辽宁省沈阳二中14-15学年度高二上学期12月月考试题数学(理)
辽宁省沈阳二中2024-2025学年高二(上)第一次月考数学试卷(含答案)
2024-2025学年辽宁省沈阳二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.过点(−4,2),倾斜角为3π4的直线方程为( )A. x−y +2=0B. x +y +2=0C. x−y =2D. x−y +1=02.已知两条直线l 1:ax +4y−1=0,l 2:x +ay +2=0,则“a =2”是“l 1//l 2”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.点P(−2,−1)到直线l :(1+3λ)x +(1+λ)y−2−4λ=0(λ∈R)的距离最大时,直线l 的方程为( )A. 3x +2y−5=0B. 3x +2y +8=0C. 2x−3y−2=0D. 2x−3y +1=04.关于空间向量,以下说法错误的是( )A. 空间中的三个向量,若有两个向量共线,则这三个向量一定共面B. 若a ⋅b >0,则a 与b 的夹角是锐角C. 已知向量a 、b 、c 是不共面的向量,则2a 、b 、c−a 也是不共面的向量D. 若对空间中任意一点O ,有OP =112OA +14OB +23OC ,则P ,A ,B ,C 四点共面5.如图,正四棱柱ABCD−A 1B 1C 1D 1中,AA 1=2AB =2,点E 和F 分别是线段AC 1与BD 上的动点,则EF 间最小距离为( )A.22B. 1C.33D.666.直线l 过点(2,1),且与圆C :(x−2)2+(y−4)2=10相交所形成的长度为整数的弦的条数为( )A. 6B. 7C. 8D. 97.直线y =x +1关于直线y =2x 对称的直线方程为( )A. 3x−y−1=0B. 4x−y−2=0C. 5x−y−3=0D. 7x−y−5=08.已知三棱锥A−BCD 的所有顶点都在球O 的球面上,AD ⊥平面ABC ,∠BAC =π2,AD =2,若球O 的表面积为22π,则三棱锥A−BCD(以A 为顶点)的侧面积的最大值为( )A. 6B. 212 C. 252 D. 272二、多选题:本题共3小题,共18分。
辽宁省沈阳二中高三上学期12月月考试题 数学(理)
沈阳二中2014——2015学年度上学期12月份小班化学习成果阶段验收高三( 15 届)数学(理科)试题命题人:高三数学组 审校人:高三数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)1、已知是实数集,集合,{}N=y y x =则 ( )2.已知是虚数单位,则在复平面中复数对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限 3、已知,,则 ( ) A. B.或 C. D.4.已知两个不同的平面和两个不重合的直线m 、n ,有下列四个命题: ①若//,m n m n αα⊥⊥,则;②若,,//m m αβαβ⊥⊥则;③若,//,,m m n n αβαβ⊥⊂⊥则; ④若//,//m n m n ααβ⋂=,则. 其中正确命题的个数是 ( )A.0B.1C.2D.35.下列说法中,正确的是 ( )A .命题“若,则”的逆命题是真命题B .命题“存在,02>-x x ”的否定是:“任意,02≤-x x ” C .命题“p 或q ”为真命题,则命题“p”和命题“q”均为真命题 D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件 6.点在直线上移动,则的最小值是 ( )A.8B. 6C.D.7、若是和的等比中项,则圆锥曲线的离心率是 ( )A .B .C .或D .或8. 如图所示是一个几何体的三视图,则该几何体的体积为A .B .C .D .正视图侧视图俯视图9.对于非零向量,定义一种向量积:.已知非零向量,且都在集合中。
则= ( )A .B .C .D .10.已知向量的夹角为()2,1,,1,OA OB OP tOA OQ t OB PQ θ====-uu r uu u r uu u r uu r uuu r uu u r uu u r,时取得最小值,当时,夹角的取值范围为 ( )A. B. C. D.11、已知函数的周期为4,且当时,()12f x x ⎧⎪=⎨--⎪⎩ (](]1,11,3x x ∈-∈,,其中.若方程恰有5个实数解,则的取值范围为 ( ) A.833⎛⎫⎪ ⎪⎝⎭, B.3⎛ ⎝ C . D .12.函数()||()x x af x e a R e =+∈在区间上单调递增,则的取值范围是 ( )A . B. C . D .第Ⅱ卷 (90分)二.填空题:本大题共4小题,每小题5分,共20分. 13已知,直线交圆于两点,则 .14.在数列中,121,(1) 1.nn n a a a +=+-=记是数列的前n 项和,则15.已知函数()()2ln 1f x a x x =+-,在区间()0,1内任取两个实数,p q ,且p q ≠,若不等式()()111f p f q p q +-+>-恒成立,则实数a 的取值范围为 。
辽宁省沈阳二中2014-2015学年高二数学上学期期中试题 理 新人教A版
辽宁省沈阳二中2014-2015学年高二数学理上学期期中试题新人教A 版说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上.第1卷 〔60分〕一、选择题:本大题共12小题,每一小题5分,共60分,在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.命题“0||,2≥+∈∀x x R x 〞的否认是〔 〕A .0||,2<+∈∀x x R x B. 0||,2≤+∈∀x x R x C.0||,2000<+∈∃x x R x D. 0||,2000≥+∈∃x x R x 2.设,,a b c R ∈,且a b >,如此〔 〕A .ac bc >B .11a b<C .22a b >D .33a b > 3.假设数列}{n a 的通项公式是(1)(32)nn a n =-⋅-,如此1210a a a ++⋅⋅⋅+= ( )A .15B .12C .-12D .-154.椭圆过点3(,4)5P -和点4(,3)5Q --,如此此椭圆的标准方程是( )A .y 225+x 2=1B.x 225+y 2=1或x 2+y 225=1C.x 225+y 2=1D .以上均不正确 5.有如下四个命题:①“假设xy =1,如此x 、y 互为倒数〞的逆命题; ②“相似三角形的周长相等〞的否命题;③假设“A ∪B =B ,如此A ⊇B 〞的逆否命题.其中的真命题有( )个。
A .0 B .1C .2D .36.椭圆x y m2251+=的离心率e=105,如此m 的值为 ( )A.3B.3或253 C.15D .15或53157.命题2:,0p x R x x ∀∈+>“”,命题:q a c b d a b c d +>+>>“是且的充分不必要条件〞,如此如下结论正确的答案是〔 〕 A .命题“q p ∧〞是真命题B. 命题“〔)P q ⌝∧〞是真命题C. 命题“()p q ∧⌝〞是真命题D. 命题“p q ∨〞是假命题8.设F 1、F 2分别是椭圆E :2221y x b+= (0<b <1)的左、右焦点,过F 1的直线l 与椭圆相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列,如此|AB |的长为( ) A.23B .1C.43D.539.2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的3倍,如此a 的值是〔 〕A .23B .13C . 14D .1510.F 1、F 2是椭圆C :22184x y +=的两个焦点,P 为椭圆C 上的一点,如果△PF 1F 2是直角三角形,这样的点P 有〔 〕个。
2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题(解析版)
2022-2023学年辽宁省沈阳市第二中学高二上学期12月月考数学试题一、单选题1.沈阳二中24届篮球赛正如火如荼地进行中,全年级共20个班,每四个班一组,如1—4班为一组,5—8班为二组……进行单循环小组赛(没有并列),胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛,最后胜出的三个班级再进行单循环赛,按积分的高低(假设没有并列)决出最终的冠亚季军,请问此次篮球赛学校共举办了多少场比赛?( ) A .51 B .42 C .39 D .36【答案】D【分析】先进行单循环赛,6支球队按抽签的方式进行淘汰赛,最后3个班再进行单循环赛,分别求出所需比赛场次,即可得出答案. 【详解】先进行单循环赛,有245C =30场,胜出的5个班级和从余下队伍中选出的数据最优秀的1个班级共6支球队按抽签的方式进行淘汰赛, 6支球队打3场,决出最后胜出的三个班, 最后3个班再进行单循环赛,由23C =3场. 所以共打了30+3+3=36场. 故选:D.2.“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】先根据焦点在x 轴上的椭圆求出m ,再根据充分性,必要性的概念得答案.【详解】由方程22212x y m m +=+表示焦点在x 轴上的椭圆得:220m m >+>, 解得21m -<<-或m>2, 由充分性,必要性的概念知,“m>2”是“方程22212x y m m +=+表示焦点在x 轴上的椭圆”的充分不必要条件.故选:A.合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断.【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kx y ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确;对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C.【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.4.()823x y z ++的展开式中,共有多少项?( ) A .45 B .36 C .28 D .21【答案】A【分析】按照展开式项含有字母个数分类,即可求出项数.【详解】解:当()823x y z ++展开式的项只含有1个字母时,有3项,当()823x y z ++展开式的项只含有2个字母时,有2137C C 21=项,当()823x y z ++展开式的项含有3个字母时,有27C 21=项,所以()823x y z ++的展开式共有45项; 故选:A.5.已知()52232x x --21001210a a x a x a x =++++,则0110a a a ++=( )【答案】A【分析】首先令0x =,这样可以求出0a 的值,然后把2232x x --因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出110a a 、的会下,最后可以计算出0110a a a ++的值.【详解】令0x =,由已知等式可得:50=232a =,()55552[(12)(2)]2((2)3122)x x x x x x =-+=-⋅+--,设5(12)x -的通项公式为:51551(2)(2)rrr r r r r T C x C x -+=⋅⋅-=⋅-⋅,则常数项、x 的系数、5x 的系数分别为:0155555(2)2C C C --⋅⋅、、;设5(2)x +的通项公式为:5512r r r r T C x -+=⋅⋅‘’‘’‘,则常数项、x 的系数、5x 的系数分别为: 4501555522C C C ⋅⋅、、,0115401555522)(2240,a C C C C =⋅⋅⋅=-⋅⋅+-5551055(2)32a C C =-⋅⋅=-,所以01103224032240a a a ++=--=-,故本题选A.【点睛】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.6.