浙江省富阳中学2015届高考适应性考试(二)数学(理)试题

合集下载

浙江省富阳市第二中学高三数学上学期开学考试试题理(无答案)

浙江省富阳市第二中学高三数学上学期开学考试试题理(无答案)

富阳二中2015学年第一学期高三开学考试数学(理科)问卷考生须知:1. 本卷满分150分, 考试时间120分钟2. 答题前, 在答题卷密封区内填写班级和姓名、学号.3. 所有答案必须写在答题卷上, 写在试题卷上无效 4.考试结束, 只需上交答题卷.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合S ={x |3<x ≤6},T ={x |x 2-4x -5≤0},则()R C S T =( ▲ )A .(-∞,3]∪(6,+∞)B .(-∞,3]∪(5,+∞)C .(-∞,-1)∪(6,+∞)D .(-∞,-1)∪(5,+∞) 2.等比数列{}n a 的前n 项和为n S ,11a =,若1234,2,a aa 成等差数列,则4S = ( ▲ ) A .7 B .8 C .16D .15 3.若,a b 为实数,则“33a b <”是“11||||a b >”的( ▲ ) A .充分不必要条件 B.必要不充分条件 C.充分且必要条件 D.既不充分也不必要条件4.已知函数)22,0,0()sin()(πϕπωϕω<<->≠+=A x A x f 在32π=x 时取得最大值, 且它的最小正周期为π,则( ▲ )A.)(x f 的图象过点)21,0( B.)(x f 在⎥⎦⎤⎢⎣⎡32,6ππ上是减函数 C.)(x f 的一个对称中心是⎪⎭⎫ ⎝⎛0,125π D.)(x f 的图象的一条对称轴是125π=x 5. 若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积比为1:2的两部分,则k 的一个值为( ▲ )A .73B .43C .1D .376. 设等差数列{}n a 的前n 项和为n S ,且满足201420150,0S S ><,对任意正整数n ,都有||||n k a a ≥ ,则k 的值为( ▲ )A. 1006B. 1007C. 1008D. 10097.已知函数()cos f x x =,(,3)2x ππ∈,若方程()f x m =有三个不同的实数根,且三个根从小到大依次成等比数列,则实数m 的值可能是( ▲ )A .12- B .12C. D8.已知函数⎩⎨⎧>≤-=)0(ln )0(2)(x x x e x f x ,则下列关于函数)0(1]1)([≠++=k kx f f y 的零点个数的判断正确的是( ▲ )A .当0>k 时,有3个零点;当0<k 时,有4个零点B .无论k 为何值,均有3个零点C .当0>k 时,有4个零点;当0<k 时,有3个零点D .无论k 为何值,均有4个零点二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.计算:2log 2= ▲ ,24log 3log 32+= ▲ . 10.已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()2f f -=⎡⎤⎣⎦ ▲ ,()f x 的最小值是 ▲ .11.若3sin cos αα+,则tan α的值为 ▲ ;21cos sin 2αα+的值为 ▲ 12.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{}n a 中,11=a ,12=a )(12*++∈+=N n a a a n n n 则=7a ▲ ;若2017a m =,则数列{}n a 的前2015项和是 ▲ (用m 表示).13. 已知实数,,a b c 满足2221a b c ++=,则ab bc ca ++的取值范围是 ▲ .14.已知函数3,0()13,0x x f x x x x ⎧≤⎪=⎨+->⎪⎩,若关于x 的方程21(2)m 2f x x ++=有4个不同的实数根,则m 的取值范围是______▲______.15.已知O 是ABC ∆内心,若2155AO AB AC =+,则cos BAC ∠= ▲ . 三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分14分)已知函数2()f x ax bx c =++(0a >且0bc ≠).(Ⅰ)若|(0)||(1)||(1)|1f f f ==-=,试求()f x 的解析式;(Ⅱ)令()2g x ax b =+,若(1)0g =,又()f x 的图像在x 轴上截得的弦的长度为l ,且02l <≤,试比较b 、c 的大小.17.(本小题满分15分)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠BAD =60º,PA =PD =3,PD ⊥C D .E 为AB 中点.(Ⅰ) 证明:PE ⊥CD ; (Ⅱ) 求二面角C -PE -D 的正切值.18.(本小题满分15分) 在△ABC 中,内角A ,B ,C 满足4 sin A sin C -2 cos (A -C )=1.(Ⅰ) 求角B 的大小; (Ⅱ) 求sin A +2 sin C 的取值范围.19.(本小题满分15分)在数列{}n a 中,11,2a n =≥当时,其前n 项和n S 满足:)12(22-=n n n S a S . (Ⅰ)求证:数列}1{nS 是等差数列,并用n 表示n S ; (Ⅱ)令21n n S b n =+,数列{}n b 的前n 项和为.n T 求使得)3()12(22+≤+n m n T n 对所有n N *∈ 都成立的实数m 的取值范围.20.(本小题满分15分)已知函数()|2|2f x x a x x =-+,a R ∈.(1)若0a =,判断函数()y f x =的奇偶性,并加以证明;(2)若函数()f x 在R 上是增函数,求实数a 的取值范围;(3)若存在实数[]2,2,a ∈-使得关于x 的方程()(2)0f x tf a -=有三个不相等的实数根,求实数t 的取值范围.。

2015年浙江省高考数学试题及答案(理科)【解析版】

2015年浙江省高考数学试题及答案(理科)【解析版】

2015年浙江省高考数学试题及答案(理科)【解析版】2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x 2﹣2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A .[0,1) B .(0,2] C .(1,2) D .[1,2]考点: 交、并、补集的混合运算.专题:集合. 分析: 求出P 中不等式的解集确定出P ,求出P 补集与Q 的交集即可.解答: 解:由P 中不等式变形得:x (x ﹣2)≥0, 解得:x ≤0或x ≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P )∩Q=(1,2), 故选:C .点评: 此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 8cm 3B .12cm 3 C .D .考点: 由三视图求面积、体积.专题: 空间位置关系与距离.分析: 判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答: 解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C .点评: 本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A . a 1d >0,dS 4>0 B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>0考点: 等差数列与等比数列的综合.专题: 等差数列与等比数列.分析: 由a 3,a 4,a 8成等比数列,得到首项和公差的关系,即可判断a 1d 和dS 4的符号. 解答: 解:设等差数列{a n }的首项为a 1,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d , 由a 3,a 4,a 8成等比数列,得,整理得:.∵d ≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)(2015•浙江)如图,设抛物线y2=4x 的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C 在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分根据抛物线的定义,将三角形的面积关系转析:化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d (A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card (A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d (A ,B )=card (A ∪B )﹣card (A ∩B ),d (B ,C )=card (B ∪C )﹣card (B ∩C ),∴d (A ,B )+d (B ,C )=card (A ∪B )﹣card (A ∩B )+card (B ∪C )﹣card (B ∩C )=[card (A ∪B )+card (B ∪C )]﹣[card (A ∩B )+card (B ∩C )]≥card (A ∪C )﹣card (A ∩C )=d (A ,C ),故命题②成立, 故选:A 点评: 本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( ) A .f (sin2x )=sinx B . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x)=|x+1|考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f (x )=,对任意x ∈R ,都有f(x 2+2x )=|x+1|; ∴该选项正确. 故选:D . 点评: 本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)(2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )A . ∠A ′DB ≤α B . ∠A ′D B ≥αC . ∠A ′C B ≤αD . ∠A ′C B ≥α 考点: 二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是2,渐近线方程是y=±x.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.考函数的值.点:专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x )的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).考点: 两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的求值.分析: 由三角函数公式化简可得f (x )=sin (2x ﹣)+,易得最小正周期,解不等式2k π+≤2x ﹣≤2k π+可得函数的单调递减区间.解答: 解:化简可得f (x )=sin 2x+sinxcosx+1 =(1﹣cos2x )+sin2x+1=sin (2x ﹣)+,∴原函数的最小正周期为T==π, 由2k π+≤2x ﹣≤2k π+可得k π+≤x ≤k π+,∴函数的单调递减区间为[k π+,k π+](k ∈Z )故答案为:π;[k π+,k π+](k ∈Z ) 点评: 本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a =.考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM 所成的角的余弦值是.考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评: 本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)(2015•浙江)若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 3 . 考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析: 根据所给x ,y 的范围,可得|6﹣x ﹣3y|=6﹣x ﹣3y ,再讨论直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值. 解答: 解:由x 2+y 2≤1,可得6﹣x ﹣3y >0,即|6﹣x ﹣3y|=6﹣x ﹣3y ,如图直线2x+y ﹣2=0将圆x 2+y 2=1分成两部分,在直线的上方(含直线),即有2x+y ﹣2≥0,即|2+y ﹣2|=2x+y ﹣2,此时|2x+y ﹣2|+|6﹣x ﹣3y|=(2x+y ﹣2)+(6﹣x ﹣3y )=x ﹣2y+4,利用线性规划可得在A (,)处取得最小值3;在直线的下方(含直线),即有2x+y ﹣2≤0, 即|2+y ﹣2|=﹣(2x+y ﹣2),此时|2x+y ﹣2|+|6﹣x ﹣3y|=﹣(2x+y ﹣2)+(6﹣x ﹣3y )=8﹣3x ﹣4y ,利用线性规划可得在A (,)处取得最小值3.综上可得,当x=,y=时,|2x+y ﹣2|+|6﹣x ﹣3y|的最小值为3. 故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R ,,则x0= 1,y 0=2,|=2.考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t 2,由题意可得当x=x 0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y ,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2 =x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y ﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC 的面积为3,求b 的值.考点:余弦定理.专题:解三角形.分析: (1)由余弦定理可得:,已知b 2﹣a 2=c 2.可得,a=.利用余弦定理可得cosC .可得sinC=,即可得出tanC=. (2)由=×=3,可得c ,即可得出b .解答:解:(1)∵A=,∴由余弦定理可得:,∴b 2﹣a 2=bc ﹣c 2, 又b 2﹣a 2=c 2.∴bc ﹣c 2=c 2.∴b=c .可得,∴a 2=b 2﹣=,即a=. ∴cosC===.∵C ∈(0,π),∴sinC==. ∴tanC==2.(2)∵=×=3,解得c=2. ∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.考点: 二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析: (1)以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z 轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A 1BD 的法向量与平面B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答: (1)证明:如图,以BC 中点O 为坐标原点,以OB 、OA 、OA 1所在直线分别为x 、y 、z轴建系.则BC=AC=2,A 1O==,易知A 1(0,0,),B (,0,0),C (﹣,0,0),A (0,,0),D (0,﹣,),B 1(,﹣,),=(0,﹣,0),=(﹣,﹣,), =(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A 1D ⊥OA 1, 又∵•=0,∴A 1D ⊥BC ,又∵OA 1∩BC=O ,∴A 1D ⊥平面A 1BC ; (2)解:设平面A 1BD 的法向量为=(x ,y ,z ), 由,得,取z=1,得=(,0,1),设平面B 1BD 的法向量为=(x ,y ,z ), 由,得,取z=1,得=(0,,1), ∴cos <,>===,又∵该二面角为钝角,∴二面角A 1﹣BD ﹣B 1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b (a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b )≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f (x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB =,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n ,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m ×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m 2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB ==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB =,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB 取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)(2015•浙江)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法. 分析: (1)通过题意易得0<a n ≤(n ∈N *),利用a n ﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n ﹣a n+1累加得S n =﹣a n+1,利用数学归纳法可证明≥a n ≥(n ≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n ≤(n ∈N *), 又∵a 2=a 1﹣=,∴==2,又∵a n ﹣a n+1=,∴a n >a n+1,∴≥1,∴==≤2,∴1≤≤2(n ∈N *);(2)由已知,=a n ﹣a n+1,=a n ﹣1﹣a n ,…,=a 1﹣a 2, 累加,得S n =++…+=a 1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立; 当n ≥2时,=.下面证明:≥a n ≥(n ≥2).易知当n=2时成立,假设当n=k 时也成立,则a k+1=﹣+, 由二次函数单调性知:a n+1≥﹣+=≥, a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n ≥2,均有≥a n ≥, ∴=≥≥=,即(n ∈N *).点评: 本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x 2﹣2x ≥0},Q={x|1<x ≤2},则(∁R P )∩Q=( ) A .[0,1) B .(0,2] C .(1,2) D .[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .8cm 3 B .12cm 3 C .D .3.(5分)(2015•浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A . a 1d >0,dS 4>0B . a 1d <0,dS 4<0C . a 1d >0,dS 4<0D . a 1d <0,dS 4>04.(5分)(2015•浙江)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A . ∀n ∈N *,f (n )∉N *且f (n )>n B . ∀n ∈N *,f (n )∉N *或f (n )>n C . ∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D . ∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 05.(5分)(2015•浙江)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .B .C.D .6.(5分)(2015•浙江)设A ,B 是有限集,定义:d (A ,B )=card (A ∪B )﹣card (A ∩B ),其中card (A )表示有限集A 中的元素个数( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C )A . 命题①和命题②都成立B . 命题①和命题②都不成立 C . 命题①成立,命题②不成立 D . 命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f (x )满足,对任意x ∈R 都有( ) A . f (sin2x )=sinx B . f (sin2x )=x 2+xC . f (x 2+1)=|x+1|D . f (x 2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 折成△A ′CD ,所成二面角A ′﹣CD ﹣B 的平面角为α,则( )A . ∠A ′DB ≤α B . ∠A ′D B ≥αC . ∠A ′C B ≤αD . ∠A ′C B ≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分. 9.(6分)(2015•浙江)双曲线=1的焦距是 ,渐近线方程是 .10.(6分)(2015•浙江)已知函数f (x )=,则f (f (﹣3))= ,f (x )的最小值是 .11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别是AD,BC的中点,则异面直线AN,CM 所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b 2﹣a 2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b (a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).。

