新北师大版初中八年级数学上册第一章 勾股定理周周测4(1.2)
北师大版八年级数学上册第一章勾股定理测试题(含答案)
八年级上北师大版第一章勾股定理测试题 【2 】一.选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )12,16,20 (C )16,30,32 (D )9,40,412. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )12 3. 已知:如图2,以Rt △ABC 的三边为斜边分离向外作等腰直角三角形.若斜边AB =3,则图中△ABE 的面积为( ).(A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )85. 若三角形三边长为a.b.c,且知足等式ab c b a 2)(22=-+,则此三角形是( ).(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 6. 直角三角形两直角边分离为5.12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )13607. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,假如将直角三角形的边长扩展1倍,那么这只蚂蚁再沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中央的一个小正方形拼成的一个大正方形(如图1所示),假如大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分离是a.b,那么2)(b a + 的值为 ( ).(A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E.F 分离是AB.BC上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二.填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长.(请求都是勾股数) 12. 如图6(1).(2)中,(1)正方形A 的面积为. (2)斜边x=.13.如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分离以AC ,BC 为直径作半圆,面积分离记为1S ,2S ,则1S +2S 的值等于.14. 四根小木棒的长分离为5cm,8cm,12cm,13cm,任选三根构成三角形,个中有 个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为. 三.简答题(50分)16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.17.(8分)如图10,方格纸上每个小正方形的面积为1个单位. (1)在方格纸上,以线段AB 为边画正方形并盘算所画正方形的面积,说明你的盘算办法.(2)你能在图上画出面积依次为5个单位.10个单位.13个单位的正方形吗?18.(8分)如图12,飞机在空中程度飞翔,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞翔若干千米?21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有若干米? (2)假如梯子的顶端下滑了4米,那么梯子的底部在程度偏向也滑动了4米吗?一.选择题1.C2.B3.C4.B5.D6.D7.C8.C9.A 10.A二.填空题11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 3三.简答题16. 在Rt △ABC 中,AC=54322=+. 又因为22213125=+,即222CD AC AD =+.所以∠DAC=90°.所以125214321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略18. 如图12,在Rt △ABC 中,依据勾股 定理可知,BC=30004000500022=-(米). 3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞翔540千米. 20. (1)10;(2)4条21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x米,得方程,22)42=x ,解得x=15,所以梯子向后滑动了8米.-24(25-。
八年级上册数学第一章勾股定理单元试题(北师大版含答案)
八年级上册数学第一章勾股定理单元试题(北师大版含答案)第一章勾股定理检测题本检测题满分:100分,时间:90分钟一、选择题(每小题3分,共30分)1.在△中,,,,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形2.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()A.1倍B.2倍C.3倍D.4倍3.下列说法中正确的是()A.已知是三角形的三边,则B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt△中,∠°,所以D.在Rt△中,∠°,所以4.如图,已知正方形的面积为144,正方形的面积为169时,那么正方形的面积为()A.313B.144C.169D.255.如图,在Rt△中,∠°,cm,cm,则其斜边上的高为()A.6cmB.8.5cmC.cmD.cm6.下列满足条件的三角形中,不是直角三角形的是()A.三内角之比为B.三边长的平方之比为C.三边长之比为D.三内角之比为7.如图,在△中,∠°,,,点在上,且,,则的长为()A.6B.7C.8D.98.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是()A.6cmB.8cmC.10cmD.12cm9.如果一个三角形的三边长满足,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.在△中,三边长满足,则互余的一对角是()A.∠与∠B.∠与∠C.∠与∠D.∠、∠、∠二、填空题(每小题3分,共24分)11.已知两条线段的长分别为5cm、12cm,当第三条线段长为________时,这三条线段可以构成一个直角三角形.12.在△中,cm,cm,⊥于点,则_______.13.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.14.如图,在Rt△中,,平分,交于点,且,,则点到的距离是________.15.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是.16.若一个直角三角形的一条直角边长是,另一条直角边长比斜边长短,则该直角三角形的斜边长为________.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形的面积之和为___________cm2.18.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步路(假设2步为1m),却踩伤了花草.三、解答题(共46分)19.(6分)若△三边长满足下列条件,判断△是不是直角三角形,若是,请说明哪个角是直角.(1);(2).20.(6分)在△中,,,.若,如图①,根据勾股定理,则.若△不是直角三角形,如图②和图③,请你类比勾股定理,试猜想与的关系,并证明你的结论.21.(6分)若三角形的三个内角的比是,最短边长为1,最长边长为2.求:(1)这个三角形各内角的度数;(2)另外一条边长的平方.22.(7分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部多少米的位置断裂吗?23.(7分)观察下表:列举猜想3,4,55,12,137,24,25…………请你结合该表格及相关知识,求出的值.24.(7分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.25.(7分)如图,长方体中,,,一只蚂蚁从点出发,沿长方体表面爬到点,求蚂蚁怎样走最短,最短路程是多少?第一章勾股定理检测题参考答案1.B解析:在△中,由,,,可推出.由勾股定理的逆定理知此三角形是直角三角形,故选B.2.B解析:设原直角三角形的三边长分别是,且,则扩大后的三角形的斜边长为,即斜边长扩大到原来的2倍,故选B.3.C解析:A.不确定三角形是不是直角三角形,故A选项错误;B.不确定第三边是否为斜边,故B选项错误;C.∠C=90°,所以其对边为斜边,故C选项正确;D.∠B=90°,所以,故D选项错误.4.D解析:设三个正方形的边长依次为,由于三个正方形的三边组成一个直角三角形,所以,故,即.5.C解析:由勾股定理可知cm,再由三角形的面积公式,有,得.6.D解析:在A选项中,求出三角形的三个内角分别是30°,60°,90°;在B,C选项中,都符合勾股定理的条件,所以A,B,C选项中都是直角三角形.在D选项中,求出三角形的三个角分别是所以不是直角三角形,故选D.7.C解析:因为Rt△中,,所以由勾股定理得.因为,,所以.8.C解析:如图为圆柱的侧面展开图,∵为的中点,则就是蚂蚁爬行的最短路径.∵,∴.∵,∴,即蚂蚁要爬行的最短路程是10cm.9.B解析:由,整理,得,即,所以,符合,所以这个三角形一定是直角三角形.10.B解析:由,得,所以△是直角三角形,且是斜边,所以∠B=90°,从而互余的一对角是∠与∠.11.cm或13cm解析:根据勾股定理,当12为直角边长时,第三条线段长为;当12为斜边长时,第三条线段长为.12.15cm解析:如图,∵等腰三角形底边上的高、中线以及顶角的平分线三线合一,∴.∵,∴.∵,∴(cm).13.108解析:因为,所以△是直角三角形,且两条直角边长分别为9、12,则以两个这样的三角形拼成的长方形的面积为.14.3解析:如图,过点作于.因为,,,所以.因为平分,,所以点到的距离.15.15解析:设第三个数是,①若为最长边,则,不是整数,不符合题意;②若17为最长边,则,三边是整数,能构成勾股数,符合题意,故答案为:15.16.解析:设直角三角形的斜边长是,则另一条直角边长是.根据勾股定理,得,解得,则斜边长是.17.49解析:正方形A,B,C,D的面积之和是最大的正方形的面积,即49.18.4解析:在Rt△ABC中,,则,少走了(步).19.解:(1)因为,根据三边长满足的条件,可以判断△是直角三角形,其中∠为直角. (2)因为,所以,根据三边长满足的条件,可以判断△是直角三角形,其中∠为直角. 20.解:如图①,若△是锐角三角形,则有.证明如下:过点作,垂足为,设为,则有.在Rt△ACD中,根据勾股定理,得AC2CD2=AD2,即b2x2=AD2.在Rt△ABD中,根据勾股定理,得AD2=AB2BD2,即AD2=c2(ax)2,即,∴.∵,∴,∴.如图②,若△是钝角三角形,为钝角,则有.证明如下:过点作,交的延长线于点.设为,在Rt△BCD中,根据勾股定理,得,在Rt△ABD中,根据勾股定理,得AD2+BD2=AB2,即.即.∵,∴,∴.21.解:(1)因为三个内角的比是,所以设三个内角的度数分别为.由,得,所以三个内角的度数分别为.(2)由(1)知三角形为直角三角形,则一条直角边长为1,斜边长为2.设另外一条直角边长为,则,即.所以另外一条边长的平方为3.22.分析:旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底部的部分构成了直角三角形,运用勾股定理可将折断的位置求出.解:设旗杆未折断部分的长为m,则折断部分的长为m,根据勾股定理,得,解得:m,即旗杆在离底部6m处断裂.23.分析:根据已知条件可找出规律;根据此规律可求出的值.解:由3,4,5:;5,12,13:;7,24,25:.故,,解得,,即.24.分析:(1)由于△翻折得到△,所以,则在Rt△中,可求得的长,从而的长可求;(2)由于,可设的长为,在Rt△中,利用勾股定理求解直角三角形即可.解:(1)由题意,得(cm),在Rt△中,∵,∴(cm),∴(cm).(2)由题意,得,设的长为,则.在Rt△中,由勾股定理,得,解得,即的长为5cm.25.分析:要求蚂蚁爬行的最短路程,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:如图(1),把长方体剪开,则成长方形,宽为,长为,连接,则构成直角三角形,由勾股定理,得.如图(2),把长方体剪开,则成长方形,宽为,长为,连接,则构成直角三角形,同理,由勾股定理,得.∴蚂蚁从点出发穿过到达点路程最短,最短路程是5.。
北师大版八年级(上)数学全章测试:勾股定理(含答案)
第1章勾股定理全章测试一、填空题1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.3题图4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB =45°,BC=60米,则点A到岸边BC的距离是______米.4题图5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA =6cm,则点O到三边AB,AC和BC的距离分别等于______cm.5题图6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.6题图7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.8题图二、选择题9.下列三角形中,是直角三角形的是( )(A)三角形的三边满足关系a+b=c(B)三角形的三边比为1∶2∶3(C)三角形的一边等于另一边的一半(D)三角形的三边为9,40,41 10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ).10题图(A)450a元(B)225a元(C)150a元(D)300a元11.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( ).(A)2 (B)3 (C)22(D)3212.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC+BC 等于( ).(A)5 (B)135 (C)1313(D)59三、解答题13.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长.14.如图,已知一块四边形草地ABCD ,其中∠A =45°,∠B =∠D =90°,AB =20m ,CD =10m ,求这块草地的面积.15.△ABC 中,AB =AC =4,点P 在BC 边上运动,猜想AP 2+PB ·PC 的值是否随点P 位置的变化而变化,并证明你的猜想.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.19.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案1.8. 2..3 3..10 4.30. 5.2.6.3.提示:设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.26或.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B13..2172提示:作CE ⊥AB 于E 可得,5,3==BE CE 由勾股定理得,72=BC 由三角形面积公式计算AD 长. 14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2 =AH 2+BH 2=AB 2=16. 16.14或4.17.10; .16922n +18.(1)略; (2)定值, 12;(3)不是定值,.10226,1028,268+++ 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:54=AD ,得△ABD 的周长为.m )5420(+. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,图3由勾股定理得:325=x ,得△ABD 的周长为.m 380。
北师大版八年级上册数学第一章勾股定理测试卷(附答案)
13.在
中, ∠ , ∠ , ∠ 的对边分别是 、 、 ,若 2 + 2 = 25, 2 − 2 = 7 ,又 = 5 ,则
最大边上的高为________.
14.如图,H 是△ABC 内一点,BH⊥CH,AH=6,CH=3,BH=4,D、E、F、G 分别是 AB、AC、CH、BH 的 中点,则四边形 DEFG 的周长是________.
理由如下:连接 OD. ∵OA=OD ∴∠ODA=∠A 又∵∠BDE=∠A ∴∠ODA=∠BDE ∵AB 是⊙O 直径 ∴∠ADB=90° 即∠ODA+∠ODB=90° ∴∠BDE+∠ODB=90° ∴∠ODE=90° ∴OD⊥DE ∴DE 与⊙O 相切; (2)∵R=5, ∴AB=10, 在 Rt△ABC 中
BC 中,∠ABC=90°,以 AB 为直径的⊙O 与 AC 边交于点 D,过点 D 的直线交 BC 边于点 E, ∠BDE=∠A. (1)判断直线 DE 与⊙O 的位置关系,并说明理由. (2)若⊙O 的半径 R=5,tanA=34 , 求线段 CD 的长.
15.已知 △
,
延长线于 G,连接
= , ⊥ ,点 F 在 上,作 ⊥ , ∠ = 2∠ , = = 2 ,则
,直线 交 于 E,交 的长为________.
