematic error and random error.参考答案:错误4.以下说法正确的是:Which statement below is correct参考答案:在一定的温度下,它的旋光率与入射光波长的平方成反比,且随波长的减少而迅速增大,这现象称为旋光色散。
B-XSi翻译
Sr2MgSi2O7:Eu2+的发光性能:应用于NUV 发光二极管的蓝色荧光粉1引言建立在发光二极管器件基础上的固态照明(SSL)材料已经被广泛地研究作为白炽灯之后的下一代光源材料和荧光灯。
商业上最流行的荧光粉转换白光LEDs(PC-WLED)一般由蓝色切片和黄色磷光粉组成,如YAG:Ce3+。
另一种PC-WLED是由近紫外(NUV)晶片加红/绿/蓝色荧光粉组成,它具有以下优点:如颜色灵活,更高的稳定性和效率。
对于NUV芯片常见的荧光粉BaMgAl10O17:Eu2 +的和LiSrPO4:Eu2 +的蓝,长余辉发光材料SrAl2O4:Eu2 +的和SrGa2S4:Eu2 +的绿色,Y2O2S:Eu3 +的红色。
然而,在该系统中的当前使用的蓝色成分具有发射差,因为迅速在400nm处降低激发光强度以及由绿色和红色磷光体强重吸收的蓝光发射,因此,有必要开发新的蓝色荧光体,可以是通过NUV有效地激发,以提高其发光效率。
碱土硅酸盐是已经得到了相当重视的发光材料,因为它们是合适的宿主具有较高的化学稳定性和各种晶体结构。
基于以R2SiO4,R2MgSi2O7,R2MgSi2O8(R=Ba, Sr, Ca)为基质的荧光材料的研究受到了很大的重视,然而,Sr2MgSi2O7大多是用来作为余辉荧光粉。
Sr2MgSi2O7荧光粉LED应用的报道却很少,在本文中,一个NUV可适性的蓝色荧光粉Sr2MgSi2O7:通过Eu2 +的方法合成,对L性能,浓缩淬火和热淬火等行为都进行了认真地研究。
2.实验SR MgSi○:Eu2 +材料通过反应制备。
适当数量的原材料SrCO3 (A. R.),4 Mg(OH)2·MgCO3 (A. R.),SiO2 (A. R.)和Eu2O3 (99.99%)经研磨后充分混合。
在还原气氛(H 2=90:10 N 2)下烧结,1250℃下进行3小时。
该产品的X-射线粉末衍射(XRD)图案记录在采用CuKα辐射(λ=1.5403埃)的本理学D / maxIIIA衍射仪上。
改进自适应LBG矢量量化算法在干涉高光谱图像压缩中的应用
0 和量化索引 , 相应 的编码 比特数为
R — RjI + Rc k r I ( c o d () 3
式 中, n R, 为量化索引的编码 比特数 , e d R
k 表示码 书的编
码 比特 数 。 意 到 R 与 矢 量 量化 的级 数 L 有 关 。在 满足 量 化 注
误差要求下 , 存在最优 的量化级数 L使压缩 比最大 。 在无损压缩中 , 了完全恢复 为
L G 码 书 的产 牛 通 过 计 算 最 小 失 真 准 则 下 的 最 优 质 心 B 来 实 现 。递 归 的 L G 算 法 包 含两 个 步 骤 : 先 , 利 用 当前 B 它
绍了数字图像矢量量化的方法 。矢量量化技术本 质 是 一组 存储在码 书巾的图案 , 在数字 图像编码 中 ,选取最 好的具 有
Men ) a s 问题 。
化 。 法在多维~ 的推广 ,通常称 为 L G算法 J 算 I : B 。自此 ,矢
量 量 化 研 究 开始 进 入 高 潮 , 多学 者对 矢 量 量化 所 涉 及 的 各 许
个 方 面进 行 了系 统 的 研 究 ,主 要 包 括 失 真 测 度 、码 书 设 订‘ 、
示 为
R — R + R c k Rd 】 【 + 】 d () 4
量化误差 d 也需 要被
处 理 并 传 输 。因 此 L G 方 法 中所 有 的 编 码 比特 数 目可 以表 B
给 由 P( 表示 的簇 。 果对 于所有 k , ,…,N 均有 l c) 如 一1 2 l —q l ≤ s一 I, S∈P( 。 l l则 0) 此时 d 一 I 一 I; J S f
码书的快速搜索算法以及各种类 型的矢 量量化 系统 。 量量 矢 化技术被成功地应用在语音和 图像编码 中 ,取得 了令人 瞩 口 的成果 。 a 在文 献 [ ] Gry 4 中给 出 了矢 量 量化 在数 字 图像
比尔定律 wavenumber 吸光度
英文回复:Bill's Law, also known as Bill—Lambo's Law, is an important law describing the relationship between solubility concentrations in the solution and luminousness。
The mathematical expression is A = εlc, in which A represents the photosorption,ε represents the Molar sorption coefficient, l represents the length of the spectrum and c represents the solubility concentration in the solution。
Bill's Law is the quantitative analysis methodmonly used in chemical analysis to determine the concentration of solute in the solution by measuring the degree of inhalation。
The law has important applications in the fields of spectrophotometry, ultraviolet—visible spectroscopy analysis。
The authors of Bill ' s Law were Austrian mathematician Auguste Bill and German chemist Carl Lambert, whose research contributed significantly to the development of solutions analysis methods and provided an important theoretical basis for chemical analysis。
地震勘探专业英语
英文汉译Unconformity不整合2D-seismic二维地震3D-seismic三维地震4D-seismic四维地震Abnormal events异常波Absolute permeability绝对渗透率Absorption吸收Absorption coefficient吸收系数Acceleration of gravity重力加速度Accumulate error累计误差Acoustic impedance波阻抗Acoustic logging声波测井Acoustic impedance声阻抗Acoustic impedance section波阻抗剖面Acoustic impedance section声阻抗剖面Acoustic log声波测井Acoustic variable density logging声波变密度测井Acoustic velocity log声速测井Acoustic wave声波Adachi formulas阿达奇公式Adaptive Deconvolution自适应反褶积Adjacent-bed effect围岩影响Adjugate伴随矩阵Aeolotropy各向异性Aerated layer风化层AGC(automatic gain control)自动增益控制Aggradation加积作用Algorithm算法Alias假频Amplitude振幅Amplitude anomaly振幅异常Amplitude distortion振幅失真Amplitude equalization振幅平衡Amplitude log声波幅度测井Amplitude modulation振幅调制Amplitude of the envelope振幅包络Amplitude recovery真振幅恢复AMT(audiomagnetotelluric method)音频大地电磁法Analog模拟Angle of incidence入射角Angular frequency 角频率Anisotropy各向异性Anticipation function 期望函数anticline背斜构造Aperture time时窗时间API unitAPI单位Apparent表观值Apparent density视密度Apparent dip视倾角Apparent polarity视极性Apparent resistivity视电阻率Apparent velocity视速度Apparent wavelength视波长Apparent wavenumber视波数Applied geophysics应用地球物理学Archie’s formulas阿尔奇经验公式Areal heterogeneity平面非均质Array排列,组合Arrival波至Asynchronous异步的Attenuation衰减Attribute属性,品质Autoconvolution自褶积Autocorrelation自相关Autocovariancet自协方差Auxiliary key horizon辅助标准层Average平均Average velocity平均速度Average velocity平均速度AVO technique AVO技术Axis轴Azimuth方位角,方位Background背景Balanced section平衡剖面Balancing a survey平差Band频带Band-pass通频带Bandwidth带宽Barrier layer隔层Base lap底超Base line基线Base map草图,底图Base station基点Base-line shift基线偏移Basin盆地bedding层理Bias偏差;偏流;偏压;偏磁Bimodal双峰的Bin面元Binary二进制Binate重采样bipole双极bland zone盲区block数据块borehole televiewer井下电视bouguer anomaly布格异常Bouguer correction布格校正boundary conditionBright spot亮点Bulk porosity总孔隙度caprock盖层Chemical sedimentary rock化学沉积岩Clastic sedimentary rock碎屑沉积岩Clay mineral粘土矿物Clean sandstone model纯砂岩模型CMS(chemical remanent magnetization)化学剩磁Compensate neutron log补偿中子测井Complex cycle复合旋回Comprehensive log interpretation测井资料综合解释Concentric folding同心褶皱Connectivity砂体连通性continuation延拓contour等值线convergence收敛Converted wave转换波convolution褶积Core岩芯corer取芯器,取样器correction校正correlation对比;相关;匹配Correlation coefficient相关系数Correlation filter相关滤波COS (common offset stack)共炮检距叠加Cosine law余弦定理coupling耦合Covariance协方差creep蠕变Critical angle临界角Critical damping临界阻尼Crooked line弯曲线测量Cross十字Cross bedding交错层理Crosscorrelation filter互相关滤波crossplot交会图Cross-section剖面;截面Curie point居里点curl旋度Curvature曲率Curve fitting曲线拟合Cycle skip周波跳跃Cylindrical divergence圆柱状发散datum基准面Decay constant衰减常数Decay curve衰减曲线decimate重采样Decimate重采样Declination磁偏角Decollement滑脱面Decomposition分辨Deconvolution反褶积Delay time延迟时间Demodulation解调Density logging密度测井Density contrast密度差Depositional remanent magnetism沉积剩余磁性Depositional sequence沉积层序Depth map深度图Depth migration深度偏移Depth of investigation勘探深度Development seismic开发地震Development well logging开发测井Diaper底避构造Dielectric log介电常数测井Dielectric consist介电常数Differential差异;差分Differential compaction差异压实作用Diffraction绕射Diffraction stack绕射叠加Digital数字Dim spot暗点Dip倾角Dip angle地层倾角Dip direction地层倾向Dip line倾斜测线Dip moveout倾角时差Dipole偶极Direct detection直接检测Direct problem正问题Direct wave直达波Dirichlet condition狄利赫来条件Discrete fourier transform离散傅里叶变换Disharmonic folding不谐和褶皱Dispersion curve频散曲线Displacement偏离Displacement current位移电流Dissertation Abstracts International国际学位论文文摘Distortion畸变Distributed分布Divergence发散;散度Domain域Dome丘,穹隆Dominant frequency主频Doppler effect多普勒效应Downdip下降,下倾,Downlap下超Drape披盖Drift漂移Drill钻机Dual water model双水模型Dynamic correction动校正Dynamic memory动态存储器Dynamic range动态范围Dynamite烈性硝甘炸药Effective permeability有效渗透率Effective porosity有效孔隙度Eigenvalue特征值Eigenvector特征向量Elastic弹性的Elastic constants弹性常数Elastic deformation弹性常数Elastic impedance波阻抗Elastic limit弹性限度Elastic moduli弹性模量Elastic wave弹性波Electromagnetic propagation log电磁波传播测井Elevation correction高程校正emulate仿真End-on端点放炮Engineering geophysics工程地球物理enthalpy焓entropy熵envelope包络equalization均衡Equipotential surface等位面Event同相轴Expectation期望Exponential decay指数衰减Factor analysis因子分析Fade切除Fan-filter扇形滤波Fast fourier transform快速傅里叶变换fault断层Fault断层Fault bench断阶构造Fault drop落差Fault line断层线Fault surface断层面Fault throw断距feedback反馈Fence diagram栅状图Fence effect栅栏效应Fermat’s principle费马原理Filter滤波器Finite-difference method有限差分法Finite-element method有限元法Firing引爆First break初至Flat spot平点Flattened section已拉平的剖面Flexural-slip folding挠曲滑动褶皱Floating datum浮动基准面Flow chart流程图Flushed zone冲洗带flute切除flux通量Flyer检波器串fold地层褶曲folding褶皱format格式formation地层Formation occurrence地层产状Formation sensitivity储层敏感性Formation strike地层走向Formation evaluation地层评价Formation resistivity factor地层电阻率因子Formation-density log地层密度测井Forward solution正演解four-property relationship四性关系fracture裂缝Fresnel diffraction菲涅尔衍射Gas hydrate天然气水合物geochronology地质年代学geodesy大地测量学Geodetic latitude大地纬度Geodetic reference system大地参考系统Geodynamics project地球动力学研究计划Geographic latitude大地纬度geoid大地水准面Geomagnetic pole地磁极Geomagnetic reversal地磁反转Geometric factor几何因子Geometric spreading几何扩散Geophone检波器Geophone检波器组合Geophone array检波器组合Geophone interval检波距Geophone pattern检波器组合geophysicist地球物理学家Geophysics survey地球物理测量geosyncline地槽Geothermal gradient地热梯度ghost虚反射graben地堑graben地堑gradient梯度gravimeter重力仪Gravitational folding重力褶皱Gravitational potential重力位gravity重力Gravity anomaly 重力异常Gravity reduction重力改正Gravity survey重力测量Grid网格Ground roll地滚波Group interval组距Group velocity群速度Guided wave导波hammer重锤Handshake信息交换harmonic谐波Harmonic function调和函数Head wave首波Heat conductivity热导率high-resolution seismic高分辨率地震Horizontal bedding水平层理Horizontal slice水平切片Horizontal spot平点horst地垒horst地垒Igneous rock火成岩Index bed标准层Induced polarization激发极化Inductance电感induction感应Induction electrical survey感应电测井Induction logging感应测井inductivity磁导率Information extracted信息提取Innerbeded heterogeneity层内非均质Instantaneous frequency瞬时频率Instantaneous phase瞬时相位instruction指令insulator绝缘体Integrated circuit集成电路Integrated geophysics综合地球物理Integration混波Intelligent terminal智能终端intensity强度Intensity of magnetization磁化强度Interactive人机联作Interbed夹层Interbed multiple层间多次波Interbeded heterogeneity层间非均质Intercept distortion截断失真Interpretation解释Invaded zone冲洗带Inverse cycle反旋回Inverse draw逆牵引Inversion problem反问题Key bed标志层Laterolog侧向测井Layer velocity section层速度剖面Layer velocity层速度Level calibration层位标定litho-density log岩性密度测井Log interpretation model测井解释模型Log response equation测井响应方程Logging tool standardization测井仪器标准化logging-constrained reversion测井约束地震反演Logs测井曲线Material balance equation物质平衡方程Metamorphic rock变质岩Microelectrode log微电极测井microfacies沉积微相migrated-stacked section偏移叠加剖面Model of bulk-volume rock岩石体积模型Monoclinal strata单斜层mute切除Natural gamma-ray logging自然伽马测井Natural gamma ray spectral log自然伽马能谱测井normal正断层Normal cycle正旋回Normal draw正牵引Normal fault正断层Normal-moveout corrections正常时差校正Nosing structure鼻状构造Oil layer group油层组Oil sandbody油砂体one-step 3D-migration一步三维偏移Parameter参数permeability渗透率Permeability max-mean ratio渗透率突进系数permeability max-min ratio渗透率级差permeability variation coefficient渗透率变异系数Petrophysical property油层物性phase spectrum相位谱Pinch out地层尖灭Polarity reversal极性反转Pore throat孔隙喉道potential势能Primary pore原生孔隙prospect勘探工区,勘探远景区Prospecting seismology勘探地震学Random随机的Ray tracing射线追踪Reciprocity principle互换定理Reconnaissance踏勘,Recover恢复,还原Recovery收获率Recursive filter递归滤波Reef礁Reflecting point反射点Reflection反射Reflection factor反射系数Reflection character analysis反射波特征分析Reflection coefficient反射系数Reflection polarity反射波极性Reflection strength反射波强度Reflection survey反射波勘探Reflector反射界面Refraction折射Refraction wave折射波Refractive index折射系数,折射率Refractor折射界面,折射层Regression海退Regression analysis回归分析Relative permeability相对渗透率Relaxation time驰豫时间Reserving space储集空间reservoir储集层Reservoir fundamental parameter储集层基本参数Resistivity logging电阻率测井Resistivity index电阻率指数resolution分辨率Resolution分辨率Resonance共振Reverberation鸣震reverse逆断层Reverse fault逆断层RMS(root-mean-square)均方根Rock stratum岩层Rock structure岩石构造Rock texture岩石结构Rotational旋转断层Sample ratio取样间隔Sampling theorem采样定理Sand砂岩Sands group砂层组saturation饱和度scattering散射Seal rock封堵层Secondary pore次生孔隙Secondary field二次场Secondary porosity次生孔隙度Sedimentary cycle沉积旋回Sedimentary facies沉积相Sedimentary rhythm沉积韵律Sedimentary rock沉积岩Seis检波器, 地震检波器seiscrop等时切片图Seislog地震测井seisloop三维测量排列Seismic exploration地震勘探Seismic facies地震相Seismic inversion地震反演Seismic normalization地震正演Seismic wavelet地震子波Seismic datum地震基准面Seismic discontinuity地震不连续面Seismic event地震同相轴Seismic exploration地震勘探Seismic facies地震相Seismic log地震测井Seismic map地震构造图Seismic profile地震剖面Seismic pulse地震脉冲Seismic record地震记录Seismic refraction method地震折射波法Seismic section地震剖面Seismic sequence analysis地震层序分析Seismic stratigraphy地震地层学Seismic survey地震勘探Seismic tomography地震层析seismic-geologic section地震地质剖面seismic-sequent stratigraphy地震层序地层学Seismogram地震记录Seismograph地震仪Seismologist地震学家Seismology地震学sensitivity灵敏度Series of development strata开发层系Shale泥岩Shaly sandstone model泥质砂岩模型Shear wave横波Shielding屏蔽,屏蔽层Shoot爆炸,放炮,激发Signal to noise ratio信噪比Significance level显著性水平Similar folding相似褶皱simulated annealing模拟退火Single layer小层Singularity奇点,奇异点,奇异性Skin depth趋肤深度Smoothing平滑SP(spontaneous potential or self potential )自然电位Spacing电极距,源距Spatial aliasing空间假频Spectrum谱,频谱Spherical球面的Spill point溢出点Spontaneous potential log自然电位测井Spread排列,布置Spreading发散,扩散Stacked section水平叠加剖面stacked-migrated section叠偏剖面Stacking velocity叠加速度Standard标准的Static correction静校正Statistical统计的Storage存储器Storm扰动Strain应变,形变,胁变Strata overlap地层超覆Stratigraphic interpretation地层学解释Stratum loss地层缺失Streamer拖缆Strike slip走向滑动断层Stringer高速薄层Structural geology构造地质Structure构造Superposition叠加定理Supervisor野外监督Suppression压制Surface wave面波Survey测量,勘测,勘探Susceptibility磁化率Synchronous同步的syncline向斜构造Synthetic seismogram合成地震记录Synthetic seismogram合成地震记录Systematic error系统误差TAR(ture-amplitude recovery )真振幅恢复Tectonic map大地构造图Telluric current大地电流Tensor张量Terrain correction地形校正Thermal conductivity热导率Three instantaneous parameter section三瞬剖面throat eveness coefficient喉道均质系数throat mean喉道平均值throat mid-value喉道中值Thrust fault冲断层Thrust fault逆掩断层Tie-line联接测线Time-distance curve时距曲线Time-slice map等时切片Time-variant时变的Tomography层析成像技术Toplap顶超Topographic correction地形校正Total reflection全反射Trace analysis道分析Trace equalization道均衡Trace gather道集Trace integration道积分Trace inversion道反演Trace sequential道序编排transform转换断层Transform fault转换断层Transformed wave转换波Transgression海侵Transient electromagnetic method瞬变电磁法Transistor晶体管Transmission coefficient透射系数Transverse wave横波Transversely isotropic横向各向同性Trap圈闭Travel path传播路径Tree-dimensional survey三维勘探Trough波谷Truncation error截断误差Tumescence火山隆起two-step 3D-migration二步三维偏移Uncertainty不定性,不确定性,不可靠性Updip上倾放炮Uphole geophone井口检波器Upward continuation向上延拓Valley波谷Variable area变面积Variable density变密度Variance方差Vector矢量Velocity analysis速度分析Velocity inversion速度倒转Velocity layering速度分层Velocity spectrum速度谱Velocity sweeping速度扫描Vibration survey振动测量Vibrator振动器Video display视频显示Virtual memory虚拟存储器Viscoelastic粘弹性的Viscosity粘度,粘滞性Water saturation含水饱和度Wave group波组wave equation波动方程Wave equation migration波动方程偏移Wave impedance波阻抗Wave velocity波速Waveform波形Wavefront波前Wavelet地震子波Wavelet equalization子波均衡Wavelet extraction子波提取Wavelet processing子波处理Wavenumber波数Wavy bedding波状层理Weathering 风化层Weathering风化层,低速带Weathering correction低速带校正Weathering layer风化层,低速带Weathering shot低速带测定Weighted array加权平均加权组合Weighted average加权平均Well logging测井Well logging series测井系列White白噪声White noise level白噪水平Young’s modulus杨氏模量Zero-phase零相位Zoeppritz’s equation佐普里茨方程。
重庆理工大学材料科学基础双语翻译第6章modified翻译
Stress应力 is a measure测量 of an applied mechanical引用机械 load负荷 or force力, normalized规范化 to take into考虑到 account cross-sectional area截面积. Two different stress parameters应力参数 were definedengineering stress设计应力 and true stress.实际应力 Strain 应变represents代表 the amount总数 of deformation变形 induced by 诱导 a stress应力; both engineering工程学 and true strains实际应力 are used.