2015年浙江高考数学参考卷(理科)含答案

2015年浙江高考数学参考卷(理科)含答案
A.4B. C.2D.
8.如图,函数y=f(x)的图象为折线ABC,设f1(x)=f(x),
fn+1(x)=f[fn(x)],n∈N*,则函数y=f4(x)的图象为
A.B.
C.D.
二、填空题
9.设全集 ,集合 , ,则
=,A∩B=,A∪B=.
10.设等差数列 的公差为6,且 为 和 的等比中项.则 =,数列 的前n项和 =.
(Ⅰ)当x (0,x1)时,证明x<f(x) <x1;
(Ⅱ)设函数f(x)的图象关于直线x=x0对称,证明x0< .
数学参考试卷(理科)答案
一、选择题
1.B2.C3.D4.A5.B6.B7.A8.D
二、填空题
9. , ,
10.-14,3n2-17n11.0, 12. ,
13.214. 15.
三、解答题
16.(Ⅰ)由题意得
f(x)= (1-cos 2ax)+ sin 2ax+(1+cos 2ax)
= sin 2ax- cos 2ax+
=sin (2ax- )+ .
因为f(x)的周期为π,a>0,所以
a=1.
(Ⅱ)由(Ⅰ)得
f(x)=sin (2x- )+ ,
所以f(x)的值域为[ , ].
17.(Ⅰ)延长AD,FE交于Q.
3.若某几何体的三视图(单位:cm)如图所示,
则此几何体的体积是
A. cm3
B. cm3
C. cm3
D. cm3
4.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.
若| |=a,| |=b,则 =
A.b2-a2B.a2-b2
C.a2+b2D.ab
5.现有90 kg货物需要装成5箱,要求每一箱所装货物的

浙江省富阳市第二中学高三上学期第一次质检——数学(理)数学理

浙江省富阳市第二中学高三上学期第一次质检——数学(理)数学理

浙江省富阳市第二中学2015届高三上学期第一次质量检测(8月)数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分)1.设全集,,,则图中阴影部分表示的集合为---------( )A .B .C .D .2. 已知q 是等比数列的公比,则“”是“数列是递减数列”的( )条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要3.平面向量与的夹角为,,则-----------------------------( )A .B . 2C .D . 44.已知直线平面,直线平面,给出下列命题,其中正确的是-------------------------( )① ② ③ ④A .②④ B. ②③④ C. ①③ D. ①②③5.焦点在轴上的椭圆的离心率为,其长轴长等于圆的半径,则其标准方程是( )A . B. C. D.6.不等式组220x y x y y x y a-0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则的取值范围是 ----------------------( )A .B .或C .D .7.将函数的图像平移后所得的图像对应的函数为,则进行的平移是-------( )A .向右平移个单位 B. 向左平移个单位 C. 向右平移个单位 D. 向左平移个单位8. 用表示两个实数中的最小值.已知函数33()min{|log |,|log ()|}(0)f x x x t t =->,若函数至少有3个零点,则的最小值为--------------------------------------------( )A .B .1C . D.9.已知不等式对于,恒成立,则实数的取值范围是-----------------( )A. B. C. D.10.在四棱锥中,底面是边长为的正方形,顶点S 在底面内的射影O 在正方形ABCD 的内部(不在边上),且,为常数,设侧面与底面ABCD 所成的二面角依次为,则下列各式为常数的是---------------------------------------------( )① ②③ ④A .①②B .②④C .②③D .③④二、填空题(本大题共7小题,每小题4分,共28分)11.已知集合,{}2|230,B x x x x R =--≥∈,则____________.12.如图是某几何体的三视图,其中正视图、俯视图的长均为4,宽分别为2与3,侧视图是等腰三角形,则该几何体的体积是 .13.在等差数列{}中,,·<0,若此数列的前10项和=36,前18项和=12,则数列的前18项和为_____________.14.在中,的对边分别是,且是的等差中项,则角= .15.若是直角三角形的三边的长(为斜边),则圆被直线所截得的弦长为 .16.如果函数y 的图像与曲线恰好有两个不同的公共点,则实数的范围是 .17.在平面直角坐标系中,是坐标原点,若两定点满足2=⋅==→→→→OB OA OB OA ,则点集⎭⎬⎫⎩⎨⎧∈≤++=→→→R OB OA OP P μλμλμλ,,2,所表示的区域的面积是 . 三、解答题(本大题共5小题,共72分,要写出详细的解答过程或证明过程)18. (本题满分14分) 已知向量2(cos ,1),(3sin ,cos )m x n x x =- =,设函数(1)求对称中心的坐标;(2)在△ABC 中,角A ,B ,C 的对边分别是,且满足,求的取值范围.19.(本题满分14分)已知函数.(1)讨论函数的奇偶性; (2)若函数在上为减函数,求的取值范围.20. (本题满分14分)如图,在长方体中,,,点在棱上.(1)求异面直线与所成的角的余弦值;(2)当二面角的大小为时,求点到面的距离.21.(本题满分14分) 若数列的相邻两项是关于的方程)(,022*∈=+-N n b x x n n 的两根,且。

2015年浙江省高考数学试题(理科)与答案解析

2015年浙江省高考数学试题(理科)与答案解析

2015年浙江省高考数学试题(理科)与答案解析2015年浙江省高考数学试题(理科)与答案解析一、选择题:本大题共8小题,每小题5分,共40分1.(5分)已知集合P={x|x-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A。

[0,1) B。

(,2] C。

(1,2) D。

[1,2]2.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A。

8cm³ B。

12cm³ C。

16cm³ D。

18cm³3.(5分)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A。

a1d>,dS4 B。

a1d<,dS4 C。

a1d>,dS4 D。

a1d<,dS44.(5分)命题“∀n∈N,f(n)∈N且f(n)≤n”的否定形式是()A。

∀n∈N,f(n)∉N且f(n)>n B。

∀n∈N,f(n)∉N或f(n)>nC。

∃n∈N,f(n)∉N且f(n)>n D。

∃n∈N,f(n)∉N或f(n)>n5.(5分)如图,设抛物线y=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A。

1:2 B。

2:1 C。

1:3 D。

3:16.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)-card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A。

命题①和命题②都成立 B。

命题①和命题②都不成立C。

命题①成立,命题②不成立 D。

命题①不成立,命题②成立7.(5分)存在函数f(x)满足,对任意x∈R都有()A。

f(sin2x)=sinx B。

f(sin2x)=fx+1C。

2015高考试题——数学理(浙江卷)Word版含答案

2015高考试题——数学理(浙江卷)Word版含答案

2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。

1.已知集合2{20},{12}P x x x Q x x =-≥=<≤,则()R P Q =ð ( )A.[0,1)B. (0,2]C. (1,2)D. [1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B. 312cm C.3323cm D. 3403cm3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等 比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>4.命题“**,()n N f n N ∀∈∈ 且()nf n n ≤的否定形式是( )A. **,()n N f n N ∀∈∉,且()f n n > B. **,()n N f n N ∀∈∉或()f n n > C. **00,()n N f n N ∃∈∉且00()f n n > D. **00,()n N f n N ∃∈∉或00()f n n > 5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++6.设,A B 是有限集,定义:(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+, A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 7.存在函数()f x 满足,对于任意x R ∈都有( ) A. (sin 2)sin f x x = B. 2(sin 2)f x x x =+ C. 2(1)1f x x +=+ D. 2(2)1f x x x +=+8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆翻折成A CD '∆,所成二面角A CDB '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. 'ACB α∠≥二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2015年高考真题浙江卷 理科数学 (含答案解析)

2015年高考真题浙江卷 理科数学 (含答案解析)