三、解答题(共 7 题;共 55 分)
16.如图,在△ABC 中,AD 是 BC 边上的高,tanC=
1 2
,AC=3
5 ,AB=4,求△ABC 的周长.
19.如图,一个梯子 AB 长 2.5 米,顶端 A 靠在墙 AC 上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动 后停在 DE 的位置上,测得 BD 长为 0.2 米,求梯子顶端 A 下落了多少米?
八年级数学上第一章勾股定理单元检测试题及答案北师大版
勾股定理单元检测试题邮编:518052 地址:某某市南山区常兴南路荔香中学数学组 作者:钟国雄(中国数学奥林匹克一级教练,中学高级教师)一、选择题(每题3分,共18分)1.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )(A )1,2,3 (B )2,3,4 (C )3,4,5 (D )4,5,6 解:因为222345+=,故选(C )2.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个 直角三角形的面积是( )(A )30 (B )40 (C )50 (D )60解:由勾股定理知,另一条直角边的长为2213125-=,所以这个直角三角形的面积为1125302⨯⨯=.3.如图1,一架长的梯子AB ,斜靠在一竖直的墙AC 上,这时梯足B 到墙底端C 的距离为,如果梯子的顶端下滑,则梯足将向外移( ) (A) (B) (C) (D)解:依题设11 2.5,0.7AB A B BC ===.在Rt ABC ∆中,由勾股定理,得22222.50.7 2.4AC AB BC =-=-= 由12.4,0.4AC AA ==,得11 2.40.42AC AC AA =-=-=. 在11Rt A B C ∆中,由勾股定理,得222211112.52 1.5B C A B AC =-=-= 所以11 1.50.70.8BB B C BC =-=-=故选(C)4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( )(A )132 (B )121 (C )120 (D )以上答案都不对 解:设直角三角形的斜边长为x ,另外一条直角边长为y ,则x y >.由勾股定理,得22211x y =+.图1因为,x y 都是自然数,则有()()1211211x y x y +-==⨯. 所以121,1x y x y +=-=.因此直角三角形的周长为121+11=132. 故选(A )5.直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A )22d S d ++ (B )2d S d -- (C )222d S d ++ (D )22d S d ++ 解:设两直角边分别为,a b ,斜边为c ,则2c d =,12S ab =. 由勾股定理,得222a b c +=.所以()222222444a b a ab b c S d S +=++=+=+. 所以22a b d S +=+.所以a b c ++=222d S d ++. 故选(C )6.直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( )(A )61 (B )71 (C )81 (D )91 解:因为a b a a b +>>-.根据题意,有()()222a b a b a +=-+. 整理,得24a ab =.所以4a b =. 所以3,5a b b a b b -=+=.即该直角三角形的三边长是3,4,5b b b .因为只有81是3的倍数. 故选(C ) 二、填空题(每题3分,共24分)7. 如图2,以三角形ABC ∆的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____. 解:根据题意,有123S S S +=,即222111222222a b c πππ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 整理,得222a b c +=.图2故此三角形为直角三角形.8. 在Rt ABC ∆中,3,5a c ==,则边b 的长为______.解:本题在Rt ABC ∆中,没有指明哪一个角为直角,故分情况讨论:当C ∠为直角时,c 为斜边,由勾股定理,得222a b c +=, ∴2222534b c a =-=-=;当C ∠不为直角时,c 是直角边,b 为斜边,由勾股定理,得222a c b +=, ∴22223534.b a c =+=+= 因此,本题答案为4或34.9.如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.解:由勾股定理,知最短距离为()()222288210BD AC AB CD =+-=+-=.10.如图4,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S = 解:由勾股定理,知222AC BC AB +=,即123S S S +=,所以3114S =.11.如图5,已知,Rt ABC ∆中,90ACB ∠=︒,从直角三角形两个锐角顶点所引的中线的长5,210AD BE ==,则斜边AB 之长为______.解:AD 、BE 是中线,设,BC x AC y ==,由已知,5,25AD BE ==,所以222240,25.22y x x y ⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭两式相加,得()225654x y +=,所以2252213.AB x y =+== 12.如图6,在长方形ABCD 中,5DC cm =,在DC 上存在一点E ,沿直线AE 把AED ∆折叠,使点D 恰好落在BC 边上,设此图5图4图3点为F ,若ABF ∆的面积为230cm ,那么折叠AED ∆的面积为_____. 解:由折叠的对称性,得,AD AF DE DF ==. 由130,52ABF S BF AB AB ∆=⋅==,得12BF =. 在Rt ABF ∆中,由勾股定理,得2213AF AB BF =+=.所以13AD =. 设DE x =,则5,,1EC x EF x FC =-==.在Rt ECF ∆中,222EC FC EF +=,即()22251x x -+=.解得135x =. 故()211131316.9225ADE S AD DE cm ∆=⋅=⨯⨯=. 13.如图7,已知:ABC ∆中,2BC =, 这边上的中线长1AD =,13AB AC +=+,则AB AC ⋅为_____.解:因为AD 为中线,所以1BD DC AD ===,于是1,2C B ∠=∠∠=∠.但12180C B ∠+∠+∠+∠=︒,故()212180,1290∠+∠=︒∠+∠=︒,即90BAC ∠=︒.又13AB AC +=+,两边平方,得222423AB AC AB AC ++⋅=+.而由勾股定理,得224AB AC +=. 所以24AB AC ⋅=.故2AB AC ⋅=.即2AB AC ⋅=.14.在ABC ∆中,1AB AC ==,BC 边上有2006个不同的点122006,,P P P ,记()21,2,2006i i i i m AP BP PC i =+⋅=,则122006m m m ++=_____.解:如图8,作AD BC ⊥于D ,因为1AB AC ==,则BD CD =. 由勾股定理,得222222,AB AD BD AP AD PD =+=+.所以()()2222AB AP BD PD BD PD BD PD BP PC -=-=-+=⋅.所以2221AP BP PC AB +⋅==. 因此2122006120062006m m m ++=⨯=.三、解答题(每题10分,共40分)图8图715.如图9,一块长方体砖宽5AN cm =,长10ND cm ==,CD 上的点B 距地面的高8BD cm =,地面上A 处的一只蚂蚁到B 处吃食,需要爬行的最短路径是多少?【解】如图9,在砖的侧面展开图10上,连结AB ,则AB 的长即为A 处到B 处的最短路程.在Rt ABD ∆中,因为51015AD AN ND =+=+=,8BD =,所以22222215828917AB AD BD =+=+==. 所以()17AB cm =.因此蚂蚁爬行的最短路径为17cm .16.如图11所示的一块地,90ADC ∠=︒,12AD m =,9CD m =,39AB m =,36BC m =,求这块地的面积S .解:连结AC ,在Rt ACD ∆中,由勾股定理,得222AC AD DC =+,即222129AC =+,所以15AC =.在ABC ∆中,由22222153639AC BC +=+=,即222AC BC AB +=. 所以ABC ∆为直角三角形,90ACB ∠=︒.所以()211153612921622ABC ADC S S S m ∆∆=-=⨯⨯-⨯⨯=.所以这块地的面积为2216m .17.如图12所示,在Rt ABC ∆中,90,,45BAC AC AB DAE ∠=︒=∠=︒图9 图10图11,且3BD =,4CE =,求DE 的长.图12答图13解:如图13,因为ABC ∆为等腰直角三角形,所以45ABD C ∠=∠=︒. 所以把AEC ∆绕点A 旋转到AFB ∆,则AFB AEC ∆≅∆. 所以4,,45BF EC AF AE ABF C ===∠=∠=︒.连结DF . 所以DBF ∆为直角三角形.由勾股定理,得222222435DF BF BD =+=+=.所以5DF =. 因为45,DAE ∠=︒所以45DAF DAB EAC ∠=∠+∠=︒. 所以()ADE ADF SAS ∆≅∆. 所以5DE DF ==.18.ABC ∆中,,,BC a AC b AB c ===,若90C ∠=︒,如图14,根据勾股定理,则222c b a =+,若ABC ∆不是直角三角形,如图15和图16,请你类比勾股定理,试猜想22b a +与2c 的关系,并证明你的结论。
北师大版数学八年级上册 第一章 勾股定理单元测试(Word版含答案)
第一章勾股定理学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 将直角三角形的三边长同时扩大2倍,得到的三角形是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等腰三角形2. 下列几组数中是勾股数的一组是( )A. 3,4,6B. 1.5,2,2.5C. 9,12,15D. 6,8,133. 小明在一个长方形的水池里游泳,长方形的长和宽分别为30m ,40m ,小明在水池中沿直线最远可以游( )A. 30mB. 40mC. 50mD. 60m4. 下列条件能判定△ABC 为直角三角形的是( )A. a =13,b =14,c =15B. ∠A:∠B:∠C =1:2:4C. a =32,b =42,c =52D. ∠A +∠B =∠C5. 如图,已知每级台阶的宽度都是30cm ,每级台阶的高度都是15cm ,连接AB ,则AB 等于( )A. 195cmB. 200cmC. 205cmD. 210cm6. 如图,小方格都是边长为1的正方形,则△ABC 中BC 边上的高是( )A. 1.4B. 1.5C. 1.6D. 27. 如图,在长方形ABCD 中,AB =3 cm ,AD =9 cm ,将此长方形折叠,使点D 与点B 重合,折痕为EF ,则△ABE 的面积为( )A. 3cm2B. 4cm2C. 6cm2D. 12cm28.如图①是美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全等的直角三角形紧密拼接,形成飞镖状,且外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积( )A. 6B. 12C. 16D. 249.如图,在△ABC中,AC=BC,∠ACB=90∘,点D在BC上,BD=3,DC=1,P是AB上的动点,则PC+PD的最小值为( )A. 4B. 5C. 6D. 710.如图所示,有一块长方形场地ABCD,长AB=20m、宽AD=10m,中间有一堵墙,高MN=2m,一只蚂蚁要从A点爬到C点,它必须翻过中间那堵墙,则它至少要走( )A. 20mB. 24mC. 25mD. 26m二、填空题(本大题共5小题,共15.0分)11.如图,将长为8cm的橡皮筋放置在一条直线上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了cm.12.若直角三角形的两条直角边的长分别为a,b,且满足(a−3)2+|b−4|=0,则该直角三角形的斜边长为.13.已知两条线段的长为5和12,当第三条线段长的平方为________时,这三条线段能组成一个直角三角形.14.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=________°.15.如图,在Rt△ABC中,∠ABC=90∘,AB=20,以AC,BC为直径的半圆的面积分别为S1,S2,则S1−S2=(结果保留π).三、解答题(本大题共7小题,共56.0分。
新北师大版八年级上册第一章《勾股定理》测试题及答案
新北师大版八年级上册第一章《勾股定理》测试题时间:90分钟满分100分2016.10.15 一、选择题(每小题2分,共20分)1.有六根细木棒,它们的长度分别是2,4,6,8,10,12 (单位:cm).若从中取出三根,首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为( )A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A.可能是锐角三角形B.不可能是直角三角形C.仍然是直角三角形D.可能是钝角三角形3.在△ABC中,已知AB=17,AC=10.若BC边上的高AD=8,则边BC的长为( ) A.21 B.15 C.6或9 D.9或214.一个直角三角形的斜边长比其中一条直角边的长大2,若另一条直角边的长为6,则斜边长为( )A.4 B.8 C.10 D.125.如图,一架云梯长25 m,斜靠在一面墙上,梯子底端离墙7 m.如果梯子的顶端下滑4 m,那么梯子的底部在水平方向上滑动了( )A.4 m B.6 m C.8 m D.10 m6.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,下列结论不正确的是( )A.△AED≌△AEF B.B E+DC=DEC.B E+DC>DE D.BE2+DC2=DE27.如图,用4个全等的直角三角形与1个小正方形镶嵌成正方形图案,已知大正方形的面积为49,小正方形的面积为4.若分别用x,y表示直角三角形的两条直角边(x>y),给出下列四个结论:①x2+y2=49;②x-y=2;③2x y+4=49;④x+y=9.其中正确的结论是( )A.①②B.①②③C.①②④D.①②③④8.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠.当点B的对应点B'落在∠ADC的角平分线上时,则点B'到BC的距离为( )A.1或2 B.2或3 C.3或4 D.4或59.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A .B .C .D .10.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S 1、S 2、S 3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4、S 5、S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=( )A .86B .64C .54D .48二、填空题 (每小题2分,共20分)11.一个三角形的两边长分别是3和5,若要使这个三角形成为直角三角形,则第三边边长的平方是 .12.若等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边长的平方为 .13.如果△ABC 的三边长a ,b ,c 满足关系式 (a +2b -60)2+18b -+30c -=0,那么△ABC 的形状是 .14.所谓的勾股数就是使等式a 2+b 2=c 2成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n (m >n ),取a =m 2-n 2,b =2mn ,c =m 2+n 2,则a ,b ,c 就是一组勾股数.请你结合这种方法,写出85 (三个数中最大),84和 组成一组勾股数.15.如图,在四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B =90°,则∠A +∠C= °.16.如图,在Rt △ABC 中,∠C=90°,AC=6 cm .,BC=8 cm ,如果按图中所示的方法将△ACD 沿AD 折叠,使点C 落在AB 边上的C'点,那么△BDC'的面积是 .17.如图,每个小方格都是边长为1的正方形,点A,B是方格纸的两个格点(即正方形的顶点).在这个6×6的方格纸中,找出格点C,使△ABC的面积为1个平方单位的直角三角形的个数是.18.如图,已知AB=12,AB⊥BC,AB⊥AD,垂足分别为点B,A,AD=5,BC=10.