平行四边形ABCD 内接于椭圆22221x y a b +=()0a b >>AB 的斜率为1,则直线AD 的斜率为( )A .1-4B .1-2C .D .-1【答案】A【分析】利用对称关系转化为中点弦问题即可求解. 【详解】22222223331,,,2444c c a b b a a a a -=∴==∴=, 设112233(,),(,),(,),A x y B x y D x y设E 为AD 中点,由于O 为BD 中点,所以//OE AB ,所以1OE k =, 因为1133(,),(,)A x y D x y 在椭圆上,所以22112222332211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得2131321313OE AD y y y y b k k a x x x x +--=⋅=⋅+-, 所以22114AD b k a ⨯=-=-,即14AD k =-.故选:A.7.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形,若110PF =,椭圆与双曲线的离心率分别为12,e e ,则121e e ⋅+的取值范围是A .()1,+∞B .4,3⎛⎫+∞ ⎪⎝⎭C .6,5⎛⎫+∞ ⎪⎝⎭D .10,9⎛⎫+∞ ⎪⎝⎭【答案】B【分析】本题主要考查椭圆和双曲线的定义,椭圆和双曲线的离心率,平面几何分析方法,值域的求法.由于椭圆和双曲线有公共点,那么公共点既满足椭圆的定义,也满足上曲线的定义,根据已知条件有22PF c =,利用定义列出两个离心率的表达式,根据题意求121e e ⋅+的表达式,表达式分母还有二次函数含有参数,根据三角形两边和大于第三边,求出c 的取值范围,进而求得121e e ⋅+的取值范围.【详解】设椭圆方程为()222221122111x y a b c a b +=-=,双曲线方程为()222221122111x y a b c a b -=+=,由椭圆和双曲线的几何性质可得,1211222,2PF PF a PF PF a +=-=,依题意可知22PF c =,110PF =,代入可得,125,5a c a c =+=-.故2122212251112525c c c e e a a c c ⋅+=⋅+=+=--,三角形两边的和大于第三边,故5410,2c c >>,120,0a a >>,故5c <故22223745402554252525c c c <⇒<⇒<-><-. 故选:B.【点睛】(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a +=,得到a ,c 的关系.(2)双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、122PF PF a -=,得到a ,c 的关系.8.已知A ,B ,C ,D 是椭圆E :22143x y +=上四个不同的点,且()1,1M 是线段AB ,CD 的交点,且3AM CM BMDM==,若l AC ⊥,则直线l 的斜率为( )A .12B .34C .43D .2【答案】C【分析】设出点的坐标()()()()11223344,,,,,,,A x y B x y C x y D x y ,由3AMBM=得到3AM MB =,列出方程,得到12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,分别把()()1122,,,A x y B x y 代入椭圆,得到()()111122143x y -+-=,同理得到()()331122143x y -+-=,两式相减得到34AC k =-,利用直线垂直斜率的关系求出直线l 的斜率. 【详解】设()()()()11223344,,,,,,,A x y B x y C x y D x y ,因为3AM BM =,故3AM MB =,所以()()1212131131x x y y ⎧-=-⎪⎨-=-⎪⎩,则12124343x x y y -⎧=⎪⎪⎨-⎪=⎪⎩,又()()1122,,,A x y B x y 都在椭圆上,故2211143x y +=,且()()22119114443x y -+-=, 两式相减得:()()1181142442443x y -⨯+-⨯=,即()()111122143x y -+-=①, 同理可得:()()11221x y -+-=②,②-①得:()()131311043x x y y -+-=, 所以131334ACy y k x x -==--, 因为l AC ⊥,所以直线l 的斜率为143AC k -=. 故选:C【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.二、多选题9.已知两点(5,0),(5,0)M N -,若直线上存在点P ,使||||6PM PN -=,则称该直线为“B 型直线”.下列直线中为“B 型直线”的是( ) A .1y x =+ B .2y = C .43y x =D .2y x =【答案】AB【解析】首先根据题意,结合双曲线的定义,可得满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支;进而可得其方程,若该直线为“B 型直线”,则这条直线必与双曲线的右支相交,依次分析4条直线与双曲线的右支是否相交,可得答案.【详解】解:根据题意,满足||||6PM PN -=的点的轨迹是以M 、N 为焦点的双曲线的右支; 则其中焦点坐标为(5,0)M -和(5,0)N ,即5c =,3a =, 可得4b =;故双曲线的方程为221916x y -=,(0)x > 双曲线的渐近线方程为43y x =±∴直线43y x =与双曲线没有公共点, 直线2y x =经过点(0,0)斜率43k >,与双曲线也没有公共点 而直线1y x =+、与直线2y =都与双曲线221916x y-=,(0)x >有交点 因此,在1y x =+与2y =上存在点P 使||||6PM PN -=,满足B 型直线的条件 只有AB 正确 故选:AB .10.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机取出一球放入乙箱中,分别以12,A A 表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以B 表示从乙箱中取出的球是黑球的事件,则下列结论正确的是( ) A .12,A A 两两互斥B .()22|3P B A = C .事件B 与事件2A 相互独立 D .()914P B =【答案】AD【分析】根据条件概率、全概率公式、互斥事件的概念等知识,逐一分析选项,即可得答案. 【详解】因为每次取一球,所以12,A A 是两两互斥的事件,故A 项正确; 因为()()1212P A P A ==,()()()2225|7P BA P B A P A ==,故B 项错误; 又()()()1114|7P BA P B A P A ==,所以()()()1214159272714P B P BA P BA =+=⨯+⨯=,故D 项正确.从甲箱中取出黑球,放入乙箱中,则乙箱中黑球变为5个,取出黑球概率发生变化,所以事件B 与事件2A 不相互独立,故C 项错误. 故选:AD11.已知抛物线E :2y x =,O 为坐标原点,一束平行于x 轴的光线1l 从点41,116P ⎛⎫⎪⎝⎭射入,经过E 上的点()11,A x y 反射后,再经E 上的另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则( ) A .12116x x =B .54AB =C .ABP QBP ∠=∠D .延长AO 交E 的准线于点C 则存在实数λ使得CB CQ λ= 【答案】ACD【分析】根据抛物线的光学性质可知,直线AB 经过抛物线的焦点,直线2l 平行于x 轴,由此可求出点,A B 的坐标,判断各选项的真假.【详解】如图所示:因为141,1,16P l ⎛⎫ ⎪⎝⎭过点P 且1//l x 轴,故(1,1)A ,故直线101:1414AF y x -⎛⎫=⋅- ⎪⎝⎭- 化简得4133y x =-,由24133y x y x⎧=-⎪⎨⎪=⎩消去x 并化简得231044y y --=,即1214y y =-,()21212116x x y y ==,故A 正确;又11y =, 故214y =-,B 11,164⎛⎫- ⎪⎝⎭,故121125116216AB x x p =++=++=,故B 错误;因为412511616AP AB =-==,故APB △为等腰三角形,所以ABP APB ∠=∠,而12l l //,故PBQ APB ∠=∠,即ABP PBQ ∠=∠,故C 正确;直线:AO y x =,由14y xx =⎧⎪⎨=-⎪⎩得11,,44C ⎛⎫-- ⎪⎝⎭故C B y y =,所以,,C B Q 三点共线,故D 正确.故选:ACD . 12.已知当随机变量()2,XN μσ时,随机变量X Z μσ-=也服从正态分布.若()2,,X X N Z μμσσ-~=,则下列结论正确的是( )A .()0,1ZNB .()12(1)P X P Z μσ-<=-<C .当μ减小,σ增大时,(2)P X μσ-<不变D .当,μσ都增大时,(3)P X μσ-<增大 【答案】AC【分析】根据正态分布与标准正态分布的关系以及正态分布的性质及特点可判断各选项正误. 【详解】对任意正态分布()2,X N μσ,X Z μσ-=服从标准正态分布()0,1ZN 可知A 正确,由于X Z μ-=,结合正态分布的对称性可得()(1)12(1)P X P Z P Z μσ-<=<=->,可知B 错误,已知正态分布()2,X N μσ,对于给定的*N k ∈,()P X k μσ-<是一个只与k 有关的定值,所以C正确,D 错误. 故选:AC.三、填空题 13.设()2,XB p ,若()519P X ≥=,则p =_________ .【答案】13【分析】由二项分布的概率公式()()1n kk kn P X k p p -==-C ,代入()()()112P X P X P X ≥==+=可得结果. 【详解】()2,XB p ,()()()()()0122222112C 1+C 12P X P X P X p p p p p p ∴≥==+==--=-,2529p p ∴-=,解得:13p ∴=或53p =(舍去)故答案为:13.14.已知()35P A =,()12P B A =,()23P B A =,则()P B =______. 【答案】1330【分析】根据已知条件结合全概率公式求解即可 【详解】因为()35P A =,所以32()1()155P A P A =-=-=, 因为()23P B A =,所以()()211133P B A P B A =-=-=, 所以由全概率公式可得()()()()()P B P B A P A P B A P A =+ 131213253530=⨯+⨯=, 故答案为:133015.现有三位男生和三位女生,共六位同学,随机地站成一排,在男生甲不站两端的条件下,有且只有两位女生相邻的概率是______. 【答案】2##0.4.【分析】先计算出男生甲不站两端,3位女生中有且只有两位女生相邻的总情况,再按照古典概型计算概率即可.【详解】3位男生和3位女生共6位同学站成一排共有66A 种不同排法,其中男生甲不站两端,3位女生中有且只有两位女生相邻有2322233422A (A A 6A A )-种不同排法,因此所求概率为232223342266A (A A 6A A )2=.A 5- 故答案为:25.16.关于曲线C :22111x y +=,有如下结论: ①曲线C 关于原点对称; ②曲线C 关于直线0x y ±=对称; ③曲线C 是封闭图形,且封闭图形的面积大于2π; ④曲线C 不是封闭图形,且它与圆222x y +=无公共点; 其中所有正确结论的序号为_________. 【答案】①②④【分析】利用曲线方程的性质,对称性的应用及曲线间的位置关系即可判断上述结论是否正确. 