Fundamentals of Materials Science and Engineering
Concepts of stress and strain
A number of the important mechanical properties of materials have been discussed in this chapter. Concepts of stress and strain were first introduced. 许多重要的材料机械性质已经在本章中讨论。应力和应变的Materials Science and Engineering
科技英语部分课后练习答案
III: Text Organization
Part I (1-3):
A multibillion-dollar craft called the Crew Exploration Vehicle (CEV).
Part II (4-7): David Gump and Gary Hudson;
.
4
Page 52:
III: Translation
11.每个化学元素在周期表中都有一定的原子数和 位置,可以据此来推测其特性:如何同别的元素 相互作用,能形成什么样的化合物,以及它的物 理属性。
12.固体加热到足够温度时,它所含的电子就会有 一部分离开固体表面而飞到周围的空间中去;这 种现象称为热电子放射;通常,电子管就利用这 种现象产生自由电子。
.
5
Page 74-75:
II: Abstract Correction
The current calibration methods of the projectilevelocity measurement system are introduced, and the problem and the unreasonableness of these methods are analyzed. Based on the principle of the mathematical statistics, the calibration method is investigated that measures the projectile-velocity at the same time by the multi-group zone-block device is unbiased, uniform and efficient and uses the average of the measured value as the true value of the projectile-velocity at the point.
牵引车-飞机系统的路径跟踪控制(英文)
J.Marine Sci.Appl.(2012)11:512-517DOI:10.1007/s11804-012-1162-xPath-tracking Control of a Tractor-aircraft SystemNengjian Wang,Hongbo Liu*and Wanhui YangSchool of Mechanica l and Electr ical Engineering,Har bin Engineering Univer sity,Ha rbin150001,ChinaAbstra ct:An aircraft tractor plays a significant role as a kind of important marine transport and supportequipment.It’s necessary to study its controlling and manoeuvring stability to improve operation efficiency.Avirtual prototyping model of the tractor-aircraft system based on Lagrange's equation of the first kind withLagrange mutipliers was established in this paper.According to the towing characteristics,a path-trackingcontroller using fuzzy logic theory was designed.Direction control herein was carried out through acompensatory tracking approach.Interactive co-simulation was performed to validate the path-trackingbehavior in closed-loop.Simulation results indicated that the tractor followed the reference courses preciselyon a flat ground.Keywords:path-tracking controller;aircraft tractor;preconcert route;fuzzy control;co-simulationArticle ID:1671-9433(2012)04-0512-061Introduction1Automatic guidance of industrial articulated vehicles,such as mining trucks,earth-removal and road-paving vehicles, intercity bus travels,and automated guided vehicles(AGVs), (Lane et al.,1994;Larsson et al.,1994;Hirose et al.,1995; Rabinovitch and.Leitman,1996;de Santis,1997;Lamiraux et al.,1999);have over80years,received a great deal of attention from researchers.Recently,a study in intelligent control technology for maritime applications has prompted more research investigating.For more than20years the study of tractor aircraft systems has provided vital information for on researching maritime vessel transportation.The process has been noted as to being a complicated nonholonomic, under-actuated and nonlinear system.The path-tracking plays a significant role in improving operation efficiency(Rifford, 2004,2006,2008;Nakamura et al.,2001).Wang(1994) Aircraft tractors are essential tools for aircraft movement on large ships,as well as takeoff and landing.The mechanism is different from a shore-based allocation and transporting of an aircrafts;tractors on the ship are placed in less than ideal environments,narrow space and exclusive transportation facilities by Han et al.(2010).Relatively good transport efficiency and flexibility are required during these tasks.As a result,the lack of maneuverability has increased a higher rate of involvement in fatal accidents.Through constant evolution and development of computer and sensor technologies,research on tracking control methods for two-wheeled and car-like mobile robots have increased significantly(de Wit et al.,1993;Kanayama et al.,1990,1991; Murray and Sastry,1993;Samson and Ait-Abderrahim,1991a, Received d at e:2011-11-13.Found at ion item:Harbin Technological Innovation ResearchFund(NO:2012RFXXG039)*C orresp ond ing aut hor Email:lhbci************©Harbin Engineering Univers ity and Springer-Verlag Berlin Heidel berg20121991b).In addition,a few researchers have explored in greater detail the study of tracking control of trailer systems,which basically consist of a steering tractor and a passive trailer, linked with a rigid joint,such as a tractor-aircraft system.As noted in the references listed:(Lamiraux and Laumond,1997; Sekhavat et al.,1997;Yuan and Huang,2006)much of the interest driving experimentation,is the utilization of trailers on mobile robots.However,problems occur due to the controlling of the system from the viewpoint of the mobile robot and not a passive trailer.In1994,de Santis,conducted a simple linear control study using a linearized model designed for a trailer system.The research is of great interest and a positive perspective on the study of tracking control systems guide points have been explored for future recommendations.The study was divided into three components:First, analyzing the tractor aircraft systems,examining the marine transport equipment,and understanding the procedures of the maneuvering stability of a ship.Next,the research focused on guiding a path tracking controlled aircraft tractor into preconcerted routes and keeping a smooth motion, almost like a flat ground on a ship.Thirdly,the paper focused on analyzing the performance of the tractor in an automatic navigation system setting.The research study utilized the fuzzy logic theory as a measuring tool in the designing of the controller for the tractor-aircraft system.The researcher also took into account factors for the adverse ef fects,caused by factors such as tire slippage.The direction control was performed through a compensatory tracking approach method.The organizational flow of the research paper has been divided into five sections.In section II,the research focused on the kinematic and virtual prototyping model of the aircraft-tractor system.Section III,focused on theJournal of Marine S cience and Appl ication (2012)11:512-517513design of the fuzzy control system,while section IV contains simulation results.The paper concludes with remarks and recommendations in section V .2Model of a tr actor-aircraft system2.1Kinematic mod elThe model is based on a rigid multiply body that consists of a tractor,a drawbar,the undercarriage and fuselage,ignoring,for the moment,the flexibility of the tractor suspension and undercarriage buffer system.It is usually assumed that the wheels do not slip.The deformation of the tires is also ignored for the sake of simplicity.These assumptions are acceptable for tractor towing at low speeds:(1)Calculate the lateral component of constraint force onthe tractor-aircraft system junction.(2)The relative angles between the various parts are small,and the tractor front wheel steering angle is small.(3)Examine the wheels rolling resistance,back torque and air resistance.Primarily consider the lateral and the swaying motions of the tractor-aircraft system illustrated in Figure1.Fig.1Kinematic model of a tractor-aircraft system Dynamical equations of the tractor are shown as the following.11111121()cosy a y y m v u r F F F R (1)111122131cos z y y y a J r F d F d R d M (2)The drawbar and the nose landing gear dynamical equations are depicted as:2222323()y y y m v u r R R F (3)22243535z y y y J r R d R d F d (4)Dynamical equations of the fuselage and the rear landinggear are founded with the expression3333244()a y y m v u r F F R (5)3346247z y a y J r R d M F d (6)where i m represents the mass (the subscript i=1,2,3denotes the tractor,the drawbar and the aircraft respectively),i u is the marching velocity,i r is the sway rate and yi F is the cornering force on the tractor wheel,yi R is the lateral constraint reacting force on the articulation and the vertical moment of inertia is expressed with iz J ,ai F and ai M are the accessional lateral force and torque on the centroid,δis the tractor front wheel steering angles,12,d d are the distances from the tractor centroid to the front and rear axle,3d is the distance from the tractor centroid to the anterior to the drawbar,45,d d are the distances from the drawbar centroid to its foreside and rearward,67,d d are thedistances from the aircraft centroid to the front and rear axle.Cornering force on the tractor wheels yi F is defined as a function of the slip angle.When the lateral acceleration is less than 0.4g,the slip angle is generally no more than 4°-5°,the tire cornering properties are in the linear range.Cornering force is given by y i i i F k a ,where i k is thecornering stiffness,its value is negative,i a is the tire slipangle.The state equation of tractor-aircraft towing operation can be described by means of:K XL XM UN TS F(7)2.2Vir tual prototyping modelUsing the ADAMS/View program(Elliott,2000),a virtual prototyping model is created as shown in Figure 2.A centralized quality tractor model is established,which includes the body,suspension and steering system,tires and other components.The study shows evidence of a reduction in the drawbar to a cylindrical rod..The aircraft model is mainly composed of the fuselage,undercarriage and employs spring-dampers.As a result,nonlinear elastic damping effects in the spline curve takes place in the undercarriage buffer system.Nengjian W ang,et al.Path-tracking C ontrol of a T ract or-A ircraft System514Fig.2Virtual prototyping model of the tractor-aircraftsystemThe parameters of the tire and road can be set in the Fiala tyre model and mdi_2d_flat road model,such as:the vertical stiffness,vertical damping of the tire,the friction factor ,and graphics of the road.2.3Comparative analysis of kinetic model an d virtualprototype mod elA comparative analysis was conducted to set the tractor initial position on the ground coordinate system origin and zero degree for the initial direction.The simulation was carried out using a vertical speed of 5km/h.The step input was given to a steering wheel with the function:step (time,8,0,8.02,and 42d).The study compared the steady-state values of the kinetic model and the virtual prototype model,as shown in Table 1.It was established that the virtual prototype model is a good feature.Table 1Contrast of the Kinetics ParametersInvestigating variablesY aw rate of the tractor/((°)·s 1)Yaw rate of thedrawbar/((°)·s 1)Y aw rate of the aircraft/((°)·s 1)Lateral velocityof the tractor/(mm/s)Angle between the drawbar and the aircraft/(°)Angle betweenthe tractor and the drawbar/(°)Simulation value1.4361.4271.40445.904.1266.222Theoretic value 1.507 1.507 1.47846.60 4.395 6.549Absolute error 0.0740.0800.0740.7000.2690.327Relative error5.3%5.6%5.3%1.5%6.5%5.2%3Establishment of fuzzy control sysytemBased on the virtual prototype model of the tractor-aircraftsystem a Mamdani fuzzy control system is established (Shukla and Tiwari,2010).A block diagram of the fuzzy control system is visible in Figure 3.Distance deviation and angle deviation,which can be derived by drawing acomparison between the actual path,and the preconcerted routes are calculated as the input of the controller.The torque that controls the steering wheel angle sheers off betimes to eliminate the error is referred to as the output.Fig.3Block diagram of the controller3.1Path Reference fr ameUbiety between the tractor and the preconcerted route is shown in Figure4.The ground coordinate system OX YZ is used to describe the trajectory,whereas vehicle coordinated system oxyz is used to calculate the distance deviation Ed and angle deviation Ea.Path point P c (c=1,2,3,…n)connecting to the sequentially composed preconcerted path.The origin of the vehicle system of coordinates is (X 0,Z 0)on the ground coordinate and the relative angle between these two coordinated systems is .Fig.4Schematic diagram of the ubiety3.2Posit ion ControllerJournal of Marine S cience and Appl ication (2012)11:512-517515The functions of the fuzzification interface are to perform the following steps:measure the values among the input variables from the data acquisition interface,quantifying in order to transform the range of the observed values into the corresponding discourse of the language variables,and transforming the input data into proper linguistic values,that can be regarded as a form of fuzzy set.The subets of the in-out variables are decomposed into seven fuzzy partitions,denoted by PB (positive big),PM (positive medium),PS (positive small),Z (zero),NS (negative small),NM (negative medium),and NB (negative big),respectively.The domain of distance deviation,Ed is [–1000,1000],Unit:mm and of angle deviation Ea is [1.57,1.57],Unit:rad.Control axial torque on the steering wheel has a basic domain of [78400,78400]which unit is N ·mm.In-out variables in fuzzy set are on the fuzzy domain {6,4,2,0,2,4,6}.Analyzing the basic domain and the compartmentalization of the hierarchy,quantization factor of distance deviation Kd comes to a value of 0.006and that of angle deviation Ka is 0.267,while the control torque scale factor Kt is 13066.The membership function of in-out is shown in Figure5.Fig.5Membership functionThe rule table of fuzzy controller is shown in Table 2and the output surface of fuzzy control rules can be illustrated as shown in Figure6.There are four conditions of the tractor current position and preconcerted route determined by the distance and angle deviation:(a)0,0Ed Ea ;(b)0,0Ed Ea ;(c)0,0EdEa;(d)0,0EdEaTable 2Rule table of fuzzy controllerOutput Torque UEd NB NM NS Z PS PM PB Ed NB PB PB PB PM NS NS NS NM PB PB PM PS NS NS NS NS PB PM PM PS NS NS NS ZPM PM PM Z NM NM NM PS PS PS PS NS NM NM NB PM PS PS PS NS NM NB NB PBPSPSPSNMNBNBNBEd EaFig.6Output surface of fuzzy rules4Tracking behavior simulation analysisFor verifying the efficiency of the proposed controller,we realize this system on the virtual prototyping model created in section Ⅱ.Define the in-out adopting ADAMS/Controls and establish the control algorithms in Simulink Model.The study implemented control modules and designed software in the control system,and interactive simulation.The co-simulation model is shown in Figure7,which contains dynamic modules;path deviation calculation module,a fuzzy control module and a time limit module.The corresponding oscilloscope to record the distance and angle deviation and other important data were also established.Thus,the operations and some experimental results are presented in a series of pictures to demonstrate the efficiency of the proposedmethods.Fig.7Co-simulation mode l4.1Performance of the Virtu al Prototyping ModelGiven the tractor rear wheel,a axial torque with a step input:step (time,0,50000,180,1800000)and a drive function to the steering wheel with:step (time,0,0,1,168d),the simulation was carried out.The traction trajectory is shown in Figure 8.The simulations illustrated in Figs.7and 8,results indicate that the under-steer system increased the tractor turningNengjian W ang,et al.Path-tracking Control of a T ractor-A ircraft System 516radius and lateral velocity.t.The tractor's turning radius andlateral velocity are greater than those of the aircraft.Aforesaid analysis proves that the virtual prototyping modelhas good maneuveringstability.