理科数学2015年高三2015年浙江卷理数理科数学单选题(本大题共8小题,每小题____分,共____分。

)1.已知集合,则()A.B.C.D.2.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.B.C.D.3.已知是等差数列,公差不为零,前项和是,若成等比数列,则()A.B.C.D.4.命题“且的否定形式是()A. 且B. 或C. 且D. 或5.如图,设抛物线的焦点为F,不经过焦点的直线上有三个不同的点,其中点在抛物线上,点在轴上,则与的面积之比是()A.B.C.D.6.设是有限集,定义,其中表示有限集A中的元素个数,()命题①:对任意有限集,“”是“”的充分必要条件;命题②:对任意有限集,,A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立7.存在函数满足,对任意都有()A.B.C.D.8.如图,已知,是的中点,沿直线将折成,所成二面角的平面角为,则()A.B.C.D.填空题(本大题共7小题,每小题____分,共____分。

)9.双曲线的焦距是(),渐近线方程是()。

10.已知函数,则(),的最小值是().11.函数的最小正周期是(),单调递减区间是()。

12.若,则().13.如图,三棱锥中,,点分别是的中点,则异面直线所成的角的余弦值是()14.若实数满足,则的最小值是( ).15.已知是空间单位向量,,若空间向量满足,且对于任意,,则(),(),().简答题(综合题)(本大题共5小题,每小题____分,共____分。

)16.在ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,=.(1)求tanC的值;(2)若ABC的面积为7,求b的值。

17.如图,在三棱柱-中,BAC=,AB=AC=2,A=4,在底面ABC的射影为BC的中点,D为的中点.(1)证明:D平面;(2)求二面角-BD-的平面角的余弦值.18.已知函数f(x)=+ax+b(a,b R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值。

2015年高考新课标卷2理科数学(含解析)

2015年高考新课标卷2理科数学(含解析)

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A考点:集合的运算.2.若a 为实数且(2)(2)4ai a i i +-=-,则a =( ) A .1- B .0 C .1 D .2 【答案】B 【解析】试题分析:由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算.3.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】D 【解析】试题分析:由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关.4.等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84 【答案】B考点:等比数列通项公式和性质. 5.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .12 【答案】C 【解析】试题分析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数.6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51【答案】D 【解析】试题分析:由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图.CBADD 1C 1B 1A 17.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =,故选C .考点:圆的方程.8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .14 【答案】B 【解析】 试题分析:程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C 【解析】试题分析:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C . 考点:外接球表面积和椎体的体积.BOAC10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动P 到A 、B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )【答案】B 【解析】考点:函数的图象和性质. 11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )AB .2 CD【答案】D 【解析】DPCx试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,,故点M 的坐标为(2)M a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以e =,故选D .考点:双曲线的标准方程和简单几何性质.12.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【答案】A 【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。

2015富阳中学高三适应性考试理科综合能力试题(含答案)

2015富阳中学高三适应性考试理科综合能力试题(含答案)

2014高三适应性考试理科综合能力试题可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Cl 35.5 Na 23 Mg 24 Al 27 Fe 56选择题部分(共120分)一、选择题(本题共17小题在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列关于膜蛋白的叙述,错误..的是A.葡萄糖的跨膜运输会导致质膜上某些膜蛋白形状改变B.低温可破坏质膜上某些酶的空间结构,使其催化能力下降C.乙酰胆碱与突触后膜受体结合,使之形状改变引起Na+内流D.ATP合成过程中,线粒体内膜上某些膜蛋白会发生形状改变2.下列关于细胞周期的叙述正确的是A.中期是观察和研究染色体组型的最佳时期B.后期移向同一极的染色体均为非同源染色体C.合成期,DNA聚合酶在细胞核中大量合成D.合成期前后的两个间隙期,细胞内合成的mRNA种类相同3.右图为染色体DNA的某些生理过程示意图。

下列关于①、②、③过程叙述错误..的是A.①和②过程的起点不一样B.①和②过程的核苷酸都是通过磷酸二酯键连接C.①和②过程的模板链相同D.①过程的产物需在细胞核内进行加工后才能进行③过程4.研究者以脱落酸水平正常的野生型玉米幼苗和脱落酸缺陷型突变体玉米幼苗为材料,测量玉米茎和根在不同水分条件下的生长情况,结果如下图所示。

以下说法错误的是A.在水分适宜条件下,脱落酸促进根和茎的生长B.在相同的水分条件下,脱落酸对根和茎的作用相同C.在缺水的条件下,脱落酸抑制茎的生长,促进根的生长D.脱落酸在缺水的条件下,对不同部位的作用不同,有利于植物适应缺水环境5.下图表示将人生长激素基因导入小鼠细胞内获取人生长激素的过程,下列说法正确的是A.人生长激素基因在该动物细胞中表达的生长激素无生物活性B.①过程是以核糖核苷酸为原料,以RNA为模板合成人生长激素基因C.为了便于筛选含人生长激素基因的动物细胞,质粒上必须携带抗生素抗性基因D.②表示动物细胞培养,若出现接触抑制可用胰蛋白酶处理后进行传代培养6.下图表示野生桑蚕种群的数量变动与病毒感染率之间的相互关系,下列叙述正确的是A.野生桑蚕种群的数量主要受寄生等内源性因素影响而呈周期性波动B.野生桑蚕的环境容纳量大约为7 lg/VC.随着野生桑蚕种群密度的增长,病毒感染率减少D.曲线甲的a、b两点出生率减去死亡率的差值不同7.下列说法正确的是A.植物油、脂肪、矿物油、人造奶油的主要成分都是高级脂肪酸甘油酯。

2015年浙江高考数学(理科)试卷(含答案)

 2015年浙江高考数学(理科)试卷(含答案)

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•浙江)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>04.(5分)(2015•浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card (A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•浙江)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•浙江)若a=log43,则2a+2﹣a=.13.(4分)(2015•浙江)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•浙江)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•浙江)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•浙江)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.析:解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card (A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定双曲线中的几何量,即可求出焦距、渐近线方程.解答:解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.10.(6分)考点:函数的值.专题:计算题;函数的性质及应用.分析:根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.点评:本题主要考查了分段函数的函数值的求解,属于基础试题.11.(6分)考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专三角函数的求值.题:分析:由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点评:本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.15.(6分)考点:空间向量的数量积运算;平面向量数量积的运算.专题:创新题型;空间向量及应用.分析:由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解答:解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点评:本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)考点:余弦定理.专题:解三角形.分析:(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解答:解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.祝福语祝你考试成功!。

浙江省2015届高考数学全真模拟试卷(理科)(Word版含解析)

浙江省2015届高考数学全真模拟试卷(理科)(Word版含解析)