【详解】对于①,将方程中的x 换为x -,y 换为y -,得()()222211111x y x y +=+=--,所以曲线C 关于原点对称,故①正确;对于②,将方程中的x 换为y 或y -,y 换为x 或x -,得()()2222221111111y x x y y x +=+=+=--,所以曲线C 关于直线0x y ±=对称,故②正确; 对于③,由22111x y +=得221110y x=-≥,即21x ≥,同理21y ≥,显然曲线C 不是封闭图形,故③错误;对于④,由③知曲线C 不是封闭图形,联立22221112x y x y ⎧+=⎪⎨⎪+=⎩,消去2y ,得42220x x -+=,令2t x =,则上式转化为2220t t -+=,由()224240∆=--⨯=-<可知方程无解,因此曲线C 与圆222x y +=无公共点,故④正确. 故答案为:①②④.四、解答题17.给出下列条件:①若展开式前三项的二项式系数的和等于16;②若展开式中倒数第三项与倒数第二项的系数比为4:1.从中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分)已知()*nx n N ⎛∈ ⎝⎭,___________. (1)求展开式中二项式系数最大的项; (2)求展开式中所有的有理项.【答案】(1)4352T x =和74254T x =(2)51T x =,4352T x =,35516T x =【分析】(1)无论选①还是选②,根据题设条件可求5n =,从而可求二项式系数最大的项. (2)利用二项展开式的通项公式可求展开式中所有的有理项. 【详解】(1)二项展开式的通项公式为:211C C ,0,1,2,,2rr r rr n n n r r n T x x r n --+⎛⎫=== ⎪⎝⎭⎝⎭.若选①,则由题得012C C C 16n n n ++=,∴()11162n n n -++=,即2300n n +-=,解得5n =或6n =-(舍去),∴5n =.若选②,则由题得()221111C 22141C 22n n nn n n n n n n ----⎛⎫- ⎪⎝⎭==-=⎛⎫ ⎪⎝⎭,∴5n =, 展开式共有6项,其中二项式系数最大的项为22443515C 22T x x ⎛⎫== ⎪⎝⎭,,7732345215C 24T x x ⎛⎫== ⎪⎝⎭. (2)由(1)可得二项展开式的通项公式为:5521551C C ,0,1,2,,52rr r rr r r T x x r --+⎛⎫=== ⎪⎝⎭⎝⎭.当52rZ -∈即0,2,4r =时得展开式中的有理项,所以展开式中所有的有理项为:51T x =,5423522215C 22T x x -⎛⎫= ⎪⎝⎭=,5342545415C 216T x x -⎛⎫= ⎪=⎝⎭.18.已知圆()22:()(21)4C x a y a a -+-+=∈R ,定点()1,2M -.(1)过点M 作圆C 的切线,切点是A ,若线段MA C 的标准方程;(2)过点M 且斜率为1的直线l ,若圆C 上有且仅有4个点到l 的距离为1,求a 的取值范围. 【答案】(1)22(3)(5)4x y -+-=或22(1)(3)4x y +++=(2)(4【分析】(1)由题可知,圆心(),21C a a -,2r =,由勾股定理有222MC MA r =+,根据两点间距离公式计算即可求出a 的值,进而得出圆的方程;(2)因为圆C 上有且仅有4个点到l 的距离为1,圆C 的半径为2,因此需圆心C 到直线l 的距离小于1,设直线l 的方程为:()211y x -=+,根据点到直线的距离公式列出不等式,即可求出a 的取值范围.【详解】(1)解:由题可知,圆心(),21C a a -,2r =由勾股定理有222MC MA r =+,则222(1)(23)225a a ++-=+= 即2510150a a --=,解得:3a =或1a =-,所以圆C 的标准方程为:22(3)(5)4x y -+-=或22(1)(3)4x y +++=. (2)解:设直线l 的方程为:()211y x -=+,即30x y -+=, 由题,只需圆心C 到直线l 的距离小于1即可,所以1d =<,所以4a -44a <所以a 的取值范围为(4.19.某种植物感染α病毒极易导致死亡,某生物研究所为此推出了一种抗α病毒的制剂,现对20株感染了α病毒的该植株样本进行喷雾试验测试药效.测试结果分“植株死亡”和“植株存活”两个结果进行统计;并对植株吸收制剂的量(单位:mg )进行统计.规定:植株吸收在6mg (包括6mg )以上为“足量”,否则为“不足量”.现对该20株植株样本进行统计,其中 “植株存活”的13株,对制剂吸收量统计得下表.已知“植株存活”但“制剂吸收不足量”的植株共1株.(1)完成以下22⨯列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关?(2)①若在该样本“吸收不足量”的植株中随机抽取3株,记ζ为“植株死亡”的数量,求ζ得分布列和期望E ζ;②将频率视为概率,现在对已知某块种植了1000株并感染了α病毒的该植物试验田里进行该药品喷雾试验,设“植株存活”且“吸收足量”的数量为随机变量η,求D η.参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关;(2)①分布列见解析,125E ζ=,②240 【解析】(1)已知“植株存活”但“制剂吸收不足量”的植株共1株,由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填表即可(2)代入公式计算2220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯,有关(3)①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株,所以抽取的3株中ξ的可能取值是2,3,根据古典概型计算即可. ②“植株存活”且“制剂吸收足量”的概率为123205p ==,332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【详解】解:(1) 由题意可得“植株存活”的13株,“植株死亡”的7株;“吸收足量”的15株,“吸收不足量”的5株,填写列联表如下:吸收足量 吸收不足量 合计 植株存活 12 1 13 植株死亡 3 4 7 合计 155202220(12431) 5.934 6.635137155K ⨯-⨯=≈<⨯⨯⨯所以不能在犯错误概率不超过1%的前提下,认为“植株的存活”与“制剂吸收足量”有关. ①样本中“制剂吸收不足量”有5株,其中“植株死亡”的有4株, 存活的1株, 所以抽取的3株中ξ的可能取值是2,3.其中24353(2)5C P C ξ===, 34352(3)5C P C ξ===ξ的分布列为: ξ2 3 P3525所以321223555E ξ=⨯+⨯=. ②332~(1000,)(1)1000240555B D np p ηη⇒=-=⨯⨯=【点睛】考查完成22⨯列联表、离散型随机变量的分布列、期望以及二项分布的方差,难题. 20.安排5个大学生到,,A B C 三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.【答案】(1);(2)详见解析.【详解】试题分析:(1)5个大学生去三所学校支教,共有种方法,若恰有2人去A 校支教,那就从5人中先选2人,去A 大学,然后剩下的3人去B 和C 大学支教,有种方法,最后根据古典概型求概率;(2)根据题意,,表示5人都去了同一所大学支教,表示5人去了其中2所大学支教,那可以将5人分组,分为4和1,或是3和2,然后再分配到2所大学,计算概率,表示5人去了3所大学支教,那分组为113,或是122型,再将三组分配到三所大学,计算概率,最后列分布列.试题解析:(1)5个大学生到三所学校支教的所有可能为53243=种,设“恰有2个人去A 校支教”为事件M ,则有352280C ⋅=种,∴80()243P M =. 答:5个大学生中恰有2个人去A 校支教的概率80243. (2)由题得:1,2,3ξ=,15ξ=⇒人去同一所学校,有133C =种,∴ 31(1)24381P ξ===, 25ξ=⇒人去两所学校,即分为4,1或3,2有24323552()90C C C A ⋅+⋅=种,∴ 903010(2)2438127P ξ====, 35ξ=⇒人去三所学校,即分为3,1,1或2,2,1有312235253311()1502!2!C C C C A ⋅⋅⋅⋅+⋅= 种,∴15050(3)24381P ξ===. ∴ 的分布列为【解析】1.排列组合;2.离散型随机变量的分布列.21.已知椭圆22:143x y Γ+=的右焦点为F ,过F 的直线l 交Γ于,A B 两点.(1)若直线l 垂直于x 轴,求线段AB 的长;(2)若直线l 与x 轴不重合,O 为坐标原点,求△AOB 面积的最大值;(3)若椭圆Γ上存在点C 使得||||AC BC =,且△ABC 的重心G 在y 轴上,求此时直线l 的方程. 【答案】(1)3 (2)32(3):1l x =、:0l y =或3:1l x y =+【分析】(1)根据直线垂直x 轴,可得,A B 坐标,进而可求线段长度.(2)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,进而根据三角形面积求表达式,进而根据函数最值进行求面积最大值.(3)联立直线和椭圆方程,根据韦达定理,可得根与系数关系,以及重心坐标公式,即可求解.【详解】(1)因为(1,0)F ,令1x =,得21143y +=,所以32y =±,所以||3AB = (2)设直线:1(0)l x my m =+≠,1122(,),(,)A x y B x y ,不妨设210,0y y ><,由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=, 2144(1)m ∆=+,122634m y y m -+=+,122934y y m -=+, ()2221122221212169434434m y y y y y m m m y --⎛⎫- ⎪++-+-==+⎝⎭2211112122AOBm SOF y y +=⋅-=21m t +=,则1t ≥,2661313AOB t S t t t==++△,记1()3h t t t =+,可得1()3h t t t=+在[)1,+∞上单调递增所以211322AOBSOF y y =⋅-≤当且仅当0m =时取到, 即AOB 面积的最大值为32;(3)①当直线l 不与x 轴重合时,设直线:1l x my =+,1122(,),(,)A x y B x y ,AB 中点为M .由221431x y x my ⎧+=⎪⎨⎪=+⎩得22(34)690m y my ++-=,122634m y y m -+=+,122934y y m -=+, 因为ABC 的重心G 在y 轴上,所以120C x x x ++=, 所以121228()234C x x x m y y m -=--=-+-=+,又()12122242234M m y y x x x m +++===+,1223234M y y my m +-==+, 因为||||AC BC =,所以CM AB ⊥ ,故直线:()M M CM y y m x x -=--,所以29()34C M C M m y y m x x m =--=+,从而2289,3434m C m m -⎛⎫ ⎪++⎝⎭, 代入22143x y +=得22(31)0m m -=,所以0,m =:1l x =或:1l x y =+.② 当直线l 与x 轴重合时,点C 位于椭圆的上、下顶点显然满足条件,此时:0l y =. 综上,:1l x =,:0l y =或:1l x y =+. 22.已知双曲线2222:100x y C a b a b-=>>(,),1F 、2F 分别是它的左、右焦点,(1,0)A -是其左顶点,且双曲线的离心率为2e =.设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内. (1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12x =交于M N 、两点,证明22MF NF ⋅为定值; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由. 