(浙江专版)2018年高考数学母题题源系列专题12解三角形
2018浙江数学高考试题(附含答案解析)
2018浙江数学高考试题(附含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018浙江数学高考试题(附含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018浙江数学高考试题(附含答案解析)(word版可编辑修改)的全部内容。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟.考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则()()()P A B P A P B +=+ 若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-=台体的体积公式121()3V S S h =++其中12,S S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式V Sh=其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh=其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R =π球的体积公式343V R =π其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
2018年高考浙江卷数学试题解析(精编版)(解析版)
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
解三角形问题-2018年高考数学(文)母题题源系列(全国1专版)--精校解析Word版
【母题原题1】【2018新课标1,文16】△的内角的对边分别为,已知,,则△的面积为________.【答案】.【解析】【分析】首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定A为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.【详解】【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.【母题原题2】【2017新课标1,文11】△ABC的内角A、B、C的对边分别为a、b、c.已知,a=2,c=,则C=A.B.C.D.【答案】B【解析】∵a>c,∴C=,故选:B.点睛:本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.【母题原题3】【2016新课标1,文4】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =, 2cos 3A =,则b=(A B C )2 (D )3 【答案】D【解析】试题分析:由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!【命题意图】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.会利用三角形的面积公式解决几何计算问题C ab S sin 21=. 【命题规律】 1.a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1) a ∶b ∶c =sin A ∶sin B ∶sin C ;(2) a =2Rsi n A ,b =2Rsin B ,c =2Rsin C .2.余弦定理:a 2=b 2+c 2-2bccos A ,b 2=a 2+c 2-2accos B ,c 2=a 2+b 2-2abcos C .变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,已知a ,b 和A 解三角形时,解的情况bsinA <a <解的 4.三角形常用的面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12absinC =12acsinB =12bcsinA =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).【方法总结】1.三角形中常见的结论(1)A +B +C =π. (2)在△ABC 中,A >B ⇔a >b ⇔sinA >sinB ⇔cosA <c osB . (3)任意两边之和大于第三边,任意两边之差小于第三边.(4)三角形内的诱导公式:sin (A +B )=sin C ;cos (A +B )=-cos C ;tan (A +B )=-tan C ;sin A +B 2=cos C 2;cos A +B 2=sin C2.(6)在△ABC 中,A ,B ,C 成等差数列的充要条件是B =60° .(7)△ABC 为正三角形的充要条件是A ,B ,C 成等差数列且a ,b ,c 成等比数列. 2.判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断. (2)利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断.1.【辽宁省葫芦岛市2018年普通高中高三第二次模拟考试】在中,内角的对边分别为.若,且,则( )A .B .C .D .【答案】A 【解析】∵∴根据正弦定理可得,即∵∴,即∵∴,即为锐角 ∴ 故选A2.【广西钦州市2018届高三第三次质量检测】在中,,,,则的值为( )A .B .C . 或D . 或【答案】D点睛:本题主要考查了正弦定理解三角形,着重考查了推理与运算能力,试题比较基础,属于基础题.3.【长春市普通高中2018-2019届高三质量监测(一)】在中,内角、、的对边分别为、、,若,则角为A .B .C .D .【答案】A 【解析】 【分析】由利用正弦定理、结合诱导公式可得,从而可得.【详解】【点睛】题主要考查正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径4.【山东、湖北部分重点中学2018年高考冲刺模拟试卷(五)】在中,,若,则A.B.C.D.【答案】D【解析】【分析】根据题意,由向量线性运算法则可得=,即可得P为△ABC的重心,则有++=,由正弦定理分析sinB•+2sinA•+3sinC•=可得b•+2a•+3c•=,由向量减法法则可得b(﹣)+2a•+3c•=,即b•+(2a﹣b)+3c•=,由平面向量基本定理可得,解可得a=b=3c,由余弦定理计算可得答案.:根据题意,如图,在△ABC中,设D为BC的中点,有+=2,【考点】向量、三角形重心性质、余弦定理.【点睛】本题考查余弦定理和正弦定理的应用,涉及平面向量基本定理,关键是明确a、b、c的具体关系.5.【辽宁省沈阳市东北育才学校2018届高三第八次模拟考试】设的三个内角所对的边分别为,如果,且,那么外接圆的半径为A.1 B.C.2 D.4【答案】A【分析】首先根据题中所给的三角形的边所满足的条件,结合余弦定理,求得,结合三角形内角的取值范围,求得,再结合正弦定理,从而求得结果.【详解】因为,所以,化为,所以,又因为,所以,由正弦定理可得,所以,故选A.【点睛】该题考查的是有关解三角形问题,涉及到的知识点有余弦定理,正弦定理,在解题的过程中,需要对题的条件进行认真分析,求得结果.6.【福建省莆田第九中学2018届高三高考模拟】在中,角的对边分别为,若,,则()A.B.C.D.1【答案】B【解析】【点睛】本题主要考查正弦定理和余弦定理,意在考查学生对这些知识的掌握水平和基本的计算能力. 7.【东北师范大学附属中学2018届高三第五次模拟考试】在中,则A.B.C.D.【答案】A【解析】【分析】由题意结合正弦定理首先求得b的值,然后利用余弦定理求解c的值即可.【详解】由正弦定理可得,且,由余弦定理可得:.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.8.【河南省巩义市市直高中2018届高三下学期模拟考试】已知,是双曲线的左、右焦点,过的直线与双曲线的左支交于点,与右支交于点,若,,则()A.B.C.D.【答案】C【解析】分析:先利用双曲线的定义求出,再利用余弦定理求出,再利用双曲线的定义判.点睛:处理椭圆或双曲线上的点到焦点的距离时,往往利用椭圆或双曲线的定义合理转化,如本题中两次利用双曲线的定义,第一次是求得,第二次是结合、判定三角形的形状.9.【安徽省安庆市第一中学2018届高三热身考试】已知锐角的三个内角的对边分别为,若,则的值范围是( )A.B.C.D.【答案】D∴,解得,∴,∴.即的值范围是.点睛:三角形中的最值问题,一般利用正、余弦定理将变化为角,转化为三角函数的最值问题求解,解题过程中要注意角的取值范围,如在本题中要通过“锐角三角形”这一条件得到角A的取值范围.10.【山东省烟台市2018届高三高考适应性练习(二)】在中,内角所对的边分别为,若,,则的值为()A.1 B.C.D.【答案】D点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.11.【山东省潍坊市2017-2018学年高二5月份统一检测】的内角,,的对边分别为,,,且,则为()A.B.C.D.【答案】B【解析】点睛:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属基础题.12.【安徽省皖中名校联盟2019届高三10月联考】在中,内角的对边分别为,,,,则()A.B.C.4 D.【答案】B【解析】【分析】首先求得外接圆半径,然后结合合分比的性质求解的值即可.【详解】由三角形面积公式可得:,即,解得:,结合余弦定理可得:,则由正弦定理有:,结合合分比定理可得:.本题选择B选项.【点睛】本题主要考查正弦定理、余弦定理及其应用等知识,意在考查学生的转化能力和计算求解能力.13.【甘肃省师大附中2018-2019学年上学期高三期中模拟】在锐角中,,则的取值范围是()A.B.C.D.【答案】B【解析】【分析】结合余弦函数的图像与性质可得。
专题12解三角形-2018年高考数学母题题源系列
于是 sinB sin A B ,
又 A, B 0, π,故 0 A B π,所以 B π A B 或 B A B , 因此 A π(舍去)或 A 2B , 所以, A 2B .