(a)Route of the Idle Load Tractor(b)Route of the Load-CarryingTractor(c)Route of the Passive AircraftFig.8TractionTrajectoryFig.9Turning Radius of theTractorFig.10Lateral Velocity Comparison4.2Tr acking Beh avior Und er th e Fuzzy Con trolTowing the aircraft at the speed of5.4km/h along route1(visible in Fig.11),simulations was carried out as follows:(a)Running with a step input:step(time,4,0,4.2,42d)(b)Control the system through co-simulation approachWe investigate the performance of the fuzzy control system.Figure12shows the tracking behavior under an operation ofclosed-loop input.The foundation of the fuzzy controllercould make up some adverse effects caused by tire slippage,etc,to a certain extent.Also the establishment plays animportant role in safe and efficient towingoperation.Fig.11PreconcertedRoutesFig.12Tracking TrajectoriesThe tractor drove in accordance with the intended route2asshown in Figure13,pulling the aircraft from point A todestination B at the speed of 5.4km/h.The trackingtrajectories also obtained the kinetics parameters during thetask from the co-simulation.Figure12shows the lateralvelocity and turn angle of the aircraft for wheel values.Themaximum kinetics parameters are also shown in Tab.4characterizing the towing performance.Therefore,using the designed controller to guide thetraction system tracking in an intended route under practicaltraction work conditions issafe.(a)L ateral Velocity of theTractor(b)Turn Angle of the Aircraft Fore-wheelFig.13Kinetics ParametersJournal of Marine S cience and Appl ication(2012)11:512-5175175ConclusionsFor the automatic guidance and stability control of the ship-based tractor-aircraft system,a fuzzy control system was designed.Firstly,taking into account lateral and the swaying motions,a nonlinear dynamic model is introduced.A virtual prototyping model,which has good maneuvering stability,is established.Furthermore,based on the fuzzy logic,the controller is derived based on the virtual prototyping model.The simulation results confirm the fuzzy control system effectively enables the traction system to track the preconcerted path well.Under the control of the designed controller,the tractor-aircraft system provided a good description of the dynamic behavior.ReferencesDe Santis RM(1994).Path-tracking for a tractor-trailer-like robot.Int J Robot Res,13(6),533-543.De Santis R(1997).Modeling and path-tracking for a load-haul-dump vehicle.J.Dynam.Sy st.Mea s.Contr.,119, 40-47.De Wit C,Khennouf H,Samson C,Sordalen OJ(1993).Nonlinear control design for mobile robots,recent trends in mobile robots.World Scientific Series in Robotics and A utomated Systems,11, 121-156.Elliott AS(2000).A highly efficient,general purpose approach for cosimulation with ADAMS.MDI North A mer,User Conf.,MI,. Han F,Yang BH,Wang HD,Bi YQ(2010).The optimizing research on aircraft handling workflow.Science Technologya nd Engineer ing,10(22),5602-04.Hirose S.Fukushima E,Tsukagoshi S(1995).Basic steering control methods for the articulated body mobile robot.IEEE Contr.Syst.Mag.,4,5-14.Kanayama Y,Kimura Y,Miyazaki F,Noguchi T(1990).A stable tracking control method for an autonomous mobile robot.IEEE Int Conf on Robotics and A utomation,Cincinnati,OH, 384-389.Kanayama Y,Kimura Y,Miyazaki F,Noguchi T(1991).A stable tracking control method for a non-holonomic mobile robot.Int Conf on Intelligent Robotics Systems,Osaka,Japan,1236-1241. Lamiraux F,Laumond JP(1997).A practical approach to feedback control for a mobile robot with trailer.IEEE Int Conf on Robotics a nd A utoma tion,leuv en,Belgium,3306-3311. Lamiraux F,Sekhavat S,Laumond J(1999).Motion planning and control for Hilare pulling a trailer.IEEE Tra ns.Robot.Automa t, 15,640-652.Lane J,King R(1994).Computer-assisted guidance of an underground mine truck.IEEE Int.Conf.Robotics a nd Automation,San Francisco,420-425.Larsson U,Zell C,Hyppa K,Wernesson A(1994).Navigating an articulated vehicle and reversing with a trailer.IEEE Int.Conf.Robotics a nd A utoma tion,San Francisco,2398-2404.Murray RM,Sastry S(1993).Nonholonomic motion planning: Steering using sinusoids.IEEE T r ans A utomat Contr,38(5), 700-716.Nakamura Y,Ezaki H,Tan Y,Chung W(2001).Design of steering mechanism and control of nonholonomic trailer systems.IEEE Transactions on Robotics and A utomation,17(3),367-374. Rabinovitch J,Leitman J(1996).Urban planning in Curitiba.Sci.A mer.,274(3),46-53.Rifford L(2008).Stabilization problem for nonholonomic control systems.Geometr ic Contr ol and N onsmooth A nalysis,Series on A dvances in Mathematics for A pplied Sciences,76,260-269.Rifford L(2006).The stabilization problem on surfaces.Control Theory a nd Stabilization II,64(1),55-61.Rifford L(2004).The stabilization problem:AGAS and SRS feedbacks.Optimal Control,Stabilization,and Nonsmooth Analysis.L ectures N otes in Control a nd Information Sciences, 301,173-184.Samson C,Ait-Abderrahim K(1991a).Feedback stabilization of a nonholonomic wheeled mobile Robot.Int Conf on Intelligent Robotics Systems,1242-1247.Samson C,Ait-Abderrahim K(1991b).Feedback control of a nonholonomic wheeled cart in cartesian space.IEEE Int Conf on Robotics and Automation,1136-1141.Sekhavat S,Lamiraux F,Laumond JP,Bauzil G,Ferrand A(1997).Motion planning and control for Hilare pulling a trailer.IEEE Int Conf on Robotics and A utomation,L euven,Belgium, 3306-3311.Shukla S,Tiwari M(2010).Fuzzy logic of speed and steering control system for three dimensional lines following of an autonomous vehicle.Inter national Journa l of Computer Science and Information Security,7(3),101-108.Wang Y(1994).Development of aircraft-towing tractor.Inter-national A viation,11(9),18-20.Yuan J,Huang YL(2006).Path following control for tractor-trailer mobile robots with two kinds of connection structures.IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing,China,2533-2538.Nengjian Wang was born in1962.He has been aprofessor at Harbi n Engineering University since2003.He has been a s upervisor for decades.Hisresearch covers a wide range of problems inmodern manufact uring systems theory,workshopand logistics scheduling and optimization,comput er-aided process planning and mechanicaldynamics.Hongbo Liu was born in1987.She is working ondoctoral degree at Harbin Engineering University.She mainly engages in computer simul ation,anal ysis of ai rcraft tracti on system dynamics andstabilit y control study.。
Weak Lensing and the Measurement of q0 from Type Ia Supernovae
a r X i v :a s t r o -p h /9608068v 1 13 A u g 1996FERMILAB-Pub-96/067-AWeak Lensing and the Measurement of q 0from Type Ia SupernovaeJoshua A.Frieman NASA/Fermilab Astrophysics Center,Fermi National Accelerator Laboratory,P.O.Box 500,Batavia,IL 60510Department of Astronomy and Astrophysics,University of Chicago,Chicago,IL 60637ABSTRACT On-going projects to discover Type Ia supernovae at redshifts z ∼0.3−1,coupled with improved techniques to narrow the dispersion in SN Ia peak mag-nitudes,have renewed the prospects for determining the cosmic deceleration pa-rameter q 0.We estimate the expected uncertainty in the Hubble diagram deter-mination of q 0due to weak lensing by structure in the universe,which stochas-tically shifts the apparent brightness of distant standard candles.Although the results are sensitive to the density power spectrum on small scales,the induced flux dispersion σm <∼0.04Ω1/2m,0mag for sources at z ≤0.5,well below the “in-trinsic”spread of nearby SN Ia magnitudes,σM ≃0.2mag.Thus,density inhomogeneities do not significantly impact the current program to measure q 0,in contrast to a recent claim.If,however,light-curve shape and other calibrators can reduce the effective intrinsic spread to 0.1mag at high z ,then weak lensing could increase the observed spread by 30%in an Ωm,0=1universe for SNe atz >∼1.Subject headings:cosmology:large-scale structure of the universe,supernovae1.IntroductionThe determination of the cosmological parameters via the “classical”cosmological tests,such as the redshift-magnitude relation (Hubble diagram),remains a holy grail for observa-tional astronomy.Past attempts to measure the deceleration parameter q 0using galaxies as standard candles have foundered on the uncertainty in galaxy luminosity evolution (Tinsley1972,Peebles1993).Recently,there has been renewed hope that q0can be determined, thereby constraining the mean mass density and the cosmological constant,by using distant Type Ia supernovae(e.g.,Goobar&Perlmutter1995).Progress has come on two fronts.First,there is growing evidence that samples of SNe Ia,when suitably culled to excise peculiar lightcurves or spectra and cases of significant host-galaxy extinction,may provide reasonably good standard candles,with a dispersion σM≃0.3in peak absolute magnitude.Moreover,using the observed correlation between lightcurve shape and peak luminosity(Hamuy etal.1995,Riess,Press,&Kirshner1995)as well as spectroscopic features that have been found to correlate with luminosity(Branch, Nugent,&Fisher1996,Nugent,etal.1995),the effective dispersion of these‘standardized candles’can apparently be reduced toσM≃0.1−0.2mag.Second,several groups have begun observing campaigns to discover a large number of high-redshift Ia supernovae,with coordinated follow-up programs to measure the lightcurves of SN candidates;more than20 candidates at z∼0.4−0.6have been found so far(e.g.,Perlmutter,etal.1995,Schmidt, etal.1995,Perlmutter,etal.1996).The case for SNe Ia as a population of‘standard’candles is also on reasonable physical footing.While the details of the explosion mechanism remain poorly understood,there is general consensus that SNe Ia are thermonuclear explosions of accreting Carbon-Oxygen white dwarfs.On the other hand,it is not yet clear whether the white dwarf progenitors must be near the Chandrasekhar mass(e.g.,Hoeflich etal.1996)or not(Livne&Arnett 1995),and thus the theoretical intrinsic spread in SN Ia luminosity is still a matter of some debate.In either case,there is optimism that,based on the correlations above,SNe Ia can be used to measure extragalactic distances and thereby to determine the cosmological parameters.Recently,however,Kantowski,Vaughan,&Branch(1995)have argued that large-scale structure provides a stumbling block to the accurate determination of q0from standard can-dles.A bundle of light rays from a distant source is sheared and focused due to deflection by intervening density inhomogeneities.Since gravitational lensing conserves surface brightness, the change in the cross-section of the bundle implies that the image of the source appears magnified(or demagnified)relative to a homogeneous ing the“swiss-cheese”model of large-scale structure,Kantowski etal.find that the resulting change in received flux(apparent magnitude)could lead to a systematic underestimate of q0if one interprets the observations assuming a homogeneous universe.For example,for a source at z=0.458 (the redshift of SN1992bi(Perlmutter,etal.1995)),theyfind that the resulting error in q0 can be as large asδq0≃−0.33q0.This claim is consonant with other studies which found that large-scale structure can significantly change the proportionality between angular-sizedistance and redshift,and therefore lead to difficulties,e.g.,for the determination of H0from gravitational lens time delays(Kantowski1969,Dyer&Roeder1972,Alcock&Anderson 1985,1986,Watanabe etal.1992,Sasaki1993).In this Comment,we reevaluate this issue by estimating the rmsfluctuation in the am-plification of distant sources in a perturbed Friedmann-Robertson-Walker(FRW)universe. Wefind that the expected effects are smaller than those found by Kantowski,etal.,of order several percent at most for sources at z<∼0.5,and subdominant in comparison to the∼20 %intrinsic spread of nearby SN Ia magnitudes.Moreover,flux conservation implies that the magnification shift is random,with zero mean over all lines of sight(Weinberg1976), not a systematic offset.As a result,the amplification due to large-scale structure will not seriously impact the accuracy of q0measurements in current surveys.The primary reason for this different conclusion is that the swiss-cheese model does not conform to our current understanding of the large-scale mass distribution of the uni-verse.In particular,it does not accurately reflect the observational information gained from galaxy redshift and peculiar velocity surveys and the cosmic microwave background(CMB) anisotropy.This point has been made recently by Seljak(1994)and Bar-kana(1995)in the context of the determination of H0from QSO lens time delays.The argument that these effects should be small has also been made qualititatively by Peebles(1993).The issue was first laid out clearly by Gunn(1967),who showed that the rmsfluctuation in the apparent brightness of a distant source can be expressed as a radial integral of the two-point correlation function of the mass distribution.Gunn’s argument was updated to reflect the substantial advances in our understanding of large-scale structure in more recent numerical(Jaroszynski, etal.1990)and analytic(Babul&Lee1991)studies(unbeknownst to the present author until this work was completed).In fact,Babul&Lee’s‘DP’model is close to the model for the power spectrum that we adopt below,although there are some important quantitative differences which we outline later.From the smallness of the CMB anisotropy on large scales to observations of galaxies and galaxy clusters on small scales,we have strong indications that the spacetime metric of the universe is well-described by a weakly perturbed FRW model.In the longitudinal gauge, the line element can be writtends2=a2(τ) −(1+2φ)dτ2+(1−2φ)[dχ2+F2(χ)(dθ2+sin2θdφ2)] (1)where a(τ)is the cosmic scale factor,χdenotes the comoving radial coordinate,andτ= dt/a is the conformal time,withτ0denoting the present.The function F(χ)dependson the spatial curvature K:F(χ)=K−1/2sin K1/2χfor K>0,F=χfor K=0,andF=(−K)−1/2sinh(−K)1/2χfor K<0.The curvature can be expressed in terms of the present density parameter and the Hubble parameter H0=H(τ0),K=(Ω0−1)H20a20, whereΩ=Ωm+ΩΛincludes both non-relativistic matter(m)and vacuum energy density (the cosmological constantΛ)andΩm=¯ρ/ρc=8πG¯ρ/3H2,with¯ρ(τ)the mean density of matter.The metric perturbation variableφis the relativistic analog of the Newtonian gravitational potential;over scales less than the Hubble length H−1it obeys the Poisson equation,3∇2φ=∇⊥φ(χ,τ=τ0−χ)dχ.