【答案】(1)2213y x -= (2)证明见解析 (3)存在,2【分析】(1)根据题意可得1a =,2ce a==,即可求解,b c 的值,进而得到双曲线方程; (2)设直线l 的方程及点,P Q 的坐标,直线l 的方程与双曲线C 的方程联立,得到1212,y y y y +的值,进而得到点,M N 的坐标,计算22MF NF ⋅的值即可;(3)在直线斜率不存在的特殊情况下易得2λ=,再证明222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,将角度问题转化为斜率问题,即222tan 21PAPAk PAF k ∠=-,22tan PF AF P k ∠=-,即可求解=2λ. 【详解】(1)解:由题可知:1a = ∵2ce a==,∴c =2 ∵222+=a b c ,∴b = ∴双曲线C 的方程为:2213y x -=(2)证明:设直线l 的方程为:2x ty =+,另设:()11,P x y ,()22,Q x y ,∴()2222131129032y x t y ty x ty ⎧⎪⎨⎪-=⇒-++==+⎩, ∴121222129,3131t y y y y t t -+==--,又直线AP 的方程为()1111y y x x =++,代入()11311,2221y x M x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, 同理,直线AQ 的方程为()2211y y x x =++,代入()22311,2221y x N x ⎛⎫=⇒ ⎪ ⎪+⎝⎭, ∴()()1222123333,,,221221y y MF NF x x ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭,∴()()()()()12121222212121212999999441144334439y y y y y y MF NF x x ty ty t y y t y y ⋅=+=+=+++++⎡⎤+++⎣⎦2222999993109124444393131t t t t t t ⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭,故22MF NF ⋅为定值.(3)解:当直线l 的方程为2x =时,解得(2,3)P , 易知此时2AF P △为等腰直角三角形,其中22,24AF P PAF ππ∠=∠=,即222AF P PAF ∠=∠,也即:=2λ,下证:222AF P PAF ∠=∠对直线l 存在斜率的情形也成立,121112222212112122tan 212(1)tan 21tan 1(1)1()1PAPAy PAF k x y x PAF y PAF k x y x ⨯∠++∠====-∠-+--+,∵()222211111313y x y x -=⇒=-,∴()()()()()()11111222121112121tan 22122131y x y x y PAF x x x x x ++∠===--+--+--,∴21221tan tan 22PF y AF P k PAF x ∠=-=-=∠-, ∴结合正切函数在0,,22πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭上的图像可知,222AF P PAF ∠=∠,。
易错汇总2014-2015年辽宁省沈阳二中高二上学期期末数学试卷(理科)与解析
,点 M 在 上,
A.
B.
【解答】 解:由题意 =++
= +﹣+ =﹣ + + ﹣ =﹣ + + 又 =, =, = ∴ =﹣ + +
C.
D.
故选: B.
7.(5 分)已知 { an} 是等比数列,其前 n 项和为 Sn,若 =9,则 =( )
A.9
B.18
C.64
D.65
【解答】 解:在等比数列 { an} 中,由 =9,知等比数列的公比 q≠1,
抛物线于 P, 则 | PQ|+| PN| 的最小值等于 | MH| ﹣1=3. 故选: A.
11.( 5 分)已知直三棱柱 ABC﹣A1B1C1 的各棱长均为 1,棱 BB1 所在直线上的动
点 M 满足
,AM 与侧面 BB1C1C 所成的角为 θ,若 λ∈[
],
则 θ的取值范围是(
)
A.[ , ] B.[
解得, a=12, 则抛物线的准线为 x=﹣ 3, 将 x=﹣3 代入双曲线方程,可得 y2=5×( ﹣ 1) = ,
解得, y= .
则截得的弦长为 5. 故选: B.
9.(5 分)定义
为 n 个正数 p1,p2,…pn 的 “均倒数 ”.若已知数列
{ an} 的前 n 项的 “均倒数 ”为
,又
,则
( t 是参数).
(Ⅰ) 若直线 l 与曲线 C 相交于 A、B 两点,且 | AB| = ,试求实数 m 值. (Ⅱ) 设 M (x,y)为曲线 C 上任意一点,求 x+y 的取值范围.
【选修 4-5:不等式选讲】 23.设不等式 | x﹣ 2|+| 3﹣x| <a( a∈ N*)的解集为 A,且 2∈ A, ?A. (Ⅰ)求 a 的值; (Ⅱ)求函数 f (x)=| x+a|+| x﹣2| 的最小值.
辽宁省沈阳二中高三数学上学期12月月考试卷理
辽宁省沈阳二中高三数学上学期12月月考试卷理高三(17届) 数学理科试题命题:高三数学备课组说明:1、测试时间:120分钟 总分:150分2、客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷(60分)一.选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ( ) A.{}0,3 B.{}2,0,3 C.{}1,0,3 D.{}2,1,0,3 2.若奇函数f (x )的定义域为R ,则有( )A .f (x )>f (-x ) C .f (x )≤f (-x ) C .f (x )·f (-x )≤0 D .f (x )·f (-x )>0 3.若a,b 是异面直线,且a ∥平面 ,那么b 与平面的位置关系是( ) A .b ∥B .b 与相交C .b ⊂D .以上三种情况都有可能 4.下列函数中,图象的一部分如右图所示的是( )(A )sin 6y x π⎛⎫=+⎪⎝⎭ (B )sin 26y x π⎛⎫=- ⎪⎝⎭(C )cos 43y x π⎛⎫=- ⎪⎝⎭ (D )cos 26y x π⎛⎫=- ⎪⎝⎭5.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n6.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是( ) A .B .C .D .7.设变量x ,y 满足约束条件,则z=﹣2x+y 的最小值为( )A . ﹣7B . ﹣6C . ﹣1D . 28.下列函数中在上为减函数的是( )A .y=﹣tanxB .C .y=sin2x+cos2xD .y=2cos 2x ﹣19.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )810.已知三个互不重合的平面γβα、、,且c b a ===γβγαβα ,,,给出下列命题:①若c a b a ⊥⊥,,则c b ⊥;②若P b a = ,则P c a = ;③若c a b a ⊥⊥,,则γα⊥;④若b a //,则c a //.其中正确命题个数为( )A .1个B .2个C .3个D .4个11.已知点P 为函数f (x )=lnx 的图象上任意一点,点Q 为圆[x ﹣(e+)]2+y 2=1任意一点,则线段PQ 的长度的最小值为( ) A .B .C .D .e+﹣112.已知f (x )=x (1+lnx ),若k ∈Z ,且k (x ﹣2)<f (x )对任意x >2恒成立,则k 的最大值为( )A . 3 B. 4 C . 5 D . 6 第Ⅱ卷(90分)二.填空题(本大题共4小题,每小题5分, 共20分)_____)1()10()0(2)0)(1(log )(.13123=-+⎪⎩⎪⎨⎧≤>-=+f f x x x x f x ,则14.,0,5a b a b >+=若1++3________a b +,则最大值为15.正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为,此时四面体ABCD 外接球表面积为______. 16 .过双曲线=1(a >0,b >0)的左焦点F (﹣c ,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为原点,若,则双曲线的离心率为 .三.解答题(本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分) 已知函数)0(2sin 2)sin(3)(2>+-=ωωωm xx x f 的最小正周期为π3,当[0,]x π∈时,函数()f x 的最小值为0. (Ⅰ)求函数)(x f 的表达式;(Ⅱ)在△ABC ,若A C A B B C f sin ),cos(cos sin 2,1)(2求且-+==的值 18. (本小题满分12分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列. (1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 19. (本小题满分12分)如图,四棱锥S —ABCD 的底面是正方形,SD ⊥平面ABCD ,SD=2a ,2AD a =点E 是SD 上的点,且(02)DE a λλ=<≤(Ⅰ)求证:对任意的(0,2]λ∈,都有AC BE ⊥ (Ⅱ)设二面角C —AE —D 的大小为θ,直线BE 与平面ABCD 所成的角为ϕ,若tan tan 1θϕ=,求λ的值.20. (本小题满分12分)已知点F 为抛物线2:4C y x =的焦点,点P 是准线l 上的动点,直线PF 交抛物线C 于,A B 两点,若点P 的纵坐标为(0)m m ≠,点D 为准线l 与x 轴的交点.(1)求直线PF 的方程;(2)求DAB ∆的面积S 范围;D PFA Oyx(3)设AF FB λ=,AP PB μ=,求证λμ+为定值 21. (本小题满分12分) 设函数()1xf x e -=-.(Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
【高二数学期末试题汇聚】辽宁省沈阳二中2014-2015学年高二上学期期末考试 数学(理)
沈阳二中2014-2015学年度上学期期末考试高二(16届)理科数学试题命题人:高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷(60分)一.选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的)1.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( )A .,0x R x ∃∈≤B .,0x R x ∀∈≤ C. ,0x R x ∃∈<D .,0x R x ∀∈<2. 已知a b >,则下列不等关系正确的是( )A .22a b >B .22ac bc >C .22a b >D .22log log a b >3. 设直线::(0)l y kx m m =+ ,双曲线2222:1(0,0)x y C a b a b-=>>,则“b k a =-”是“直线l 与双曲线C 恰有一个公共点“的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件4. 有下列四个命题:(1)已知A ,B ,C ,D 是空间任意四点,则0AB BC CD DA +++=;(2)若两个非零向量AB CD 与满足0AB CD +=,则AB ‖CD ;(3)分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量; (4)对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP xOA yOB zOC =++(,,)x y z R ∈,则P,A,B,C 四点共面。