若点E是CD的中点,则AE的长是.19.如图,有一个三级台阶,它的每一级的长、宽和高分别为20,3,2,A和B是这个台阶的两个相对的端点.若A点有一只蚂蚁想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.20.如图,长为12 cm的弹性皮筋拉直放置在一轴上,固定两端A和B,然后把中点C 向上拉升8 cm至D点,则弹性皮筋被拉长了cm.三、解答题(共60分)21.(本题6分) 如图,已知在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1) 求CD的长;(2) 求AB的长.22.(本题6分) 如图,每个小正方形的边长都为1,△ABC的顶点都在格点上.(1) 判断△ABC是什么形状,并说明理由.(2) 求△ABC的面积.23.(本题6分) 印度数学家什迦逻(1141年—1225年) 曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.24.(本题8分) 如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC 方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?25.(本题6分) 如图,在直角三角形纸片ABC中,∠C=90°,AC=6,BC=8,折叠△ABC的一角,使点B与点A重合,展开得折痕DE,求BD的长.26.(本题8分) 如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AB=21,AD=9,求AC的长.27.(本题10分) 如图,P是等边三角形ABC内的一点,连接P A,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1) 观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2) 若P A:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.28.(本题10分) 在△ABC中,BC=a,AC=b,AB=c,设c为最长的边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1) 当△ABC的三边长分别为6,8,9时,△ABC为三角形;当△ABC的三边长分别为6,8,11时,△ABC为三角形.(2) 猜想:当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,△ABC为钝角三角形.(3) 当a=2,b=4时,判断△ABC的形状,并求出对应的c2的取值范围.参考答案一、选择题1.C 2.C 3.D 4.C 5.C 6.B 7.B 8.A [提示:过点B'作B'M ⊥AD ,垂足为点M ,∵ 点B'在∠ADC 的角平分线上,∴ ∠ADB'=45°,∴ B'M=DM .设B'M=DM=x ,∵ B'M 2+AM 2=AB' 2,∴ x 2+(7-x )2=25,解得x = 3或x = 4,即B'M = 3或4 ,∴ 点B'到BC 的距离为1或2]9.D 10.A二、填空题11.16或34 12.10或90 13.直角三角形 14.13 15.180 16.6 cm 2 17.6 18.132 19.25 20.8 (提示:∵AC=CB = 6cm ,DC = 8cm ,D C ⊥AB ,∴DB = DA = 10 cm ,∴拉长的长度为D A +DB -AB = 10c m +10cm -12cm = 8cm)三、解答题21.(1) ∵ CD ⊥AB ,∴ CD 2+BD 2=BC 2,∴ CD 2=BC 2-BD 2=152-92=122,∴ CD =12(2) ∵ CD ⊥AB ,∴ CD 2+AD 2=AC 2,∴ AD 2=AC 2-CD 2=202-122=l62,∴ AD =16,∴ AB=AD +DB =16+9=2522.(1) △ABC 是直角三角形.理由如下:∵ AC 2=12+82=65,AB 2=22+32=13,BC 2=42+62=52,∴ AC 2=AB 2+BC 2.∴ △ABC 是直角三角形,且∠ABC=90° (2) S=12×AB ×BC=12=13 23.设湖水的深为x 尺,则红莲总长为 (x +0.5) 尺,根据勾股定理得x 2+22=(x +0.5)2,解得x=3.75,即湖水深3.75尺24.∵ 小球滚动的速度与机器人行走的速度相等,运动时间相等,∴ BC=CA .设AC 为x ,则OC =9-x ,由勾股定理得OB 2+OC 2=BC 2.又∵ OA=9,OB=3,∴ 32+(9-x )2=x 2,解得x =5,∴ 机器人行走的路程BC 是5 cm25.由题意知AD=BD ,设BD =x ,则AD =x ,CD =8-x ,在Rt △ACD 中,由AC 2+CD 2-AD 2,得62+(8-x )2=x 2,解得x =254.即BD 的长为25426.在AB 上截取AE=AD ,连接EC .∵ AC 平分∠BAD ,∴ ∠DAC=∠BAC ,∴ △ADC ≌△AEC ,∴ AE=AD =9,CE=CD=10=BC .作CF ⊥AB ,垂足为点F ,∴ EF=FB=12BE =12(AB -AE )=6.在Rt △BFC (或Rt △EFC ) 中,由勾股定理得CF =8,在Rt △AFC 中,由勾股定理得AC =17,∴ AC 的长为1727.(1) 猜想:AP=CQ .证明:∵ ∠ABP +∠PBC =60°,∠QBC +∠PBC=60°,∴ ∠ABP =∠QBC .又∵ AB=BC ,BP=BQ ,∴ △ABP ≌△CBQ ,∴ AP=CQ (2) 由P A :PB :PC =3:4:5,可设P A =3a ,PB =4a ,PC =5a .连接PQ ,在△PBQ 中,PB=BQ =4a ,且∠PBQ =60°,∴ △PBQ 为正三角形,∴ PQ =4a .在△PQC 中,∵ PQ 2+QC 2=16a 2+9a 2=25a 2=PC 2,∴ △PQC 是直角三角形28.(1) 锐角 钝角 (2) > < (3) ∵ c 为最长的边,2+4=6,∴ 4≤c <6,a 2+b 2=22+42=20.①a 2+b 2>c 2,即c 2<20,∴ 当l6≤c 2<20时,这个三角形是锐角三角形;②a2+b2=c2,即c2=20,∴当c2=20时,这个三角形是直角三角形;③a2+ b2<c2,即c2>20,∴当20<c2<36时,这个三角形是钝角三角形。
初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
最新北师大版八年级数学上册第一章勾股定理测试题
最新北师大版八年级数学上册第一章勾股定理测试题一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方.(即:a 2+b 2=c 2) 要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题二:勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形.要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形). 三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关.勾股定理练习一.填空题:1. 在Rt △ABC 中,∠C=90°(1)若a=5,b=12,则c=________; (2)b=8,c=17,则S △ABC =________.2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类).3. 直角三角形的三边长为连续自然数,则其周长为________.4.传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米,其中的道理是______________________.5.命题“对顶角相等”的逆命题为___________________,它是____命题.(填“真”或“假”)6.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;……;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:____________________________.7.利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图(最早由三国时期的数学家赵爽给出的).从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c 2= + ,化简后即为c 2= .8. 一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B点,那么它所行的最短路线的长是abc AB第8题图_____________. 二.选择题:9.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 410.三个正方形的面积如图,正方形A 的面积为( )A. 6B.4C. 64D. 811.已知直角三角形的两条边长分别是5和12,则第三边为 () A. 13 B.119 C.13或119 D. 不能确定12.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1.其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 13.三角形的三边长为(a+b )2=c 2+2ab ,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.14.如图一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距 ( ) A 、25海里 B 、30海里 C 、35海里 D 、40海里15. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或36016.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元三.解答题:17.如图1,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ) (A )CD 、EF 、GH (B )AB 、EF 、GH (C )AB 、CD 、GH (D )AB 、CD 、EF19.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺, 求竹竿高与门高.A106150° 20m 30m 第16题图 北 南 A 东 第14题20.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?21.如图5,将正方形ABCD 折叠,使顶点A 与CD 边上的点M 重合,折痕交AD 于E ,交BC 于F ,边AB 折叠后与BC 边交于点G.如果M 为CD 边的中点,求证:DE :DM :EM=3:4:5.图53、如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长.AA ′B B ′O 第20题图八年级上北师大版第一章勾股定理测试题一、选择题(每小题3分,共30分)1.下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,412. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).(A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ). (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为 ( ).(A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二、填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 .(2)斜边x= .13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有 个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 .三、简答题(50分)16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法. (2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?18.(8分)如图11,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已知展开图中每个正方形的边长为1.(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. (2)试比较立体图中∠ABC 与平面展开图中///C B A 的大小关系.21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?答案提示: 一、选择题1.C2.B3.C4.B5.D6.D7.C8.C9.A 10.A 二、填空题11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 415三、简答题16. 在Rt △ABC 中,AC=54322=+. 又因为22213125=+,即222CD AC AD =+.所以∠DAC=90°.所以125214321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略18. 约22米.根据半圆柱的展开图可计算得:AE=22)4(1822≈+π米.19. 如图12,在Rt △ABC 中,根据勾股 定理可知,BC=30004000500022=-(米). 3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞行540千米.20. (1)10;(2)4条21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x 米,得方程, 222)424(25--=x ,解得x=15,所以梯子向后滑动了8米.。
北师大版八年级数学上册第一章 勾股定理综合测评 (Word版 含答案)
第一章勾股定理综合测评(本试卷满分100分)一、选择题(每小题3分,共30分)1.如图1,在△ABC中,∠C=90°,则下列结论正确的是()A.AB=AC+BC B.AB=AC•BCC.AB2=AC2+BC2D.AC2=AB2+BC2图1 图2 图3 图4 图52.下列各组数据中,不是勾股数的是()A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,93.如图2,分别标有“放”“鸡”“岛”的三个正方形围成一个直角三角形,标有“放”、“鸡”的正方形的面积分别为18,50,则图中标有“岛”字的正方形的面积是( )A.34B.32C.30D.284.已知△ABC中,a,b,c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A=∠C﹣∠B B.a:b:c=2:3:4C.a2=b2﹣c2D.a=,b=,c=15.如图3,有一块长方形空地ABCD,如果AB=300米,AD=400米,要从A走到C,至少要走()A.300米B.400米C.500米D.700米6.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3 B.4 C.15 D.7.27.如图4,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π-24 B.100π-48 C.25π-24 D.25π-488.如图5,已知蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线长是()A.8B.10C.12D.169.如图6,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7 m,梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于15 m.同时梯子的顶端B下降至B′,那么BB′等于()A.3 m B.4 m C.5 m D.6 m图6 图710.如图7,在长方形纸片ABCD中,AB=12,AD=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点F处,则BE的长为()A.263B.9C.38D.37二、填空题(每小题3分,共18分)11.已知一直角三角形的两条直角边长分别是20,15,斜边长为x,则x=_____.12.有一组勾股数,如果其中的两个数分别是17和8,那么第三个数是_____.13.图8所示的“赵爽弦图”中,△ABH,△BCG,△CDF,△DAE是四个全等的直角三角形,四边形ABCD 和EFGH都是正方形,如果EF=4,AH=12,那么AB的长为_____.