(3)F(χs)Here we have implicitly replaced the perturbed by the unperturbed path in the integral; while this is not a good approximation(e.g.,Frieman,Harari,&Surpi1994),we will only make use of the weaker assumption that the statistical properties of the potentialfieldφare identical along the perturbed and unperturbed paths(e.g.,Kaiser1992).The amplification of the observed image relative to the(unlensed)source is given by A=1/det M,where the2×2amplification matrix M ij=∂βi/∂θj=δij+Φij,and Φij=∂δθi/∂θj.We can decompose the deformation tensor asΦij=−κδij+γij,where the trace(κ),the expansion,describes the uniform dilation or contraction of ray bundles,and the traceless part(γij)describes their shear.In the limit of small deflection angles,we thus haveA=1/[(1−κ)2−γ2]≃1+2κ,where±γare the eigenvalues ofγij andκ=−(Φ11+Φ22)/2. Theflux perturbation is thereforeδA=A−1=−TrΦ.Using eqns.(2,3),wefindδA=3(H0a0)2Ωm,0a(τ0−χ)δ(χ,τ=τ0−χ)(4)whereΩm,0is the present matter density parameter.Tofind the rmsflux amplification along a random line of sight,we assumeδ(x,τ)canbe described as a continuous,homogeneous random process;this ignores discreteness in themass density,an excellent approximation since the dark matter very likely consists of objectsof mass less than106M⊙.It is convenient to Fourier-transform the densityfield,δ(χ)=(2π)−3 d3kδ(k)exp(i k·χ),where theflat-space transform suffices for the small angles we are considering.Defining the density power spectrum via δ(k)δ∗(k′) =(2π)3P(k)δ3D(k−k′),we have(definingσ2A= (δA)2 )σ2A=9πΩ2m,0(H0a0)4 χs0dχF2(χ)F2(χs−χ)k dkH0a0 zdz′small scales,although with the caveat that the galaxy and mass distributions may differ significantly on these scales(see below).A third more radical possibility is that the observed clustering is merely“painted on”and expands with the Hubbleflow;in this case,ǫ=0. For the numerical estimates below,we will thus consider the rangeǫ=0−2.Since the rms amplification is dominated by structure in the non-linear regime,we expectǫ≃1.2to be the most accurate representation of the evolution.Recent N-body simulations confirm that the growth factor is intermediate between the stable clustering and linear regimes on small scales at recent epochs(Colin,Carlberg,&Couchman1996),while it may be faster than linear(ǫ>2)on intermediate scales;in either case,the results presented below constitute an upper limit on the lensing effect.To model the present power-spectrum on small scales,we could simply Fourier trans-form the galaxy correlation function,ξg(r)=(r/r0)−1.8,where the galaxy correlation length r0,g≃5.4h−1Mpc.However,this does not take into account the bias between the galaxy and mass distributions,i.e.,the likelihood that light does not trace mass on these scales. To remedy this,we can incorporate dynamical information.From the(simplified version of the)cosmic virial theorem(Peebles1980,1993),the predicted pairwise velocity disper-sion on small scales is roughlyσ2v(r)∼[3/2(3−γ)]H20Ωm,0r2(r0/r)γ.Assuming the matter correlation function has the same slope as that of the galaxies,this yields an estimate for the density correlation length,r0≃5.4h−1Mpc(0.1/Ωm,0)0.55(σv(1h−1Mpc)/300km/sec)1.1. The standard estimates of the galaxy pairwise velocity dispersion at r≃1h−1Mpc sep-aration have beenσv∼300km/sec(Davis&Peebles1983,Bean,etal.1983).Recent redshift surveys,however,have yielded higher values,σv∼500−700km/sec(Guzzo,etal. 1995,Marzke,etal.1995).Moreover,Somerville,Davis,&Primack(1996)and Somerville, Primack,&Nolthenius(1996)have found that estimates ofσv(r)in both simulations and galaxy catalogs show large scatter.However,when the cores of rich clusters,which contain only a small fraction of the mass,are excluded,it appears thatσv∼300km/sec.In any case,to obtain an upper bound for the weak lensing effect,we will takeσv(1h−1Mpc)=650 km/sec,implying∆2(k)≃8.7(k/h Mpc−1)1.8Ω−1m,0(σv(1)/650)2.Note that the assumption made here that the galaxy and density correlation functions have the same small-scale slope is not well motivated on highly non-linear scales,and the results below should be interpreted with this caveat.For this model of the power spectrum,and in general forγ>1,the k-integral in(5) diverges in the ultraviolet and must be cut-off.Physically,the slope of the density correlation function must fall below unity below some length scale(even though the galaxy correlation function is an unbrokenγ≃1.8power law down to r∼10h−1kpc).Thisflattening is expected to happen at least at the scale of individual galaxy halos(Kaiser1992):below this scale,ξ(r)is dominated by correlations within individual halos,yieldingξ(r)∼r−(2ν−3)for halos with density profileρ(r)∼r−ν(Peebles1974,McClelland&Silk1977,Sheth& Jain1996);for nearly isothermal halos,ν≃2,the corresponding slope isγ≃1.Up to logarithmic corrections,we model this effect by imposing a cutoffin(5)at the approximate halo scale,k c=1/(100h−1kpc).Using this model in(5),the rmsflux perturbation atfixed z s scales approximately asΩ1/2m,0(σv(1)/650)(k c/10h Mpc−1)0.4.Fig.1shows the dispersion in apparent magnitude for distant standard candles as a function of redshift,σm=1.086σA mag,for cosmological models withΩm,0=0.1,0.3,and 1.ForΩm,0=1,we show results forǫ=0,1.2,and2to bracket the plausible range of evolution models.For the other cases,we show results forǫ=1.2only;since structure formation freezes out early inΩm,0<1models(at1+z f≃Ω−1m,0),stable clustering should be a reliable prescription here.ForΩm,0=0.3,we show results for a spatiallyflat model with non-zero cosmological constant,ΩΛ=0.7,and for an open model withΛ=0.Since the imposition of a sharp cutoffin the density power spectrum appears to be a rather crude approximation,as a check we have also explored models for the small-scale power spectrum based on the cold dark matter(CDM)model and CDM with non-zero Λ,with scale-invariant primordialfluctuations,extended into the non-linear regime using scaling formulae derived from N-body simulations(Hamilton etal.1991,Peacock&Dodds 1994,Jain,Mo,&White1995,Baugh&Gaztanaga1996,Peacock&Dodds1996).In these models,P(k)scales as k at small wavenumber but turns over to k−3at large k,yielding much better convergence for theflux dispersionσA.We normalize such models by requiring that they reproduce the observed galaxy cluster X-ray temperature distribution function according to the predictions of Press-Schechter theory(White,Efstathiou,&Frenk1993); for CDM models,this corresponds approximately to imposing the constraint that the linear,where theory rms massfluctuation in a sphere of radius8h−1Mpc isσ8=0.6Ω−C(Ωm,0,Λ)m,0C=0.36+0.31Ωm,0−0.28Ω2m,0for open models(Λ=0)and C=0.59−0.16Ωm,0+0.06Ω2m,0 for spatiallyflat(non-zeroΛ)models(Viana&Liddle1995).The results for the amplification dispersion in these cluster-normalized CDM models are shown in Fig.2for the same model parameters as in Fig.1.The results forσA agree reasonably well with those of the power-law model,although they are somewhat higher for the models withΩm,0<1.This difference is due in part to the fact that the cluster normalization yields more small-scale power in these models than the cosmic virial theorem normalization for the corresponding power-law model.Thus,while the uncertainties inσv and in the accuracy of the cosmic virial theorem are still significant,this comparison suggests that our estimate forσA should be accurate to within a factor of two.The implications of weak lensing for the determination of q0follow directly from Figs. 1and2.For sources at z≤0.7,σm≤0.06,well below the“intrinsic”0.2−0.3mag spreadin nearby SN Ia magnitudes.At z≪1,from the redshift-magnitude relation,the resulting ‘1σ’uncertainty in the deceleration parameter,q0=Ωm,0/2−ΩΛ,for a single source atredshift z isσq0≃σA/z.For example,for z=0.5andΛ=0,wefindσq≃0.1q1/20(<∼0.07forΩm,0≤1).In the future,if SN Ia searches discover sources at z>∼1,then weak lensing may be a significant factor.In particular,if light-curve shape and other correlators with peak magnitude can reduce the effective intrinsic spread to0.1mag(even at high z), then densityfluctuations could increase the observed dispersion in anΩm,0=1universe for sources at z=1by of order30%.Since the amplification is caused by the foreground mass distribution,one could in principle use the angular correlation function ofδA to probe the large-scale mass power spectrum;in practice,this will require thousands of well-measured SNe Ia at redshifts z>∼0.5spread over hundreds of square degrees.This may be possible with the Next Generation Space Telescope.The results shown here can be compared to those of Babul&Lee(1991).While they considered only the Einstein-de SitterΩm,0=1case,we have presented results for arbitrary Ωm andΛ.Quantitatively,their‘DP’model for the power spectrum is quite similar to that used here,but it overestimated the rms amplificationσA because it did not include the constraint from galaxy pairwise velocities on small scales.They also presented results for the Ω=1CDM model with bias factor b≃2.5;this normalization,which reflected earlier,lower estimates of the small-scale pairwise velocity dispersion,is now known to be unacceptably low and therefore substantially underestimatesσA.Thus,while their results bracket those here,the estimates in Figs.1and2should be more accurate.Afinal issue of concern for these surveys is amplification bias.A fraction of the SNe in a magnitude-limited survey are strongly amplified(δA≫σA)by foreground mass concentra-tions very close to the line of sight;this would cause large systematic errors in the estimate of q0.However,the lensing galaxy or cluster responsible could generally be seen and such events removed from the sample.Even if the lenses are too faint to be detected,the probability for such strong lensing events at moderate redshift,z s<∼1,is known to be very small,based on the low incidence of multiply imaged QSOs.While the optical depthτfor significant amplification by foreground galaxies(e.g.,δA>∼0.1)is much higher than that for multiple imaging,it is still quite low.For example,forΩm,0=1and assuming isothermal galaxy halos extend to r>∼50h−1kpc,integration over the galaxy luminosity function with the Faber-Jackson relation givesτ(δA>0.1,z s=1)≃6.5×10−3for amplification by individual foreground galaxies;for a non-zero cosmological constant satisfyingΩΛ=1−Ωm<0.8,τ(>0.1,1)<0.02.The result of these near encounters is a very small non-Gaussian tail in the amplification distribution at largeδA.On the other hand,if a substantial fraction of the cosmic density is in compact objects,the high amplification tail can be much more significant(Schneider&Wagoner1987,Linder,Schneider,&Wagoner1988,Rauch1991).Ifhigh amplification(>∼1mag)events are not soon found in the high-redshift SN Ia searches, one will be able to constrain the contribution toΩfrom objects of mass>∼10−3M⊙.For completeness,I note that weak lensing does not affect the shape of SN Ia lightcurves: for a source at redshift z s,the fall-offfrom the peak is given by the usual time dilation factor,∆t=∆t i(1+z s),where∆t i is the fall-offtimescale in the SN rest frame.Note added:After this work was accepted for publication,two recent numerical efforts have clarified the weak lensing effects of large-scale structure(Wambsganss,etal.1996, D.E.Holz and R.M.Wald,to be published).Using ray-shooting techniques through N-body and phenomenologically constructed universes,it has been directly confirmed that the meanflux from a distant standard candle is that given by the standard FRW luminosity distance.However,the distribution of the amplification is not symmetric about this mean. The majority of lines of sight pass through regions underdense compared to the mean, leading to modest de-amplification,while a smaller number of rays pass near dense mass concentrations and suffer substantial amplification.Thus,for a survey with afinite number of sources,there can be a small bias in the results for q0,but the effect is very small at the current redshifts(z<∼0.6)probed by the SN Ia surveys.I thank D.Holz,A.Olinto,S.Perlmutter,U.Seljak,J.Silk,A.Stebbins,and R.Wald for conversations,and the Institute for Nuclear and Particle Astrophysics(LBL)and the Center for Particle Astrophysics(UC Berkeley)for hospitality while this work was being completed.This research was supported in part by the DOE and by NASA grant NAG5-2788at Fermilab.REFERENCESAlcock,C.&Anderson,N.1985,ApJ,291,L29Alcock,C.&Anderson,N.1986,ApJ,302,43Babul,A.&Lee,M.H.1991,MNRAS,250,407Bar-kana,R.1995,ApJ,to appearBaugh,C.&Gaztanaga,E.1996,preprint,astro-ph/9601085Bean,A.J.,etal.1983,MNRAS,205,605Blandford,R.D.,Saust,A.B.,Brainerd,T.G.,&Villumsen,J.1991,MNRAS,251,600Branch,D.,Nugent,P.,&Fisher,A.1996,in“Thermonuclear Supernovae”eds.Canal,R., Ruiz-Lapuente,P.,&Isern,J.(Dordrecht,Kluwer Academic Press),astro-ph/9601006 Colin,P.,Carlberg,R.,&Couchman,H.1996,preprint astro-ph/9604071.Davis,M.&Peebles,P.J.E.1983,ApJ,267,465Dyer,C.C.&Roeder,R.C.1972,ApJ,172,L115Frieman,J.,Harari,D.,&Surpi,G.1994,Phys.Rev.D,50,4895Goobar,A.G.