【思路点睛】 (Ⅰ)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有
, 的式子,根据角的
范围可证 A 2 B ;(Ⅱ)先用同角三角函数的基本关系及二倍角公式可得
或两个以上三角形, 这时需作出这些三角形, 先解够条件的三角形, 再逐步解其他三角形, 有时需要设出未知量,
从几个三角形中列出方程(组) ,解方程(组)得出所要的解.
【母题原题 3】【 2016 浙江,理 16】 在 ABC 中,内角 A, B , C 所对的边分别为 a,b, c ,已知 b c 2acosB .
a2 1 得 absinC
42
a2
,再根据正弦定理得及正弦的二倍角公式得
4
进而得讨论得结果 .
sinC cosB ,
( 2)由 S
a2 1 得 absin C
a2 ,故有 sinBsinC
1 sin2 B
sinBcosB ,因 sinB 0 ,得 sinC
cosB .又
42
4
2
B, C 0, ,所以 C
1
1
,
4
解得 cos BDC
10 或 cos BDC
4
10
(舍去).
4
综上可得,△ BCD 面积为 15 , cos BDC 2
10
.
4
【名师点睛】利用正、余弦定理解决实际问题的一般思路:
(1)实际问题经抽象概括后,已知量与未知量全部集
中在一个三角形中,可以利用正弦定理或余弦定理
解三角形、数列2018全国数学高考分类真题[含答案解析]
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
浙江省高考数学试题解析
2018浙江省高考数学试卷新教改一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,23.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.84.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.4分2018 浙江设0<p <1,随机变量ξ的分布列是ξ 012P则当p 在0,1内增大时, A .Dξ减小B .Dξ增大C .Dξ先减小后增大D .Dξ先增大后减小8.4分2018 浙江已知四棱锥S ﹣ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点不含端点.设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S ﹣AB ﹣C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= ,y= .12.6分2018 浙江若x,y 满足约束条件,则z=x+3y 的最小值是 ,最大值是 .13.6分2018 浙江在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=,b=2,A=60°,则sinB= ,c= . 14.4分2018 浙江二项式+8的展开式的常数项是 .15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是.若函数fx恰有2个零点,则λ的取值范围是.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.用数字作答17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 时,点B横坐标的绝对值最大.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.19.15分2018 浙江如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.Ⅰ证明:AB1⊥平面A1B1C1;Ⅱ求直线AC1与平面ABB1所成的角的正弦值.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的;A=1.4分2018 浙江已知全集U={1,2,3,4,5},A={1,3},则UA.B.{1,3} C.{2,4,5} D.{1,2,3,4,5}考点1F:补集及其运算.A是由所有属于集合U但不属于A的元素构成的集合.分析根据补集的定义直接求解:UA是由所有属于集合U但不属于A的元素构成的集合,由已解答解:根据补集的定义,U知,有且仅有2,4,5符合元素的条件.A={2,4,5}U故选:C.点评本题考查了补集的定义以及简单求解,属于简单题.2.4分2018 浙江双曲线﹣y2=1的焦点坐标是A.﹣,0,,0 B.﹣2,0,2,0 C.0,﹣,0,D.0,﹣2,0,2考点KC:双曲线的性质.专题34 :方程思想;4O:定义法;5D :圆锥曲线的定义、性质与方程.分析根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.解答解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为±2,0故选:B.点评本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.4分2018 浙江某几何体的三视图如图所示单位:cm,则该几何体的体积单位:cm3是A.2 B.4 C.6 D.8考点L:由三视图求面积、体积.专题35 :转化思想;5F :空间位置关系与距离.分析直接利用三视图的复原图求出几何体的体积.解答解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.点评本题考查的知识要点:三视图的应用.4.4分2018 浙江复数i为虚数单位的共轭复数是A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点A5:复数的运算.专题5N :数系的扩充和复数.分析化简已知复数z,由共轭复数的定义可得.解答解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.点评本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.4分2018 浙江函数y=2|x|sin2x的图象可能是A. B. C.D.考点3A:函数的图象与图象的变换.专题35 :转化思想;51 :函数的性质及应用.分析直接利用函数的图象和性质求出结果.解答解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.点评本题考查的知识要点:函数的性质和赋值法的应用.6.4分2018 浙江已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点29:充分条件、必要条件、充要条件.专题38 :对应思想;4O:定义法;5L :简易逻辑.分析根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.解答解:∵mα,nα,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.点评本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.4分2018 浙江设0<p<1,随机变量ξ的分布列是ξ012P则当p在0,1内增大时,A.Dξ减小B.Dξ增大C.Dξ先减小后增大D.Dξ先增大后减小考点CH:离散型随机变量的期望与方差.专题33 :函数思想;4O:定义法;5I :概率与统计.分析求出随机变量ξ的分布列与方差,再讨论Dξ的单调情况.解答解:设0<p<1,随机变量ξ的分布列是Eξ=0×+1×+2×=p+;方差是Dξ=×+×+×=﹣p2+p+=﹣+,∴p∈0,时,Dξ单调递增;p∈,1时,Dξ单调递减;∴Dξ先增大后减小.故选:D.点评本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.4分2018 浙江已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点不含端点.设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1考点MJ :二面角的平面角及求法;L3:棱锥的结构特征;LM :异面直线及其所成的角;MI :直线与平面所成的角.专题31 :数形结合;44 :数形结合法;5G :空间角.