图814.在△ABC中,三边长a,b,c满足a:b:c=9:40:41,周长为90,则△ABC的面积为_____.15.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为.16. 勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为________________.三、解答题(共52分)17.(6分)如图9,在△ABC 中,AB=25,AC=17,边BC 上的高AD=15,求BC 的长.18.(6分)在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,如果a=215,b=225,c=10,这个三角形是直角三角形吗?请说明理由. 小康的解答如下:解:这个三角形不是直角三角形.理由如下: 因为a 2+b 2=(215)2+(225)2=2425,c 2=100,所以a 2+b 2≠c 2. 所以△ABC 不是直角三角形.请问:小康的解答正确吗?若不正确,请给出正确的解答过程.19.(8分)如图10,甲、乙两船同时从港口A 出发,甲船以12海里/时的速度向北偏东35°的方向航行,乙船向南偏东55°的方向航行.2小时后,甲船到达C 岛,乙船到达B 岛,若C ,B 两船相距40海里,问:乙船的航行速度是每小时多少海里?20.(10分)某游乐场计划修建一个图11所示的游泳池供游客休闲娱乐,泳池底部如图所示.已知∠DAB=90°,AB 的长为40 m ,AD 的长为30 m ,BC 的长为120 m ,CD 的长为130 m.求该泳池的占地面积.21.(10分)图12是小明家的一块直角三角形绿地,量得两条直角边的长分别为BC=18米和AC=24米,现要将该直角三角形绿地扩充成一个等腰三角形,且扩充部分是以AC 为直角边的直角三角形,请你求出扩充后的等腰三角形绿地的面积.22.(12分)如图13,在△ABC中,已知AB=1,AC=2,CB'⊥BC,且CB'=CB,△A'B'C≌△ABC,连接AB',AA'.(1)判断△ACA'的形状,并说明理由;(2)若AB'=3,求∠B'A'C的度数.附加题(20分,不计入总分)23.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小东以灵感,他惊喜地发现,当两个全等的直角三角形如图15-①或图15-②摆放时,都可以用“面积法”来证明,下面是小东利用图14-①验证勾股定理的过程:将两个全等的直角三角形按图14-①所示摆放,其中∠DAB=90°,试说明:a2+b2=c2.解:连接DB,过点D作BC边上的高DF,则DF=EC=b-a.因为S四边形ADCB=S△ACD+S△ABC=12b2+12ab,又S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a),所以12b2+12ab=12c2+12a(b-a).所以a2+b2=c2.解决问题:请参照上述方法,利用图15-②完成下面的验证:将两个全等的直角三角形按图15-②所示摆放,其中∠DAB=90°.试说明:a2+b2=c2.第一章 勾股定理综合测评一、1.C 2.D 3.B 4.B 5.C 6.D 7.C 8.B 9.B10. A 提示:在Rt △ABD 中,由勾股定理求得BD=13.根据折叠的性质,得EF=AE ,∠DFE=∠A=90º,DF=DA=5.设AE=x ,则EF=x.在Rt △BEF 中,FB=13-5=8,BE=12-x ,根据勾股定理,得FE 2+FB 2=EB 2,即x 2+82=(12-x)2,解得x=310.所以BE=12-310=263. 二、11.25 12. 15 13.20 14.180 15.(x ﹣3)2+64=x 2 16. (11,60,61)三、17.解:在Rt △ADC 中,由勾股定理,得DC 2=AC 2-AD 2=172-152=64,所以DC=8.在Rt △ABD 中,由勾股定理,得BD 2=AB 2-AD 2=252-152=400,所以BD=20.所以BC=BD+DC=20+8=28. 18.解:小康的解答不正确.正确的解答过程如下:这个三角形是直角三角形.理由:因为21510225>>,所以b 是这个三角形的最长边. 因为a 2+c 2=(215)2+102=4625,b 2=(4625)2252=,所以a 2+c 2=b 2.所以△ABC 是直角三角形.19. 解:由题意,得AC=12×2=24(海里). 因为∠EAC=35°,∠FAB=55°,所以∠CAB=90°.因为BC=40海里,AC=24海里,在Rt △ABC 中,AB 2=BC 2-AB 2=402-242=1024,所以AB=32海里. 因为乙船也行驶了2小时,所以乙船的航行速度是32÷2=16(海里/时). 20.解:连接BD.因为∠DAB=90°,AB=40 m ,AD=30 m ,所以BD=50 m.因为BC=120 m ,CD=130 m ,所以BD 2+BC 2=CD 2.所以△BCD 是直角三角形.所以∠DBC=90°. 所以S 四边形ABCD =S △DAB +S △BCD =12AB·AD+12BC·BD=12×40×30+12×120×50=3600(m 2). 答:该泳池的占地面积为3600 m 2.21.解:在Rt △ABC 中,∠ACB=90º,AC=24米,BC=18米,由勾股定理可得AB=30米.应分以下三种情况:①如图2,当AB=BD=30米时,S △ABD =21AC·BD=21×24×30=360(平方米).②如图3,当AD=AB 时,因为 AD=30米,AC=24米,由勾股定理可得DC=18米.因为AC ⊥BD ,所以BD=2DC=36米.所以S △ABD =21AC·BD=21×24×36=432(平方米). ③如图4,当AD=BD 时,设AD=BD=x 米,则CD=(x-18)米.在Rt △ACD 中,DC 2+AC 2=AD 2,即 (x-18)2+242=x 2,解得x=25,所以S △ABD =21AC·BD=21×24×25=300(平方米). 综上所述,扩充后的等腰三角形绿地的面积为360平方米或432平方米或300平方米. 22.解:(1)△ACA '是等腰直角三角形.理由:因为CB '⊥BC ,所以∠BCA+∠ACB '=90º.因为△A 'B 'C ≌△ABC ,所以∠BCA=∠B 'CA ',AC=A 'C.所以∠ACB '+∠B 'CA '=90º,即∠ACA '=90º.所以△ACA '是等腰直角三角形.(2)因为△ACA '是等腰直角三角形,所以∠AA 'C=45º.在Rt △ACA '中,根据勾股定理,得AA '2=AC 2+ A 'C 2=22+22=8.因为A 'B '=AB=1,所以AA '2+A 'B '2=8+1=9,AB '2=9.所以AA '2+A 'B '2= AB '2.所以△A 'AB '是直角三角形,且∠AA 'B '=90º.所以∠B 'A 'C=45º+90º=135º. 23.解:如图5,连接BD ,过点B 作DE 边上的高BF ,可得BF=b-a.因为S 五边形ACBED =S △ACB +S △ABE +S △ADE =12ab+12b 2+12ab ,又S 五边形ACBED =S △ACB +S △ABD +S △BDE =12ab+12c 2+12a (b-a ), 所以12ab+12b 2+12ab=12ab+12c 2+12a (b-a ),整理,得a 2+b 2=c 2.。
(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》检测(有答案解析)(4)
一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为S1,小正方形面积为S2,则(a+b)2可以表示为()A.S1﹣S2B.S1+S2C.2S1﹣S2D.S1+2S22.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2m B.2.5cm C.2.25m D.3m3.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是2,3,1,2,则△正方形E的边长是()A.18 B.8 C.22D.324.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=()A.2.1 B.1.4 C.3.2 D.2.45.如图,已知正方体纸盒的高为1,已知一只蚂蚁从其中一个顶点A,沿着纸盒的外部表面爬行至另一个顶点B,则蚂蚁爬行的最短距离是()A .3B .2C .5D .21+ 6.以下列各组数为长度的线段,不能构成直角三角形的是( ) A .2,3,4 B .3,4,5C .1,1,2D .6,8,10 7.如图,小彬到雁江区高洞产业示范村参观,看到一个贴有大红“年”字的圆柱状粮仓非常漂亮,回家后小彬制作了一个底面周长为10cm ,高为5cm 的圆柱粮仓模型.如图BC 是底面直径,AB 是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A ,C 两点(接头不计),则装饰带的长度最短为( )A .10πcmB .20πcmC .102cmD .52cm 8.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC 17cmD .94cm 9.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 10.一个直角三角形的两条边分别是9和40,则第三边的平方是( )A .1681B .1781C .1519或1681D .1519 11.如图,分别以直角三角形ABC 的三边为斜边向外作直角三角形,且AD CD =,CE BE =,AF BF =,这三个直角三角形的面积分别为1S ,2S ,3S ,且19S =,216S =,则S 3S =( )A .25B .32C .7D .1812.如图,在33⨯的正方形网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC 的边AC 上的高,则BD 的长为( )A 52613B 102613C 13137D 71313二、填空题13.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .14.已知ABC 中,90C ∠=︒,2cm,6cm AB AC BC =+=,则ABC 的面积为_______. 15.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的是________________.16.已知一个直角三角形三边长的平方和是50,则斜边长为________.17.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.18.我国古代数学善作《九章算术》中有这样一个问题:“分有池方一文,葭生其中央,出水一尺.引葭赴岸,适与岸齐,闻水深、度长各几何.”译文:“有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长分别是多少?”这根芦苇的长度为__________尺.19.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.20.如图,它是四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积为13,小正方形的面积为1,直角三角形的较短的直角边长为a,较长的a b的值为__________.直角边为b,那么三、解答题21.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?22.如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC面积.23.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.24.正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图1中,画一个三角形,使它的三边长分别是3,4,5;(2)在图2中,画一个正方形,使它的面积为5;(3)在图3中,画一个三角形,使它的三边长分别为224,225.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长;(2)求小路DE 的长.26.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、 B 、C 在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A′B′C′;(2)在直线l 上找一点P(在答题纸上图中标出),使PB+PC 的长最短,这个最短长度的平方值是___.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.A解析:A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB﹣BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.3.D解析:D【分析】根据勾股定理分别求出正方形E的面积,进而即可求解.【详解】解:由勾股定理得,正方形E的面积=正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=22+32+12+22=18,∴正方形E的边长=32.故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4.B解析:B【分析】设CD=x,在Rt△ACD和Rt△ABC中,利用勾股定理列式表示出AC2,然后解方程即可.【详解】解:设CD=x,则BC=5+x,在Rt△ACD中,AC2=AD2-CD2=25-x2,在Rt△ABC中,AC2=AB2-BC2=64-(5+x)2,所以,25-x2=64-(5+x)2,解得x=1.4,即CD=1.4.故答案为:B.【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC2,然后列出方程是解题的关键.5.C解析:C【分析】从正方体外部可分三类走法直接走AB对角线,先走折线AD-DB,或走三条棱,求出其长度,比较大小即可【详解】方法一:走两个正方形两接的面展开成日字形的对角线在三角形ABC中,由勾股定理AB=2222AC+BC=2+1=5;方法二:走一面折线AD-BD,由勾股定理221+1=22+1;方法三折线AE-ED-DB即AE+ED+DB=3;在正方体外部表面走有这三类走法,∵5<9, ∴3, ∵2>1, ∴1>, ∴2>, ∴2+3>,∴)25>, ∴>故选择:C .【点睛】本题考查蚂蚁爬行最短路径问题是考查勾股定理的应用,掌握勾股定理的应用方法,会利用图形分析行走路径是解题关键.6.A解析:A【分析】由勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:2222349134,+=+=≠∴以 2,3,4为边的三角形不是直角三角形,故A 符合题意,2223491625=5,+=+=∴以 3,4,5为边的三角形是直角三角形,故B 不符合题意,222112,+==∴以1,1为边的三角形是直角三角形,故C 不符合题意,222683664100=10,+=+=∴以6,8,10为边的三角形是直角三角形,故D 不符合题意,故选:.A【点睛】本题考查的是勾股定理的逆定理的应用,掌握勾股定理的逆定理是解题的关键. 7.C解析:C【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:如图,圆柱的侧面展开图为长方形,AC =A 'C ,且点C 为BB '的中点,∵AB =5cm ,BC =12×10=5cm , ∴装饰带的长度=2AC =22222255102AB BC +=+=cm ,故选:C .【点睛】本题考查平面展开-最短距离问题,正确画出展开图是解题的关键.8.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =, 22AC BC +,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.9.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.10.C解析:C【分析】由题意可分当第三边为直角边时和当第三边为斜边时,然后利用勾股定理进行求解即可.【详解】解:当第三边是直角边时,第三边的平方是402﹣92=1519;当第三边是斜边时,第三边的平方是402+92=1681;故选:C .【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.11.A解析:A【分析】根据△ADC 为直角三角形且AD=CD ,可得到22211111=2224S AD AC AC =⨯=,同理可得到221=4S BC 及231=4S AB ,在△ACB 中,由勾股定理得出:222AB AC BC =+,继而可得312S S S =+,代入计算即可.