其中正确命题的个数是( ) A.3 B.2C.1D.05.设变量x,y 满足约束条件222200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数2z x y =-+的最大值是( ) A.4B.2C.1D. 23-6. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且2OM OA =,N 为BC 中点,则MN =( )A .121-232a b c +B .211322a b c -++ C .112-223a b c +D .221-332a b c +7.已知数列{}n a 是等比数列,其前n 项和为n S ,若612369,S SS S ==则( ) A.9B.18C.64D.658.已知双曲线22145x y -=的右焦点与抛物线2y ax =的焦点重合,则该抛物线的准线被双曲线所截的线段长度为( ) A.4B.5C.529.定义12...nnp p p +++为n 个正数12,,...,n p p p 的“均倒数”.若已知正数数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111...b b b b b b +++= ( )A.111 B.112 C.1011D.1112 10.已知P 是抛物线x y 42=上的一个动点,Q 是圆()()22311x y -+-=上的一个动点,)0,1(N 是一个定点,则PQ PN +的最小值为( ) A.3B.4C.5D.111.已知直三棱柱ABC -A 1B 1C 1的各棱长均为1,棱BB 1所在直线上的动点M 满足1BB λ=,AM与侧面BB 1C 1C 所成的角为θ,若⎥⎦⎤⎢⎣⎡∈2,22λ,则θ的取值范围是( )A. ⎥⎦⎤⎢⎣⎡6,12ππB. ⎥⎦⎤⎢⎣⎡4,6ππ C. ⎥⎦⎤⎢⎣⎡3,4ππ D. ⎥⎦⎤⎢⎣⎡125,3ππ 12.已知双曲线22221(0,0),,x y a b M N a b-=>>是双曲线上关于原点对称的两点,P 是双曲线上的动点,直线PM ,PN 的斜率分别为1212,(0)k k k k ⋅≠,若12k k +的最小值为1,则双曲线的离心率为( )D.32第Ⅱ卷(90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题纸上)13. 若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________ 14. 已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 _______ .15. 平行六面体ABCD —A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为2,且两两夹角为60°,则1DB 和11C A 所成角大小为____________.16. 若0,y 0x >>,且1322x y x y+=++,则65x y +的最小值为___________. 三、解答题(共6小题,共70分。
辽宁省沈阳二中2015-2016学年高二上学期12月月考试卷数学(理)Word版含答案
沈阳二中2015—2016学年度上学期12月月考高二(17届)数学试题(理科)命题人:高二数学组 审校人:高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷 (选择题 共60分)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 集合,,则 ( )A .B .C .D .2. 复数,则 ( ) A .25 B . C .5D .3. 已知,,则的大小关系是A .B .C .D . ( )4. 已知直线l 、m ,平面α,且m ⊂α,则l ∥m 是l ∥α的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 已知A 、B 、C 是圆O : x 2+y 2=r 2上三点,且,则等于( )A .0 B.12 C.32 D .-326. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为 ( )A .{x |x >0}B .{x |x <0}C .{x |x <-1,或x >1}D .{x |x <-1,或0<x <1}7. 函数f (x )=x -a x 在x ∈[1,4]上单调递减,则实数a 的最小值为 ( )A .1B .2C .4D .58.已知等比数列{a n }的公比q =2,它的前9项的平均值等于5113,若从中去掉一项a m ,剩下的8项的平均值等于14378,则m 等于 ( ) A .5 B .6 C .7 D .89. 存在两条直线x =±m 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)相交于A 、B 、C 、D 四点,若四边形ABCD 为正方形,则双曲线的离心率的取值范围为 ( )A .(1,2)B .(1,3)C .(2,+∞)D .(3,+∞)10.已知数列{a n }的各项均为正数,如图给出程序框图,当k =5时,输出的S =511,则数列{a n }的通项公式为( )A .a n =2n -1B . a n =2nC.a n=2n+1 D.a n=2n-311.若抛物线y2=4x的焦点是F,准线是l,则经过点F和M(4,4)且与l相切的圆共有()A.0个B.1个C.2个D.3个12.已知双曲线,过其右焦点的直线交双曲线于两点,的垂直平分线交轴于点,则的值为()A.B.C.D.第Ⅱ卷(非选择题共90分)二.填空题:(本大题共4小题,每小题5分,共20分)13. 若关于x的不等式m(x-1)>x2-x的解集为{x|1<x<2},则实数m的值为________.14.已知2+23=223,3+38=338,4+415=4415,…,若7+at=7at,(a、t均为正实数),则类比以上等式,可推测a、t的值,a+t=________.15.已知函数f(x)的导函数为f′(x)=5+cos x,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为________.16.已知函数,若函数恰有两个不同的零点,则实数的取值范围为.三、解答题:(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)若函数的图象与直线(m>0)相切,并且切点的横坐标依次成公差为的等差数列。
辽宁省沈阳二中高三上12月月考数学试题(理)及答案
沈阳二中-上学期12月小班化学习成果 阶段验收高三(14届)数学(理科)试题命题人:高三数学组 审校人:高三数学组说明:1、测试时间:120分钟 总分:150分;2、客观题涂在答题卡上,主观题答在答题纸的对应位置上第Ⅰ卷(60分)一.选择题:(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案,将正确答案的序号涂在答题卡上.)1 .设1z i =+(i 是虚数单位),则22z z+= ( )A .1i --B .1i -+C .1i -D .1i +2 .若非空集合A={x|2135a x a +≤≤-},B={x|3≤x ≤22},则能使A ⊆B,成立的所有a 的集合是{a|1≤a ≤9}B .{a|6≤a ≤9}C .{a|a ≤9}D .∅3 .函数2()(1)1(0)f x x x =-+≤的反函数为( )A .1()11(1)fx x x -=-≥B .1()11(1)f x x x -=+-≥C .1()11(2)f x x x -=--≥D .1()11(2)f x x x -=+-≥4 .等比数列}{n a 的前n 项和为n S ,6,2105==S S ,则=++++2019181716a a a a a ( )A .54B .48C .32D .165 .已知:b a ,均为正数,241=+ba ,则使cb a ≥+恒成立的c 的取值范围是 ( )9.,2A ⎛⎤-∞ ⎥⎝⎦ B .(]1,0C .(]9,∞-D .(]8,∞-6 .若tan 3α=则sin cos αα=( )A .3±B 3C 3D 37 .对于任意非零实数a 、b 、c 、d,命题①bc ac b a >>则若,;②22,bc ac b a >>则若 ③b a bc ac >>则若,22;④ba b a 11,<>则若;⑤bd ac d c b a >>>>则若,,0.其中正确的个数是( )A .1B .2C .3D .48 .已知平面γβα、、,则下列命题中正确的是( )A .αβαβα⊥⊥=⊥b b a a ,则,,B .γαγββα∥,则,⊥⊥C .b a b a ⊥⊥==,则,,βαγββαD .γαγββα⊥⊥,则,∥9 .已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为F,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )(1,2] B .(1,2) C .[2,+∞) D .(2,+∞)10.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为 ( )A .12(,44±B .12(,)84±C .12(,44D .12(,8411.函数|cos sin |21)cos (sin 21)(x x x x x f -++=的值域是 ( )A .[-1,1]B .]1,22[-C .]21,21[-D .]22,1[- 12.设函数nx x x x x f nn n )1(321)(32-+⋅⋅⋅+-+-=,其中n 为正整数,则集合{}R x x f x M ∈==,0)(4丨中元素个数是( )A .0个B .1个C .2个D .4个第Ⅱ卷(90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.在等差数列{}n a 中,n S 是其前n 项的和,且12a =,20092007220092007S S -=,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项的和是__________。14.已知点O 为ABC ∆24==AB AC ,则=•BCAO ____________.15.已知圆C 的圆心与点P(-2,1)关于直线y=x+1对称,直线3x+4y-11=0与圆C 相交于A,B 两点,且|AB|=6,则圆C 的方程为___________.16.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB CD 、的长度分别等于27、3每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为___________.三、 解答题:(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)在ABC ∆中,角A,B,C 的对边分别为a,b,c,且1cos 3A =(1)求2sin cos 22B CA ++的值 (2)若3a =,求bc 的最大值18.(本小题满分12分)设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+(I)设12n n n b a a +=-,证明数列{}n b 是等比数列 (II)求数列{}n a 的通项公式.19.(本小题满分12分)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点。(Ⅰ)求异面直线AB 与MD 所成角的大小;(Ⅱ)求点B 到平面OCD 的距离。20. (本小题满分12分)已知抛物线D 的顶点是椭圆22143x y +=的中心,焦点与该椭圆的右焦点重合 (1) 求抛物线D 的方程(2) 已知动直线l 过点()4,0P ,交抛物线D 于,A B 两点,坐标原点O 为PQ 中点,求证AQP BQP ∠=∠;(3) 是否存在垂直于x 轴的直线m 被以AP 为直径的圆所截得的弦长恒为定值?如果存在,求出m 的方程;如果不存在,说明理由。
辽宁省沈阳二中2014-2015学年高二上学期期末考试数学(理)试题