分析作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.解答解:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心. 过E 作EF ∥BC,交CD 于F,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N, 连接SN,取CD 中点M,连接SM,OM,OE,则EN=OM, 则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO . 显然,θ1,θ2,θ3均为锐角. ∵tanθ1==,tanθ3=,SN ≥SO,∴θ1≥θ3, 又sinθ3=,sinθ2=,SE ≥SM,∴θ3≥θ2. 故选:D .点评本题考查了空间角的计算,三角函数的应用,属于中档题.9.4分2018 浙江已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4+3=0,则|﹣|的最小值是 A .﹣1 B .+1C .2D .2﹣考点9O :平面向量数量积的性质及其运算.专题11 :计算题;31 :数形结合;4R :转化法;5A :平面向量及应用. 分析把等式﹣4+3=0变形,可得得,即⊥,设,则的终点在以2,0为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O 的两条射线y=x >0上,画出图形,数形结合得答案. 解答解:由﹣4+3=0,得,∴⊥,如图,不妨设,则的终点在以2,0为圆心,以1为半径的圆周上, 又非零向量与的夹角为,则的终点在不含端点O 的两条射线y=x >0上.不妨以y=为例,则|﹣|的最小值是2,0到直线的距离减1.即.故选:A .点评本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.4分2018 浙江已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,若a 1>1,则 A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4考点8I :数列与函数的综合;4H :对数的运算性质;87:等比数列的性质. 专题11 :计算题;32 :分类讨论;34 :方程思想;49 :综合法;51 :函数的性质及应用;54 :等差数列与等比数列.分析利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.解答解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=lna 1+a 2+a 3,不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D .当q=﹣1时,a 1+a 2+a 3+a 4=0,lna 1+a 2+a 3>0,等式不成立,所以q ≠﹣1; 当q <﹣1时,a 1+a 2+a 3+a 4<0,lna 1+a 2+a 3>0,a 1+a 2+a 3+a 4=lna 1+a 2+a 3不成立, 当q ∈﹣1,0时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=lna 1+a 2+a 3,能够成立, 故选:B .点评本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分;11.6分2018浙江我国古代数学着作张邱建算经中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x= 8 ,y= 11 .考点53:函数的零点与方程根的关系.专题11 :计算题;33 :函数思想;49 :综合法;51 :函数的性质及应用.分析直接利用方程组以及z的值,求解即可.解答解:,当z=81时,化为:,解得 x=8,y=11.故答案为:8;11.点评本题考查方程组的解法,是基本知识的考查.12.6分2018 浙江若x,y满足约束条件,则z=x+3y的最小值是﹣2 ,最大值是8 .考点7C:简单线性规划.专题1 :常规题型;11 :计算题;35 :转化思想;49 :综合法;5T :不等式.分析作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.解答解:作出x,y满足约束条件表示的平面区域,如图:其中B4,﹣2,A2,2.设z=Fx,y=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.∴z=F4,﹣2=﹣2.最小值可得当l经过点A时,目标函数z达到最最大值:z=F2,2=8.最大值故答案为:﹣2;8.点评本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.6分2018 浙江在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB= ,c= 3 .考点HP:正弦定理.专题11 :计算题;35 :转化思想;49 :综合法;58 :解三角形.分析由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.解答解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1舍,∴sinB=,c=3.故答案为:,3.点评本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.4分2018 浙江二项式+8的展开式的常数项是7 .考点DA:二项式定理.专题35 :转化思想;4O:定义法;5P :二项式定理.分析写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.解答解:由=.令=0,得r=2.∴二项式+8的展开式的常数项是.故答案为:7.点评本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.6分2018 浙江已知λ∈R,函数fx=,当λ=2时,不等式fx<0的解集是{x|1<x<4} .若函数fx恰有2个零点,则λ的取值范围是1,3 .考点57:函数与方程的综合运用;3E:函数单调性的性质与判断;5B:分段函数的应用.专题11 :计算题;31 :数形结合;34 :方程思想;49 :综合法;51 :函数的性质及应用.分析利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.解答解:当λ=2时函数fx=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式fx<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数fx恰有2个零点,函数fx=的草图如图:函数fx恰有2个零点,则λ∈1,3.故答案为:{x|1<x<4};1,3.点评本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.4分2018 浙江从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260 个没有重复数字的四位数.用数字作答考点D8:排列、组合的实际应用.专题11 :计算题;35 :转化思想;49 :综合法;5O :排列组合.分析可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.解答解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.点评本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.4分2018 浙江已知点P0,1,椭圆+y2=mm>1上两点A,B满足=2,则当m= 5 时,点B横坐标的绝对值最大.考点K4:椭圆的性质.专题34 :方程思想;48 :分析法;5A :平面向量及应用;5D :圆锥曲线的定义、性质与方程.分析设Ax1,y1,Bx2,y2,运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣2,运用二次函数的最值求法,可得所求最大值和m的值.