【详解】解:∵△ADC 为直角三角形,且AD=CD ,∴在△ADC 中,有222AC AD CD =+,∴222AC AD =,即AC =, ∴22211111=2224S AD AC AC =⨯=, 同理可得:221=4S BC ,231=4S AB ,∵∠ACB=90︒,∴222AB AC BC =+,即312111444S S S =+, ∴312S S S =+,∵19S =,216S =,∴3129+16=25S S S =+=,故答案为:A .【点睛】本题考查勾股定理,由勾股定理得出三角形的面积关系是解题的关键.12.D解析:D【分析】根据勾股定理计算AC 的长,利用割补法可得△ABC 的面积,由三角形的面积公式即可得到结论.【详解】解:由勾股定理得:AC =∵S △ABC =3×3−12×1×2−12×1×3−12×2×3=72, ∴12AC•BD =72, ∴=7,∴BD 故选:D .【点睛】 本题考查了勾股定理与三角形的面积的计算,掌握勾股定理是解题的关键.二、填空题13.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M解析:【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .【详解】解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,222214341352262()MN ON OM mm =+=+== 故答案为:2【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键. 14.cm2【分析】设BC=acmAC=bcm 则a+b=即可得到根据勾股定理得到进而得到根据三角形面积公式即可求解【详解】解:设BC=acmAC=bcm 则a+b=∴即∵∠C=90°∴∴∴cm2故答案为:c 解析:12cm 2 【分析】 设BC=acm ,AC=bcm ,则6,即可得到()26a b +=,根据勾股定理得到22=4a b +,进而得到22ab =,根据三角形面积公式即可求解.【详解】解:设BC=acm ,AC=bcm ,则6,∴()26a b +=, 即2226a b ab ++=,∵∠C=90°,∴222=4a b AB +=,∴22ab =, ∴11=22ABC S ab =△cm 2. 故答案为:12cm 2 【点睛】本题考查了完全平方公式,勾股定理等知识,准确掌握两个知识点并建立联系是解题关键.15.①②③【分析】①由条件证明△ABD ≌△ACE 就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE 就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°由∠解析:①②③【分析】①由条件证明△ABD ≌△ACE ,就可以得到结论;②由△ABD ≌△ACE 就可以得出∠ABD=∠ACE ,就可以得出∠BDC=90°而得出结论; ③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论; ④△BDE 为直角三角形就可以得出BE 2=BD 2+DE 2,由△DAE 和△BAC 是等腰直角三角形就有DE 2=2AD 2,BC 2=2AB 2,就有BC 2=BD 2+CD 2≠BD 2就可以得出结论.【详解】解:①∵∠BAC=∠DAE ,∴∠BAC+∠DAC=∠DAE+∠DAC ,即∠BAD=∠CAE .在△ABD 和△ACE 中,AD AE BAD CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△ACE (SAS ),∴BD=CE .故①正确;∵△ABD ≌△ACE ,∴∠ABD=∠ACE .∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°-90°=90°.∴BD ⊥CE ;故②正确;③∵∠BAC=90°,AB=AC ,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确;④∵BD ⊥CE ,∴BE 2=BD 2+DE 2.∵∠BAC=∠DAE=90°,AB=AC ,AD=AE ,∴DE 2=2AD 2,BC 2=2AB 2.∵BC 2=BD 2+CD 2≠BD 2,∴2AB 2=BD 2+CD 2≠BD 2,∴BE 2≠2(AD 2+AB 2).故④错误.故答案为:①②③.【点睛】本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键. 16.5【分析】设两直角边长分别为ab 斜边长为c 则根据题意列得即可求出答案【详解】设两直角边长分别为ab 斜边长为c 则∵三边长的平方和是∴∴解得c=5(负值舍去)故答案为:5【点睛】此题考查勾股定理正确掌握解析:5【分析】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,根据题意列得2250c =即可求出答案.【详解】设两直角边长分别为a 、b ,斜边长为c ,则222+=a b c ,∵三边长的平方和是50,∴22250a b c ++=,∴2250c =,解得c=5(负值舍去),故答案为:5.【点睛】此题考查勾股定理,正确掌握勾股定理的计算公式是解题的关键.17.或【详解】分析:过点D′作MN ⊥AB 于点NMN 交CD 于点M 由矩形有两条对称轴可知要分两种情况考虑根据对称轴的性质以及折叠的特性可找出各边的关系在直角△EMD′与△AND′中利用勾股定理可得出关于DM解析:52 【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-',∴53-a,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:a=533.综上知:DE=52或533.故答案为5253..点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.18.13【分析】可以将其转化为数学几何图形如图所示根据题意可知EB的长为10尺则BC=5尺设出芦苇长度AB=AB=x尺表示出水深AC根据勾股定理建立方程即可【详解】依题意画出图形设芦苇长AB=AB′=x解析:13【分析】可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为10尺,则B'C=5尺,设出芦苇长度AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程即可.【详解】依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△AB'C中,∵CB′2+AC2=AB′2,∴52+(x﹣1)2=x2,解得:x=13,故答案为:13.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.19.【分析】如图由于倒下部分与地面成30°夹角所以∠BAC=30°由此得到AB=2CB而离地面米处折断倒下即BC=4米所以得到AB=8米然后即可求出这棵大树在折断前的高度【详解】如图∵∠BAC=30°∠解析:【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【详解】如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为12.【点睛】本题考查了含30度角的直角三角形的边长的性质,牢牢掌握该性质是解答本题的关键. 20.5【分析】根据题意结合图形求出ab与a2+b2的值原式利用完全平方公式化简后代入计算即可求出值【详解】解:根据题意得:c2=a2+b2=134×ab=13-1=12即2ab=12则(a+b)2=a2解析:5【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【详解】解:根据题意得:c2=a2+b2=13,4×12ab=13-1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,则a+b=5故答案为:5.【点睛】本题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解题的关键.三、解答题21.6【分析】在吸管(杯内部分)、杯底直径、杯高构成的直角三角形中,由勾股定理可求出杯内吸管部分的长度,再加上外露部分的长度即可求出吸管的总长.【详解】解:如图;杯内的吸管部分长为AC,杯高AB=12cm,杯底直径BC=5cm;Rt△ABC中,AB=12cm,BC=5cm;由勾股定理得:AC=13cm故吸管的长度最少要:13+4.6=17.6cm.22.84m 2【分析】由222AD BD AB +=可推导出△ABD 为直角三角形且90ADB ∠=;从而推导出△ADC 为直角三角形,再利用勾股定理计算得CD ,从而完成求解.【详解】∵AB=13m ,AD=12m ,BD=5m∴222AD BD AB +=∴△ABD 为直角三角形且90ADB ∠=∴18090ADC ADB ∠=-∠=∴△ADC 为直角三角形∴222AD CD AC += ∴2222=15129CD AC AD -=-=∴()1122ABC S AD BC AD BD CD =⨯=⨯+△ ∵5914BD CD +=+= ∴()11==1214=8422ABC S AD BD CD ⨯+⨯⨯△m 2. 【点睛】本题考察了勾股定理和勾股定理的逆定理.求解的关键是熟练掌握勾股定理的性质,完成求解.23.证明见解析.【分析】根据ACD ABC ABD BCD ABCD S SS S S =+=+四边形即可得证.【详解】如图,过点D 作DF BC ⊥,交BC 延长线于点F ,连接BD ,则DF CE =,由全等三角形的性质得:AC DE b ==,DF CE AC AE b a ∴==-=-,ACD ABC ABD BCD ABCD S S S S S =+=+四边形, 11112222AC DE AC BC AD AB BC DF ∴⋅+⋅=⋅+⋅, 即221111()2222b bac a b a +=+⋅-, 整理得:222+=a b c .【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.24.(1)图见解析;(2)图见解析;(3)图见解析.【分析】(1)根据勾股定理可知:以3,4,5为三边所构成的三角形为直角三角形,故以3和4为两直角边作直角三角形即可;(2)由正方形的面积为5,可知:正方形的边长为5,12⨯的长方形方格的对角线长是5,从而作出面积为5的正方形;(3)根据22⨯的对角线为22,由此即可作出变长为22,4,22的三角形.【详解】解:(1)如图1;图中直角三角形为所求,两直角边分别为3,4,斜边为5; (2)如图2,作边长为5的正方形;图中正方形面积为5;(3)如图3,图中直角等腰三角形为所求,两直角边分别为22,22,斜边为4.【点睛】本题主要考查了勾股定理在作图中的应用.解决本题的关键是掌握勾股定理,利用网格准确画图.25.(1)9米;(2)365米. 【分析】(1)先由13125AC AD CD ===,,,证明90,ADC ∠=︒ 可得90,ADB ∠=︒ 再由勾股定理可求BD 的长;(2)由,,DE AB AD BC ⊥⊥ 可得,AB DE AD BD =代入数据从而可得答案.【详解】解:(1)13125AC AD CD ===,,,22222212516913,AD CD AC ∴+=+===90ADC ∴∠=︒,90ADB ∴∠=︒,15AB =,9.BD ∴====BD ∴为9米.(2),,DE AB AD BC ⊥⊥11,22ABD S AB DE AD BD ∴== ,AB DE AD BD ∴= 15129DE ∴=⨯, 36.5DE ∴=DE ∴为365米. 【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用等面积法求解直角三角形斜边上的高,掌握以上知识是解题的关键.26.(1)见解析;(2)图见解析,13【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用轴对称求最短路线求法得出P 点位置.【详解】(1)分别找到各点的对称点,顺次连接可得△A ′B ′C ′.(2)连接B 'C ,则B 'C 与l 的交点即是点P 的位置,求出PB +PC 的值即可.【解答】解:(1)如图所示:(2)如图所示:连接B′C,与直线l交于点P,此时PB+PC最短,PB+PC=PB'+PC=B'C221323则这个最短长度的平方值是13.【点睛】本题考查了轴对称作图及最短路线问题,以及勾股定理,解答本题的关键是掌握轴对称的性质,难度一般.。
(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》测试(包含答案解析)(4)
一、选择题1.已知一个直角三角形三边的平方和为800,则这个直角三角形的斜边长为()A.20 B.40 C.80 D.1002.三个正方形的面积如图所示,则S的值为()A.3 B.4 C.9 D.123.如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC各边为斜边分别向外作等腰Rt△ADB、等腰Rt△AFC、等腰Rt△BEC,然后将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC中,其中BH=BA,CI=CA,已知,S四边形GKJE=1,S四边形KHCJ=8,则AC的长为()A.2 B.52C.4 D.64.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点A,B,C均在网格的格点上,则△ABC的三条边中边长是无理数的有()A.0条B.1条C.2条D.3条5.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为()A .210cmB .225cm 2C .2252cm 2D .225cm 6.在下列四组数中,属于勾股数的是( )A .0.3,0.4,0.5B .9,40,41C .2,3,4D .1,2,3 7.如图所示,有一块直角三角形纸片,90C ∠=︒,12AC cm =,9BC cm =,将斜边AB 翻折使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CD 的长为( )A .4cmB .5cmC .17cmD .94cm 8.在Rt ABC 中,90C ∠=︒,且4c =,若3a =,那么b 的值是( )A .1B .5C .7D .59.如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定 10.如图,有一长方体容器,3,2,'4AB BC AA ===,一只蚂蚁沿长方体的表面,从点C 爬到点'A 的最短爬行距离是( )A .29B .41C .7D .5311.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两直角边长分别为3cm 和5cm ,则小正方形的面积为( ).A .21cmB .22cmC .42cmD .23cm 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .84B .64C .48D .46二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.如图所示的长方体的长、宽、高分别为3厘米、2厘米、4厘米.若一只蚂蚁从A 点出发沿着长方体的表面爬行到棱BC 的中点M 处.则蚂蚁需爬行的最短路程是_______________厘米.15.清代数学家梅文鼎在《勾股举隅》一书中,用四个全等的直角三角形拼出正方形ABCD 的方法证明了勾股定理(如图),若Rt ABC △的斜边10AB =,=6BC ,则图中线段CE 的长为______.16.如图,在等腰直角ABC 中,90ACB ∠=︒,AC BC =,D 为BC 的中点,8AB =,点P 为AB 上一动点,则PC PD +的最小值为__________.17.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 距离C 点5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,则蚂蚁爬行的最短距离是______cm .18.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为 .19.我国古代数学善作《九章算术》中有这样一个问题:“分有池方一文,葭生其中央,出水一尺.引葭赴岸,适与岸齐,闻水深、度长各几何.”译文:“有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度和这根芦苇的长分别是多少?”这根芦苇的长度为__________尺.20.如图,一个蚂蚁要在一个长、宽、高分别为2、3、1分米的长方体的表面从A 点爬到B 点,那么最短的路径是_______________分米.(结果保留根号)三、解答题21.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.22.