&Perlmutter,S.1995,ApJ,450,14Guzzo,L.,Fisher,K.B.,Strauss,M.S.,Giovanelli,R.,&Haynes,M.P.1995,in Astroph.Lett.&Communications,Proc.of3rd Italian Cosmology Meeting,astro-ph/9503114 Gunn,J.E.1967,ApJ,150,737Hamilton,A.J.S.,Kumar,P.,Lu,E.,&Matthews,A.1991,ApJ,374,L1Hamuy,M.,Phillips,M.M.,Maza,J.,Suntzeff,N.B.,Schommer,R.,&Aviles,R.1995, AJ,109,1Hoeflich,P.,Khokhlov,A.,Wheeler,J.C.,Nomoto,K.,&Thielemann,F.K.1996,in “Thermonuclear Supernovae”eds.Canal,R.,Ruiz-Lapuente,P.,&Isern,J.(Dor-drecht,Kluwer Academic Press),astro-ph/9602017Jain,B.,Mo,H.J.,&White,S.D.M.1995,MNRAS,276,L25Jaroszynski,M.,Park,C.,Paczynski,B.,&Gott,J.R.1990,ApJ,365,22Kaiser,N.1992,ApJ,388,272Kantowski,R.1969,ApJ,166,89Kantowski,R.,Vaughan,T.,&Branch,D.1995,ApJ,447,35Linder,E.,Schneider,P.,&Wagoner,R.1988,ApJ,324,786Livne,E.&Arnett,D.1995,ApJ,452,62Marzke,R.,Geller,M.,da Costa,L.,&Huchra,J.1995,AJ,110,477Mattig,W.1958,Astron.Nachr.,284,109McClelland,J.&Silk,J.1977,ApJ,217,331Nugent,P.,Phillips,M.,Baron,E.,Branch,D.,&Hauschildt,P.1995,ApJ,455,147 Peacock,J.A.&Dodds,S.J.1994,MNRAS,267,1020Peacock,J.A.&Dodds,S.J.1996,preprint,astro-ph/9603031Peebles,P.J.E.1974,A&A,32,1974Peebles,P.J.E.1980,The Large-Scale Structure of the Universe,(Princeton:Princeton University Press)Peebles,P.J.E.1993,Principles of Physical Cosmology,(Princeton:Princeton University Press)Perlmutter,S.,Pennypacker,C.,Goldhaber,G.,Goobar,A.etal.1995,ApJ,440,L41 Perlmutter,S.,etal.1996,in“Thermonuclear Supernovae”eds.Canal,R.,Ruiz-Lapuente, P.,&Isern,J.(Dordrecht,Kluwer Academic Press)Pyne,T.&Birkinshaw,M.1996,ApJ,458,46Rauch,K.1991,ApJ,374,83Riess,A.G.,Press,W.H.,&Kirshner,R.P.1995,ApJ,438,17Sasaki,M.1993,Prog.Theor.Phys.,90,753Schmidt,B.,etal.1995,IAU Circular No.6160.Seljak,U.1994,ApJ,436,509Seljak,U.1996,ApJ,463,1Sheth,R.&Jain,B.1996,preprint,astro-ph/9602103Schneider,P.&Wagoner,R.1987,ApJ,314,154Somerville,R.,Davis,M.,&Primack,J.1996,preprint astro-ph/9604041.Somerville,R.,Primack,J.,&Nolthenius,R.,preprint astro-ph/9604051.Tinsley,B.M.1972,ApJ,178,319Viana,P.&Liddle,A.1995,preprint astro-ph/9511007.Villumsen,J.,preprint,astro-ph/9503011Wambsganss,J.,Cen,R.,Hu,G.,&Ostriker,J.1996,preprint astro-ph/9607084. Watanabe,K.,Sasaki,M.,&Tomita,K.1992,ApJ,394,38Weinberg,S.1976,ApJ,208,L1White,S.,Efstathiou,G.,&Frenk,C.1993,MNRAS,262,1023.Fig.1.—Fig.1.Dispersion influx(in magnitudes)for a source at redshift z,forΩm,0=0.1, 0.3,1.0.Solid curves assume stable clustering,ǫ=1.2.ForΩm,0=1,dashed curve corresponds to linear theory evolution,ǫ=2,and dotted curve corresponds to‘painted on’structure(ǫ=0).Lower curves markedΩm,0=0.1,0.3are open models;curve marked ‘Λ’is aflat universe withΩΛ=0.7.The small-scale power spectrum has been cut offat k c=1/(100h−1kpc);the dispersion scales asσ∝k0.4c.Fig. 2.—Fig. 2.Flux dispersion vs.redshift for models with the same cosmological parameters as in Fig.1,but for the CDM model of structure formation instead of the phenomenological power-law model.The models are standard CDMΩm,0=1,h=0.5 (solid),aflatΛCDM model withΩΛ=0.7,h=0.7(dotted),and an open CDM model with Ωm,0=0.3,h=0.7(dashed).。
transducer needs for macrosonics中文翻译
Transducer Needs For Macrosonics强声换能器原文作者:J.A.Gallego-Jurez逸水宇翻译强声学是用于高强度的声波能量在均匀介质中产生恒定声场的术语。
强声学最实际的应用工作是在超声波频段,一般在20到100千赫兹的范围内,声强约0.1W/cm2到几W/cm2。
强声学主要应用是热,空化,搅拌,流,界面不稳定性,摩擦,扩散和机械断裂。
用于强声学的换能器,工作频率从10到100 kHz的,电源容量从几百瓦到几千瓦,振动幅度也比较大。
目前,大多数强声换能器都是压电式结构和夹层布置(即夹心式换能器)。
强声换能器要想在在工业过程中成功应用,主要问题是能否获得均匀的振幅分布和能否改进设计与计算方法。
本文主要回顾用于强声学的基本压电式换能器,并讨论了不同应用的具体需求。
4.1引言声波的主要应用分别是处理高强度和低强度声能两方面。
强声学是通过高强声能在均与介质产生恒定声场。
关于强声学的工作大部分是在超声频段进行的,,频率范围一般从20kHz到100kKz之间,声强一般从0.1W/cm2 到几KW/cm2 。
使用超声能够在微小位移和小的质点振速情况下产生很大的加速度。
高强度声波和超声波产生的结果主要归因于有限振幅变化和辐射压力,这些基本现象导致了一系列效应,其中有热,空化,搅拌,流,界面不稳定性,摩擦,扩散和机械断裂。
这些效应可以用来增强很多过程,比如加工、焊接、金属成型、固体中粉末的致密;清洗、乳化、雾化液体;加速化学反应、脱气、去泡、干燥、气溶胶集聚等等。
上述很多强声学的过程在工业中已经被采用,但很多过程还停在实验阶段,并没有商业化。
换能器和发电技术限制了这些应用在这个方向的发展。
目前,大部分大功率声学换能器和超声换能器都是基于经典的夹层式换能器。
能否很好的应用,主要考虑的方面是提高功率和效率,改进设计和算法,扩大工作区域,拓展带宽。
本文主要回顾用于强声学的基本换能器,并讨论了不同应用的具体需求。
AS1系列指南手册说明书
AS1 SERIESINSTRUCTION MANUALCONTROLSOUT LED on receiver (RX)The yellow LED ON indicates the presence of the object into controlled area.POWER ON LED on receiver (RX)The green LED ON indicates the optimal device functioning.The fast blinking of the green LED indicates a critical device alignment. Please refer to “DIAGNOSTICS” paragraph for other indications.POWER ON LED on emitter (TX)The green LED ON indicates the correct device functioning.Please refer to “DIAGNOSTICS” paragraph for other indications.INSTALLATION MODEGeneral information on device positioning• Align the two receiver (RX) and emitter (TX) units, verifying that their distance is inside the device operating distance, in a parallel manner placing the sensitive sides one in front of the other, with the connectors oriented on the same side. The critical alignmentof the unit will be signalled by the fast blinking of the green receiver LED.• Mount the two receiver and emitter units on rigid supports which are not subject to strong vibrations, using specific fixing brackets and /or the holes present on the device lids.Precautions to respect when choosing and installing the device• Choose the device according to the minimum object to detect and the maximum controlled area requested.• In agro-industrial applications, the compatibility of light grid housing material and any chemical agents used in the production process has to be verified with the assistance of the DATASENSOR technical sales support department.• The AREA scan TM light grids are NOT safety devices, and so MUST NOT be used in the safety control of the machines where installed. Moreover the following points have to be considered:- Avoid installation near very intense and / or blinking light sources, in particular near to the receiver unit.- The presence of strong electromagnetic disturbances can jeopardise the correct functioning of the device. This condition has to be carefully evaluated and checked with the DATASENSOR technical sales support department;- The presence of smoke, fog and suspended dust in the working environment can reduce the device’s operating distance.- Strong and frequent temperature variations, with very low peak temperatures, can generate a thin condensation layer on the optics surfaces, compromising the correct functioning of the device.- Reflecting surfaces near the luminous beam of the AREA scan TM device (above, under or lateral) can cause passive reflections able to compromise object detection inside the controlled area.- if different devices have to be installed in adjacent areas, the emitter of one unit must not interfere with the receiver of the other unit.General information relative to object detection and measurement• For a correct object detection and / or measurement, the object has to pass completely through the controlled area. Testing the correct detection before beginning the process is suggested. The resolution is non uniform inside the entire controlled area. For example the resolution in the AS1-HR model depends on the scanning program chosen.CONNECTIONSAS1-HR AS1-SR AS1-HR AS1-SR1 – brown: +24 VDC +24 VDC 1 – brown: +24 VDC+24 VDC2 – white:SEL_RXNot used2 – white:SEL_TX Not used3 – blue: 0 V0 V3 – blue: 0 V 0 V4 – black: Switching output Switching output 4 – black:SYNC SYNCRECEIVER (RX):M12 5-pole connector5 – grey: SYNC SYNCEMITTER (TX):M12 4-pole connectorShielded cables are not foreseen in the standard connection.Ground connection of the two units is not necessary. If desired, this connection can be obtained replacing the screw provided in the packaging with the one indicated in the drawing, which blocks the lid of the connector side of each unit.The respect of the connection shown in the drawing, is necessary if ground connection of the entire system is requested.FUNCTIONING AND PERFORMANCESThe beam interruption due to the passage of an object inside the controlled area causes the closing of the switching output and the variation of the device analogue output signal. Small objects can be detected (reaching dimensions of only 0.5 mm) and with a reduced surface area.In particular:The switching output is always activated when at least one beam is obscured. The status variation is signalled by the yellow receiver LED that turns on.The device presents inputs (both on TX and Rx units) that consent the selection of the resolution and response time.Low response times correspond to worser resolutions and viceversa.The device does not require calibration; periodical checks of the resolution and / or measurement are however suggested.The blinking of the green receiver LED (stability function ) signals the critical alignment of the units and / or the functioning outside or near the maximum operating distance. In optimal conditions the LED remains on continuously.The two units are synchronised via cable (SYNC wire).Precarious connections or induced disturbances on the synchronism line can cause device malfunctioning or a temporary blocking.DIAGNOSTICSRECEIVER UNIT:Segnal StatusCauseActionONSwitching output.Presence of the object in the controlled area.OUT LEDOFFSwitching output.Controlled area free of objects.ONOptimal functioning. Fast blinkingCritical alignment of the unit or/and functioning closed to maximum operating distance.Slow blinkingWrong connections and/or malfunctioning.- Verify the output connections and any short-circuits.- Switch OFF and switch ON the device.- If condition persists, contact Datasensor.POWER ONLEDOFFDevice is not powered.- Verify the connections.- If condition persists, contact Datasensor.EMITTER UNIT:POWER ONLEDPROG. N°SEL_RXSEL_TXRESOLUTIONRESPONSE TIME (msec )1 0V or FLOAT 0V or FLOAT LOW 2.752 0V or FLOAT +24Vdc M/L3 3 +24Vdc 0V or FLOAT M/H 7.754 +24Vdc +24Vdc HIGH 8Resolution figure : the box indicated the area with highest resolutionPROGRAM 1PROGRAM 2PROGRAM 3 - 4Ideal for fast detection on entire controlled area, with low resolution.Ideal for fast detection on entire contolled area, with constant resolution onlimited area.Ideal for detection with high resolution on entirecontrolled area.DIMENSIONS 800-262-4332-------------------------------------------------------------------------------------------------------------------------------------------- DECLARATION OF CONFORMITYIDEC and DATASENSOR jointly declare under their sole responsibility that these products conform to the 2004/108/CE, 2006/95/CE Directives, and successive amendments.-------------------------------------------------------------------------------------------------------------------------------------------- IDEC and DATASENSOR reserve the right to make modifications and improvements without prior notification.826003450 Rev.00。
Analysis of compliance between the cutting tool and the workpiece on
E-mail addresses: vela@ciateq.mx (L. Vela-Martı´ nez), ´ uregui-Correa), eduardo.ruateq.mx (J.C. Ja (E. Rubio-Cerda), gherrera@uaq.mx (G. Herrera-Ruiz), ´ n). concyteq@.mx (A. Lozano-Guzma 0890-6955/$ - see front matter r 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.ijmachtools.2007.10.016
ARTICLE IN PRESS
´nez et al. / International Journal of Machine Tools & Manufacture 48 (2008) 1054–1062 L. Vela-Martı 1055
Nomenclature € 1 ðtÞ, x _ 1 ðtÞ, x1 ðtÞ acceleration, velocity and displacex ment of the cutting tool in the present time € 2 ðtÞ, x _ 2 ðtÞ, x2 ðtÞ acceleration, velocity and displacex ment of the workpiece in the current time z1, on1, m1 damping ratio; natural frequency (Hz), and modal mass (kg) of the cutting tool z2, on2, m2 damping ratio; natural frequency (Hz), and modal mass (kg) of the workpiece Fx(t) force in feed direction (N) Kc, Kf cutting coefficients (N/m2) b depth of cut (m) f0 nominal feed (rpm) x1 (tÀt), x2 (tÀt) displacement of the cutting tool and the workpiece in the previous time f(t) dynamic feed in terms of relative motion Fc(t), Ff(t) cutting and feed forces (N) t time delay (s) [I] unit matrix [C] damping coefficients matrix [K] stiffness coefficients matrix {f(t)} dynamic feed vector ff^g static feed vector {F(t)} dynamic force vector € ðtÞg, fx _ ðtÞg, fxðtÞg acceleration, velocity and displacefx ment vectors ^ b specific depth of cut [A] coupling matrix {x(t)}, {xt(t)} displacement vector in present time and time delay, respectively
中英文力学对准