解答解:设Ax1,y1,Bx2,y2,由P0,1,=2,可得﹣x1=2x2,1﹣y1=2y2﹣1,即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x 22+4y22=4m,②①﹣②得y1﹣2y2y1+2y2=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+2,即有x22=m﹣2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.点评本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三、解答题:本大题共5小题,共74分;解答应写出文字说明、证明过程或演算步骤; 18.14分2018 浙江已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P﹣,﹣.Ⅰ求sinα+π的值;Ⅱ若角β满足sinα+β=,求cosβ的值.考点GP:两角和与差的三角函数;G9:任意角的三角函数的定义.专题33 :函数思想;4R:转化法;56 :三角函数的求值.分析Ⅰ由已知条件即可求r,则sinα+π的值可得;Ⅱ由已知条件即可求sinα,cosα,cosα+β,再由cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα代值计算得答案.解答解:Ⅰ∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P﹣,﹣.∴x=﹣,y=,r=|OP|=,∴sinα+π=﹣sinα=;Ⅱ由x=﹣,y=,r=|OP|=1,得,,又由sinα+β=,得=,则cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=,或cosβ=cosα+β﹣α=cosα+βcosα+sinα+βsinα=.∴cosβ的值为或.点评本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.15分2018 浙江如图,已知多面体ABCA 1B 1C 1,A 1A,B 1B,C 1C 均垂直于平面ABC,∠ABC=120°,A 1A=4,C 1C=l,AB=BC=B 1B=2. Ⅰ证明:AB 1⊥平面A 1B 1C 1;Ⅱ求直线AC 1与平面ABB 1所成的角的正弦值.考点MI :直线与平面所成的角;LW :直线与平面垂直.专题31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角. 分析I 利用勾股定理的逆定理证明AB 1⊥A 1B 1,AB 1⊥B 1C 1,从而可得AB 1⊥平面A 1B 1C 1; II 以AC 的中点为坐标原点建立空间坐标系,求出平面ABB 1的法向量,计算与的夹角即可得出线面角的大小.解答I 证明:∵A 1A ⊥平面ABC,B 1B ⊥平面ABC, ∴AA 1∥BB 1, ∵AA 1=4,BB 1=2,AB=2, ∴A 1B 1==2,又AB 1==2,∴AA 12=AB 12+A 1B 12,∴AB 1⊥A 1B 1, 同理可得:AB 1⊥B 1C 1, 又A 1B 1∩B 1C 1=B 1, ∴AB 1⊥平面A 1B 1C 1.II 解:取AC 中点O,过O 作平面ABC 的垂线OD,交A 1C 1于D, ∵AB=BC,∴OB ⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O 为原点,以OB,OC,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则A0,﹣,0,B1,0,0,B 11,0,2,C 10,,1, ∴=1,,0,=0,0,2,=0,2,1,设平面ABB 1的法向量为=x,y,z,则,∴,令y=1可得=﹣,1,0,∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.点评本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.15分2018 浙江已知等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn }满足b1=1,数列{bn+1﹣bnan}的前n项和为2n2+n.Ⅰ求q的值;Ⅱ求数列{bn}的通项公式.考点8M:等差数列与等比数列的综合.专题34 :方程思想;48 :分析法;54 :等差数列与等比数列.分析Ⅰ运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,运用数列的递推式可得cn=4n﹣1,再由数列的恒等式求得b n =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1,运用错位相减法,可得所求数列的通项公式.解答解:Ⅰ等比数列{an }的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2舍去,则q的值为2;Ⅱ设cn =bn+1﹣bnan=bn+1﹣bn2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得cn=2n2+n﹣2n﹣12﹣n﹣1=4n﹣1,上式对n=1也成立,则bn+1﹣bnan=4n﹣1,即有bn+1﹣bn=4n﹣1n﹣1,可得bn =b1+b2﹣b1+b3﹣b2+…+bn﹣bn﹣1=1+30+71+…+4n﹣5n﹣2,b=+3n+72+…+4n﹣5n﹣1,=+4+2+…+n﹣2﹣4n﹣5相减可得bnn﹣1=+4 ﹣4n﹣5n﹣1,化简可得b=15﹣4n+3nn﹣2.点评本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.15分2018 浙江如图,已知点P是y轴左侧不含y轴一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.Ⅰ设AB中点为M,证明:PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,求△PAB面积的取值范围.考点KN:直线与抛物线的位置关系;KL:直线与椭圆的位置关系.专题34 :方程思想;48 :分析法;5D :圆锥曲线的定义、性质与方程.分析Ⅰ设Pm,n,A,y1,B,y2,运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;Ⅱ由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM||y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.解答解:Ⅰ证明:可设Pm,n,A,y1,B,y2,AB中点为M的坐标为,,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得2=4 ,2=4 ,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;Ⅱ若P是半椭圆x2+=1x<0上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由Ⅰ可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM||y1﹣y2|=﹣m=4n2﹣16m+2n2﹣m=n2﹣4m,可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈6,,△PAB面积的取值范围为6,.点评本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.15分2018 浙江已知函数fx=﹣lnx.Ⅰ若fx在x=x1,x2x1≠x2处导数相等,证明:fx1+fx2>8﹣8ln2;Ⅱ若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.考点6E:利用导数研究函数的最值.专题14 :证明题;35 :转化思想;49 :综合法;53 :导数的综合应用.分析Ⅰ推导出x>0,f′x=﹣,由fx在x=x1,x2x1≠x2处导数相等,得到+=,由基本不等式得:=≥,从而x1x2>256,由题意得fx1+fx2==﹣lnx1x2,设gx=,则,利用导数性质能证明fx1+fx2>8﹣8ln2.