中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A 处先往东走4m ,又往北走1.5m ,遇到障碍后又往西走2m ,再转向北走4.5m 处往东一拐,仅走0.5m 就到达了B .问机器人从点A 到点B 之间的距离是多少?23.如图,是一块四边形绿地的示意图,其中AB 长为24米,BC 长15米,CD 长为20米,DA长7米,∠C=90°,求绿地ABCD的面积.24.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.求AB的长.25.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,AD=16,求AB的长.26.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长.【详解】解:∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,即斜边的平方为,800÷2=400,∴斜边长,故选:A.【点睛】本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.2.C解析:C【分析】由题可知,已知正方形的面积,利用面积公式,即可求解边长;三个正方形的边长恰好构成直角三角形,由勾股定理可求解.【详解】由题可知三个正方形,利用正方形面积公式可得:面积为16的正方形的边长为:4;面积为25的正方形的边长为:5;如图:又三个正方形边长恰好构成直角三角形,∴3=;∴第三个正方形面积为:9;故选C.【点睛】本题主要考查正方形及直角三角形的性质;重点在于面积和边长之间的转换和对图形的分析.3.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB=,AC=,BC=,∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴12(a +c )(c ﹣a )=9, ∴c 2﹣a 2=18,∴b 2=18, ∴b =∴AC==6,故选:D .【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.4.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】解:由勾股定理得:5AC ==,是有理数,不是无理数;BC ==AB ==即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 5.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,=EM ,∴,∴EF=FG=5, ∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.6.B解析:B【分析】根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断.【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .123故选:B .【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.7.A解析:A【分析】根据勾股定理可将斜边AB 的长求出,根据折叠的性质知,AE=AB ,已知AC 的长,可将CE 的长求出,再根据勾股定理列方程求解,即可得到CD 的长.【详解】解:在Rt △ABC 中,12AC cm =,9BC cm =, 22AC BC +,根据折叠的性质可知:AE=AB=15cm ,∵AC=12cm ,∴CE=AE-AC=3cm ,设CD=xcm ,则BD=9-x=DE ,在Rt △CDE 中,根据勾股定理得CD 2+CE 2=DE 2,即x 2+32=(9-x )2,解得x=4,即CD 长为4cm .故选:A .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠前后的对应相等关系.解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.8.C解析:C【分析】根据勾股定理计算,即可得到答案.【详解】在Rt △ABC 中,∠C =90°,由勾股定理得,b =故选:C .【点睛】本题考查的是勾股定理,关键是掌握“如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2”.9.C解析:C【分析】由,AD BC ⊥结合勾股定理可得:2222,AC AB DC BD -=-2222MC MB DC BD -=-,再把已知线段的长度代入计算即可得到答案.【详解】解:,AD BC ⊥222222,,AB AD BD AC AD DC ∴=+=+22222222,AC AB AD DC AD BD DC BD ∴-=+--=-1713AC AB ==,,22221713304120DC BD ∴-=-=⨯=,,AD BC ⊥222222,,MC MD DC BM BD DM ∴=+=+22222222120.MC MB MD DC DM BD DC BD ∴-=+--=-=故选:.C【点睛】本题考查的是勾股定理的应用,掌握利用勾股定理解决问题是解题的关键.10.B解析:B【分析】画出展开图,从点C 爬到点'A 的最短爬行距离为'CA 的长度,根据勾股定理即可求解.【详解】解:如图,当从正面和右侧面爬行时,从点C 爬到点'A 的最短爬行距离为'CA 的长度,,在Rt 'CAA 中,5AC AB BC =+=,'4AA =, ∴22''41CA AC AA =+=;如图,当从上面和右侧面爬行时,从点C 爬到点'A 的最短爬行距离为'CA 的长度,,在Rt ''A BD 中,''''7A B A B BB =+=,''2A D =,∴22''53CA A B BC =+=;如图,当从后面和上面爬行时,从点C 爬到点'A 的最短爬行距离为'CA 的长度,,在Rt ''A B C 中,''''6B C B C CC =+=,''3A B =,∴22''''35CA B C A B =+=∵413553故选:B .【点睛】本题考查勾股定理的应用,画出展开图找到最短路径是解题的关键.11.C解析:C【分析】结合题意,得小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长;结合直角三角形的两直角边长分别为3cm 和5cm ,即可得到小正方形的边长及其面积.【详解】结合题意,可知:小正方形的边长=直角三角形较长的直角边长-直角三角形较短的直角边长∵直角三角形的两直角边长分别为3cm 和5cm∴小正方形的边长=5cm-3cm=2cm∴小正方形的面积=222=4cm ⨯故选:C .【点睛】本题考查了正方形、直角三角形、全等三角形的知识;解题的关键是熟练掌握正方形、全等三角形的性质,从而完成求解.12.B解析:B【分析】根据正方形的面积等于边长的平方和勾股定理求解即可.【详解】解:设中间直角三角形的边长分别为a 、b 、c ,且a 2=225,c 2=289,由勾股定理得b 2=c 2﹣a 2=289﹣225=64,∴字母A 所代表的正方形的面积为b 2=64,故选:B .【点睛】本题考查勾股定理的应用、正方形的面积,熟练掌握勾股定理是解答的关键.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键解析:5【分析】根据勾股定理解答即可;【详解】 由题可知△14102PFG S FG =⨯⨯=, ∴5FG =,作PM FG ⊥,∵PFG △是等腰三角形, ∴52FM GM ==, ∴25891622PF PG ⎛⎫==+= ⎪⎝⎭, 由翻折可知,BF PF PG CG ===, ∴892BF CG ==, ∴589BC BF FG CF =++=+故答案是589【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.【分析】先把长方体展开根据勾股定理求出AM 的长即可【详解】解:长方体部分展开如图所示连接AM 则线段AM 的长就是蚂蚁需爬行的最短路程根据已知数据可得AN=4cmMN=4cmBM=故答案为:【点睛】此题 解析:2【分析】先把长方体展开,根据勾股定理求出AM 的长即可.【详解】解:长方体部分展开如图所示,连接AM ,则线段AM 的长就是蚂蚁需爬行的最短路程, 根据已知数据可得,AN=4cm ,MN=4cm , 22224442AN MN +=+=, 故答案为:2【点睛】此题考查了几何体的展开图的应用,以及线段的性质:两点之间,线段最短,解决立体几何两点间的最短距离时,通常把立体图形展开成平面图形,转化成平面图形两点间的距离问题来求解.15.【分析】根据勾股定理求出AC根据全等三角形的性质得到AF=BC=6EF=AC=8求出FC根据勾股定理计算得到答案【详解】解:在Rt△ABC中AC=∵Rt△ACB≌Rt△EFA∴AF=BC=6EF=A解析:217【分析】根据勾股定理求出AC,根据全等三角形的性质得到AF=BC=6,EF=AC=8,求出FC,根据勾股定理计算,得到答案.【详解】解:在Rt△ABC中,AC=2222-=-=,1068AB BC∵Rt△ACB≌Rt△EFA,∴AF=BC=6,EF=AC=8,∴FC=AC﹣AF=2,∴CE=2222+=+=,EF FC82217故答案为:217.【点睛】本题考查的是勾股定理、全等三角形的性质,掌握勾股定理、全等三角形的对应边相等是解题的关键.16.【分析】根据勾股定理得到BC由中点的定义求出BD作点C关于AB对称点C′则PC′=PC 连接DC′交AB 于P 连接BC′此时DP+CP=DP+PC′=DC′的值最小由对称性可知∠C′BA=∠CBA=45 解析:210 【分析】 根据勾股定理得到BC ,由中点的定义求出BD ,作点C 关于AB 对称点C′,则PC′=PC ,连接DC′,交AB 于P ,连接BC′,此时DP+CP=DP+PC′=DC′的值最小.由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:在等腰直角ABC 中,90ACB ∠=︒,AC BC =, 8AB =,∵AC 2+BC 2=AB 2,∴AC=BC=2422AB =. ∵D 为BC 的中点,∴BD=22.作点C 关于AB 对称点C′,交AB 于点O ,则PC′=PC ,连接DC′,交AB 于P ,连接BC′.此时DP+CP=DP+PC′=DC′的值最小.∵点C 关于AB 对称点C′,∴∠C′B A=∠CBA=45°,'42BC BC ==∴∠'90CBC =,∴()()2222''2242210DC BD BC =+=+=,故答案为:10【点睛】此题考查了轴对称-线路最短的问题,等腰直角三角形的性质,以及勾股定理等知识,确定动点P 何位置时,使PC+PD 的值最小是解题的关键.17.25【分析】要求长方体中两点之间的最短路径最直接的作法就是将长方体侧面展开然后利用两点之间线段最短解答【详解】只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形如图1:∵长方体的宽为1 解析:25【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【详解】只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B 离点C 的距离是5,∴10515BD CD BC =+=+=,20AD =,在直角三角形ABD 中,根据勾股定理得: ∴2222152025AB BD AD ;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B 离点C 的距离是5,∴20525BD CD BC =+=+=,10AD =, 在直角三角形ABD 中,根据勾股定理得:∴22221025529AB BD AD =+=+=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B 离点C 的距离是5.∴201030AC CD AD =+=+=,在直角三角形ABC 中,根据勾股定理得:∴2222305537AB AC BC +=+=∵25529537<∴蚂蚁爬行的最短距离是25.故答案为:25.【点睛】本题主要考查两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.18.7【解析】∵在△ABC中∠B=90°AB=3AC=5∴BC=∵△ADE是△CDE翻折而成∴AE=CE∴AE+BE=BC=4∴△ABE的周长=AB+BC=3+4=7故答案是:7解析:7【解析】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=2222-=-=.AC AB534∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.19.13【分析】可以将其转化为数学几何图形如图所示根据题意可知EB的长为10尺则BC=5尺设出芦苇长度AB=AB=x尺表示出水深AC根据勾股定理建立方程即可【详解】依题意画出图形设芦苇长AB=AB′=x解析:13【分析】可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为10尺,则B'C=5尺,设出芦苇长度AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程即可.【详解】依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为B'E=10尺,所以B'C=5尺,在Rt△AB'C中,∵CB′2+AC2=AB′2,∴52+(x﹣1)2=x2,解得:x=13,故答案为:13.【点睛】此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.20.【分析】有三种展开方式一种是正面和右侧面展开如图(1)一种是正面和上面展开如图(2)另外一种是底面和右侧面展开如图(3)分别根据勾股定理求AB 的长度即可判断【详解】正面和右侧面展开如图(1)根据勾股 解析:32 【分析】 有三种展开方式,一种是正面和右侧面展开如图(1),一种是正面和上面展开如图(2),另外一种是底面和右侧面展开如图(3),分别根据勾股定理求AB 的长度即可判断.【详解】 正面和右侧面展开如图(1)根据勾股定理()2223126AB =++=;正面和上面展开如图(2)根据勾股定理()2213225AB =++=;底面和右侧面展开如图(3)根据勾股定理()2212332AB =++= ∵322526<<∴最短的路径是32故答案为32. 【点睛】 本题考察了几何图形的展开图形,勾股定理的实际应用,容易漏掉正面和上面的展开图是本题的易错点,在做题的过程中要注意考虑全面.三、解答题21.224cm . 【分析】连接AC ,勾股定理计算AC=222234AD CD +=+,应用勾股定理的逆定理判定三角形ABC 是直角三角形,计算两个直角三角形的面积差即可.【详解】解:连接AC∵AD DC ⊥∴∠ADC=90°,在Rt △ADC 中,根据勾股定理,得AC=222234AD CD +=+ =5,在△ABC 中,∴22222251213AC BC AB +=+==,△ABC 是直角三角形,∴=-ABC ACD ABCD S SS 四边形 =51234-22⨯⨯ =242m ().【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.22.132【解析】试题分析:过点B 作BC ⊥AD 于C ,可以计算出AC 、BC 的长度,在直角△ABC 中根据勾股定理即可计算AB .试题过点B 作BC ⊥AD 于C ,所以AC=4﹣2+0.5=2.5m ,BC=4.5+1.5=6m ,在直角△ABC 中,AB 为斜边,则22225136()22AB BC AC =+=+=m, 答:机器人从点A 到点B 之间的距离是132m . 考点:勾股定理.23.绿地ABCD 的面积为234平方米.【分析】连接BD ,先根据勾股定理求出BD 的长,再由勾股定理的逆定理判定△ABD 为直角三角形,则四边形ABCD 的面积=直角△BCD 的面积+直角△ABD 的面积.【详解】连接BD .如图所示:∵∠C=90°,BC=15米,CD=20米,∴22BC CD +221520+(米);在△ABD 中,∵BD=25米,AB=24米,DA=7米,242+72=252,即AB 2+BD 2=AD 2,∴△ABD 是直角三角形.∴S 四边形ABCD =S △ABD +S △BCD=12AB•AD+12BC•CD =12×24×7+12×15×20 =84+150=234(平方米);即绿地ABCD的面积为234平方米.24.【分析】由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长,再利用勾股定理求出AD的长,进而求出AB的长.【详解】∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.25.25【分析】在直角△ACD中利用勾股定理得出CD的长,再利用在直角△BCD中利用勾股定理求得BD,再根据线段的和差关系求得AB的长.【详解】解:(1)∵CD⊥AB于D,∴∠ADC=∠BDC=90°.∵在直角△ACD中,AC=20,AD=16,∴=12;∵在直角△BCD中,BC=15,CD=12,∴,∴AB=AD+BD=25.【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.正确求出CD的长是解题的关键.26.最短路程是150cm.【分析】展开后得到下图的直角ACB△,根据题意求出AC、BC,根据勾股定理求出AB即可.【详解】展开后由题意得:∠C=90°,AC=3×25+3×15=120,BC=90,由勾股定理得:AB150cm,答:最短路程是150cm.【点睛】本题考查了平面展开-最短路径问题,解决这类问题的基本思路是化曲面问题为平面问题,再用所学的知识解决.。