浙江省2015届高考数学全真模拟试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5} C.{1,3,4} D.{2}2.(5分)已知p:x2﹣5x+6≤0,q:|x﹣a|<1,若p是q的充分不必要条件,则实数a的取值范围为()A.(﹣∞,3]B.[2,3]C.(2,+∞)D.(2,3)3.(5分)设变量x,y满足约束条件则目标函数z=2x+y的最小值为()A.6B.4C.3D.24.(5分)设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的是()A.若α⊥β,β⊥γ,则α⊥γB.若m∥α,n∥β,α⊥β,则m⊥nC.若α⊥β,m⊥α,则m∥βD.若α∥β,m⊄β,m∥α,则m∥β5.(5分)设,为两个互相垂直的单位向量,已知=,=,=m+n.若△ABC是以A为直角顶点的等腰直角三角形,则m+n=()A.1或﹣3 B.﹣1或3 C.2或﹣4 D.﹣2或46.(5分)已知xy=1,且O<y<,则的最小值为()A.2B.C.4D.47.(5分)如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC 的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A.B.C.D.8.(5分)如图,已知点S(0,3),SA,SB与圆C:x2+y2﹣my=0(m>0)和抛物线x2=﹣2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,=λ,则实数λ的值为()A.4B.2C.3D.3二、填空题:本大题有7小题,共36分(其中1道三空题,每空2分,3道两空题,每空3分,3道一空题,每空4分).9.(6分)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=,ω=,F()=.10.(6分)已知等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),则实数k=,a n=.11.(6分)设函数f(x)=,则f(1)=,若f(f(a))≤3,则实数a的取值范围是.12.(6分)若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为,三棱锥D﹣BCE的体积为.13.(4分)点F是抛物线T:x2=2py(y>0)的焦点,F1是双曲线C:﹣=1(a>0,b>0)的右焦点,若线段FF1的中点P恰为抛物线T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率e=.14.(4分)已知向量=(1,),=(﹣2,0)若⊥(≠),当t∈[﹣,2]时,|﹣t|的取值范围为.15.(4分)对于任意实数x,记[x]表示不超过x的最大整数,{x}=x﹣[x],<x>表示不小于x的最小整数,若x1,x2,…x m(0≤x1<x2<…<x m≤n+1是区间[0,n+1]中满足方程[x]•{x}•<x>=1的一切实数,则x1+x2+…+x m的值是.三、解答题:本大题共5小题,共74分(16.17.18.19小题各为15分,20小题为14分).解答应写出文字说明、证明过程或演算步骤.16.(15分)在△ABC中,角A,B,C所对的边分别为a,b,c,若1+=.(1)求角A的大小;(2)若函数f(x)=2sin2(x+)﹣cos2x,x∈[,],在x=B处取到最大值a,求△ABC的面积.17.(15分)如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.(1)求证:平面CBE⊥平面CDE;(2)求二面角C﹣BE﹣F的余弦值.18.(15分)如图,椭圆M:+=1(a>b>0)的离心率为,上、下顶点为A,B,点P(0,2)关于直线y=﹣x的对称点在椭圆M上,过点P的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间).(1)求椭圆M的方程;(2)求•的取值范围;(3)当AD与BC相交于点Q时,试问:点Q的纵坐标是否为定值?若是,求出该定值;若不是,请说明理由.19.(15分)已知等差数列{a n}的公差为d(d≠0),等比数列{b n}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5(1)求数列{a n}的通项公式;(2)数列{b n}的前n项和为T n,求证:++…+<2.20.(14分)已知函数f(x)=log22x﹣mlog2x+a,g(x)=x2+1.(1)当a=1时,求f(x)在x∈[1,4]上的最小值;(2)当a>0,m=2时,若对任意的实数t∈[1,4],均存在x i∈[1,8](i=1,2),且x1≠x2,使得=f(t)成立,求实数a的取值范围.浙江省2015届高考数学全真模拟试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若U={1,2,3,4,5,6},M={1,2,4},N={2,3,6},则∁U(M∪N)=()A.{1,2,3} B.{5} C.{1,3,4} D.{2}考点:并集及其运算.专题:计算题.分析:由M与N求出两集合的并集,根据全集U求出并集的补集即可.解答:解:∵M={1,2,4},N={2,3,6},∴M∪N={1,2,3,4,6},∵U={1,2,3,4,5,6},∴∁U(M∪N)={5}.故选B点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.2.(5分)已知p:x2﹣5x+6≤0,q:|x﹣a|<1,若p是q的充分不必要条件,则实数a的取值范围为()A.(﹣∞,3]B.[2,3]C.(2,+∞)D.(2,3)考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:求出不等式的等价条件,根据充分条件和必要条件的定义建立条件关系即可.解答:解:由x2﹣5x+6≤0得,即2≤x≤3,由|x﹣a|<1得a﹣1<x<a+1,若p是q的充分不必要条件,则,即,则2<a<3.故选:D点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键.3.(5分)设变量x,y满足约束条件则目标函数z=2x+y的最小值为()A.6B.4C.3D.2考点:简单线性规划.专题:计算题;数形结合.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数2x+y的最小值.解答:解:由约束条件得如图所示的三角形区域,令2x+y=z,y=﹣2x+z,显然当平行直线过点A(1,1)时,z取得最小值为3;故选C.点评:在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.4.(5分)设α,β,γ是三个互不重合的平面,m,n是两条不重合的直线,下列命题中正确的是()A.若α⊥β,β⊥γ,则α⊥γB.若m∥α,n∥β,α⊥β,则m⊥nC.若α⊥β,m⊥α,则m∥βD.若α∥β,m⊄β,m∥α,则m∥β考点:命题的真假判断与应用;空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:逐个选项进行验证:A中α与γ可以平行,也可以相交;B中的直线m与n可以平行、相交或异面;C中可能有m⊂β;选项D由条件可得m∥β.解答:解:选项A中α与γ可以平行,也可以相交,故错误;选项B中的直线m与n可以平行、相交或异面,故错误;选项C中可能有m⊂β,故错误;选项D正确,若α∥β,m∥α,可得m⊄β,或m∥β,结合条件可得m∥β.故选D点评:本题为直线与平面位置关系的判断,熟练掌握定理结合图象是解决问题的关键,属基础题.5.(5分)设,为两个互相垂直的单位向量,已知=,=,=m+n.若△ABC是以A为直角顶点的等腰直角三角形,则m+n=()A.1或﹣3 B.﹣1或3 C.2或﹣4 D.﹣2或4考点:平面向量的基本定理及其意义.专题:空间向量及应用.分析:根据△ABC是以A为直角顶点的等腰直角三角形可得出和的关系,用已知向量表示出和,列出关系式,即可求出答案.解答:解:∵△ABC是等腰直角三角形,∠A为直角,∴AB⊥AC,=0;由已知得,==;==(m﹣1)+n;∴=()[(m﹣1)+n]=m﹣n﹣1=0;即m﹣n=1;又△ABC是等腰三角形,∴AB=AC,=;∵=,∴==,得(m﹣1)2+n2=2;∵m﹣n=1,∴m=n+1,代入方程,得2n2=2,n=±1;∴或;∴m+n=3或m+n=﹣1.故答案选:B.点评:本题考查了平面向量的基本定理,解题的关键是熟练掌握向量的运算法则.6.(5分)已知xy=1,且O<y<,则的最小值为()A.2B.C.4D.4考点:基本不等式.专题:不等式的解法及应用.分析:xy=1,且O<y<,可得4y=,x>2,.代入变形利用基本不等式的性质即可得出.解答:解:∵xy=1,且O<y<,∴4y=,x>2,∴.则===+=4,当且仅当x﹣=2,解得x=时取等号.∴的最小值为4.故选:C.点评:本题考查了基本不等式的性质、变形能力,考查了推理能力与计算能力,属于中档题.7.(5分)如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC 的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A.B.C.D.考点:函数的图象.专题:综合题;函数的性质及应用.分析:由题意,可通过几个特殊点来确定正确选项,可先求出射影长最小时的点B时x的值及y的值,再研究点P从点B向点C运动时的图象变化规律,由此即可得出正确选项.解答:解:设BC边与Y轴交点为M,已知可得GM=0.5,故AM=1.5,正三角形的边长为连接BG,可得tan∠BGM==,即∠BGM=,所以tan∠BGA=,由图可得当x=时,射影为y取到最小值,其大小为﹣(BC长为),由此可排除A,B两个选项;又当点P从点B向点M运动时,x变化相同的值,此时射影长的变化变小,即图象趋于平缓,由此可以排除D,C是适合的;故选:C.点评:由于本题的函数关系式不易获得,可采取特值法,找几个特殊点以排除法得出正确选项,这是条件不足或正面解答较难时常见的方法.8.(5分)如图,已知点S(0,3),SA,SB与圆C:x2+y2﹣my=0(m>0)和抛物线x2=﹣2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,=λ,则实数λ的值为()A.4B.2C.3D.3考点:抛物线的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:由圆的切线的性质,结合平行的条件可得四边形MSNO为菱形,由直线和圆相切的条件和勾股定理、弦长公式,解方程可得m=2,直线的斜率为,可得MN=,由直线和抛物线相切的条件:判别式为0,可得切点A,B的坐标,可得AB的长为4,由向量共线定理,即可得到所求值.解答:解:由S向圆作切线,可得SM=SN,∠MSO=∠NSO,若SA∥ON,即有四边形MSNO为菱形,在直角△SMO中,tan∠SMN==,圆C:x2+y2﹣my=0的圆心为(0,),半径r=,设切线为y=kx+3,k>0,由相切的条件可得=,①MN=2=,即有k=,②将②代入①可得m=2,k=,则MN=,由y=x+3和抛物线x2=﹣2py,可得x2+2px+6p=0,由判别式12p2﹣24p=0,解得p=2,求得切点A(﹣2,﹣3),由于=λ,即MN∥AB,则AB=4,即有λ==4.故选:A.点评:本题考查直线和圆、抛物线相切的条件,向量共线的定理的运用,考查直线和圆相交的弦长公式,以及平面几何的勾股定理,考查运算能力,属于中档题.二、填空题:本大题有7小题,共36分(其中1道三空题,每空2分,3道两空题,每空3分,3道一空题,每空4分).9.(6分)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=2,ω=2,F()=1.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:根据图象由最值确定A=2,由周期确定ω=2π÷T=2,得到f(x)=2sin(2x+φ),然后以点(,2)代人求φ.