Ⅱ令m=e﹣|a|+k,n=2+1,则fm﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x∈m,n,使fx0=kx+a,对于任意的a∈R及k∈0,+∞,直线y=kx+a与曲线y=fx有公共点,由fx=kx+a,得k=,设hx=,则h′x==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.解答证明:Ⅰ∵函数fx=﹣lnx,∴x >0,f′x=﹣,∵fx 在x=x 1,x 2x 1≠x 2处导数相等, ∴=﹣,∵x 1≠x 2,∴+=,由基本不等式得:=≥,∵x 1≠x 2,∴x 1x 2>256, 由题意得fx 1+fx 2==﹣lnx 1x 2,设gx=,则,∴列表讨论:x 0,16 16 16,+∞g′x ﹣ 0 + gx↓2﹣4ln2↑∴gx 在256,+∞上单调递增, ∴gx 1x 2>g256=8﹣8ln2, ∴fx 1+fx 2>8﹣8ln2. Ⅱ令m=e ﹣|a|+k ,n=2+1,则fm ﹣km ﹣a >|a|+k ﹣k ﹣a ≥0, fn ﹣kn ﹣a <n﹣﹣k ≤n﹣k <0,∴存在x 0∈m,n,使fx 0=kx 0+a,∴对于任意的a ∈R 及k ∈0,+∞,直线y=kx+a 与曲线y=fx 有公共点, 由fx=kx+a,得k=,设hx=,则h′x==,其中gx=﹣lnx,由1知gx ≥g16,又a ≤3﹣4ln2,∴﹣gx ﹣1+a ≤﹣g16﹣1+a=﹣3+4ln2+a ≤0,∴h′x≤0,即函数hx在0,+∞上单调递减,∴方程fx﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=fx有唯一公共点.点评本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。
浙江2018版高考数学复习三角函数解三角形3.1导数的概念及运算教师用书
(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形 3.1 导数的概念及运算教师用书1.导数与导函数的概念(1)一般地,函数y=f(x)在x=x0处的瞬时变化率是limΔx→0ΔyΔx=limΔx→0f x0+Δx-f x0Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0Δy Δx=limΔx→0f x0+Δx-f x0Δx.(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)[f xg x ]′=fx g x -f x gx[g x2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. (2)[1fx ]′=-f x [fx2(f (x )≠0).(3)[af (x )+bg (x )]′=af ′(x )+bg ′(x ).(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × ) (3)曲线的切线不一定与曲线只有一个公共点.( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × )1.(教材改编)若f (x )=x ·e x,则f ′(1)等于( ) A .0 B .e C .2e D .e 2答案 C解析 f ′(x )=e x+x ·e x ,∴f ′(1)=2e.2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )答案 D解析 由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________.答案 - 2解析 因为f (x )=f ′(π2)sin x +cos x ,所以f ′(x )=f ′(π2)cos x -sin x ,所以f ′(π2)=f ′(π2)cos π2-sin π2,即f ′(π2)=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′(π4)=-cos π4-sin π4=- 2.4.曲线y =-5e x+3在点(0,-2)处的切线方程是________________. 答案 5x +y +2=0解析 因为y ′|x =0=-5e 0=-5,所以曲线在点(0,-2)处的切线方程为y -(-2)=-5(x -0),即5x +y +2=0.题型一 导数的计算 例1 求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos x e x ;(4)y =sin(2x +π3);(5)y =ln(2x -5).解 (1)y ′=(x 2)′·sin x +x 2·(sin x )′ =2x sin x +x 2cos x .(2)y ′=(ln x +1x )′=(ln x )′+(1x)′=1x -1x2.(3)y ′=(cos xex )′=cos x ′·e x -cos x e x′e x 2=-sin x +cos x ex. (4)设u =2x +π3,则y =sin u ,则y ′=(sin u )′·u ′=cos(2x +π3)·2∴y ′=2cos(2x +π3).(5)令u =2x -5,则y =ln u ,则y ′=(ln u )′·u ′=12x -5·2=22x -5,即y ′=22x -5.思维升华 (1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( )A .e 2B .1C .ln 2D .e(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 (1)B (2)B解析 (1)f ′(x )=2 016+ln x +x ×1x=2 017+ln x ,故由f ′(x 0)=2 017,得2 017+lnx 0=2 017,则ln x 0=0,解得x 0=1.(2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2016·全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( ) A .x +y -1=0 B .x -y -1=0 C .x +y +1=0D .x -y +1=0答案 (1)2x +y +1=0 (2)B解析 (1)设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2,切线方程为y =-2x -1,即2x +y +1=0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.故选B. 命题点2 求参数的值例3 (2016·舟山模拟)函数y =e x的切线方程为y =mx ,则m =________.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m 等于( )A .-1B .-3C .-4D .-2 答案 (1)e (2)D解析 (1)设切点坐标为P (x 0,y 0),由y ′=e x, 得y ′|x =x 0=0x e ,从而切线方程为y -0x e =0x e (x -x 0), 又切线过定点(0,0),从而-0x e =0x e (-x 0), 解得x 0=1,则m =e. (2)∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D. 命题点3 导数与函数图象的关系例4 如图,点A (2,1),B (3,0),E (x,0)(x ≥0),过点E 作OB 的垂线l .记△AOB 在直线l 左侧部分的面积为S ,则函数S =f (x )的图象为下图中的( )答案 D解析 函数的定义域为[0,+∞),当x ∈[0,2]时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越大,即斜率f ′(x )在[0,2]内大于0且越来越大,因此,函数S =f (x )的图象是上升的且图象是下凸的;当x ∈(2,3)时,在单位长度变化量Δx 内面积变化量ΔS 大于0且越来越小,即斜率f ′(x )在(2,3)内大于0且越来越小,因此,函数S =f (x )的图象是上升的且图象是上凸的; 当x ∈[3,+∞)时,在单位长度变化量Δx 内面积变化量ΔS 为0,即斜率f ′(x )在[3,+∞)内为常数0,此时,函数图象为平行于x 轴的射线.