辽宁省沈阳二中2014-2015学年高二上学期期末考试数学(理)试题沈阳二中2014-2015学年度上学期期末考试高二(16届)理科数学试题命题人:高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷(60分)一.选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的)1.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( ) A .,0x R x ∃∈≤ B .,0x R x ∀∈≤ C. ,0x R x ∃∈< D .,0x R x ∀∈<2. 已知a b >,则下列不等关系正确的是( ) A .22a b > B .22ac bc > C .22a b> D .22log log a b >3. 设直线::(0)l ykx m m,双曲线2222:1(0,0)x yC a b a b-=>>,则“bka”是“直线l 与双曲线C 恰有一个公共点“的( ) A .充分不必要条件 B .必要不充分条件 C .充分条件D .既不充分也不必要条件4. 有下列四个命题:(1)已知A ,B ,C ,D 是空间任意四点,则0AB BC CD DA +++=;(2)若两个非零向量AB CD 与满足0AB CD +=,则AB ‖CD;(3)分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量;(4)对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP xOA yOB zOC =++(,,)x y z R ∈,则P,A,B,C 四点共面。
其中正确命题的个数是( ) A.3B.2C.1D.0 5.设变量x,y 满足约束条件222200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数2z x y=-+的最大值是( )A.4B.2C.1D. 23- 6. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且2OM OA =,N 为BC 中点,则MN =( )A .121-232a b c + B .211322a b c -++ C .112-223a b c + D .221-332a b c + 7.已知数列{}na 是等比数列,其前n 项和为nS ,若612369,S S S S ==则( )A.9B.18C.64D.658.已知双曲线22145x y -=的右焦点与抛物线2yax=的焦点重合,则该抛物线的准线被双曲线所截的线段长度为( ) A.4B.5C. 5259.定义12...nn p p p +++为n 个正数12,,...,np p p 的“均倒数”.若已知正数数列{}na 的前n 项的“均倒数”为121n +,又14n na b+=,则12231011111...b bb b b b +++= ( ) A.111B.112C.1011D.111210.已知P 是抛物线xy42=上的一个动点,Q 是圆()()22311x y -+-=上的一个动点,)0,1(N 是一个定点,则PQ PN+的最小值为( )A.3B.4C.5D.21+11.已知直三棱柱ABC -A 1B 1C 1的各棱长均为1,棱BB 1所在直线上的动点M 满足1BB BM λ=,AM 与侧面BB 1C 1C 所成的角为θ,若⎥⎦⎤⎢⎣⎡∈2,22λ,则θ的取值范围是( ) A.⎥⎦⎤⎢⎣⎡6,12ππ B.⎥⎦⎤⎢⎣⎡4,6ππ C.⎥⎦⎤⎢⎣⎡3,4ππD.⎥⎦⎤⎢⎣⎡125,3ππ12.已知双曲线22221(0,0),,x y a b M N a b -=>>是双曲线上关于原点对称的两点,P 是双曲线上的动点,直线PM ,PN 的斜率分别为1212,(0)k k k k⋅≠,若12k k +的最小值为1,则双曲线的离心率为( ) 25 3D. 32第Ⅱ卷(90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题纸上)13. 若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________14. 已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 _______ .15. 平行六面体ABCD —A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为2,且两两夹角为60°,则1DB 和11C A 所成角大小为____________.16. 若0,y 0x >>,且1322x y x y+=++,则65x y +的最小值为___________.三、解答题(共6小题,共70分。
辽宁省沈阳二中14-15学年度高二上学期12月月考试题数学(理)
1辽宁省沈阳二中2014—2015学年度上学期12月月考高二数学理试题说明:1.测试时间:120分钟总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷(选择题共60分)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线3322y x的渐近线方程是()A. xy 3 B. 13yxC. x y3 D. xy332.若0,1a b a b,则221,,2,2a ab ab 中最大的数为()A.aB.12C. 2abD. 22ab3.对于常数m 、n ,“0mn ”是“方程122ny mx 的曲线是椭圆”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要. 4.在各项均为正数的等比数列}{n a 中,,12a 4682a a a ,则6a 的值是()A. 1B. 2C.22D. 45.已知椭圆C :22221(0)x y a b ab的左右焦点为F 1、F 2 ,离心率为33,过F 2的直线l 交C与A,B 两点,若△AF 1B 的周长为43,则C 的方程为()A.22132xyB.2213xyC.221128xyD.221124xy6.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是()A.-12a +12b +cB. 12a -12b +cC. 12a +12b +cD. -12a -12b +c7.已知抛物线24yx ,P 是抛物线上一点,F 为焦点,一个定点(5,3)A 。
则PA PF的最小值为()A. 5B. 6C. 7D. 8。
高二上12月月考数学试题(理)及答案
沈阳二中2013——2014学年度上学期12月份小班化学习成果 阶段验收高二( 15 届)数学试题(理)命题人:高二数学组 审校人: 高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列命题:①至少有一个x 使x 2+2x +1=0成立;②对任意的x 都有x 2+2x +1=0成立;③对任意的x 都有x 2+2x +1=0不成立;④存在x 使x 2+2x +1=0成立. 其中是全称命题的有( )A .1个B .2个C .3个D .0个2. 已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ”,x 2+2ax +2-a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤13. P 为正六边形ABCDEF 外一点,O 为ABCDEF 的中心,则PA PB PC PD PE PF +++++等于( )A .POB .3POC .6POD .04. 对于空间任意一点O 和不共线的三点A 、B 、C ,有OP →=xOA →+yOB →+zOC →(x 、y 、z ∈R),则x +y +z =1是P 、A 、B 、C 四点共面的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5. 已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC 的周长是 ( ) A .2 3B .6C .4 3D .126. 下列四个条件中,p 是q 的必要不充分.....条件的是 ( ) A .p :a >b q :a 2>b 2 B .p :a >b q :2a >2bC .p :ax 2+by 2=c 为双曲线 q :ab <0 D .p :ax 2+bx +c >0 q :c x 2+b x+a >0 7. 抛物线y 2=8x 的焦点到双曲线x 212-y 24=1的渐近线的距离为( )A .1 B. 3 C.33 D.368. 设椭圆x 2a 2+y 2b2=1和x 轴正半轴交点为A ,和y 轴正半轴的交点为B ,P 为第一象限内椭圆上的点,那么四边形OAPB 面积最大值为 ( )A.2abB.22abC.12ab D .2ab9. 已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足12120,||||2,MF MF MF MF ==则该双曲线的方程是( )A .2219x y -=B .2219y x -= C. 22137x y -= D. 22173x y -=10. 已知1F 、2F 是双曲线)0b ,0a (1by a x 2222>>=-的两焦点,以线段F 1F 2为边作正21F MF ∆,若边1MF 的中点在双曲线上,则双曲线的离心率是( )A. 324+B.13- C.213+ D. 13+ 11. 已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-212. 已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n2=1有公共的焦点,那么双曲线的渐近线方程为( )A .x =±152y B .y =±152x C .x =±34y D .y =±34x 第Ⅱ卷 (90分)二、填空题 (本大题共4小题,每小题5分,共20分)13. 已知F 1、F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的左右焦点,P 是椭圆上一点,∠F 1PF 2=90°,求椭圆离心率的最小值为14.过抛物线22y px =(0)p >焦点F 的弦AB ,过,A B 两点分别作其准线的垂线,AM BN ,垂足分别为,M N ,AB 倾斜角为α,若1122(,),(,)A x y B x y ,则①2124p x x =;221p y y -=.②||1cos p AF α=-,||1cos p BF α=+③||||2||||AF BF AF BF p+=∙, ④||AB =1222,sin p x x p α++=⑤0FM FN = 其中结论正确的序号为15. 若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率为________.16. 设有两个命题:①关于x 的不等式mx 2+1>0的解集是R ;②函数f (x )=log m x 是减函数,如果这两个命题中有且只有一个真命题,则实数m 的取值范围是________.三、解答题(本大题包括6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分10分)如右图,在空间四边形SABC 中,AC 、BS 为其对角线,O 为△ABC 的重心,试证:(1)OA 0OB OC ++=(;(2)1()3SO SA SB SC =++.18. (本小题满分12分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B={x |x 2-3(a +1)x +2(3a +1)≤0}.若条件p 是条件q 的充分条件,求实数a 的取值范围. 19. (本小题满分12分) 设直线y ax b =+与双曲线2231x y -=交于A 、B ,且以AB 为直径的圆过原点,求点(,)P a b 的轨迹方程.20. (本小题满分12分)在抛物线 y 2=4x 上恒有两点关于直线l :y =kx +3对称,求k 的范围. 21.(本小题满分12分)已知双曲线方程2x 2-y 2=2.