一般力学类:分析力学 analytical mechanics拉格朗日乘子 Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号 Lagrange bracket循环坐标 cyclic coordinate循环积分 cyclic integral哈密顿[量] Hamiltonian哈密顿函数 Hamiltonian function正则方程 canonical equation正则摄动 canonical perturbation正则变换 canonical transformation正则变量 canonical variable哈密顿原理 Hamilton principle作用量积分 action integral哈密顿-雅可比方程 Hamilton-Jacobi equation作用--角度变量 action-angle variables阿佩尔方程 Appell equation劳斯方程 Routh equation拉格朗日函数 Lagrangian function诺特定理 Noether theorem泊松括号 poisson bracket边界积分法 boundary integral method并矢 dyad运动稳定性 stability of motion轨道稳定性 orbital stability李雅普诺夫函数 Lyapunov function渐近稳定性 asymptotic stability结构稳定性 structural stability久期不稳定性 secular instability弗洛凯定理 Floquet theorem倾覆力矩 capsizing moment自由振动 free vibration固有振动 natural vibration暂态 transient state环境振动 ambient vibration反共振 anti-resonance衰减 attenuation库仑阻尼 Coulomb damping同相分量 in-phase component非同相分量 out-of -phase component超调量 overshoot 参量[激励]振动 parametric vibration模糊振动 fuzzy vibration临界转速 critical speed of rotation阻尼器 damper半峰宽度 half-peak width集总参量系统 lumped parameter system 相平面法 phase plane method相轨迹 phase trajectory等倾线法 isocline method跳跃现象 jump phenomenon负阻尼 negative damping达芬方程 Duffing equation希尔方程 Hill equationKBM方法 KBM method, Krylov-Bogoliu- bov-Mitropol'skii method马蒂厄方程 Mathieu equation平均法 averaging method组合音调 combination tone解谐 detuning耗散函数 dissipative function硬激励 hard excitation硬弹簧 hard spring, hardening spring谐波平衡法harmonic balance method久期项 secular term自激振动 self-excited vibration分界线 separatrix亚谐波 subharmonic软弹簧 soft spring ,softening spring软激励 soft excitation邓克利公式 Dunkerley formula瑞利定理 Rayleigh theorem分布参量系统 distributed parameter system优势频率 dominant frequency模态分析 modal analysis固有模态natural mode of vibration同步 synchronization超谐波 ultraharmonic范德波尔方程 van der pol equation频谱 frequency spectrum基频 fundamental frequencyWKB方法 WKB methodWKB方法Wentzel-Kramers-Brillouin method缓冲器 buffer风激振动 aeolian vibration嗡鸣 buzz倒谱cepstrum颤动 chatter蛇行 hunting阻抗匹配 impedance matching机械导纳 mechanical admittance机械效率 mechanical efficiency机械阻抗 mechanical impedance随机振动 stochastic vibration, random vibration隔振 vibration isolation减振 vibration reduction应力过冲 stress overshoot喘振surge摆振shimmy起伏运动 phugoid motion起伏振荡 phugoid oscillation驰振 galloping陀螺动力学 gyrodynamics陀螺摆 gyropendulum陀螺平台 gyroplatform陀螺力矩 gyroscoopic torque陀螺稳定器 gyrostabilizer陀螺体 gyrostat惯性导航 inertial guidance 姿态角 attitude angle方位角 azimuthal angle舒勒周期 Schuler period机器人动力学 robot dynamics多体系统 multibody system多刚体系统 multi-rigid-body system机动性 maneuverability凯恩方法Kane method转子[系统]动力学 rotor dynamics转子[一支承一基础]系统 rotor-support- foundation system静平衡 static balancing动平衡 dynamic balancing静不平衡 static unbalance动不平衡 dynamic unbalance现场平衡 field balancing不平衡 unbalance不平衡量 unbalance互耦力 cross force挠性转子 flexible rotor分频进动 fractional frequency precession半频进动half frequency precession油膜振荡 oil whip转子临界转速 rotor critical speed自动定心 self-alignment亚临界转速 subcritical speed涡动 whirl固体力学类:弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress 应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 Lame constants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk 楔wedge开尔文问题 Kelvin problem布西内斯克问题 Boussinesq problem艾里应力函数 Airy stress function克罗索夫--穆斯赫利什维利法 Kolosoff- Muskhelishvili method基尔霍夫假设 Kirchhoff hypothesis板 Plate矩形板 Rectangular plate圆板 Circular plate环板 Annular plate波纹板 Corrugated plate加劲板 Stiffened plate,reinforcedPlate中厚板 Plate of moderate thickness弯[曲]应力函数 Stress function of bending 壳Shell扁壳 Shallow shell旋转壳 Revolutionary shell球壳 Spherical shell[圆]柱壳 Cylindrical shell锥壳Conical shell环壳 Toroidal shell封闭壳 Closed shell波纹壳 Corrugated shell扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function半逆解法 semi-inverse method瑞利--里茨法 Rayleigh-Ritz method松弛法 Relaxation method莱维法 Levy method松弛 Relaxation量纲分析 Dimensional analysis自相似[性] self-similarity影响面 Influence surface接触应力 Contact stress赫兹理论 Hertz theory协调接触 Conforming contact滑动接触 Sliding contact滚动接触 Rolling contact压入 Indentation各向异性弹性 Anisotropic elasticity颗粒材料 Granular material散体力学 Mechanics of granular media热弹性 Thermoelasticity超弹性 Hyperelasticity粘弹性 Viscoelasticity对应原理 Correspondence principle褶皱Wrinkle塑性全量理论 Total theory of plasticity滑动 Sliding微滑Microslip粗糙度 Roughness非线性弹性 Nonlinear elasticity大挠度 Large deflection突弹跳变 snap-through有限变形 Finite deformation 格林应变 Green strain阿尔曼西应变 Almansi strain弹性动力学 Dynamic elasticity运动方程 Equation of motion准静态的Quasi-static气动弹性 Aeroelasticity水弹性 Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波 Cylindrical wave水平剪切波 Horizontal shear wave竖直剪切波Vertical shear wave体波 body wave无旋波 Irrotational wave畸变波 Distortion wave膨胀波 Dilatation wave瑞利波 Rayleigh wave等容波 Equivoluminal wave勒夫波Love wave界面波 Interfacial wave边缘效应 edge effect塑性力学 Plasticity可成形性 Formability金属成形 Metal forming耐撞性 Crashworthiness结构抗撞毁性 Structural crashworthiness 拉拔Drawing破坏机构 Collapse mechanism回弹 Springback挤压 Extrusion冲压 Stamping穿透Perforation层裂Spalling塑性理论 Theory of plasticity安定[性]理论 Shake-down theory运动安定定理 kinematic shake-down theorem静力安定定理 Static shake-down theorem 率相关理论 rate dependent theorem载荷因子load factor加载准则 Loading criterion加载函数 Loading function加载面 Loading surface塑性加载 Plastic loading塑性加载波 Plastic loading wave简单加载 Simple loading比例加载 Proportional loading卸载 Unloading卸载波 Unloading wave冲击载荷 Impulsive load阶跃载荷step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 instability in tension加速度波 acceleration wave本构方程 constitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态hydrostatic state of stress对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate sensitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment 累积塑性应变 accumulated plastic strain 永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic Material刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain应力球张量spherical tensor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending Moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic torsion粘塑性 Viscoplasticity非弹性 Inelasticity理想弹塑性材料 elastic-perfectly plastic Material极限分析 limit analysis极限设计 limit design极限面limit surface上限定理 upper bound theorem上屈服点upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section 沙堆比拟 sand heap analogy屈服Yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic response塑性波 plastic wave运动容许场 kinematically admissible Field静力容许场 statically admissibleField流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory ofPlasticity米泽斯屈服准则 Mises yield criterion普朗特--罗伊斯关系 prandtl- Reuss relation特雷斯卡屈服准则 Tresca yield criterion洛德应力参数 Lode stress parameter莱维--米泽斯关系 Levy-Mises relation亨基应力方程 Hencky stress equation赫艾--韦斯特加德应力空间Haigh-Westergaard stress space洛德应变参数 Lode strain parameter德鲁克公设 Drucker postulate盖林格速度方程Geiringer velocity Equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 Arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶Dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy机动分析 kinematic analysis 结点法 method of joints截面法 method of sections结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 Betti theorem高斯--若尔当消去法 Gauss-Jordan elimination Method屈曲模态 buckling mode复合材料力学 mechanics of composites 复合材料composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料foamed composite颗粒复合材料 particulate composite层板Laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片Ply多胞固体 cellular solid膨胀 Expansion压实Debulk劣化 Degradation脱层 Delamination脱粘 Debond纤维应力 fiber stress层应力 ply stress层应变ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor强度应力比 strength -stress ratio横向剪切模量 transverse shear modulus 横观各向同性 transverse isotropy正交各向异 Orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 Densification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 Tsai-W u failure criterion 达格代尔模型 Dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture Mechanics格里菲思理论 Griffith theory线弹性断裂力学 linear elastic fracturemechanics, LEFM弹塑性断裂力学 elastic-plastic fracture mecha-nics, EPFM断裂 Fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture穿晶断裂 trans-granular fracture裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 Precrack 短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角crack opening angle,COA裂纹张开位移 crack opening displacement, COD裂纹阻力 crack resistance裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle,CTOA裂尖张开位移 crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularity Field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth 裂纹[扩展]减速 crack retardation止裂crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 Tearing撕裂模量 tearing modulus断裂准则 fracture criterionJ积分 J-integralJ阻力曲线 J-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorHRR场 Hutchinson-Rice-Rosengren Field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区heat affected zone, HAZ延脆转变温度 brittle-ductile transitiontemperature剪切带shear band剪切唇shear lip无损检测 non-destructive inspection双边缺口试件double edge notchedspecimen, DEN specimen单边缺口试件 single edge notchedspecimen, SEN specimen三点弯曲试件 three point bendingspecimen, TPB specimen中心裂纹拉伸试件 center cracked tension specimen, CCT specimen中心裂纹板试件 center cracked panelspecimen, CCP specimen紧凑拉伸试件 compact tension specimen, CT specimen大范围屈服large scale yielding小范围攻屈服 small scale yielding韦布尔分布 Weibull distribution帕里斯公式 paris formula空穴化 Cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic riskassessment, PRA损伤力学 damage mechanics损伤Damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening 损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳Fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片crack gage裂纹扩展 crack growth, crack Propagation裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stressAnalysis工作[应变]片 active[strain] gage基底材料 backing material应力计stress gage零[点]飘移zero shift, zero drift应变测量 strain measurement应变计strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage 直角应变花 rectangular rosette引伸仪 Extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor 横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage 平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计 bonded wire gage 桥路平衡 bridge balancing电容应变计 capacitance strain gage 补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage半导体应变计 semiconductor strain Gage集流器slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage 光[测]力学 Photomechanics光弹性 Photoelasticity光塑性 Photoplasticity杨氏条纹 Young fringe双折射效应 birefrigent effect等位移线 contour of equalDisplacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 Isochromatic等倾线 Isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 Isostatic亮条纹 light fringe 光程差optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating Method光弹性夹片法 photoelastic sandwich Method动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 Polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent Effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity 应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent Effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope 实时全息干涉法 real-time holographicinterfero - metry网格法 grid method全息光弹性法 holo-photoelasticity全息图Hologram全息照相 Holograph全息干涉法 holographic interferometry 全息云纹法 holographic moire technique 全息术 Holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑Speckle错位散斑干涉法 speckle-shearinginterferometry, shearography散斑图Specklegram白光散斑法white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation ofCoordinates计算结构力学 computational structuralmecha-nics加权残量法weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 Ritz method广义变分原理 generalized variational Principle最小二乘法 least square method胡[海昌]一鹫津原理 Hu-Washizu principle 赫林格-赖斯纳原理 Hellinger-Reissner Principle修正变分原理 modified variational Principle约束变分原理 constrained variational Principle混合法 mixed method杂交法 hybrid method边界解法boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 Discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable 节点 node, nodal point[单]元 Element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element拉格朗日元 Lagrange element拉格朗日族 Lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 Rayleigh damping刚度矩阵的组集 assembly of stiffnessMatrices载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices 单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation形状函数 shape function试探函数 trial function检验函数test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modeP收敛 p-convergenceH收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode 节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化minimization of band width波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法determinant search method逐步法 step-by-step method纽马克法Newmark威尔逊法 Wilson拟牛顿法 quasi-Newton method牛顿-拉弗森法 Newton-Raphson method 增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法mode superposition method平衡迭代 equilibrium iteration子结构 Substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure流体动力学类:流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics 液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowskicondition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid 质量守恒 conservation of mass动量守恒 conservation of momentum 能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线stream line流面 stream surface流管stream tube迹线path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation 偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow 浮体 floating body定倾中心metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量added mass ,associated mass收缩 contraction镜象法 image method无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源source汇sink速度[水]头 velocity head拐角流 corner flow空泡流cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics 高速空气动力学 high-speed aerodynamics 气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow楔流wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速stall脱体激波detached shock wave 波阻wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition状态方程 equation of state量热状态方程 caloric equation of state完全气体 perfect gas拉瓦尔喷管 Laval nozzle马赫角 Mach angle马赫锥 Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数 local Mach number冲击波 shock wave激波 shock wave正激波normal shock wave斜激波oblique shock wave头波 bow wave附体激波 attached shock wave激波阵面 shock front激波层 shock layer压缩波 compression wave反射 reflection折射 refraction散射scattering衍射 diffraction绕射 diffraction出口压力 exit pressure超压[强] over pressure反压 back pressure爆炸 explosion爆轰 detonation缓燃 deflagration水动力学 hydrodynamics液体动力学 hydrodynamics泰勒不稳定性 Taylor instability 盖斯特纳波 Gerstner wave斯托克斯波 Stokes wave瑞利数 Rayleigh number自由面 free surface波速 wave speed, wave velocity 波高 wave height波列wave train波群 wave group波能wave energy表面波 surface wave表面张力波 capillary wave规则波 regular wave不规则波 irregular wave浅水波 shallow water wave深水波deep water wave重力波 gravity wave椭圆余弦波 cnoidal wave潮波tidal wave涌波surge wave破碎波 breaking wave船波ship wave非线性波 nonlinear wave孤立子 soliton水动[力]噪声 hydrodynamic noise 水击 water hammer空化 cavitation空化数 cavitation number 空蚀 cavitation damage超空化流 supercavitating flow水翼 hydrofoil水力学 hydraulics洪水波 flood wave涟漪ripple消能 energy dissipation海洋水动力学 marine hydrodynamics谢齐公式 Chezy formula欧拉数 Euler number弗劳德数 Froude number水力半径 hydraulic radius水力坡度 hvdraulic slope高度水头 elevating head水头损失 head loss水位 water level水跃 hydraulic jump含水层 aquifer排水 drainage排放量 discharge壅水曲线back water curve压[强水]头 pressure head过水断面 flow cross-section明槽流open channel flow孔流 orifice flow无压流 free surface flow有压流 pressure flow缓流 subcritical flow急流 supercritical flow渐变流gradually varied flow急变流 rapidly varied flow临界流 critical flow异重流density current, gravity flow堰流weir flow掺气流 aerated flow含沙流 sediment-laden stream降水曲线 dropdown curve沉积物 sediment, deposit沉[降堆]积 sedimentation, deposition沉降速度 settling velocity流动稳定性 flow stability不稳定性 instability奥尔-索末菲方程 Orr-Sommerfeld equation 涡量方程 vorticity equation泊肃叶流 Poiseuille flow奥辛流 Oseen flow剪切流 shear flow粘性流[动] viscous flow层流 laminar flow分离流 separated flow二次流 secondary flow近场流near field flow远场流 far field flow滞止流 stagnation flow尾流 wake [flow]回流 back flow反流 reverse flow射流 jet自由射流 free jet管流pipe flow, tube flow内流 internal flow拟序结构 coherent structure 猝发过程 bursting process表观粘度 apparent viscosity 运动粘性 kinematic viscosity 动力粘性 dynamic viscosity 泊 poise厘泊 centipoise厘沱 centistoke剪切层 shear layer次层 sublayer流动分离 flow separation层流分离 laminar separation 湍流分离 turbulent separation 分离点 separation point附着点 attachment point再附 reattachment再层流化 relaminarization起动涡starting vortex驻涡 standing vortex涡旋破碎 vortex breakdown 涡旋脱落 vortex shedding压[力]降 pressure drop压差阻力 pressure drag压力能 pressure energy型阻 profile drag滑移速度 slip velocity无滑移条件 non-slip condition 壁剪应力 skin friction, frictional drag壁剪切速度 friction velocity磨擦损失 friction loss磨擦因子 friction factor耗散 dissipation滞后lag相似性解 similar solution局域相似 local similarity气体润滑 gas lubrication液体动力润滑 hydrodynamic lubrication 浆体 slurry泰勒数 Taylor number纳维-斯托克斯方程 Navier-Stokes equation 牛顿流体 Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层 boundary layer附面层 boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度 displacement thickness动量厚度 momentum thickness能量厚度 energy thickness焓厚度 enthalpy thickness注入 injection吸出suction泰勒涡 Taylor vortex速度亏损律 velocity defect law形状因子 shape factor测速法 anemometry粘度测定法 visco[si] metry流动显示 flow visualization油烟显示 oil smoke visualization孔板流量计 orifice meter频率响应 frequency response油膜显示oil film visualization阴影法 shadow method纹影法 schlieren method烟丝法smoke wire method丝线法 tuft method。