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1求解即可.(4)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.(1)(2016·台州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D.12(2)(2016·临海模拟)设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2 D .2答案 (1)A (2)A解析 (1)设切点的横坐标为x 0,∵曲线y =x 24-3ln x 的一条切线的斜率为12,∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意), 即切点的横坐标为3. (2)∵y ′=-1-cos xsin 2x ,∴2'x y π==-1.由条件知1a=-1,∴a =-1.3.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =0'x x y ==3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2 B .0 C .-2 D .-4 答案 D解析 f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.2.(2016·东阳模拟)若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为( ) A .(-1,2) B .(1,-3) C .(1,0) D .(1,5)答案 C解析 设点P 的坐标为(x 0,y 0),因为f ′(x )=4x 3-1, 所以f ′(x 0)=4x 30-1=3,即x 0=1. 把x 0=1代入函数f (x )=x 4-x ,得y 0=0,所以点P 的坐标为(1,0).3.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为( ) A .1 B .2 C.134 D .1或134答案 D解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎪⎨⎪⎧x 0=32,p =134.4.已知曲线y =ln x 的切线过原点,则此切线的斜率为( ) A .e B .-e C.1e D .-1e答案 C解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.5. (2016·杭州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×(-13)=0. 6.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A.14B.12C .1D .4 答案 A解析 由题意可知f ′(x )=1212x -,g ′(x )=a x , 由f ′(14)=g ′(14),得12×121()4-=a 14, 可得a =14,经检验,a =14满足题意. 7.已知函数f (x )满足f (x )=f ′(1)ex -1-f (0)x +12x 2.那么f (x )的解析式为________. 答案 f (x )=e x -x +12x 2 解析 由已知得f ′(x )=f ′(1)e x -1-f (0)+x ,所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1.又f (0)=f ′(1)e -1,所以f ′(1)=e.从而f (x )=e x -x +12x 2. 8.(2016·金华模拟)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.答案 12ln 2解析 y ′=1x ln 2,∴k =1ln 2, ∴切线方程为y =1ln 2(x -1). ∴三角形面积S =12×1×1ln 2=12ln 2.9.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞), ∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2. *10.已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015的值为________.答案 -1解析 f ′(x )=(n +1)x n,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 015=12×23×34×…×2 0142 015×2 0152 016=12 016, 则log 2 016x 1+log 2 016x 2+…+log 2 016x 2 015=log 2 016(x 1x 2…x 2 015)=-1.11.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A (x 0,13x 30+43),则切线的斜率为0'x x y =x 0=x 20.∴切线方程为y -(13x 30+43)=x 20(x -x 0),即y =x 20·x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.12.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解 (1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知, ⎩⎪⎨⎪⎧ k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).*13.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +b x 2, 于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧ a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为 y -y 0=203(1)x +(x -x 0), 即y -⎝ ⎛⎭⎪⎫x 0-3x 0=203(1)x +(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值且此定值为6.。
浙江专用2018版高考数学大一轮复习第三章三角函数解三角形3.2导数的应用第2课时导数与函数的极值最值课件
1 3 2 2 跟踪训练3 若函数 f(x)= x +x - 在区间(a,a+5)上存在最小值, 3 3 则实数 a 的取值范围是 答案
A.[-5,0) C.[-3,0)
解析
B.(-5,0) D.(-3,0)
答题模板系列3
利用导数求函数的最值
典例 (15分)已知函数f(x)=ln x-ax(a∈R). (1)求函数f(x)的单调区间; (2)当a>0时,求函数f(x)在[1,2]上的最小值.
解析
1
2
3
4
5
6
7
8
9
10 11 12 13
7.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于 A.11或18 C.18 √ B.11 D.17或18
答案 解析
1
2
3
4
5
6
7
8
9
10 11 12 13
8.函数f(x)=x3-3a2x+a(a>0)的极大值是正数,极小值是负数,则a的取 2 ( 2 ,+∞) 答案 解析 值范围是____________.
跟踪训练1 (1)函数f(x)=(x2-1)2+2的极值点是 答案 A.x=1 C.x=1或-1或0 B.x=-1 D.x=0
解析
1 (2)函数 y=2x- 2的极大值是________. -3 答案 x
2 y′=2+ 3,令 y′=0,得 x=-1. x
解析
当x<-1,x>0时,y′>0;当-1<x<0时,y′<0.
由已知可得f′(x)=0有两个不相等的实根.
∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0.