解答:解:由图象易知A=2,T=π﹣,∴T=π,ω==2,∴f(x)=2sin(2x+φ),由f()=2sin(2×+φ=2,且0<φ<π,∴φ=,∴f(x)=2sin(2x+),∴f()=2sin(2×+)=1,故答案为:2;2;1.点评:本题主要考查由部分图象怎样求函数的解析式问题及计算能力.10.(6分)已知等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),则实数k=1,a n=﹣2n+12.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),可得k=1,可得S n=﹣n2+11n;当n=1时,可得a1;当n≥2时,a n=S n﹣S n﹣1,即可得出.解答:解:∵等差数列{a n)的前n项和为S n=﹣n2+(10+k)n+(k﹣1),∴k=1,∴S n=﹣n2+11n,当n=1时,a1=﹣1+11=10;当n≥2时,a n=S n﹣S n﹣1=﹣n2+11n﹣[﹣(n﹣1)2+11(n﹣1)]=﹣2n+12,当n=1时上式也成立.∴a n=﹣2n+12.故答案为:1;﹣2n+12.点评:本题考查了等差数列的通项公式及其前n项和公式、递推式的应用,考查了推理能力与计算能力,属于中档题.11.(6分)设函数f(x)=,则f(1)=﹣1,若f(f(a))≤3,则实数a的取值范围是(﹣∞,].考点:分段函数的应用.专题:函数的性质及应用.分析:由已知中函数f(x)=,将x=1代入,可求出f(1);再讨论f(a)的正负,代入求出f(a)≥﹣3,再讨论a的正负,求实数a的取值范围.解答:解:∵函数f(x)=,∴f(1)=﹣12=﹣1,①若f(a)<0,则f2(a)+2f(a)≤3,解得,﹣3≤f(a)≤1,即﹣3≤f(a)<0,②若f(a)≥0,则﹣f2(a)≤3,显然成立;则f(a)≥﹣3,③若a<0,则a2+2a≥﹣3,解得,a∈R,即a<0.④若a≥0,则﹣a2≥﹣3,解得,0≤a≤,综上所述,实数a的取值范围是:(﹣∞,].故答案为:﹣1;(﹣∞,].点评:本题考查了分段函数的应用,再已知函数值的范围时,要对自变量讨论代入函数求解,属于基础题.12.(6分)若如图为某直三棱柱(侧棱与底面垂直)被削去一部分后的直观图与三视图中的侧视图、俯视图,则其正视图的面积为4,三棱锥D﹣BCE的体积为.考点:棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离.分析:由题意可知,正视图为直角三角形,直角边长为2,4,可得正视图的面积;证明AB⊥平面ACDE,求出四棱锥B﹣ACDE的体积、三棱锥E﹣ACB的体积,即可求出三棱锥D﹣BCE的体积.解答:解:由题意可知,正视图为直角三角形,直角边长为2,4,故正视图的面积为=4;四棱锥B﹣ACDE中,AE⊥平面ABC,∴AE⊥AB,又AB⊥AC,且AE和AC相交,∴AB⊥平面ACDE,又AC=AB=AE=2,CD=4,则四棱锥B﹣ACDE的体积V==4,又三棱锥E﹣ACB的体积为=,∴三棱锥D﹣BCE的体积为4﹣=.故答案为:4;.点评:本题考查正视图的面积,考查考查几何体的体积,考查学生分析解决问题的能力,难度中等.13.(4分)点F是抛物线T:x2=2py(y>0)的焦点,F1是双曲线C:﹣=1(a>0,b>0)的右焦点,若线段FF1的中点P恰为抛物线T与双曲线C的渐近线在第一象限内的交点,则双曲线C的离心率e=.考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线C的渐近线方程为y=x,代入x2=2py,可得P(,),利用P是线段FF1的中点,可得P(,),由此即可求出双曲线C的离心率.解答:解:双曲线C的渐近线方程为y=x,代入x2=2py,可得P(,),∵F(0,),F1(c,0)∴线段FF1的中点P(,),∴=,=,∴a2=8b2,∴c2=9b2,∴e==.故答案为:.点评:本题考查双曲线C的离心率,考查抛物线、双曲线的性质,考查学生的计算能力,确定P的坐标是关键.14.(4分)已知向量=(1,),=(﹣2,0)若⊥(≠),当t∈[﹣,2]时,|﹣t|的取值范围为[1,].考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知求出用t表示的坐标,得到t的坐标,然后用t表示|﹣t|,根据t∈[﹣,2]求其范围.解答:解:由已知向量=(1,),=(﹣2,0)若⊥(≠),设=(x,y),则﹣2x+0=0,即x=0,所以=(0,y),则t=(0,t),所以﹣t=(1,﹣t),所以,|﹣t|2=1+(﹣t)2,又t∈[﹣,2],所以当t=时,|﹣t|2的最小值为1;当t=时,|﹣t|2的最大值为13;所以|﹣t|的取值范围为[1,];故答案为:[1,].点评:本题考查了向量的加减法的坐标运算以及向量模的求法.15.(4分)对于任意实数x,记[x]表示不超过x的最大整数,{x}=x﹣[x],<x>表示不小于x的最小整数,若x1,x2,…x m(0≤x1<x2<…<x m≤n+1是区间[0,n+1]中满足方程[x]•{x}•<x>=1的一切实数,则x1+x2+…+x m的值是+.考点:数列与函数的综合;函数的值.专题:新定义;函数的性质及应用.分析:根据新定义,[x]表示不超过x的最大整数,{x}=x﹣[x],需要分类讨论,根据条件得到x═a+,继而求出a的可能值,最后代入计算即可.解答:解:显然,x不可能是整数,否则由于{x}=0,方程[x]•{x}•<x>=1不可能成立.设[x]=a,则{x}=x﹣a,x=a+1,代入得a(x﹣a)(a+1)=1,解得x=a+.考虑到x∈[0,n+1],且[x]≠0,所以a=1,2,3,4,5,…,n,故符合条件的解有n个,即m=n,则x1+x2+…+x m=x1+x2+…+x n=+1﹣+…+﹣=+1﹣=+.故答案为:+.点评:本题考查了函数的值,需要分类进行讨论,新定义一般需要认真读题,理解题意,灵活利用已知定义,属于中档题.三、解答题:本大题共5小题,共74分(16.17.18.19小题各为15分,20小题为14分).解答应写出文字说明、证明过程或演算步骤.16.(15分)在△ABC中,角A,B,C所对的边分别为a,b,c,若1+=.(1)求角A的大小;(2)若函数f(x)=2sin2(x+)﹣cos2x,x∈[,],在x=B处取到最大值a,求△ABC的面积.考点:正弦定理;同角三角函数基本关系的运用.专题:解三角形.分析:(1)把已知等式中的切化弦,利用正弦定理把边转化为角的正弦,整理可求得cosA 的值,进而求得A.(2)把利用两角和公式对函数解析式化简,利用正弦函数的性质求得函数最大值时B,C 和a的值,进而利用正弦定理求得c,最后利用三角形面积公式求得答案.解答:解:(1)因为1+•=,所以=2sinC,又因为sinC≠0,所以cosA=,所以A=.(2)因为f(x)=2sin2(x+)﹣cos2x=1+2sin(2x﹣),所以,当2x﹣=,即x=时,f(x)max=3,此时B=,C=,a=3.因为=,所以c===,则S=acsinB=×3××=.点评:本题主要考查了正弦定理和三角函数图象与性质.考查了学生基础公式的运用和一定的运算能力.17.(15分)如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.(1)求证:平面CBE⊥平面CDE;(2)求二面角C﹣BE﹣F的余弦值.考点:二面角的平面角及求法;平面与平面垂直的判定.分析:(1)取CE的中点M,连接BM、FM,通过证明BM⊥平面CDE,利用平面与平面垂直的判定定理证明平面BCE⊥平面CDE.(2)过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,则∠NHF就是二面角C﹣BE﹣F的平面角.解答:(1)证明:因为DE⊥平面ACD,DE⊂平面CDE,所以平面CDE⊥平面ACD.在底面ACD中,AF⊥CD,由面面垂直的性质定理知,AF⊥平面CDE.取CE的中点M,连接BM、FM,由已知可得FM=AB且FM∥AB,则四边形FMBA为平行四边形,从而BM∥AF.所以BM⊥平面CDE.又BM⊂平面BCE,则平面CBE⊥平面CDE.…(7分)(2)解:过F作FN⊥CE交CE于N,过N作NH⊥BE,连接HF,则∠NHF就是二面角C﹣BE﹣F的平面角.在Rt△FNH中,NH=,FH=,所以cos∠NHF==故二面角C﹣BE﹣F的余弦值为…(15分)点评:本题考查平面与平面垂直的判定,考查二面角的余弦值,考查学生分析解决问题的能力,属于中档题.18.(15分)如图,椭圆M:+=1(a>b>0)的离心率为,上、下顶点为A,B,点P(0,2)关于直线y=﹣x的对称点在椭圆M上,过点P的直线l与椭圆M相交于两个不同的点C,D(C在线段PD之间).(1)求椭圆M的方程;(2)求•的取值范围;(3)当AD与BC相交于点Q时,试问:点Q的纵坐标是否为定值?若是,求出该定值;若不是,请说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由已知得a=2,又e==,故c=,b=1,即可求椭圆M的方程;(2)分类讨论,y=kx+2代入椭圆方程消去y,得(1+4k2)x2+16kx+12=0,利用数量积公式求•的取值范围;(3)由题意得:AD:y=x+1,BC:y=x﹣1,联立方程组,消去x,解得y=,即可得出结论.解答:解:(1)由已知得a=2,又e==,故c=,b=1,∴椭圆M的方程.…(4分)(2)①当直线l斜率不存在时,C(0,1),D(0,﹣1),•=﹣1;…(5分)当直线斜率存在时,设直线l方程为y=kx+2,C(x1,y1),D(x2,y2),则y=kx+2代入椭圆方程消去y,得(1+4k2)x2+16kx+12=0,x1+x2=﹣,x1x2=,△>0,可得4k2>3,…(7分)•=x1x2+y1y2=﹣1+,∴得﹣1<•<.综上可知,•的取值范围是[﹣1,).…(10分)②由题意得:AD:y=x+1,BC:y=x﹣1,联立方程组,消去x,解得y=,又4kx1x2=﹣3(x1+x2),得y=.∴点Q的纵坐标为定值.…(15分)点评:本题考查椭圆方程,考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的计算能力,属于中档题.19.(15分)已知等差数列{a n}的公差为d(d≠0),等比数列{b n}的公比为q(q>0),且满足a1=b1=1,a2=b3,a6=b5(1)求数列{a n}的通项公式;(2)数列{b n}的前n项和为T n,求证:++…+<2.考点:数列的求和;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用等差数列与等比数列的通项公式即可得出;(2)由(1)可得:b n=2n﹣1,可得T n=2n﹣1,可得<(n≥2时),即可证明.解答:(1)解:满足a1=b1=1,a2=b3,a6=b5,∴,解得:,故a n=3n﹣2.(2)证明:由(1)可得:b n=2n﹣1,∴T n==2n﹣1,∵<(n≥2时),∴当n≥2时,∴++…+=+…+<+…+=1+++…+==2<2.当n=1时,=1<2符合.综上所述,不等式成立.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、“放缩法”,考查了推理能力与计算能力,属于中档题.20.(14分)已知函数f(x)=log22x﹣mlog2x+a,g(x)=x2+1.(1)当a=1时,求f(x)在x∈[1,4]上的最小值;(2)当a>0,m=2时,若对任意的实数t∈[1,4],均存在x i∈[1,8](i=1,2),且x1≠x2,使得=f(t)成立,求实数a的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(1),转化成二次函数问题,利用单调性研究最小值.(2)令log2t=u(0≤u≤2),则f(t)=u2﹣2u+a的值域是[a﹣1,a].由条件列式求解.解答:解:(1),其中0≤log2x≤2.所以①,即m≤0,此时f(x)min=f(1)=1,②当,即m≥4,此时f(x)min=f(4)=5﹣2m,③0<m<4时,当时,.所以,f(x)min=…(6分)(2)令log2t=u(0≤u≤2),则f(t)=u2﹣2u+a的值域是[a﹣1,a].因为y=,利用图形可知解得…(14分)点评:本题主要考查以对数函数为背景的二次函数问题,属于中档题目,2015届高考常考题型.。