The infrared spectrum of the Be star gamma Cassiopeiae
a r X i v :a s t r o -p h /9911470v 1 25 N o v 1999A&A manuscript no.(will be inserted by hand later)ASTRONOMYANDASTROPHY SICS2S.Hony et al.:The infrared spectrum of the Be starγCassiopeiae In this study we present a preliminary analysis of theISO-SWS spectrum of one of the brightest and best stud-ied Be stars in the sky,γCas(B0.5IVe).We will showthat the H i emission line spectrum ofγCas is not wellrepresented by Menzel case B recombination line theory.Many linefluxes correlate with the local continuum andare independent of the intrinsic line strength(Einstein Acoefficient).The observed linefluxes and widths suggestthat these lines are formed in an inner region with well-determined size,and that only the intrinsically strongest lines have a contribution from outer layers.This paper is organized as follows.In Sect.2we briefly discuss the observations and data reduction.Section3discusses the continuum and Sect.4deals with the line spectrum.Sec-tion5discusses some implications of our measurements for the structure of the disc ofγCas.2.Observations and data analysisThe Be starγCas was observed with the SWS on board ISO on July22nd,1996,as part of the SWS guaranteed time programme BESTARS.A full spectral scan(2.4-45µm)usingAstronomical Observation Template(AOT)no. 1,speed4(De Graauw et al.1996)was obtained,while also several AOT02line scans were taken.The observa-tions were reduced using the SWS Interactive Analysis (IA3)software package,with calibrationfiles equivalent to pipeline version7.0.Further processing consisted of bad data removal and rebinning on an equidistant wavelength grid.Theflux levels are accurate to within5per cent for the wavelengths shortward of7µm.The observations be-tween7and12µm(band2C)suffer from memory effects; this has little influence on the measured line properties but does increase the uncertainty of the continuumflux level to15per cent.At even longer wavelengths the signal to noise ratio decreases dramatically and only the strongest lines can be measured with reasonable accuracy.Most of the emission lines are partially resolved with a ratio of FWHM to the FWHM of the instrumental profile between 1.4-3.5.Only6of the emission lines are considered unre-solved having this ratio below1.4.Since the SWS instru-mental profile is approximately Gaussian(Valentijn et al. 1996)and the observed lines are wellfitted by Gaussians, we estimate the original line width from:w obs2=w org2+w inst2,(1) where w obs is the observed FWHM,w org is the original FWHM and w inst is the FWHM of the instrumental pro-file.The latter value varies with wavelength.To determine w inst,we use measured line widths of emission lines of planetary nebulae;NGC7027and NGC6302,observed in the same observing mode.No significant line profile vari-ations are observed.We show thefinal AOT01spectrum in Fig.1.Fig.2.Schematic representation of the method used to derive the temperature from the Humphreys jump.On the left the observedflux(drawn line)and the photo-spheric contribution(dotted line)are shown.on the right the normalized excessflux is shown.Also indicated is the wavelength(λ′)longward of the jump where the excess is equal to the excces at the jump.3.The continuum energy distributionThe continuum energy distribution ofγCas at IR wave-lengths is dominated by free-free and bound-free emission from the ionized part of the circumstellar gas(e.g.Poeck-ert&Marlborough1978;Waters et al.1987).The stel-lar contribution to the totalflux is about20per cent at 2.4µm,based on extrapolation of a Kurucz model atmo-spherefitted to the UV continuum(Telting et al.1993). The spectrum can be well represented by a single power-law,Sν∝να,withα=0.99±0.05.This spectral slope is slightly,but significantlyflatter,than that derived by Waters et al.(1987),based on IRAS broad-band photome-try taken in1983.We have used the simple isothermal disc model of Waters(1986)to estimate the radial density gra-dient in the disc,assuming a power-lawρ(r)=ρ0(r/R∗)−n, andfind n=2.8±0.1.The value ofρ0depends on the assumed opening angleθof the disc,as well as on the stel-lar radius and disc temperature.We use R∗=10R⊙and T disc=104K(see below).Analysis of the optical linear polarisation and interferometric imaging ofζTau(Wood et al.1997)suggests a half opening angle of2.5◦.We use a1◦half opening angle.The derived density at the stellar surface isρ0=3.5×10−11g cm−3;an emission measure EM=1.5×1061cm−3was found.There are some wavelength ranges that show a devi-ation from the power-law behavior of the continuum dis-cussed above.Near3.28µm the merging of the emissionS.Hony et al.:The infrared spectrum of the Be star γCassiopeiae3Fig.1.SWS AOT01speed 4spectrum of γCas between 2and 12µm.The spectrum is dominated by numerous emission lines from hydrogen.A few He lines are also observed.The inset shows the region aroud the Humphreys jump.The dashed line shows the jump in the continuum level due to the jump in bound −free opacity near 3.4µm.lines of the Humphreys series,with lower quantum level n =6,causes a jump.This Humphreys jump (seen in emission),which is similar to the Balmer jump at optical wavelengths,can be used to derive the average electron temperature of the emitting region.The difference in flux on both sides of the Humphreys jump is caused by a dis-continuity in bound-free (κff+bf )opacity of the gas in the disc.We write for the total continuum opacity.κff+bf ∝λ2×(1−e −ch/λkT )/(ch/λkT )×T −3/2×{g (λ,T )+b (λ,T )},(2)where g(λ,T)and b(λ,T)are the free-free and bound-free gaunt factors,respectively.b(λ,T)is a sensitive function of the temperature:the jump in b(λ,T)(and in flux)in-creases towards lower electron temperature.The change in g(λ,T)is negligible over the wavelength range of in-terest.The jump in b(λ,T)is thus a diagnostic of the temperature in the disc.We use the following method to determine the size of this jump:We define the normalized excess flux as Z λ−1=(F λ-F λ,∗)/F λ,∗,where F λ,∗is the stellar photospheric flux,see Fig.2.Z λ−1is normalized to the source function of the gas in the disc modulo aconstant since both the disc and the star radiate in the Rayleigh-Jeans limit in this wavelength regime and thus have the same wavelength dependence.On the blue side of the discontinuity b(λ,T)has a certain value,with a cor-responding value of κff+bf ,of τff+bf for each line of sight through the disc and thus a corresponding value of Z λ−1.Beyond the discontinuity there is a drop in b(λ,T),κff+bf ,τff+bf and Z λ−1.Since there is a wide range of τff+bf for different lines of sight Z λ−1is not a simple function of b(λ,T).However κff+bf steadily increases with wavelength,e.g.Eqn.2,and thus there is a wavelength (λ′)where the loss in b(λ,T)is compensated by the increase in λ.At λ′the κff+bf is equal to the previous value,so τff+bf and Z λ−1are also equal.We can determine λ′directly from the observations,e.g.Fig.2.Using λ′=3.470±0.005µm and the gaunt factors calculated by Waters &Lamers (1984)we find an electron temperature in the disc of 9500±1000K.This temper-ature would cause a weak but measurable jump at the Hansen-Strong series limit (near 4.5µm)but none is ob-served.However,we note that near this wavelength two strong H i lines are present that may mask an otherwise4S.Hony et al.:The infrared spectrum of the Be starγCassiopeiae detectable jump.The disc temperature agrees wellwith adensity-weighted temperature of10700K derived by Mil-lar&Marlborough(1998)from an energy balance calcula-tion using the Poeckert&Marlborough model for the discofγCas.Note that the inner regions of the disc may haveconsiderably higher temperatures,because this method isinsensitive to contributions of those parts of the highestdensity parts of the disc where the continuum is opticallythick.(see also Sect.4).A second region which deviatesfrom the power-law is near4.3µm.We cannotfind a rea-sonable identification for this spectral feature.The CO2stretch mode band is at4.27µm.However,the interstellarextinction towardsγCas is very low which implies thatwe must rule out this possibility.4.The emission linesThe entire SWS spectral region,but especially bands1and2(2.4-12µm),is dominated by strong and partiallyresolved emission lines.The vast majority of these linesare H i recombination lines.Wefind the series limit ofthe Humphreys and Hansen-Strong series,as well as thosefrom lower levels8,9and10.Several lines with lower lev-els above10were also identified.Wefind a few He i lines(notably at2.4861,2.5729,4.2960and4.0367µm).Noforbidden lines could be found,although several emissionfeatures are unidentified and could perhaps be attributedto forbidden lines.The strongest unidentified line is at2.8934µm,close to the2.8964[Ni ii]line.The lack offine-structure lines is consistent with the optical spectrum ofγCas.It is likely that the high density of the ionized gascauses collisional de-excitation of thefine-structure tran-sitions.This situation is markedly different for the hy-pergiant P Cygni,whose infrared spectrum is also domi-nated by H i recombination lines from circumstellar gas,but which also shows prominent emission from e.g.[Fe ii],[Ni ii]and[Si ii]in its ISO-SWS spectrum(Lamers et al.1996).We have measured the linefluxes with respect to boththe local continuum and the stellar photospheric contin-uum at line centre.The measured line properties are givenin Table1.In Fig.4we show the resulting curve of growthfor the emission lines,where we plot the equivalent widthEW divided by wavelength versus log X line.This lastquantity is proportional to the line optical depth(Zaalet al.1995).The observed linefluxes(Fig.3)are all muchsmaller(a factor10or more)than expected on the ba-sis of the continuum emission measure determination andthe optically thin case B recombination line predictions(Hummer&Storey1987).This shows that even for theweakest lines the emission is optically thick:the combinedline and continuum opacity is much larger than1.Thisis not surprising given the shape of the continuum energydistribution;Waters et al.(1991)show that the continuumbecomes optically thick near0.8µm.parison of measured line strengths with pre-dictions based on optically thin case B recombination the-ory.The dotted line denotes the locus where the measuredfluxes would equal the predictions.The crosses correspondto Brackettαandβ,the open squares to the Pfund se-ries,thefilled squares to the Humphreys series,the opentriangles to the Hansen-Strong series,the stars to n=8,and thefilled triangles to n=9.The shape of the empirical curve of growth is verydifferent from that expected on the basis of LTE line for-mation in a rotating,partially optically thick disc.Modelcalculations show that under these conditions the curve ofgrowth has a linear part(where line emission is opticallythin and proportional to line strength),and a power-lawpart whose slope depends on the radial density gradient ofthe gas(Zaal et al.1995),see also Wellmann(1952).Theobserved curve of growth however shows a very steep riseof EW/λwith X line up to log X line≈−36.5,followed byaflat part for−36.5<log X line<−35.0whose slope isclose to zero,i.e.much smaller than0.4expected on thebasis of the density gradient derived from the continuumfree-free and bound-free excess.Finally,a rising part forthe strongest lines in the spectrum(log X line>−35.0)isseen.Theflat part of the curve of growth is surprising andsuggests that these lines have saturated and are formed ina region with a well-defined outer radius.We note thatthe size of this region is not the same for every series,butincreases with lower quantum level.In order to understand better the nature of the lineformation inγCas,we show in Fig.5the line strengthEW is the line equivalent width measuredwith respect to the local continuum,as a function of wave-length.Also shown in Fig.5is the line FWHM versusS.Hony et al.:The infrared spectrum of the Be starγCassiopeiae5Table1.Properties of hydrogenic emission lines.λis the peak wavelength of the Gaussianfit.Typical errors on these are1/2500th of the wavelength.width is the FWHM of the line after deconvolution.I is the integrated line-flux.cont. is the mean continuum level underneath the line.The errors on the continuum level are dominated by the absolute flux calibration uncertainty of the SWS instrument.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)trans.λwidth I cont.trans.λwidth I cont.