专题14 解三角形-2019年高考数学母题题源系列(浙江专版)(原卷版)
专题14 解三角形【母题来源一】【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =______________,cos ABD ∠=______________.【答案】5 10【解析】如图,在ABD △中,由正弦定理有sin sin AB BDADB BAC=∠∠,而3π4,4AB ADB =∠=,5AC =,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以5BD =,ππcos cos()cos cos sin sin 4410ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征.【母题来源二】【2018年高考浙江卷】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =b =2,A =60°,则sinB =______________,c =______________.【答案】73【解析】由正弦定理得sinsin a A b B =,所以πsin sin 3B ==,由余弦定理得22222cos ,742,3a b c bc A c c c =+-∴=+-∴=(负值舍去).【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.解答本题时,根据正弦定理得sin B ,根据余弦定理解出c . 【母题来源三】【2017年高考浙江卷】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______________,cos ∠BDC =______________.【答案】24【解析】取BC 中点E ,由题意:AE BC ⊥, 在△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==,∴1sin 2BCD S BD BC DBC =⨯⨯⨯∠=△. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD ,cos BDC ∠=. 【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.【命题意图】1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.3.考查数形结合、化归与转化、运算求解等能力,考查的核心素养是逻辑推理、数学运算、直观想象.【命题规律】解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积,解三角形与不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点,注意函数与方程思想、转化与化归思想在解题中的应用.常见的命题角度有: (1)直接利用正、余弦定理解三角形; (2)与三角形面积有关的问题; (3)三角形形状的判断;(4)解三角形与三角恒等变换相结合. 【答题模板】解答此类题目,一般考虑如下四步:第一步,定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向. 第二步,定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化. 第三步,求结果.第四步,再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形. 【方法总结】在ABC △中,若角A ,B ,C 所对的边分别是a ,b ,c ,则 1.正弦定理:sin sin sin a b c==A B C. 2.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C=+-=+-=+-, 3.余弦定理的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 4.三角形面积公式(1)三角形的高的公式:h A =b sin C =c sin B ,h B =c sin A =a sin C ,h C =a sin B =b sin A . (2)三角形的面积公式:S =21ab sin C ,S =21bc sin A ,S =21ca sin B . 5.正弦定理可以用来解决两类解三角形的问题 (1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角.6.利用正、余弦定理求边和角的方法(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. (4)常见结论①π A B C ++=,其变式有πA B C +=-,π222A B C+=-等. ②三角形中的三角函数关系:i in(s n s )A B C =+;()s os co c A B C =-+;sincos 22A B C+=; cossin 22A B C+=. 7.求三角形面积的方法(1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键. 8.三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 9.三角形中的综合问题(1)解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.(2)注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.(3)正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.1.【浙江省绍兴市2018届高三3月适应性模拟】在ABC △中,内角C 为钝角,3sin 5C =,5AC =,AB =BC =A .2B .3C .5D .102.【浙江省台州中学2018届高三模拟】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且ABC △的面积S C =,且1a =,b =c =A BCD 3.【山东省烟台市2019届高三3月诊断性测试(一模)】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3 B .π3 C .π6D .5π64.【浙江省浙南名校联盟2019届高三上学期期末联考】在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c .若s i n s i n b A a C =,1c =,则b =______________,ABC △面积的最大值为______________.5.【浙江省温州市2019届高三2月高考适应性测试】在ABC △中,45C =︒,6AB =,D 为BC 边上的点,且5AD =,3BD =,则cos B =______________,AC =______________.6.【浙江省2019年高考模拟训练卷三】在ABC △中,角A ,B ,C 所对的边a ,b ,c ,点E 为边AC 上的中点,已知2a =,4b =,3c =,则cos C =______________,BE =______________.7.【浙江省嘉兴市2018届高三上学期期末考试】在锐角ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,若2C B =,则cb的取值范围是______________.8.【浙江省湖州三校2019年普通高等学校招生全国统一考试】在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan()24A π+=,则sin A 的值为______________,若4B π=,4a =,则ABC △的面积等于______________.9.【浙江省杭州市2018届高三上学期期末考试】在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,a =,3b =,sin 2sin C A =,则sin A =______________,设D 为AB 边上一点,且2BD DA =,则BCD △的面积为______________.10.【浙江省杭州市学军中学2018年5月高三模拟】已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c,且满足22cos 2A A +=,1b =,2ABC S =△,则A =______________,sinB sin b cC +=+______________.11.【浙江省宁波市2018届高三上学期期末考试】在锐角ABC △中,已知2A B =,则角B 的取值范围是______________,又若a ,b 分别为角A ,B 的对边,则ab的取值范围是______________. 12.【辽宁省沈阳市东北育才学校2019届高三第八次模拟数学试题】在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若222a b a b c ++=,且ABC △,则ab 的最小值为______________.13.【浙江省金华十校2019届第二学期高考模拟】在ABC △中,A ,B ,C 内角所对的边分别为a ,b ,c ,已知2b =且cos cos 4sin sin c B b C a B C +=,则c 的最小值为______________.14.【浙江省嘉兴市2018届高三4月模拟测试】设ABC △的三边a ,b ,c 所对的角分别为A ,B ,C ,已知2222a b c +=,则tan tan CA=______________,tan B 的最大值为______________. 15.【浙江省教育绿色评价联盟2018届高三5月适应性考试】在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =3c =,3A C +=π,则c o s C =______________,ABC S =△______________. 16.