浙江省富阳二中2015届高三上学期第二次质量检测数学理试题

浙江省富阳二中2015届高三上学期第二次质量检测数学理试题

浙江省富阳二中2015届高三上学期第二次质量检测数学理试题一、 选择题:本大题共10个小题,每小题5分,共50分. 1.设集合2{230},{22}x A x x x B x =--<=<,则()R AC B 等于( )A . [1,1]-B . (1,0)-C . [1,3)D . (0,1) 2.1ab>的一个充分不必要条件是 ( ) A . a b >B .0a b >>C .a b <D .0b a <<3.已知函数2,(0)()2(1),(0)x x f x f x x ⎧>=⎨+≤⎩,则(1)f -= ( )A. 0B. 2C. 4D. 8 4.已知()sin(),(0)3f x x πωω=+>的图像与1y =的图像的两相邻交点间的距离为π,要得到()y f x =的图像,只须把sin y x ω=的图像 ( ) A.向左平移6π个单位 B.向右平移6π个单位 C.向左平移3π个单位 D.向右平移3π个单位5.下图是一个空间几何体的三视图,则这个几何体的侧面积是 ( )A.42B. 21C. 24D. 66.设,x y 满足约束条件330100,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为6,则23a b+的最小值为 ( ) A .83 B . 113 C . 256D .47.函数()f x 是R 上的偶函数,()g x 是R 上的奇函数,满足1()()()x f x g x π+=,则有 ( )A .(2)(3)(0)f f g <<B . (2)(0)(3)f g f <<C . (0)(2)(3)g f f <<D . (0)(3)(2)g f f << 8.数列前项和为,已知123a =,且对任意正整数,都有,若恒成立则实数的最小值为 ( )A .21B .C .D .29.设θ为两个非零向量,a b 的夹角,已知对任意实数,||b t a +的最小值为1 ( ) A. 若||a 确定,则θ唯一确定 B. 若||b 确定,则 θ唯一确定C.若θ确定,则 ||a 唯一确定D.若θ确定,则 ||b 唯一确定10. 已知双曲线M :22221x y a b -=和双曲线N :22221y x a b-=,其中0b a >>,且双曲线M 与N 的交点在两坐标轴上的射影恰好是两双曲线的焦点,则双曲线M 的离心率为 ( )B. C. 二、填空题:本大题共7个小题,每小题4分,共28分.11.已知函数()log (01)a f x x a a =>≠且满足23()()f f a a >,则2(1)0f x->的解集为已知向量,a b 满足||2b =,()3b a b ⋅-=-,则向量a 在b 上的投影为13.在三棱柱中,底面ABC 为正△,侧棱A 1A ⊥面ABC ,若1AA AB =,则异面直线B A 1与AC 所成的角的余弦值等于 14.已知函数()()⎩⎨⎧≤>+=0,3,1log 2x x x x f x,且关于x 的方程()0=-+a x x f 有两个不同的实根,则实数a 的取值范围是________________15.已知22221x y a b+=(a>b>0),M ,N 是椭圆的左、右顶点,P 是椭圆上任意一点,且直线PM 、PN 的斜率分别为12,k k ,且120k k ≠,若的最小值为1,则椭圆的离心率为16.已知直线1:2l y x =,过定点(3,2)A 与x 轴上动点(,0)(2)P a a >的直线2l ,则直线12,l l 与x 轴正半轴围成的三角形面积的最小值=17.在正方体!111D C B A ABCD -中,Q P N M 、、、分别是1111CC D C AA AB 、、、的中点,给出以下四个结论:①1AC MN ⊥; ②1AC //平面MNPQ ; ③1AC 与PM 相交; ④1NC 与PM 异面, 其中正确结论的序号是 .三、解答题:本大题共5个小题,共72分.18.已知ABC ∆中,角,,A B C 所对的边分别为,,a b c 若,,A B C 成等差数列,2b =,记角,()A x a c f x =+=,(1)当()f x 取最大值时,求ABC ∆的面积;(2)若12()65f x π-=,求sin 2x 的值.19.已知函数2()2f x x x x a =--,a ∈R . (Ⅰ)当2a =时,求函数()f x 的单调区间; (Ⅱ)若函数()f x 在区间[]0,2上的最小值是1-,求实数a 的值.20.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,90,//,1BAD AD BC AB BC ∠===,2,,AD PA ABCD PD =⊥底面与底面成30°角. (1)若,AE PC E ⊥为垂足,求证:PD ABE ⊥平面; (2)求平面P AB 与平面PCD 所成的锐二面角的余弦值.21.已知等差数列{}n a 的前n 项和为n S ,且21017,100a S ==.(I )求数列{}n a 的通项公式; (II )若数列{}n b 满足*cos()2()n n n b a n n N π=+∈,求数列{}n b 的前n 项和.线1C 上点P处的切线与圆222:1C x y +=相切于点Q ;(1)当直线PQ的方程为0x y --=时,求抛物线1C 的方程.(2)当正数p 变化时,记12,S S 分别为,FPQ FOQ ∆∆的面积,求12S S 的最小值.高三数学(理)参考答案:4322(sin sin cos cos sin )333A A A ππ=+-2cos 4sin()6A A A π=+=+,即()4sin()6f x x π=+.当3A π=时,()f x 取最大值.1sin 2S ac B == (2)∵12()4sin()6665f x x πππ-=-+=,即.∴.若,此时由知x >,这与矛盾.∴ x 为锐角,故. ∴.19.已知函数2()2f x x x x a =--,a ∈R . (Ⅰ)当2a =时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[]0,2上的最小值是1-,求实数a 的值.解:(1)当2x ≥时,22()4(2)4f x x x x =-+=--+,在(2,)+∞上递减,当2x ≤时,2224()343()33f x x x x =-=--,在2(,)3-∞上递减,在2(,2)3上递增 22()(,),(2,)(,2)33f x ∴-∞+∞在(2)222()32x axx a f x x axx a⎧-+≥⎪=⎨-≤⎪⎩2222()3()33x a a x a a a x x a⎧--+≥⎪=⎨--≤⎪⎩2a ≥时,21,3a a -=-=,不成立02a ≤<时,34a a == 0a <时,不成立20.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,2,,AD PA ABCD PD =⊥底面与底面成30°角. (1)若,AE PC E ⊥为垂足,求证:PD ABE ⊥平面 (2)求平面P AB 与平面PCD 解:AC CD ⊥,PA CD CD PAC ⊥⇒⊥平面CD AE⇒⊥,又AE PC ⊥,所以AE PCD AE PD ⊥⇒⊥平面,又AB PD ⊥,所以PD ABE ⊥平面(2)以A为原点,如图建立直角坐标系200PD v y z CD v x y ⋅=-=⋅=-= 设1,1,x y z ===则(1,1,3)v ∴=5cos ,u v 〈〉=21.已知等差数列{}n a 的前n 项和为n S ,且21017,100a S ==.(I )求数列{}n a 的通项公式; (II )若数列{}n b 满足*cos()2()n n n b a n n N π=+∈,求数列{}n b 的前n 项和. 解:(I )设{}n a 首项为1a ,公差为d,则111710(29)1002a d a d +=⎧⎪⎨+=⎪⎩解得1192a d =⎧⎨=-⎩19(1)(2)212n a n n ∴=+-⨯-=-(II )∵cos()2n n n b a n π=+=(1)2n n n a -+当n 为偶数时, 2312123...(2)(2)(2)...(2)n n n n T b b b a a a a =+++=-++++-++++=12(12)(2)22212n n n n +--⨯+=---…………………10分当n 为奇数时, 2312123...(2)(2)(2)...(2)n n n n T b b b a a a a =+++=-++++-+++-+ = 12312(12)()...()12n n n a a a a a ---+-+-+-= 11192222n n +--+⨯+-= 1222n n ++-1122(222n n n n n T n n ++⎧--∴=⎨+-⎩当为偶数)(当为奇数)22.如图,O为坐标原点,点F为抛物线21:2(0)C x py p =>的焦点,且抛物线1C 上点P处的切线与圆222:1C x y +=相切于点Q ;(1)当直线PQ 的方程为0x y --=时,求抛物线1C 的方程.(2)当正数p 变化时,记12,S S 分别为,FPQ FOQ ∆∆的面积,求12SS 的最小值.解:(1)220x pyx y ⎧=⎪⎨--=⎪⎩240p ∆=-=p ∴=2x ∴=(2)切线方程为2002x x y x p p=-,21d ==所以4220044x p x =+点Q的横坐标为:02x x =, 2200011(2)242x x x S p -=,202pS x =4222100002220(2)(2)(4)(2)382(4)2S x x x x t t S p x t--++===≥+-204""t x ==+=即。

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考理科数学试题全国卷2及解析word完美版

2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=() A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)=–4i ,则a=() A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .20064、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则A .21 B .42 C .63 D .84 5、设函数f(x)=,则f(–2)+f(log 212)=() A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,分体积的比值为()A .B .C .D .7、过三点A .2 8、如上左2a=() A .0 9、已知A ,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36A .36π.256π10、如上左O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x x 的函数,则y=f(x)的图像大致为()A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为()A .B .2C .D .12、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,xf’(x)–f(x)<0,则使得f(x)>0成立的x 的取值范围是() A .(–∞,–1)∪(0,1) B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0) D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ=. 14、若x ,y 满足约束条件,则z=x+y 的最大值为.15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=.16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (1)求.(2)若AD=1,DC=,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下: A 地区:62738192958574645376 78869566977888827689B 地区:73836251914653736482 93486581745654766579(1)均值及分散程度(记事件C :“A 地区用户的满意等级高于B 19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=101F=4.过点E ,F 的平面α(1)在途中画出这个正方形(不必说明画法和理由(2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l A ,B ,线段AB 的中点为M .(1)(2)若l l 的21、设函数(1)证明:(2)2)|≤e –1,求m 的取值范围.22、[选修4ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N E ,F 两点. (1)(2)若AG EBCF 的面积. 23、[选修4xOy 中,曲线C 1:(t 为参数,t≠0),其中0≤α<π. 在以O C 2:ρ=2sinθ,C 3:ρ=2cosθ. (1)求C 2与C (2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则+>+;(2)+>+是|a –b|<|c –d|的充要条件. 2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x–1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a–2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log 3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为S △ADC ·|DB|=a 3, 所以截去部分体积与剩余部分体积的比值为=.7、答案:C .由题可得,解得,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±2, 所以|MN|=|–2+2–(–2–2)|=4. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b第三步a≠b 第四步a≠b 第四步a≠b 第五步a≠b 9、答案:C 点C 到平面10、答案:当点P 在CD 当x=时,从点P B . 11、答案:过点M 作, 12、答案:因为当x>0 又因为函数且g(–, 二、填空题131415、答案:所以Ca+Ca+C+C+C=32,解得a=3.16、答案:–.∵a n+1=S n+1–S n =S n S n+1,∴–=1.即–=–1,∴{}是等差数列, ∴=–(n –1)=–1–n+1=–n ,即S n =–. 三、解答题17、答案:(1);(2)|BD|=,|AC|=1.(1)如图,由题意可得S △ABD =|AB||AD|sin ∠BAD,S △ADC =|AC||AD|sin ∠CAD, ∵S △ABD =2S △ADC ,∠BAD=∠DAC,∴|AB |=2|AC|,∴==. (2)设BC 边上的高为h ,则S △ABD =|BD|·h=2S △ADC =2××h ,解得|BD|=,设|AC|=x ,|AB|=2x ,则cos ∠BAD=,cos ∠DAC=.∵cos∠DAC=cos ∠BAD ,∴=,解得x=1或x=–1(舍去).∴|AC|=1. 18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高,A地区的分散程度大于B地区.(2)记事件不满意为事件A1,B1,满意为事件A2,B2,非常满意为事件A3,B3.则由题意可得P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,则P(C)=P(A2)P(B1)+P(A3)(P(B1)+P(B2))=×+×(+)=.19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF=(–10,4,8),EF=(–10,0,0),EG=(0,6,–8).设平面EFHG的一个法向量为n=(x,y,z),则,即,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF与α平面所成角的正弦值为sinθ=|cos<AF,n>|===.20、(1)设直线l的方程为y=kx+b(k≠0),点A(x1,y1),B(x2,y2),则M(,),联立方程,消去y整理得(9+k2)x2+2kbx+b2–m2=0(*),∴x1+x2=–,y1+y2=k(–)+2b=,∴kOM ·kAB=·k=·(–)·k=–9.k=4±,有21∴∴,所以此时当令e–m–2m 在而.当当22则∵.在在Rt△AEO中,sin∠OAE===.∴∠OAE=60°,∵∠OAE=∠OAF=∠EAF,AE=AF,∴∠EAF=2∠OAE=60°,∴△AEF、△ABC是等边三角形.连接OM,∴OM=2.∵OD⊥MN,∴MD=ND=MN=.在Rt△ODM中,OD===1,∴AD=OA+AD=4+1=5.在Rt△ADB中,AB===.∴四边形EBCF的面积为S△ABC –S△AEF=×()2–×(2)2=.23、(1)将曲线C2,C3化为直角坐标系方程C2:x2+y2–2y=0,C3:x2+y2–2x=0.联立,解得或.所以交点坐标为(0,0),(,).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.∵A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).∴|AB|=|2sinα–2 cosα|=4|sin(α–)|.当α=时,|AB|取得最大值,最大值为4.24、(1)由题意可得(+)2=a+b+2,(+)2=c+d+2,∵ab>cd,∴>,而a+b=c+d,∴(+)2>(+)2,即+>+.(2)+>+,即a+b+2>c+d+2,∴>,∴ab>cd,∴–4ab<–4cd,∴(a+b)2–4ab<(c+d)2–4cd,∴(a–b)2<(c–d)2,∴|a–b|<|c–d|.。