(常考题)北师大版初中数学八年级数学上册第一单元《勾股定理》检测(含答案解析)(4)
一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,大正方形面积为S1,小正方形面积为S2,则(a+b)2可以表示为()A.S1﹣S2B.S1+S2C.2S1﹣S2D.S1+2S2BC=,点P移2.如图,动点P从点A出发,沿着圆柱的侧面移动到BC的中点S,若8动的最短距离为5,则圆柱的底面周长为()A.6 B.4πC.8 D.103.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=()A.2.1 B.1.4 C.3.2 D.2.44.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为()A .210cmB .225cm 2C .2252cm 2D .225cm 5.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c ===6.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 7.如图,圆柱的底面周长是24,高是5,一只在A 点的蚂蚁想吃到B 点的食物,沿着侧面需要爬行的最短路径是( )A .9B .13C .14D .258.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB =1;再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,那么点P 表示的数是( )A .2.2B 5C .1+2D 69.下列几组数中,是勾股数的是( )A .123B .0.3,0.4,0.5C .15,8,17D .35,45,1 10.在平面直角坐标系中,点P(1-,3)到原点的距离是( )A 10B .4C .22D .211.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .612.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b 的值为( )A .25B .19C .13D .169二、填空题13.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是_____寸.14.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.15.已知一个直角三角形的两边长为3和5,则第三边长为______.16.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 距离C 点5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,则蚂蚁爬行的最短距离是______cm .17.如图,两个正方形的面积分别是118S =,212S =,则第三个正方形的面积3S =_________.18.如图所示,△ABC 的顶点A 、B 、C 在边长均为1的正方形网络的格点上,BD ⊥AC 于D ,则BD 的长=_____.19.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.20.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________.三、解答题21.如图,△ABC 和△DCE 都是等腰直角三角形,CA =CB ,CD =CE , △DCE 的顶点D 在△ABC 的斜边AB 上(1)连结AE ,求证:△ACE ≌△BCD .(2)若BD =1,CD =3,求AD 的长.22.中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问机器人从点A到点B之间的距离是多少?23.已知ABC的三个顶点的坐标分别为A(3,2)、B(﹣4,0)、C(0,2)(1)在下面的平面直角坐标系中分别描出A,B,C三点,并画出ABC;(2)求线段BC的长;(3)求ABC的面积.24.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,AD=16,求AB的长.25.勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图1所示摆放,其中b a >,点E 在线段AC 上,点B 、D 在边AC 两侧,试证明:222+=a b c .证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△,∴ABC DAE ∠=∠.∵ABC 是直角三角形,90ACB ∠=︒, ∴90ABC BAC ∠+∠=︒,∴DAB ∠=______+______=_______.∵ADB DCB ADCB S S S =+=△△四边形_________.∴222+=a b c .26.如图,Rt △ABC 中,∠ACB=90°,BC =AC=3,点D 是CB 延长线上的一个动点,线段AD 绕点A 逆时针旋转90°,得到线段AE ,连结BE ,与AC 的延长线交于点M .(1)若BD =1,△ADC 中AD 边上的高为h ,求h 的值;(2)求证:M 为BE 的中点;(3)当D 点在CB 延长线上运动时,探索CM BD的值是否变化?若不变,请求其值;若变化,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.A解析:A【分析】根据圆柱的侧面展开图,利用勾股定理求出AB即可求解.【详解】解:圆柱的侧面展开图如图,点P移动的最短距离为AS=5,根据题意,BS=12BC=4,∠ABS=90°,∴AB=22AS BS-=2254-=3,∴圆柱的底面周长为2AB=6,故选:A.【点睛】本题考查圆柱的侧面展开图、最短路径问题、勾股定理,熟练掌握圆柱的侧面展开图,得出点P移动的最短距离是AS是解答的关键.3.B解析:B【分析】设CD=x,在Rt△ACD和Rt△ABC中,利用勾股定理列式表示出AC2,然后解方程即可.【详解】解:设CD=x,则BC=5+x,在Rt△ACD中,AC2=AD2-CD2=25-x2,在Rt△ABC中,AC2=AB2-BC2=64-(5+x)2,所以,25-x2=64-(5+x)2,解得x=1.4,即CD=1.4.故答案为:B .【点睛】本题考查了勾股定理,熟记定理并在两个三角形列出等式表示出AC 2,然后列出方程是解题的关键.4.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,CD=BD=102=EM ,∴EG=GM=52,∴EF=FG=5,∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.5.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键6.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =,22BC CE BE +=2, 2236(8)CE CE ∴+=-, 74CE ∴=, 725844AE ∴=-=, 22154DE AE AD ∴=-=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.7.B解析:B【分析】画出该圆柱的侧面展开图,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB ,然后根据勾股定理求出AB 即可求出结论.【详解】解:该圆柱的侧面展开图,如下图所示,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为ABAB 恰为一个矩形的对角线,该矩形的长为圆柱的底面周长的一半,即长为24÷2=12 宽为5∴=13即沿着侧面需要爬行的最短路径长为13.故选:B .【点睛】此题考查的是勾股定理与最短路径问题,掌握勾股定理和两点之间线段最短是解题关键. 8.B解析:B【分析】根据题意可知AOB 为直角三角形,再利用勾股定理即可求出OB 的长度,从而得出OP 长度,即可选择.【详解】∵AB OA ⊥∴AOB 为直角三角形.∴在Rt AOB 中,OB根据题意可知2=1OA AB =,, ∴OB又∵OB OP =,∴P故选:B .【点睛】本题考查数轴和勾股定理,利用勾股定理求出OB 的长是解答本题的关键.9.C解析:C【分析】根据勾股数的定义,逐一判断选项,即可.【详解】A. 1中不全是正整数,不是勾股数,不符合题意,B. 0.3,0.4,0.5中都不是正整数,不是勾股数,不符合题意,C. 152+82=172,且15,8,17都是正整数,是勾股数,符合题意,D.35,45,1中不全是正整数,不是勾股数,不符合题意, 故选C .【点睛】 本题主要考查勾股数的定义,熟练掌握“满足222+=a b c ,且a ,b ,c 是正整数,则a ,b ,c 叫做勾股数”是解题的关键.10.A解析:A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .【点睛】本题主要考查平面直角坐标系中,两点间的距离公式,掌握“若A(x 1,y 1),B(x 2,y 2),则AB=221212()()x x y y -+-”,是解题的关键.11.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.12.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】解:由条件可得:2213 113124a baba b⎧+=⎪-⎪=⎨⎪>>⎪⎩,解之得:32ab=⎧⎨=⎩.所以2()25a b+=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.二、填空题13.101【分析】取AB的中点O过D作DE⊥AB于E根据勾股定理解答即可得到结论【详解】解:取AB的中点O过D作DE⊥AB于E如图2所示:由题意得:OA=OB=AD=BC设OA=OB=AD=BC=r寸则解析:101【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=12CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.14.11cm12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大当筷子与杯底及杯高构成直角三角形时h最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h最大h最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内的长度=13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12cm.故答案为:11cm;12cm.【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键.15.4或【分析】分5是斜边和5是直角边两种情况再分别利用勾股定理即可得【详解】由题意分以下两种情况:(1)当5是斜边时则第三边长为;(2)当5是直角边时则第三边长为;综上第三边长为4或故答案为:4或【点解析:4【分析】分5是斜边和5是直角边两种情况,再分别利用勾股定理即可得.【详解】由题意,分以下两种情况:(1)当5是斜边时,=;4(2)当5是直角边时,=综上,第三边长为4故答案为:4【点睛】本题考查了勾股定理,依据题意,正确分两种情况讨论是解题关键.16.25【分析】要求长方体中两点之间的最短路径最直接的作法就是将长方体侧面展开然后利用两点之间线段最短解答【详解】只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形如图1:∵长方体的宽为1解析:25【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【详解】只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B 离点C 的距离是5,∴10515BD CD BC =+=+=,20AD =,在直角三角形ABD 中,根据勾股定理得: ∴2222152025AB BD AD ;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B 离点C 的距离是5,∴20525BD CD BC =+=+=,10AD =, 在直角三角形ABD 中,根据勾股定理得:∴22221025529AB BD AD =+=+=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B 离点C 的距离是5.∴201030AC CD AD =+=+=,在直角三角形ABC 中,根据勾股定理得:∴2222305537AB AC BC +=+=∵25529537<∴蚂蚁爬行的最短距离是25.故答案为:25.【点睛】本题主要考查两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.17.6【分析】根据题意和图形可以得到AB2和AC2再根据△ABC 是直角三角形和勾股定理可以得到BC2【详解】解:∵两个正方形的面积分别是S1=18S2=12∴AB2=18AC2=12∵△ABC 是直角三角解析:6【分析】根据题意和图形,可以得到AB 2和AC 2,再根据△ABC 是直角三角形和勾股定理,可以得到BC 2.【详解】解:∵两个正方形的面积分别是S 1=18,S 2=12,∴AB 2=18,AC 2=12,∵△ABC 是直角三角形,∴BC 2=AB 2-AC 2=18-12=6,故答案为:6.【点睛】本题考查了正方形的性质,解题的关键是明确题意,利用数形结合的思想解答. 18.【分析】先根据勾股定理求出AC 的长再利用网格的特点和三角形的面积解答即可【详解】解:如图△ABC 的面积=×BC×AE =2由勾股定理得AC ==则××BD =2解得BD =故答案为:【点睛】本题主要考查了勾【分析】先根据勾股定理求出AC 的长,再利用网格的特点和三角形的面积解答即可.【详解】解:如图,△ABC 的面积=12×BC ×AE =2,由勾股定理得,AC则12BD =2,解得BD【点睛】本题主要考查了勾股定理和利用三角形的面积求高,属于常考题型,熟练掌握勾股定理、明确求解的方法是关键.19.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.20.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直 解析:13【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴224+6=213 故答案为:13【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1)见解析;(2)17AD =【分析】 (1)根据△ABC 和△DCE 都是等腰直角三角形可得DC CE =,BC CA =,再根据两个角的和可得BCD ACE ∠=∠,从而判断两个三角形全等;(2)根据△ACE ≌△BCD ,以及角的和可得DAE △为直角三角形,根据DCE 为等腰直角三角形,可求出DE 的长度,再根据勾股定理求出AD 的长度即可.【详解】(1)△ABC 和△DCE 都是等腰直角三角形∴90BCA DCE ∠=∠=,DC CE =,BC CA =∴BCD DCA DCA ACE ∠+∠=∠+∠∴BCD ACE ∠=∠,∴△ACE ≌△BCD (SAS );(2)△ACE ≌△BCD∴CBD CAE ∠=∠∴90CBD BAC CAE BAC ∠+∠=∠+∠=∴DAE △为直角三角形DCE 为等腰直角三角形∴22223332DE DC CE =+=+=△ACE ≌△BCD∴BD=AE=1∴2218117AD DE AE =-=-=【点睛】本题主要考查了三角形全等的性质、判定定理以及勾股定理得运用,熟练掌握全等三角形的性质和判定定理,熟练运用角和角之间的关系是解题的关键.22.132试题分析:过点B 作BC ⊥AD 于C ,可以计算出AC 、BC 的长度,在直角△ABC 中根据勾股定理即可计算AB .试题过点B 作BC ⊥AD 于C ,所以AC=4﹣2+0.5=2.5m ,BC=4.5+1.5=6m ,在直角△ABC 中,AB 为斜边,则22225136()22AB BC AC =+=+=m, 答:机器人从点A 到点B 之间的距离是132m . 