(1)求以A (2,1)为中点的双曲线的弦所在的直线方程;(2)过点(1,1)能否作直线l ,使l 与双曲线交于Q 1,Q 2两点,且Q 1,Q 2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.22. (本小题满分12分)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程;(Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.沈阳二中2013——2014学年度上学期12月份小班化学习成果阶段验收高二( 15 届)(理)数学试题答案一、 选择题(每题5分,共60分) BACCC DABAD BD二、 填空题(每题5分共20分)13、22 14、①②③④⑤ 15、-1216、m ≥1或m =0 三、 解答题(共70分)17、证明:(1),①,② ,③①+②+③得. (2),④,⑤,⑥由(1)得:.④+⑤+⑥得3即SO =13().18. 解: A ={x |2a ≤x ≤a 2+1},B ={x |(x -2)[x -(3a +1)]≤0}.①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ⊆B ,于是有⎩⎪⎨⎪⎧a ≥13,a 2+1≤3a +1,2a ≥2,解得1≤a ≤3.,或⎩⎪⎨⎪⎧a <13,a 2+1≤2,2a ≥3a +1,解得a =-1.故a 的取值范围是{a |1≤a ≤3或a =-1}.19. 解: 联立直线与双曲线方程得⎩⎪⎨⎪⎧y =ax +b3x 2-y 2=1,消去y 得:(a 2-3)x 2+2abx +b 2+1=0.∵直线与双曲线交于A 、B 两点,∴⎩⎨⎧a 2-3≠0Δ>0⇒a 2<3.设A (x 1,y 1),B (x 2,y 2)则x 1+x 2=2ab3-a 2,x 1·x 2=b 2+1a 2-3.由OA →⊥OB →得x 1x 2+y 1y 2=0,又y 1·y 2=(ax 1+b )(ax 2+b )=a 2x 1x 2+ab (x 1+x 2)+b 2, ∴有b 2+1a 2-3+a 2·b 2+1a 2-3-2a 2b 2a 2-3+b 2=0.化简得:a 2-2b 2=-1.故P 点(a ,b )的轨迹方程为2y 2-x 2=1(x 2<3).20. 解: 设B 、C 关于直线y =kx +3对称,直线BC 方程为x =-ky +m ,代入y 2=4x ,得y 2+4ky -4m=0,设B (x 1,y 1),C (x 2,y 2),BC 中点M (x 0,y 0), 则y 0=y 1+y 22=-2k ,x 0=2k 2+m .∵点M (x 0,y 0)在直线l 上,∴-2k =k (2k 2+m )+3, ∴m =-2k 3+2k +3k,因M (x 0,y 0)在抛物线y 2=4x 内部,则y 02<4x 0,把m 代入化简得k 3+2k +3k <0,即(k +1)(k 2-k +3)k<0,解得-1<k <0.21.解: (1)设A (2,1)是弦P 1P 2的中点,且P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=4,y 1+y 2=2.22. 解:(Ⅰ)设双曲线C 2的方程为12222=-b y a x ,则.1,31422222==+=-=b c b a a 得再由故C 2的方程为.1322=-y x(II )将.0428)41(1422222=+++=++=kx x k y x kx y 得代入由直线l 与椭圆C 1恒有两个不同的交点得,0)14(16)41(16)28(22221>-=+-=∆k k k即 .412>k ① 0926)31(1322222=---=-+=kx x k y x kx y 得代入将.由直线l 与双曲线C 2恒有两个不同的交点A ,B 得.131.0)1(36)31(36)26(,0312222222<≠⎪⎩⎪⎨⎧>-=-+-=∆≠-k k k k k k 且即)2)(2(,66319,3126),,(),,(22+++=+<+<⋅--=⋅-=+B A B A B A B A B A B A BA B A B B A A kx kx x x y y x x y y x x OB OA k x x k k x x y x B y x A 而得由则设.1373231262319)1(2)(2)1(222222-+=+-⋅+--⋅+=++++=k k kk k k k x x k x x k B A B A .0131315,613732222>--<-+k k k k 即于是解此不等式得.31151322<>k k 或 ③ 由①、②、③得.11513314122<<<<k k 或故k 的取值范围为)1,1513()33,21()21,33()1513,1( ----。
辽宁省沈阳二中12-13学年高二上学期12月月考(数学理)
沈阳二中2012—2013学年度上学期12月份小班化学习成果阶段验收高二(14届)(理)数学试题 命题人:高二数学组 审校人:高二数学组说明:1。
测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸的相应位置上第Ⅰ卷 (满分60分)一、选择题(每题5分,共40分)1 .若复数1(R,1mi z m i i+=∈-是虚数单位)是纯虚数,则m = ( )A .i -B .iC .—1D .12.如果方程22143x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .34m <<B .72m >C .732m << D .742m <<3 .若25-=x ,2y =则y x , 满足( ) A .x y > B .x y ≥ C .x y <D .x y =4 .已知,a b ∈R ,那么“||a b >"是“22ab >”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件5 .设椭圆的两个焦点分别为1F ,2F ,过2F 作椭圆长轴的垂线与椭圆相交,其中的一个交点为P ,若△12F PF 为等腰直角三角形,则椭圆的离心率是 ( )A1B .12C .D .26.若点O 和点(20)F -,分别为双曲线2221x y a-=(0a >)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为A .[3—+∞) B .[3+ +∞) C .[74-, +∞) D .[74,+∞)7 .已知-1<a +b <3,2<a -b <4,则2a +3b 的范围是 ( )A .(-错误!,错误!)B .(-错误!,错误!)C .(-错误!,错误!)D .(-错误!,错误!)8 .已知F 是抛物线2yx =的焦点,A ,B是该抛物线上的两点,||||=3AF BF +,则线段AB 的中点到y 轴的距离为 ( )A .34B .1C .54D .749 .对任意的实数m ,直线y =mx +b 与椭圆x 2+4y 2=1恒有公共点,则b 的取值范围是 ( )A .11(,)22- B .11[,]22-C .[2,2]-D .(2,2)-10.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点。
辽宁省沈阳二中2014-2015学年高二上学期期末考试数学(理)试题
沈阳二中2014-2015学年度上学期期末考试高二(16届)理科数学试题命题人:高二数学组说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷(60分)一.选择题(共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项 是符合题目要求的)1.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( )A .,0x R x ∃∈≤B .,0x R x ∀∈≤ C. ,0x R x ∃∈<D .,0x R x ∀∈<2. 已知a b >,则下列不等关系正确的是( )A .22a b >B .22ac bc >C .22a b >D .22log log a b >3. 设直线::(0)l y kx m m =+?,双曲线2222:1(0,0)x y C a b a b-=>>,则“b k a =-”是“直线l 与双曲线C 恰有一个公共点“的( )A .充分不必要条件B .必要不充分条件C .充分条件D .既不充分也不必要条件4. 有下列四个命题:(1)已知A ,B ,C ,D 是空间任意四点,则0AB BC CD DA +++=u u u r u u u r u u u r u u u r r;(2)若两个非零向量AB CD u u u r u u u r与满足0AB CD u u u r u u u r r +=,则AB u u u r ‖CD u u u r ;(3)分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量;(4)对于空间的任意一点O 和不共线的三点A ,B ,C ,若OP xOA yOB zOC =++u u u r u u u r u u u r u u u r(,,)x y z R ∈,则P,A,B,C 四点共面。
其中正确命题的个数是( ) A.3 B.2C.1D.05.设变量x,y 满足约束条件222200x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数2z x y =-+的最大值是( ) A.4B.2C.1D. 23-6. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且2OM OA =u u u u r u u u r,N 为BC 中点,则MN u u u u r=( )A .121-232a b c +r r rB .211322a b c -++r r rC .112-223a b c +r r rD .221-332a b c +r r r7.已知数列{}n a 是等比数列,其前n 项和为n S ,若612369,S SS S ==则( ) A.9B.18C.64D.658.已知双曲线22145x y -=的右焦点与抛物线2y ax =的焦点重合,则该抛物线的准线被双曲线所截的线段长度为( ) A.4B.5C.529.定义12...nnp p p +++为n 个正数12,,...,n p p p 的“均倒数”.若已知正数数列{}n a 的前n项的“均倒数”为121n +,又14n n a b +=,则12231011111...b b b b b b +++= ( ) A.111 B.112 C.1011 D.1112 10.已知P 是抛物线x y 42=上的一个动点,Q 是圆()()22311x y -+-=上的一个动点,)0,1(N 是一个定点,则PQ PN +的最小值为( ) A.3B.4C.5D.111.已知直三棱柱ABC -A 1B 1C 1的各棱长均为1,棱BB 1所在直线上的动点M 满足1BB BM λ=,AM与侧面BB 1C 1C 所成的角为θ,若⎥⎦⎤⎢⎣⎡∈2,22λ,则θ的取值范围是( )A. ⎥⎦⎤⎢⎣⎡6,12ππB. ⎥⎦⎤⎢⎣⎡4,6ππ C. ⎥⎦⎤⎢⎣⎡3,4ππ D. ⎥⎦⎤⎢⎣⎡125,3ππ 12.已知双曲线22221(0,0),,x y a b M N a b-=>>是双曲线上关于原点对称的两点,P 是双曲线上的动点,直线PM ,PN 的斜率分别为1212,(0)k k k k ⋅≠,若12k k +的最小值为1,则双曲线的离心率为( )D.32 橡皮网在线组卷系统第Ⅱ卷(90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题纸上)13. 若(1,1,0),(1,0,2),a b a b ==-+r r r r则与同方向的单位向量是________________14. 已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 _______ .15. 平行六面体ABCD —A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为2,且两两夹角为60°,则1DB 和11C A 所成角大小为____________.16. 