浙江省高三数学第二次联考试题 理

浙江省高三数学第二次联考试题 理

浙江大联考2015届高三第二次联考·数学试卷考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:第1次联考内容+三角函数与解三角形+平面向量.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|2x2-x-6<0},N={x|0<x≤4},则M∩N等于A.(0,2)B.(-,0)C.(-2,3)D.(-2,2)2.设a=(,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ的值等于A.-B.0C.-D.-13.已知命题p:若tan θ=2,则3sin2θ-sin θcosθ=2.则命题p及其逆命题、否命题、逆否命题中,正确命题的个数是A.0B.1C.2D.34.若四边形ABCD满足:+=0,(+)·=0,则该四边形一定是A.矩形B.正方形C.菱形D.直角梯形5.设△ABC的内角A,B,C所对的边长分别为a,b,c,且atan B=,bsin A=4,则a等于A.3B.C.4D.56.已知非零向量a,b的夹角为60°,且满足|a-2b|=2,则a·b的最大值为A. B.1 C.2 D.37.若函数f(x)=sin ωx+cos ωx(x∈R,ω>0),又f(α)=-2,f(β)=0,且|α-β|的最小值为,则函数g(x)=f(x)-1在[-2π,0]上零点的个数为A.0B.1C.2D.38.已知△ABC各角的对应边分别为a,b,c,且满足+ ≥ 1,则角A的取值范围是A.(0,]B.(0,]C.[,π)D.[,π)9.已知向量a,b的模均为2, 且<a,b>=.若向量c满足|c-(a+b)|=,则|c|的取值范围为A.[2-,2]B.[1-,1+]C.[2,2+]D.[2-,2+]10.设函数f(x)=-(x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有A.0个B.1个C.2个D.无数多个第Ⅱ卷二、填空题:本大题共7小题,每小题4分,共28分.把答案填在答题卷中的横线上.11.已知sin 2α=cos(+α),α∈(0,π),则sin 2α=▲.12.设函数f(x)=的最小值为-1,则实数a的取值范围是▲.13.给出如下三个命题:①“x≥2”是“log2(x+1)>2”的充分不必要条件;②将函数y=sin(2x-)的图象向左平移个单位可得到函数y=sin 2x的图象;③a,b为单位向量,其夹角为θ,若|a-b|>1,则<θ≤π.其中正确的命题是▲.(填序号)14.设e1,e2,e3,e4是平面内的四个单位向量,其中e1⊥e2,e3与e4的夹角为135°,对这个平面内的任一个向量a=xe1+ye2,规定经过一次“斜二测变换”得到向量a1=xe3+e4,设向量v=3e1-4e2,则经过一次“斜二测变换”得到向量v1的模是▲ .15.已知△ABC的三边a,b,c和其面积S满足S=c2-(a-b)2,则tan C= ▲.16.已知函数f(x)=,函数g(x)=asin(x)-2a+2(a>0),若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,则实数a的取值范围是▲.17.圆心为O的圆内有一条弦BC,其长为2,动点A在圆上运动,且∠BAC=45°,若∠ABC为锐角,则·的取值范围是▲.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)已知函数f(x)=2sin x·sin(+x)-2sin2x+1(x∈R).(1)若f()=,x0∈(-,),求cos 2x0的值;(2)在锐角△ABC中,三条边a,b,c对应的内角分别为A,B,C,若b=2,C=,且满足f(-)=, 求△ABC的面积.19.(本小题满分14分)已知向量m=(sin ωx,cos ωx),n=(cos ωx,-cos ωx)(ω>0),函数f(x)=m·n的最小正周期为.(1)求ω的值;(2)设△ABC的三边a、b、c满足:b2=ac,且边b所对的角为x,若关于x的方程f(x)=k有两个不同的实数解,求实数k的取值范围.20.(本小题满分15分)在平行四边形ABCD中,E是DC的中点,AE交BD于点M,||=4,||=2,,的夹角为.(1)若=λ+μ,求λ+3μ的值;(2)当点P在平行四边形ABCD的边BC和CD上运动时,求·的取值范围.21.(本小题满分15分)已知函数f(x)=cos(2x-)+2sin(x-)cos(x-),x∈R.(1)若对任意x∈[-,],都有f(x)≥a成立,求a的取值范围;(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移个单位得到函数y=g(x)的图象,求函数y=g(x)-在区间[-2π,4π]内的所有零点之和.22.(本小题满分14分)已知函数f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R.(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;(3)求函数g(x)=-在x∈[1,6]上的最小值.2015届高三第二次联考·数学试卷参考答案1.A M={x|-<x<2},所以M∩N={x|0<x<2}.2.C 根据题意得-+2cos2θ=0,∴cos2θ=,则cos 2θ=2cos2θ-1=2×-1=-.3.B 若tan θ=2,则3sin2θ-sin θcos θ===2,若3sin2θ-sin θcos θ=2,则tan θ=-1或tan θ=2,故选B.4.C ∵+=0,∴AB∥DC且AB=DC,即四边形ABCD是平行四边形,又∵(+)·=0,∴·=0,即BD⊥AC,∴四边形ABCD是菱形.5.D ∵atan B=,bsin A=4,∴=,即=cos B=,则tan B=,∴a=⇒a=5.6.B ∵a,b的夹角为60°,且|a-2b|=2,∴a2+4b2-4a·b=|a|2+4|b|2-2|a||b|=4≥4|a||b|-2|a||b|=2|a||b|,即|a||b|≤2,∴a·b=|a||b|≤1.7.B ∵|α-β|的最小值为,∴=,则T=3π,又∵ω>0,∴ω==.令g(x)=f(x)-1=2sin(x+)-1=0,得x+=2kπ+或x+=2kπ+(k∈Z),即x=3kπ-或x=3kπ+(k∈Z).当且仅当k=0时,有x=-符合题意.8.A 由已知得:b(a+b)+c(a+c)≥(a+c)(a+b),即b2+c2-a2≥bc,将不等式两边同除以2bc 得≥,即cos A≥(0<A<π),所以0<A≤.9.D 如图所示,圆的半径为,|a+b|=2.当c与a+b共线时,|c|分别取得最大值2+与最小值2-,所以|c|的取值范围为[2-,2+].10.A 集合N即为定义在[a,b]上的函数f(x)的值域,而f(x)=-为奇函数,且当x≥0时,f(x)=-1+递减,∴f(x)在R上递减,∴由M=N可得f(a)=b且f(b)=a,即-=b且-=a,∴a与b异号.而a<b,∴a<0且b>0,∴=b且=a,即=a,解得a=0,这与a<0矛盾.∴这样的实数对(a,b)不存在.11. 由已知得2sin αcos α=sin α,即c os α=,∵α∈(0,π),∴sin α=,sin 2α=2××=.12.[-,+∞)当x≥时,4x-3≥-1,∴当x<时,f(x)=-x+a≥-1,即-+a≥-1,得a≥-.13.②③由log2(x+1)>2得x>3,则“x>2”是“log2(x+1)>2”的必要不充分条件,故①错误;②正确;由|a-b|>1,得cos θ<,θ∈[0,π],所以<θ≤π,③正确.14. 由定义可知v1=3e3+e4=3e3-2e4,∴|v1|====.15. S=c2-(a2+b2)+2ab=-2abcos C+2ab=2ab(1-cos C)=absin C,=,∴=,∴tan=,tan C===.16.[,1] 因为f(x)=,所以当x1∈[0,1]时,f(x1)∈[0,1],因为x2∈[0,1],所以x2∈[0,],又a>0,所以asin(x2)∈[0,a],所以g(x2)∈[2-2a,2-a],因为若存在x1∈[0,1],对任意x2∈[0,1]都有f(x1)=g(x2)成立,所以解得a∈[,1].17.(-2,2] 因为BC=2,∠A=45°,所以2R=⇒R=,建立如图所示的直角坐标系,则B(-1,0),C(1,0),O(0,1),求得圆O:x2+(y-1)2=2.设A(x,y),则因为-1<x≤,所以·=2x∈(-2,2].18.解:(1)f(x)=2sin x·cos x-2sin2x+1=sin 2x+cos 2x=sin(2x+).因为x0∈(-,),所以x0+∈(0,).又因为f()=sin(2·+)=sin(x0+)=,得sin(x0+)=.所以cos(x0+)==.所以cos 2x0=sin(2x0+)=sin[2(x0+)]=2sin(x0+)cos(x0+)=2··=.7分(2)由(1)知f(x)=sin(2x+),所以f(-)=sin[2(-)+]=sin A=,sin A=,又因为△ABC为锐角三角形,所以A=,又因为C=,所以B=,所以b=c=2,△ABC的面积S=bcsin A=×2×2×sin=1.14分19.解:(1)f(x)=m·n=sin ωxcos ωx-cos2ωx=sin 2ωx-cos2ωx=sin 2ωx-=sin(2ωx-)-,∴T==,ω=2;5分(2)由余弦定理得cos x==≥=,∴0<x≤,由 f(x)=k得sin(4x-)=k+,由函数y=sin(4x-)(0<x≤)的图象知,方程sin(4x-)=k+有两个不同的实数解等价于-<k+<1,所以-1<k<.14分20.解:(1)如图所示,易得△ABM与△EDM相似,且===2,∴=,又=+=+=+,∴=(+)=+,=+,=-,代入=λ+μ,得+=λ(+)+μ(-)=(λ+μ)+(λ-μ),∴,解得λ=,μ=,∴λ+3μ=+3×=1.7分(2)如图所示,以A为原点,AB所在直线为x轴,建立直角坐标系.则A(0,0),B(4,0),C(5,),D(1,),E(3,).∴=(4,0)=,=(1,)=,=(3,),①当点P位于边BC上时,设=m(0≤m≤1).则=+=+m=(4,0)+m(1,)=(4+m,m).∴·=(4+m,m)·(3,)=3(4+m)+3m=6m+12,∵0≤m≤1,∴12≤6m+12≤18,∴·的取值范围[12,18].10分②当点P位于边CD上时,设=n(0≤n≤1).=+=+n=(1,)+n(4,0)=(1+4n,),∴·=(1+4n,)·(3,)=3(1+4n)+3=12n+6.∵0≤n≤1,∴6≤12n+6≤18.∴·的取值范围是[6,18].综上①②可知:·的取值范围是[6,18].15分21.解:(1)f(x)=cos(2x-)+2sin(x-)cos(x-)=cos(2x-)+sin(2x-)=cos 2x+sin 2x-cos 2x=sin 2x-cos 2x=sin(2x-).4分若对任意x∈[-,],都有f(x)≥a成立,则只需f min(x)≥a即可.∵-≤x≤,∴ -≤2x-≤,∴当2x-=-即x=-时,f(x)有最小值 -,故a≤-.7分(2)依题意可得g(x)=sin x,由g(x)-=0得sin x=,由图可知,sin x=在[-2π,4π]上有6个零点:x1,x2,x3,x4,x5,x6.根据对称性有=-,=,=,从而所有零点和为x1+x2+x3+x4+x5+x6=3π.15分22.解:(1)因为a=2,且x∈[2,3],所以f(x)=e|x-3|+e|x-2|+1=e3-x+e x-1=+≥2=2e,当且仅当x=2时取等号,所以f(x)在x∈[2,3]上的最小值为3e.3分(2)由题意知,当x∈[a,+∞)时,e|x-2a+1|≤e|x-a|+1,即|x-2a+1|≤|x-a|+1恒成立,所以|x-2a+1|≤x-a+1,即2ax≥3a2-2a对x∈[a,+∞)恒成立,则由,得所求a的取值范围是0≤a≤2.7分(3) 记h1(x)=|x-(2a-1)|,h2(x)=|x-a|+1,则h1(x),h2(x)的图象分别是以(2a-1,0)和(a,1)为顶点开口向上的V型线,且射线的斜率均为±1.①当1≤2a-1≤6,即1≤a≤时,易知g(x)在x∈[1,6]上的最小值为f1(2a-1)=e0=1.②当a<1时,可知2a-1<a,所以(ⅰ)当h1(1)≤h2(1),得|a-1|≤1,即0≤a<1时,g(x)在x∈[1,6]上的最小值为f1(1)=e2-2a.(ⅱ)当h1(1)>h2(1),得|a-1|>1,即a<0时,g(x)在x∈[1,6]上的最小值为f2(1)=e2-a.③当a>时,因为2a-1>a,可知2a-1>6,(ⅰ)当h1(6)≤1,得|2a-7|≤1,即<a≤4时,g(x)在x∈[1,6]上的最小值为f1(6)=e2a-7. (ⅱ)当h1(6)>1且a≤6时,即4<a≤6,g(x)在x∈[1,6]上的最小值为f2(a)=e1=e . (ⅲ)当a>6时,因为h1(6)=2a-7>a-5=h2(6),所以g(x)在x∈[1,6]上的最小值为f2(6)=e a-5.综上所述, 函数g(x)在x∈[1,6]上的最小值为g(x)min=14分。