考点:勾股定理.23.(1)见解析;(2)25;(3)3【分析】(1)在平面直角坐标系中,描出A ,B ,C 三点,然后顺次连接,即可画出△ABC ; (2)由勾股定理来求线段BC 的长度;(3)△ABC 的底是BC 的长度,高是点C 的纵坐标,由三角形的面积公式进行解答.【详解】解:(1)如图所示;(2)在直角△BOC 中,由勾股定理得到:BC =22OB OC +=2242+=25,即线段BC 的长是25;(3)S △ABC =12AC×OC =12×3×2=3,即△ABC 的面积是3.【点睛】本题考查了勾股定理,坐标与图形性质.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.【分析】在直角△ACD 中利用勾股定理得出CD 的长,再利用在直角△BCD 中利用勾股定理求得BD ,再根据线段的和差关系求得AB 的长.【详解】解:(1)∵CD ⊥AB 于D ,∴∠ADC=∠BDC=90°.∵在直角△ACD 中,AC=20,AD=16,∴=12;∵在直角△BCD 中,BC=15,CD=12,∴,∴AB=AD+BD=25.【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.正确求出CD 的长是解题的关键.25.见详解【分析】先推出DAB ∠=90°,再根据ADB DCB ADCB S S S =+=△△四边形ADC ACB S S +△△,即可得到结论.【详解】证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△,∴ABC DAE ∠=∠.∵ABC 是直角三角形,90ACB ∠=︒, ∴90ABC BAC ∠+∠=︒,∴DAB ∠=∠DAE+∠BAC=90°. ∵ADB DCB ADCB S S S =+=△△四边形212c +1()2a b a -. 又∵21122ADC ACB ADCB S S S b ab =+=+△△四边形, ∴212c +1()2a b a -=21122b ab +, ∴222+=a bc .【点睛】本题主要考查勾股定理的证明,添加辅助线,利用割补法表示图形的面积,是解题的关键.26.(1)125;(2)见解析;(3)不变,12(1)根据勾股定理求出AD=5,再根据等积法可求出h的值;(2)过E点作EF⊥AC于F,证明△ACD≌△EFA,可得CB=EF,再证明△BCM≌△EFM即可得到结论;(3)由△BCM≌△EFM,得CM=FM,即CM=12CF,再证明CF=BD,即可得出结论.【详解】解:(1)∵AC=BC=3,BD=1∴CD=3+1=4,在Rt△ACD中,2222345AD AC CD=+=+=∵1122⋅=⋅AD h AC CD,∴341255⋅⨯===AC CDhAD(2)过E点作EF⊥AC于F,∵AD⊥AE,EF⊥AF,∴∠DAE=∠AFE=90°,∵∠DAC+∠EAF=90°,∠EAF+∠AEF=90°,∴∠DAC=∠AEF,在△ACD和△EFA中,DAC AEFACD AFEAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△EFA(AAS)∴EF=AC=3 ,AF=CD,∵AC=CB,∴CB=EF,在△BCM和△EFM中,90 BCM EFM BMC EMFCB EF∠=∠=︒⎧⎪∠=∠⎨⎪=⎩ ∴△BCM ≌△EFM (AAS ) ,∴BM =EM ,∴M 为BE 的中点(3) 由(2)知△BCM ≌△EFM ,∴CM =FM ,∴CM =12CF , 由(2)知△ACD ≌△EFA ,∴AF =CD ,∵AC =CB ,又∵CF =AF -AC ,∴CF =CD -CB=BD ,∵CM =12CF =12BD , ∴CM BD =12. 【点睛】本题考查几何变换综合题、全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用等积关系解决线长度问题.。
八年级数学上册第一章勾股定理检测题新版北师大版
第一章勾股定理一、选择题(每小题3分,共30分)1.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是( D) A.100 B.28 C.14 D.28或100 2.若线段a,b,c组成直角三角形,则它们的比为( D)A.2∶3∶4 B.3∶4∶6 C.4∶6∶7 D.7∶24∶253.下列几组数中,为勾股数的是( C),14,15B.3,4,6 C.5,12,13 D.,,4.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( C)A.6秒 B.5秒 C.4秒 D.3秒5.如果直角三角形的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是( D) A.2n B.n+1 C.n2-1 D.n2+16.已知Rt△ABC中,∠C=90°,若a+b=14 cm,c=10 cm,则Rt△ABC的面积是( A) A.24 cm2 B.36 cm2 C.48 cm2 D.60 cm27.等腰三角形底边上的高为8,周长为32,则三角形的面积为( B)A.56 B.48 C.40 D.328.若一个三角形的三边a,b,c满足a2+b2+c2=10a+24b+26c-338,则这个三角形是( B)A.锐角三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形9.如图,在长方形ABCD中,AB=3 cm,AD=9 cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为( A)A.6 cm2 B.8 cm2 C.10 cm2 D.12 cm2第9题图第10题图10.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距( C) A.25海里 B.30海里 C.40海里 D.50海里二、填空题(每小题3分,共24分)11.如图①、②中,(1)正方形A的面积为__36__;(2)斜边x=__13__.第11题图第12题图12.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于__2π__.13.四根小木棒的长分别为 5 cm,8 cm,12 cm,13 cm,任选三根组成三角形,其中有__1__个直角三角形.14.如图,将一根长为22 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的长至少是__9_cm__.错误!,第15题图) ,第16题图) 15.有一块直角三角形纸片,两直角边AC=12 cm,BC=5 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为.16.如图,在△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE ⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8 cm,CA=6 cm,则点O到三边AB,AC和BC的距离分别等于__2,2,2__cm.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则正方形A,B,C,D的面积之和为__49__cm2.第17题图第18题图18.如图,在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高__15__米.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.求:(1)△ABC的周长;(2)判断△ABC是否是直角三角形?为什么?解:(1)△ABC的周长=AB+AC+BC=20+13+21=54(2)∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形20.(8分)如图,在四边形ABCD中,AC⊥DC,△ADC的面积为30 cm2,DC=12 cm,AB =3 cm,BC=4 cm求△ABC的面积.解:6 cm221.(8分)如图,是用硬纸板做成的两个小直角三角形和一个大直角三角形,两个小直角三角形直角边长分别为a和b,斜边为c,大直角三角形直角边都为c,请你动动脑筋,将它们拼成一个能证明勾股定理的图形,并用这个图形证明勾股定理.解:如图所示,这是一个梯形.证明:∵S 梯形ABCD =S △ABE +S △AED +S △ECD ,∴12 (a +b )·(a +b )= 12ab +12c 2+ 12ab ,∴(a +b )2=ab +c 2+ab ,a 2+2ab +b 2=2ab +c 2,∴a 2+b 2=c 222.(8分)有一只蚂蚁要从一个圆柱形玻璃杯的点A 爬到与A 相对的点B 处,如图,已知杯子高8 cm ,点B 距杯口3 cm ,杯子底面半径为4 cm.蚂蚁从A 点爬到B 点的最短距离为多少?(π取3)解:从点A 处竖直向上剪开,此圆柱体的侧面展开图如图,其中AC 为圆柱体的底面周长,则AC =2πr ≈2×3×4=24(cm ),则E′B =12E′D′=12AC =12×24=12(cm ).又因为EA=8 cm ,EE ′=3 cm ,所以AE′=EA -EE′=8-3=5(cm ).在Rt △ABE ′中,AB 2=AE′2+E′B 2=52+122=132,所以AB =13(cm ),因为两点之间,线段最短,所以蚂蚁从A 点爬到B 点的最短距离为13 cm23.(10分)如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?解:(1)7米 (2)不是,梯子向后滑动了8米24.(12分)如图,正方形ABCD 中,E 是AD 的中点,点F 在DC 上,且DF =14DC .试判断BE 与EF 的位置关系,并说明理由.解:BE⊥EF ,理由:∵AE =DE =12AD ,DF =14DC ,AB =AD =CD =BC ,∴BE 2=AB 2+AE 2=54AB2,EF 2=DE 2+DF 2=516AB 2,BF 2=BC 2+CF 2=2516AB 2,∴BE 2+EF 2=BF 2,∴BE ⊥EF25.(12分)由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A 城气象局测得沙尘暴中心在A 城的正西方向240 km 的B 处,以每时12 km 的速度向北偏东60°方向移动,距沙尘暴中心150 km 的范围为受影响区域.(在直角三角形中,30°的角所对的直角边是斜边的一半)(1)A 城是否受到这次沙尘暴的影响?为什么?(2)若A 城受这次沙尘暴影响,那么遭受影响的时间有多长?解:(1)过点A 作AC⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响;(2)如图,设点E ,F 是以A 为圆心,150 km 为半径的圆与MB 的交点,连接AE ,AF ,由题意得CE =90,∴EF =2CE =2×90=180,∴A 城受沙尘暴影响的时间为15(时),答:A 城将受到这次沙尘暴的影响,影响的时间为15时.。
北师大版八年级数学上册第一章勾股定理测试题含答案
八年级上北师大版第一章勾股定理测试题一、选择题(每小题3分,共30分)1. 下列各组中,不能构成直角三角形的是 ( ).(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,412. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )123. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).(A )9 (B )3 (C )49 (D )29 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).(A )11 (B )10 (C )9 (D )8 5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( ). (A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B )8.5 (C )1320 (D )1360 7. 高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )68. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2)(b a + 的值为 ( ).(A )49 (B )25 (C )13 (D )110. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到F 的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二、填空题(每小题3分,共30分)11. 写出两组直角三角形的三边长 .(要求都是勾股数)(2)斜边x= .13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有 个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 .16.如图,直角三角形中未知边的长度x = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理周周测4
一、选择题:
1、以下面每组中的三条线段为边的三角形中,是直角三角形的是( ) A 5cm ,12cm ,13cm B 5cm ,8cm ,11cm C 5cm ,13cm ,11cm D 8cm ,13cm ,11cm
2、由下列线段组成的三角形中,不是直角三角形的是( ) A a=7,b=25,c=24 B a=2.5,b=2,c=1.5 C a=
45,b=1,c= 3
2 D a=15,b=20,c=25
3、三角形的三边长a 、b 、c 满足ab c b a 2)(22=-+,则此三角形是( ) A 直角三角形 B 锐角三角形 C 钝角三角形 D 等腰三角形
4、小红要求△ABC 最长边上的高,测得AB =8 cm ,AC =6 cm ,BC =10 cm ,则可知最长边上的高是
A.48 cm
B.4.8 cm
C.0.48 cm
D.5 cm
5.满足下列条件的△ABC ,不是直角三角形的是
A.b 2=c 2-a 2
B.a ∶b ∶c =3∶4∶5
C.∠C =∠A -∠B
D.∠A ∶∠B ∶∠C =12∶13∶15
6.在下列长度的各组线段中,能组成直角三角形的是
A.5,6,7
B.1,4,9
C.5,12,13
D.5,11,12
7.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是
A.42
B.52
C.7
D.52或7
8.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么
A.△ABC是直角三角形,且斜边长为m2+1
B.△ABC是直角三角形,且斜边长2 为m
C.△ABC是直角三角形,但斜边长需由m的大小确定
D.△ABC不是直角三角形
9.将直角三角形的三条边长同时扩大同一倍
数,得到的三角形是( ).
A.钝角三角形
B.锐角三角形
C.直角三角形
D.等腰三角形
10.一部电视机屏幕的长为58厘米,宽为46厘
米,则这部电视机大小规格(实际测量误差
忽略不计)().
A.34英寸(87厘米)
B.29英寸(74厘米)
C.25英寸(64厘米)
D.21英寸(54厘米)
11.一块木板如图所示,已知AB =4,BC =3, DC =12,AD =13,∠B =90°,木板的面积 为( ).
A.60
B.30
C.24
D.12
二、填空题:
12、若一个三角形的三边长分别是m+1,m+2,m+3,则当m= ,它是直角三角形。
13、在⊿ABC 中,若5,7,252222==-=+c b a b a ,则最大边上的高为 。
14、一个三角形的三边之比为13:12:5,且周长为60cm ,则它的面积是
2cm 。
15、三角形的两边长为5和4,要使它成为直角三角形,则第三边的平方为 。
16、小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是 。
三、解答题:
16、小明画了一个如图所示的四边形,其中AB=4,BC=12,CD=13,DA=3,∠A= 90,你能求出四边形ABCD 的面积吗?
C
B
A
A D
B
C
17、已知在⊿ABC中,AB=AC=5,BC=6,求⊿ABC的面积。
18、在⊿ABC中,AB=17cm,BC=16cm,,BC边上的中线AD=15cm,问⊿ABC 是什么形状的三角形?并说明你的理由。
19、已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.
20.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.
21.如图,已知直角△ABC 的两直角边分别为 6,8,分别以其三边为直径作半圆,求图 中阴影部分的面积.
22.新中源陶瓷厂某车间的人字形屋架为等腰 ABC ,AC =BC =13米,AB =24米. 求AB 边上的高CD 的长度?
8
6C。