-[µm][kms−1][W/m2][Jy]-[µm][kms−1][W/m2][Jy] EW/λand the FWHM show a char-acteristic wavelength dependence:for each series,6S.Hony et al.:The infrared spectrum of the Be starγCassiopeiaeFig.5.Top panel:EW/λof the H i lines in the ISO-SWS spectrum ofγCas as a function of wavelength.Symbols are the same as in Fig.3.The EWs have been determined with respect to the local continuum.The EWs for all series behave in a similar way.For moderately strong lines the EW/λdoes not depend on wavelength and is about5×10−3 irrespective of the series.Only the strongest lines of each series deviate from this trend.Bottom panel:observed full width at half maximum of the H i lines versus wavelength.The symbols refer to the same series as in the upper panel. The lines become narrower with increasing line strength as expected in a rapidly rotating disc in which the rotational velocity decreases with distance.The FWHM does not decrease further for moderately strong lines.These lines also show a constant EW/λ(upper panel).lineflux is coming from the outer,more slowly rotating regions,the line width will decrease.This is direct proof of the rotating nature of the line emitting region.It is remarkable that the weakest lines of each series have a very high FWHM of more than550km s−1.Such high velocities are not expected given the photospheric v sin i of230km s−1(Slettebak1982).This suggests that the inner disc is rotating more rapidly than the star.However, line broadening due to electron scattering could also cause these large line widths,but we do not observe prominent electron scattering wings.If we assume that the line and continuum source func-tions are equal,no line emission from the layers with τff>1should be detectable.However,the large line width of the weakest lines strongly suggests that this line emis-sion is originating from rapidly rotating parts of the disc. The fact that the line FWHM decreases with increasing line strength shows that the broad,weak lines are formed closest to the star.In the2.5to7µm wavelength region, where most of the weakest lines in Fig.5are located,the continuum is optically thick out to a radius of2.5to3R∗. Assuming Keplerian rotation in the disc,the part of the disc which is not optically thick for continuum radiation rotates at projected speeds less than about v0sin i/1.7, where v0is the Keplerian velocity of the disc at the stel-lar ing reasonable values for the mass and ra-dius for a B0.5IV star of R∗=10R⊙and M∗=15M⊙, wefind a maximum speed of about220km s−1.Emis-sion lines in the disc whose source function is equal to that of the continuum therefore should have FWZI less than440km s−1,but even the FWHM of the weak lines is significantly higher than this.It is unlikely that rota-tional velocities are as high as250-300km s−1as far out as2.5-3R∗,unless the rotational velocityfield deviatesS.Hony et al.:The infrared spectrum of the Be starγCassiopeiae7Fig.4.Measured linefluxes,expressed in equivalent width(EW/λ)with respect to the stellar continuum versus lineopacity.The linefluxes are independent of line strengthbetween log X line≈−36and−35.significantly from Keplerian.We conclude that we detectline emission from those parts of the disc that are opti-cally thick for continuum radiation,and hence the linesource function in these inner regions must exceed thatof the continuum(which is the Planck function at the lo-cal electron temperature).Several effects can cause sucha larger source function:NLTE level populations,or anenhanced electron temperature near the upper part of thedisc.If the latter effect is important,temperatures in theline forming regions may be as much as30per cent higherthan in the bulk of the disc,since the stronger lines are1.3times the continuum.As pointed out above,the observed linefluxes of everyseriesfirst increase with intrinsic line strength,but thenreach a constant value with respect to the local contin-uum,both in8S.Hony et al.:The infrared spectrum of the Be starγCassiopeiaementum may lead to spin-down of the star(Porter1998). Using the formalism given by Porter(1998),and assum-ing a full opening angle of2degrees andρ0of3×10−11 g cm−3,the outflow velocity in the disc near the star can be of the order of1km s−1without significant spin-down of the star during its main sequence life time.Such a value is in agreement with the observed line shape.The picture which emerges from our analysis of the in-frared spectrum ofγCas is that of a circumstellar region of very high density,perhaps exceeding310−11g cm−3, which is rotating rapidly and whose rotational velocity de-creases with distance.The rotational velocity in the disc near the star exceeds that of the photosphere.This re-gion is heated by radiation from the central star,and the surface layers which directly absorb the stellar radiation field have higher temperatures than regions closer to the equatorial plane of the disc.While the weak lines originate from these dense,warm regions,only the strongest,αand β,lines of each series probe the outer portions of the disc. Acknowledgements.LBFMW and AdK acknowledgefinancial support from an NWO Pionier grant.JMM acknowledges sup-port from an NSERC grant.JMM and LBFMW acknowledge financial support from a NATO Collaborative Resarch Grant (CRG.941220).This work was supported by NWO Spinoza grant08-0to E.P.J.van den Heuvel.CEM acknowledgesfi-nancial support from an NSERC postgraduate scholarship. ReferencesBjorkman J.E.,Cassinelli J.P.:1993,ApJ409,429 Chalabaev A.,Maillard J.P.:1983,A&A127,279 Dachs J.,Hanuschik R.,Kaiser D.,Rohe D.:1986,A&A 159,276De Graauw T.,Haser L.N.,Beintema D.A.,et al.:1996, A&A315,L49Dougherty S.M.,Taylor A.R.:1992,Nat359,808 Hamann F.,Simon M.:1987,ApJ318,356Hanuschik R.W.:1987,A&A173,299Hummer D.G.,Storey P.J.:1987,MNRAS224,801 Kessler M.F.,Steinz J.A.,Anderegg M.E.,et al.:1996, A&A315,L27Lamers H.J.G.L.M.,Najarro F.,Kudritzki R.P.,et al.: 1996,A&A315,L229Lowe R.P.,Moorhead J.M.,Wehlau W.H.,Barker P.K., Marlborough J.M.:1985,ApJ290,325Millar C.E.,Marlborough J.M.:1998,ApJ494,715+ Okazaki A.T.:1999,In:IAU Colloq.169,in pres Poeckert R.,Bastien P.,Landstreet J.D.:1979,AJ84,812 Poeckert R.,Marlborough J.M.:1978,ApJ220,940 Porter J.M.:1998,A&A333,L83Slettebak A.:1982,ApJS50,55Stee P.,Vakili F.,Bonneau D.,Mourard D.:1998,A&A 332,268Telting J.H.,Waters L.B.F.M.,Persi P.,Dunlop S.R.: 1993,A&A270,355Valentijn E.A.,Feuchtgruber H.,Kester D.J.M.,et al.: 1996,A&A315,L60Vogt S.S.,Penrod G.D.,Soderblom D.R.:1983,ApJ269, 250Waters L.B.F.M.:1986,A&A162,121Waters L.B.F.M.,Cote J.,Lamers H.J.G.L.M.:1987,A&A 185,206Waters L.B.F.M.,Lamers H.J.G.L.M.:1984,A&AS57, 327Waters L.B.F.M.,Marlborough J.M.,Van Der Veen W.E.C.,Taylor A.R.,Dougherty S.M.:1991,A&A244, 120Wellmann P.:1952,Zeitschrift Astrophys.30,96+ Wood K.,Bjorkman K.S.,Bjorkman J.E.:1997,ApJ477, 926+Zaal P.A.,Waters L.B.F.M.,Marlborough J.M.:1995, A&A299,574+。
基于声发射的各向异性页岩变形破坏特征研究
页岩是一种层理性及其明显的岩石,由于构成页岩的矿物颗粒形状大小不同,且散乱分布和组合,使得页岩体的力学特性和破坏机制产生了十分明显的各向异性特征[1-2]。
在常用的页岩水力压裂过程中,层理面总是早于岩体发生破裂,从而导致水力裂缝在逐渐延伸时沿着软弱面开裂,使得裂缝缝网难以产生,从而导致水力压裂的效率下降[3]。
岩石破裂过程中产生的声发射现象是因为外荷载加载至岩石试样上以后,其内部积聚的能量以弹性波形式释放引起的[4]。
而页岩所产生的声发射现象,本质上就是页岩在受到荷载作用而发生破坏时,自身内部从开始萌发微裂隙并逐渐扩展,直到最后发生贯通的这整个过程中伴随着一些声发射信号出现[5]。
进行不同层理角度页岩变形破坏及声发射特征研究,对于分析水力压裂过程中遇到的井壁稳定性以及水力裂缝扩展规律有着非常深刻的现实意义。
张茹等[6]对花岗岩受荷破坏的全过程进行了声发射信号的采集监测,最终分析得到其花岗岩应力–应变、声发射相关参数与应力和时间之间的关系。
张朝鹏等[7]分析研究了煤岩自身存在的层理对于其声发射时序参数、能量的释放规律、以及空间演化特征和声发射振幅分布的作用和影响。
索彧等[8]研究了页岩从受荷到发生破坏的整个过程中的力学性质和声发射特征。
王林均等[9]使用累积声发射计数、累积声发射能量、AF值、RA值、b值等声发射参数分析了其力学性质和声发射特征。
基于声发射技术开展的岩石破坏过程的研究工作形式多样,研究所采用的声发射参数也有所区别,本文不再一一引用和赘述。
单轴压缩下岩石的破坏过程是研究复杂应力状态下岩石力学性质的基础,且本文所研究的页岩具有很强的各向异性特征,因此对于利用声发射技术并且考虑页岩各向异性特征所开展的单轴压缩变形破坏研究,是非常必要的。
1 试验概况1.1 试样采集与制备基于声发射的各向异性页岩变形破坏特征研究田小朋1 高萍1 张伯虎21. 甘肃省建筑科学研究院(集团)有限公司 甘肃 兰州 7300702. 西南石油大学 四川 成都 610500摘要:为进一步研究各向异性页岩变形破坏特征,选取典型地区露头页岩,沿页岩自身层理面在不同方向取芯,进行基于声发射的单轴压缩试验。
用于压接IGBT动态测试平台的高储能密度电感
第55卷第1期2021年1月电力电子技术Power ElectronicsVol.55,No.lJanuary2021用于压接IGBT动态测试平台的高储能密度电感赵卫超焦超群I,张浩2(1.北京交通大学,电气工程学院,北京100044)(2.国网山东省电力公司临沂供电公司,山东临沂276000)摘要:压接型绝缘栅双极型晶体管(IGBT)器件因其独特的优势在我国输电领域发挥重大作用,但在获取其开关特性曲线的动态测试平台方面仍存在不足。
在此将高储能密度电感(Brooks电感)应用到平台中,以优化测试平台。
首先根据IGBT双脉冲测试回路要求计算电感值,通过仿真得到在电感工作频率范围内集肤效应的影响可忽略,并设计电感参数;然后基于ANSYS Maxwell建立模型进行仿真分析,计算电感值为751.69»H,符合设计要求;进而对电感进行加工制作,测量电感的阻抗特性并计算电感值、匝间电容等参数,同时对该电感进行了绝缘测试,提出该电感可应用于IGBT动态测试平台;最后将其接入动态测试平台中,分别进行高压小电流和低压大电流实验。
经计算,所设计的高储能密度电感使平台得到优化并且其储能密度为原电感的56.28倍。
关键词:绝缘栅双极型晶体管;高储能密度;动态测试平台中图分类号:TN32文献标识码:A文章编号:1000-100X(2021)01-0133-04High Energy Storage Density Inductor for Crimping IGBTDynamic Test PlatformZHAO Wei-chao1,JIAO Chao-qun',ZHANG Hao2(\.Beijing Jiaotong University,Beijing100044,China)Abstract:Press pack insulated gate bipolar transistor(IGBT)devices are widely used in this field due to their unique advantages and play a major role in China*s transmission field.At present,there are still some shortcomings in the dynamic test platform for obtaining its switching characteristic curve.High energy storage density inductance(Brooks inductance)is applied to the platform to optimize the test platform.Firstly,the inductance value is calculated according to the requirements of the IGBT double pulse test circuit.The influence of the skin effect in the operating frequency range of the inductor can be neglected and the inductance parameter is designed.Then the model is built based on ANSYS Maxwell for simulation analysis and the inductance value is calculated751.69piH,in line with the design requirements.Further processing the inductor,measuring the impedance characteristics of the inductor and calculating the inductance value,the intertum capacitance and other parameters,and at the same time the insulation test,the inductor can be applied to the IGBT dynamic test platform.Finally,it is connected to the dynamic test platform to perform high-voltage small current and low-voltage high-current experiments.After calculation,the high energy storage density inductor designed optimizes the platform and its energy storage density is56.28times that of the original inductor. Keywords:insulated gate bipolar transistor;high energy density;dynamic test platformFoundation Project:Supported by National Key Laboratory-State Key Laboratory of New Rnergy Power System(North China Electric Power University)Open Project(PS17017)1引言IGBT动态特性测试一般釆用双脉冲测试方法来实现山。
WaterEffect
计算机应用研究
2005 年
水波特效模拟原理及其快速实现方法*
陈和平 , 王 早
( 武汉 科技大 学 信息 科学 与工 程学 院 , 湖 北 武汉 430081) 摘 要 : 在 对粒 子系 统和 水波 原理 进行 分析 的基础 上 , 对 光 的折 射 、 水 波 扩散 及 水 波 衰 减 等 内 容进 行 了 详 细 探
X′ i, j = a・ ( Xi, j 1
有新的能量产生并会逐步衰减的情况不符。为此 , 在算法中应 考虑增加水波衰减效应的模拟功能 , 其实现方法是每次将计算 出的新振幅按一定的衰减率减小。因移位运算具有快捷性 , 衰 减率可选取 1 /16 或 1 / 32 等。
2
算法实现
在算法实现中 , 将水波的扩散过程视为水波能量的扩散过
1
1. 1
基本原理
粒子系统 粒子系 统最 早由 Reeves W. T. 在 1983 年 提出 , 主 要用 来
解决由大量按一定规则运动或 变化的 微小物 质组成 的大物 质 在计算机上的生成与显示 问题。该思 想一经 提出便 得到了 相 当广泛的应用。如用于模拟原子弹爆炸、 云层变化及水波扩散 等。这类物质的共性是它们既没有固定的形状 , 也没有规则的 几何外形 , 并且其外观还会不断地随着时间的变化而发生不确 定的变化。显然 , 传统的欧几里德几何建模方法是无法用来模 拟上述物质的。 采用 Reeves W. T. 所提 出的 粒子 系统 进行 水波 模拟 的 主 要优点是可以不用建立复杂的微分方程 , 也不需要进行精确的 计算。在该算法中 , 为了满足求解的基本条件 , 可作两点假设 : ①水面上的点都是离散的 , 并且 各点均 满足波 的传播 曲线 ; ② 任选一幅图片作为背景 , 并将图中的每一个像素视为粒子系统 收稿日期 : 2004- 05- 22; 修返日期 : 2004- 07- 09 基金项目 : 湖北省自然科学基金资助项目 ( 2003ABA049)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (2)
where
u Mdiag = diag(mu , mc , mt ) ,
and UR , UL , VR , VL are the unitary matrices which connect the quark mass eigenstates with the symmetry states (”current quarks”) as the latter appear in the † † Lagrangian. Evidently, the products Mu Mu and Md Md transform under the lefthanded rotations of quarks:
c
Petersburg Nuclear Physics Institute, Gatchina, 188350 St.Petersburg, Russia b INFN Sezione di Ferrara, 44100 Ferrara, Italy Institute of Physics, Georgian Academy of Sciences, 380077 Tbilisi, Georgia
(5)
(6)
If it does not, the dependence on the CKM matrix KL will anyway appear when the usual weak interaction is taken into account.1 Indeed, when the quark masses are fixed, radiative corrections from weak interaction will lead to the contribution to the effective potential exactly of the form (5) through the loop diagram shown in Fig. 1. Indeed, it is straightforward to see that this diagram yields the contribution to the effective potential which depends on KL :
† † † u d Tr Mu Mu Md Md = Tr (Mdiag )2 KL (Mdiag ) 2 KL , † or the structures with a reverse order of Mu,d and Mu,d : † † † u d . Tr Mu Mu Md Md = Tr (Mdiag )2 KR (Mdiag ) 2 KR
1ቤተ መጻሕፍቲ ባይዱ
1
Introduction
The problem of CP violation in strong interaction, so-called Θ-problem, can be most naturally resolved by the introduction of the axion field which converts Θ parameter into a dynamical degree of freedom [1, 2, 3]. The pseudo-Goldstone boson, axion, is related to the chiral, flavour nonchanging, transformations of quarks: global U (1)PQ symmetry by Peccei and Quinn [1]. This symmetry group can be extended to the rotations including a change between different generations. Such a generalization of the Peccei-Quinn symmetry would lead to the appearance of a set of Goldstone bosons – familons [4]. Axion, being massless at the classical level, acquires small mass due to quantum corrections – more precisely, due to axial anomaly – and thus becomes a pseudo-Goldstone boson. The axion field acquires the vacuum expectation value (v.e.v.) which fixes the effective value of the Θ parameter. Namely, the minimum of the vacuum energy corresponds to Θ = 0 resulting in the absence of strong CP violation. The v.e.v.’s of the familons are unfixed as long as the familons remain true Goldstone bosons. However, though they cannot acquire masses by the same mechanism as the axion, they can nevertheless have small masses due to the explicit breaking of the corresponding symmetry, possibly through the radiative corrections. If this happens the v.e.v.’s of the familon fields would fix the mixing angles of the quarks, i.e. the Cabibbo–Kobayashi–Maskawa (CKM) matrix, in the same way as the v.e.v. of the axion field fixes the Θ parameter. In other words, we are trying to imagine a situation where the quark mixing angles turn out to be dynamical degrees of freedom (pseudo-Goldstone bosons) and their vacuum expectation values are obtained from the minimum of the vacuum energy. We shall present an explicit example how such a mechanism can be realized. We believe, however, that the idea might be more general than the concrete model described in this paper. The complex, generally non-hermitian mass matrices of the up and down quarks can always be represented in the form:
(4)
2
The mixing of left-handed quarks in weak interaction is given by the CKM † matrix KL = UL VL . The analogous matrix for the right-handed quarks, KR = † UR VR , has not much physical sense in the absence of the right-handed weak interactions. Assume now that the fermion masses are actually the v.e.v.’s of certain fields. It can be a very natural situation that the minimum of the relevant Higgs potential, at least in the tree approximation, would fix only the eigenvalues of Mu and u d Md (i.e. the quark masses in Mdiag and Mdiag ) while the matrices UR , UL , VR , VL would remain undefined. To have this property it is sufficient that the Higgs † potential would contain only the terms depending on the quantities Tr(Mu Mu ) † and Tr(Md Md ), but not on Mu or Md themselves. (Of course, we actually have in mind the appropriate Higgs fields whose v.e.v.’s represent Mu and Md ). Furthermore, the potential in tree approximation may depend, or not depend, on the structures
† † u Mu Mu = UL (Mdiag )2 UL , † † d Md Md = VL (Mdiag )2 V L ,