浙江省杭州市富阳中学高考数学适应性考试试卷(二)文

浙江省杭州市富阳中学高考数学适应性考试试卷(二)文

浙江杭州市富阳中学2015届高 三高考适应性考试(二)数学(文)试题卷一、选择题:(本大题共8小题,每小题5分, 共40分。

)1.已知全集U R =,集合{}12|<=x x A ,{}3log 0B x x =>,则()B C A U =( ) A . {}1x x >B . {}0x x >C . {}0x x <D . {}01x x <<2.“1a =-”是“方程a 2x 2+(a +2)y 2+2ax +a =0表示圆”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.如图,已知DE 是正△ABC 的中位线,沿AD 将△ABC 折成直二面角B AD C --,则翻折后异面直线AB 与DE 所成角的余弦值为 ( ) A .34 B .23 C .12D .04.过双曲线)0(12222>>=-a b by ax 的左焦点)0)(0,(>-c c F ,作圆4222a y x =+的切线,切点为E ,延长FE 交双曲线右支于点P ,若)(21+=,则双曲线的离心率为( ) A .23B .2C .2D .210 5.已知y x z +=2,x ,y 满足⎪⎩⎪⎨⎧≥≤+≥m x y x x y 2,且z 的最大值是最小值的4倍,则m 的值是( ) A .41 B .51 C .61 D .71 6.在ABC ∆中,已知)sin()()sin()(2222B A b a B A b a +-=-+则ABC ∆的形状( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 7.已知等比数列1},{32=>a a a n ,则使不等式0)1()1()1(2211≥-++-+-nn a a a a a a 成立的最大自然数n 是 ( ) A .4 B .5 C .6 D .7AB DE8.已知函数21()|l o g (1)|,()2xf x xg x ⎛⎫=-= ⎪⎝⎭的图象交于1122(,),(,)A xy B x y 两点,则 ( )A .121x x ⋅<B .125x x +>C .1212x x x x +>⋅D .1212x x x x +<⋅二、填空题:9.已知曲线12222=-+kk y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高三高考适应性考试(二)数学(理)试题卷第Ⅰ卷(选择题 共40分)一、选择题:(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.若命题2000:0,230P x x x ∃>++≤,则命题P 的否定P ⌝是( )A .20,230x x x ∀>++>B .20,230x x x ∀>++≥ C .20,230x x x ∀≤++< D .20,230x x x ∀≤++≤2.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误..的是 ( )A .若m α⊥,//m n ,//n β,则αβ⊥B .若αβ⊥,m α⊄,m β⊥,则//m αC .若m β⊥,m α⊂,则αβ⊥D .若αβ⊥,m α⊂,n β⊂,则m n ⊥ 3.若将函数()t a n 04y x πωω⎛⎫=+> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为( ) A .16B .14C .13 D .124.某几何体的三视图如图所示,该几何体的表面积为 ( ) A.12 B.4+C.8D.45.若x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是( ) A .(1-,2 ) B .(4-,2 ) C .(4,0]- D .(2,4)-6.已知12,F F 为双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,P 为双曲线右支上一点,且2121,PF F F PF ⊥与y 轴交于点Q ,点M 满足123F M MF =,若1MQ PF ⊥,则双曲线C的离心率为( )ABC.2 D.27.已知B A ,是圆O :122=+y x 上的两个点,P 是AB 线段上的动点,当AOB ∆的面积最大时,则2AO AP AP ⋅- 的最大值是( )A .1-B .0C .81D .21 8.在直三棱柱ABC C B A -111中,2π=∠BAC ,11===AA AC AB ,已知G 和E 分别为11B A 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点),若EF GD ⊥,则线段DF的长度的取值范围为( ) A .⎪⎪⎭⎫⎢⎣⎡1,55 B .⎥⎦⎤⎢⎣⎡1,55 C .⎪⎪⎭⎫ ⎝⎛1,552 D .⎪⎪⎭⎫⎢⎣⎡1,552 第Ⅱ卷(非选择题 共110分)二、填空题:(本大题共7小题,第9题6分,每空格2分,第10~12题每题6分,每空格3分,第13~15题每小题4分,共36分.) 9.已知集合{}{}2|20,|11A x x x B x x =->=-≤<,则A B = ,R C A = ,R B C A = 。

10.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF =_________;12F PF ∠的小大为____________。

11.若函数1,0()1(),03x x xf x x ⎧<⎪⎪=⎨⎪≥⎪⎩ 则((2))f f -= , 不等式1|()|3f x ≥的解集为 。

12.已知数列{}n a 满足:434121,1,2,N ,n n n n a a a a n *--==-=∈则2015a =________;前2015项中数值最大项与最小项的和=____________。

w.w.w.k.s.5.u.c.o.m13.设实数1,0a b >->,且满足1ab a b ++=,则2ab bb ++的最大值为 。

14.已知过点(6,0)P 的动直线与抛物线24y x =交于,A B 两点,O 为原点,点C 满足三、解答题:(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16. (本小题满分15分)在ABC ∆中,,,A B C 所对的边分别为,,a b c ,且满足2cos 2b A c =.(1)求角B 的大小;(2)已知点M 为AC 的中点,若4a c +=,求线段BM 的取值范围。

17. (本小题满分15分)如图,在四面体P ABC -,底面ABC 是边长为1的正三角形,AB BP ⊥,点P 在底面ABC 上的射影为H,BH =,平面ACP 与平面PBH 所成的。

(1)求证:PA BC ⊥(2)求二面角C-AB-P 的正切值。

18. (本小题满分15分)已知函数()||,(0,0)af x x a a x x=-->>, (1)求)(x f 的单调区间;(2)当(0,4]x ∈时,若()3f x x ≥-恒成立,求a 的取值集合。

19. (本小题满分15分)已知椭圆)0(1:2222>>=+b a by a x C 经过点(2,1)P ,且两焦点与短轴的一个端点构成等腰直角三角形。

20. (本小题满分14分)已知数列{}n a 的前n 项和11()22n n n S a -=--+(n 为正整数)。

(Ⅰ)令2n n n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式; (Ⅱ)令1n n n c a n +=,12........n n T c c c =+++,试比较n T 与521nn +的大小,并予以证明。

2015届高三高考适应性考试(二)数学(理)答案1~8 ADDC BDCA 9.(0,1),(,0][2,),(,1)[2,)-∞+∞-∞+∞10.22,33π 11.[]2,3,1--12.1,256-13.25 14 1516.解:(1)2sin cos 2sin B A C A =2sin cos 2sin()B A A B A =+cos B =,6B π=(2)2222cos 4a c ac B BM +-⋅=22224()2)()2)()2a c BM a c ac a c +∴=++≥++224BM ∴≤<2BM ≤< 17.连接AH ,,AB BP AB PH AB PBH AB BH ⊥⊥⇒⊥⇒⊥平面3BH AH BC PA BC =⇒⊥⇒⊥ (2)延长AC 与BH 交于点D ,连接PD ,作BF 垂直PD ,连接AF ,则AFB ∠为平面ACP与平面PBH 所成的锐二面角,cos 1sin AFB AB BF BDF ∠==⇒=∠=BH HD PH =⇒=⇒=二面角C-AB-P 的平面角为PBH ∠,tan PBH ∴∠=18.(1)当1a >时,()f x 在区间)(,)a a +∞当01a <≤时,()f x 在区间(0,)+∞ (2)当04a <≤时,当4a x ≤≤时,232(3)0ax a x x a x a x-+≥-⇒-+-≤ 设2()2(3)g x x a x a =-+-()0(4)0g a g ≤⎧∴⎨≤⎩44a a ∴≥⇒=当0x a <<时,330a ax a x a x x+-≥-⇒+-≥ 04a ∴<<当4a >时,3304a ax a x a a x x+-≥-⇒+-≥⇒≤不成立 综上所述,04a <≤ 19.22163x y +=设直线AB 的方程为y kx m =+22163x y y kx m ⎧+=⎪⎨⎪=+⎩222(12)4260k x mkx m +++-=1212(2)(2)(1)(1)0x x y y --+--=221212(1)((1)2)()(1)40k x x m k x x m ++--++-+=22483210k mk m m ++--=12123km k m --=-=或直线AB 过定点21(,)33-20.解析:(I )在11()22n n n S a -=--+中,令n=1,可得1112n S a a =--+=,即112a =当2n ≥时,21111111()2()22n n n n n n n n n S a a S S a a ------=--+∴=-=-++,, 11n 1112a (),212n n n n n a a a ----∴=+=+n 即2.112,1,n 21n n n n n n b a b b b --=∴=+≥-= n 即当时,b . w.w.w.k.s.5.u.c.o.m 又1121,b a ==∴数列}{n b 是首项和公差均为1的等差数列.于是1(1)12,2nn n n n n b n n a a =+-⋅==∴=. (II)由(I )得11(1)()2n n n n c a n n +==+,所以 23111123()4()(1)()2222n n T n =⨯+⨯+⨯+++K2341111112()3()4()(1)()22222n n T n +=⨯+⨯+⨯+++K 由①-②得231111111()()()(1)()22222n n n T n +=++++-+K w.w11111[1()]133421(1)()22212332n n n n nn n n T -++-+=+-+=--+∴=- 535(3)(221)3212212(21)n n n n n n n n n T n n n ++---=--=+++ 于是确定521n n T n +与的大小关系等价于比较221nn +与的大小 112123210222n n n n n n ++++--=>,2152172,1,3,12428n n n n n n ++==>==< 综上所述,当1,2n =时521n n T n <+,当3n ≥时521n nT n >+。

相关文档
最新文档