若0,y 0x >>,且1322x y x y+=++,则65x y +的最小值为___________. 三、解答题(共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省沈阳二中2014—2015学年度上学期12月月考高二数学理试题说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题卡上,主观题答在答题纸上第Ⅰ卷 (选择题 共60分)一 .选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.双曲线3322=-y x 的渐近线方程是( )A. x y 3±=B. 13y x =±C. x y 3±=D. x y 33±=2.若0,1a b a b <<+=,则221,,2,2a ab a b +中最大的数为( )A. aB. 12C. 2abD. 22a b +3.对于常数m 、n ,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C .充分必要 D .既不充分也不必要. 4.在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是( )A. 1B. 2C.D. 45.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点为F 1、F 2 ,离心率为3,过F 2的直线l 交C与A,B 两点,若△AF 1B 的周长为C 的方程为( )A. 22132x y +=B. 2213x y += C. 221128x y += D. 221124x y += 6.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b , A 1A →=c ,则下列向量中与 B 1M →相等的向量是( )A.-12a +12b +cB. 12a -12b +cC. 12a +12b +cD. -12a -12b +c7.已知抛物线24y x =,P 是抛物线上一点,F 为焦点,一个定点(5,3)A 。
则PA PF + 的最小值为( )A. 5B. 6C. 7D. 88.抛物线24x y =上一点到直线54-=x y 的距离最短,则该点的坐标是 ( )A .)1,21(B .)0,0(C .)2,1(D .)4,1( 9.已知12,F F 为椭圆2221(010)100x y b b +=<<的左、右焦点,P 是椭圆上一点,若1260F PF ∠=且12F PF ∆,椭圆离心率为( ) A.35 B. 45 C. 925 D. 162510.已知双曲线中心在原点,且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( ) A. 14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x11.设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =( )A.-5B.3C.-5或3D.5或-312.已知a ,b ∈R +,直线ax +by =6平分圆x 2+y 2-2x -4y +m =0的周长,则2a +b +a +5b 的最大值为( )A .6B .4C .3 D. 3第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分)13.命题:,x y R ∀∈,如果0xy =,则0x =或0y =的否命题是 .14.已知四面体P ABC -,60PAB BAC PAC ∠=∠=∠=,1AB =,2AC =,3AP =,则AB AP AC ++= .15.已知0x >,0y >,228x y xy ++=,则2x y +的最小值是 .16.在平面直角坐标系中,动点P (x ,y )到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P 的轨迹为曲线W ,给出下列四个结论: ①曲线W 关于原点对称; ②曲线W 关于直线y =x 对称;③曲线W 与x 轴非负半轴,y 轴非负半轴围成的封闭图形的面积小于12;④曲线W 上的点到原点距离的最小值为2-其中,所有正确结论的序号是________;三、解答题:(本大题共6小题,满分70分,写出必要文字说明和演算步骤) 17.在等差数列{}n a 中,246,20a S ==.(1)求数列{}n a 的通项公式;(2)设**122(),()(12)n n n n b n N T b b b n N n a =∈=+++∈-,求n T .18.正方体1111ABCD A B C D -的棱长为1,以D 为原点,1,,DA DC DD 所在直线为,,x y z 轴建立直角坐标系Dxyz , 点M 在线段1AB 上,点N 在线段1BC 上,且1MN AB ⊥,1MN BC ⊥,求(1) 11,AB BC <>;(2)MN 的坐标.19. 已知函数()1f x x =-.(1)解不等式(1)(3)6f x f x -++≥;(2)若1,1a b <<,且0a ≠,求证:()()b f ab a f a>.20.在平面直角坐标系xOy 中,直线l 与抛物线y 2=2x 相交于A 、B 两点. (1)求证:“如果直线l 过点T(3,0),那么OA →·OB →=3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.21.在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆O :222x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆M :22194x y +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程; (3)在(2)问中若椭圆方程为22221(0)x y a b a b+=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).22.已知抛物线2C :22(0)x py p =>的通径(过焦点且垂直于对称轴的弦)长为4,椭圆1C :22221(0)x y a b a b +=>>2C 的焦点. (1)求抛物线2C 和椭圆1C 的方程;(2)过定点3(1,)2M -引直线l 交抛物线2C 于A 、B 两点(A 在B 的左侧),分别过A 、B 作抛物线2C 的切线1l ,2l ,且1l 与椭圆1C 相交于P 、Q 两点,记此时两切线1l ,2l 的交点为D . ①求点D 的轨迹方程;②设点1(0,)4E ,求EPQ ∆的面积的最大值,并求出此时D 点的坐标.参考答案一 .选择题:1.C 2.D 3.B 4.D 5.A 6.C 7.B 8.A 9.A 10.D 11.B 12.C二 .填空题:13. ,x y R ∀∈,如果0xy ≠,则0x ≠且0y ≠ 14. 5 15.4 16.②③④ 三 .解答题:17.解:设{}n a 的公差为d ,由题意得1164620a d a d +=⎧⎨+=⎩ 解得182{a d ==-得:82(1)102.n a n n =--=- …………………………………………5分 (2)∵2111(12)(1)1n n b n a n n n n ===--++1)111()3121()211(321+=+-+⋅⋅⋅⋅⋅+-+-=+⋅⋅⋅⋅⋅⋅+++=n nn n b b b b T n n…………………………………………10分 18.解:(1)由题意可知(0,0,0)D ,(1,0,0)A ,(1,1,0)B , 1(1,1,1)B ,1(0,1,1)C 所以1(0,1,1)AB =,1(1,0,1)BC =-…………………2分110(1)10111AB BC ⋅=⨯-+⨯+⨯= 210AB ==,1(BC =-=分所以11cos ,AB BC <>=1111122AB BC AB BC ⋅==⋅所以11,3AB BC π<>=……………………………6分(2)设点(1,,)M x x ,(,1,1)N y y -,则(1,1,1)MN y x x y =----……………7分因为1MN AB ⊥,且1MN BC ⊥,所以10MN AB ⋅=,10MN BC ⋅=………………………………………………9分 即(1,1,1)(0,1,1)0(1,1,1)(1,0,1)0y x x y y x x y ----⋅=⎧⎨----⋅-=⎩,化简得220220x y x y --=⎧⎨--=⎩ 解得2323x y ⎧=⎪⎪⎨⎪=⎪⎩………………………………11分所以MN 的坐标为111(,,)333--……………………………………………12分19. 解:(1)不等式的解集是.………………………… 6分(2)要证,只需证,…………7分只需证而,从而原不等式成立. …………………………12分20.证明:(1)设过点T (3,0)的直线l 交抛物线y 2=2x 于点A (x 1,y 1),B (x 2,y 2).当直线l 的斜率不存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于点A (3,6)、B (3,-6).∴OA →·OB →=3. ………………2分当直线l 的斜率存在时,设直线l 的方程为y =k (x -3),其中k ≠0.由⎩⎪⎨⎪⎧y 2=2x ,y =kx -,得ky 2-2y -6k =0,则y 1y 2=-6. ………………5分 又∵x 1=12y 21,x 2=12y 22,∴OA →·OB →=x 1x 2+y 1y 2=14(y 1y 2)2+y 1y 2=3. 综上所述,命题“如果直线l 过点T (3,0),那么OA →·OB →=3”是真命题.…………7分(2)逆命题是:设直线l 交抛物线y 2=2x 于A 、B 两点,如果OA →·OB →=3,那么直线过点T (3,0). ………………8分该命题是假命题. ………………9分 例如:取抛物线上的点A (2,2),B ⎝⎛⎭⎫12,1,此时OA →·OB →=3, 直线AB 的方程为y =23(x +1),而T (3,0)不在直线AB 上.………………12分21.解:(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形,所以点P 在以O 为圆心,OP 长为半径的圆上,且OP OA ==,进而动点P 的轨迹方程为2222x y r +=………………………………………………3分 (2)设两切线为12,l l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为00(,)Q x y 则03x ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22194x y +=, 得2220000(49)18()9()360k x k y kx x y kx ++-+--=,………………5分 因为直线与椭圆相切,所以0∆=,得22222000018()4(49)9[()4]0k y k x k y k x --+⋅--= 化简,2222200009()(49)()(49)40k y kx k y kx k --+-++=进而 2200()(49)0y kx k --+=所以2220000(9)240x k x y k y --+-=……………………………………………7分所以k 是方程2220000(9)240x k x y k y --+-=的一个根,同理1k-是方程2220000(9)240x k x y k y --+-=的另一个根,1()k k ∴⋅-=202049y x --,得220013x y +=,其中03x ≠±,…………………………9分 ②当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(3,2)P ±±;因为(3,2)P ±±满足上式,综上知:点P 的轨迹方程为220013x y +=.……10分(3)动点Q 的轨迹方程是222200x y a b +=+…………………………………12分 22.……………………1分……………………3分……………………6分……………………7分……………………9分……………………11分……………………12分。