【浙江省金华市浦江县2018年高考适应性考试】如图所示,在ABC △中,D 是边BC 中点,且cos ADC ∠1cos 3C ==,则AC CD的值等于______________,若3AD =,则AB =______________.17.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】在锐角三角形ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,2sin c A =,c =ABC △的面积为2,则a b +的值为______________.18.【甘肃省白银市靖远县2019届高三第四次联考】在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,若1a =,且BC 边上的高等于tan A ,则ABC △的周长的取值范围为______________.19.【浙江省金丽衢十二校2019届高三第二次联考】在ABC △中,角A ,B 和C 所对的边长为a ,b 和c ,面积为2221()3a cb +-,且C 为钝角,则tan B =______________,c a的取值范围是______________. 20.【浙江省三校2019年5月份第二次联考】在锐角ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,2c =,3A π=,则sin a C =______________,a b +的取值范围是______________. 21.【浙江省七彩联盟2018-2019学年第一学期高三11月期中考试】已知在ABC △中,1cos 3B =,3AB AC ==,延长BC 至D ,使1CD =,则AD =______________,sin CAD ∠=______________.。
2018版高考数学(浙江专用文理通用)大一轮复习讲义:第四章三角函数、解三角形第3讲含答案
基础巩固题组(建议用时:40分钟)一、选择题1.在函数①y=cos|2x|,②y=|cos x|,③y=cos错误!,④y=tan错误!中,最小正周期为π的所有函数为( )A.①②③B。
①③④C。
②④D。
①③解析①y=cos|2x|=cos 2x,最小正周期为π;②由图象知y=|cos x|的最小正周期为π;③y=cos错误!的最小正周期T=错误!=π;④y=tan错误!的最小正周期T=错误!,因此选A。
答案A2。
(2017·温州模拟)函数f(x)=tan错误!的单调递增区间是() A。
错误!(k∈Z)B。
错误!(k∈Z)C.错误!(k∈Z)D.错误!(k∈Z)解析当kπ-π2<2x-错误!<kπ+错误!(k∈Z)时,函数y=tan错误!单调递增,解得错误!-错误!<x<错误!+错误!(k∈Z),所以函数y=tan错误!的单调递增区间是错误!(k ∈Z ),故选B.答案 B3。
(2016·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( )A.3,-1 B 。
3,-2 C.2,-1 D 。
2,-2解析 y =cos 2x -2sin x =1-sin 2x -2sin x=-sin 2x -2sin x +1,令t =sin x ,则t ∈,y =-t 2-2t +1=-(t +1)2+2,所以y max =2,y min =-2.答案 D4.(2016·银川模拟)已知函数f (x )=sin 错误!(x ∈R ),下面结论错误的是( )A 。
函数f (x )的最小正周期为πB.函数f (x )是偶函数C 。
函数f (x )的图象关于直线x =π4对称 D 。
函数f (x )在区间错误!上是增函数解析 f (x )=sin 错误!=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f(x)的图象不关于直线x=错误!对称,C错误;由函数f (x)的图象易知,函数f(x)在错误!上是增函数,D正确.答案C5.(2017·安徽江南十校联考)已知函数f(x)=sin(ωx+φ)错误!的最小正周期为4π,且∀x∈R,有f(x)≤f错误!成立,则f(x)图象的一个对称中心坐标是()A。
浙江专版2018高考数学一轮复习第3章三角函数解三角形第1节任意角蝗制及任意角的三角函数
第三章 三角函数、解三角形[深研高考²备考导航] 为教师备课、授课提供丰富教学资源[五年考情]三角函数,解三角形是浙江高考命题的热点,分值一般在20分左右,主要考查三角函数的图象与性质、简单的三角恒等变换、正、余弦定理及其应用、且题目常考常新.第一节 任意角、弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ²360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①角度与弧度的换算: a .1°=π180 rad ;b.1 rad =⎝ ⎛⎭⎪⎫180π°. ②弧长公式:l =r |α|.③扇形面积公式:S =12lr =12r 2α.3.任意角的三角函数1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“³”) (1)小于90°的角是锐角.( ) (2)锐角是第一象限角,反之亦然.( )(3)角α的三角函数值与终边上点P 的位置无关.( ) (4)若α为第一象限角,则sin α+cos α>1.( ) [答案] (1)³ (2)³ (3)√ (4)√2.若cos θ>0,且sin 2θ<0,则角θ的终边所在象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [由cos θ>0,sin 2θ=2sin θ cos θ<0得sin θ<0,则角θ的终边在第四象限,故选D.]3.(教材改编)已知角α的终边与单位圆的交点为M ⎝ ⎛⎭⎪⎫12,y ,则sin α=( ) A.32 B .±32 C.22D .±22B [由题意知|r |2=⎝ ⎛⎭⎪⎫122+y 2=1,所以y =±32.由三角函数定义知sin α=y =±32.]4.在单位圆中,200°的圆心角所对的弧长为( ) A .10π B .9π C.910π D.109π D [单位圆的半径r =1,200°的弧度数是200³π180=109π,由弧度数的定义得109π=l r ,所以l =109π.] 5.已知半径为120 mm 的圆上,有一条弧长是144 mm ,则该弧所对的圆心角的弧度数为________rad. 【导学号:51062093】1.2 [由题意知α=l r =144120=1.2 rad.](1)若角α是第二象限角,则2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)已知角α的终边在如图311所示阴影部分表示的范围内(不包括边界),则角α用集合可表示为________.图311(1)C (2)⎝ ⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ) [(1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.综上,α2是第一或第三象限角.(2)在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎪⎫π4,56π,∴所求角的集合为⎝⎛⎭⎪⎫2k π+π4,2k π+56π(k ∈Z ).] [规律方法] 1.与角α终边相同的角可以表示为β=2k π+α(k ∈Z )的形式,α是任意角;相等的角终边一定相同,终边相同的角不一定相等;角度制与弧度制不能混用.2.由α所在象限,判定α2所在象限,应先确定α2的范围,并对整数k 的奇、偶情况进行讨论.[变式训练1] (1)设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2²180°+45°,k ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4²180°+45°,k ∈Z,那么( ) A .M =N B .M ⊆N C .N ⊆MD .M ∩N =∅(2)已知角α=45°,在区间[-720°,0°]内与角α有相同终边的角β=________.(1)B (2)-675°或-315° [(1)法一:由于M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2²180°+45°,k ∈Z={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4²180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N ,故选B.法二:由于M 中,x =k2²180°+45°=k ²90°+45°=(2k +1)²45°,2k +1是奇数;而N 中,x =k4²180°+45°=k ²45°+45°=(k +1)²45°,k +1是整数,因此必有M ⊆N ,故选B.(2)由终边相同的角的关系知β=k ²360°+45°,k ∈Z , ∴取k =-2,-1,得β=-675°或β=-315°.](1)已知扇形周长为10,面积是4,求扇形的圆心角;(2)已知扇形周长为40,当它的半径和圆心角分别取何值时,扇形的面积最大? [解] (1)设圆心角是θ,半径是r ,则 ⎩⎪⎨⎪⎧2r +r θ=10,12θ²r 2=4,解得⎩⎪⎨⎪⎧r =1,θ=8(舍去)或⎩⎪⎨⎪⎧r =4,θ=12,∴扇形的圆心角为12.5分(2)设圆心角是θ,半径是r ,则2r +r θ=40.7分又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100.10分当且仅当r =10时,S max =100,此时2³10+10θ=40,θ=2,∴当r =10,θ=2时,扇形的面积最大.14分[规律方法] 1.(1)在弧度制下,计算扇形面积和弧长比在角度制下更方便、简捷;(2)从扇形面积出发,在弧度制下把问题转化为关于R 的二次函数的最值问题(如本例)或不等式问题来求解.2.利用公式:(1)l =|α|R ;(2)S =12lR ;(3)S =12|α|R 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积,知道两个量,可求其余量.[变式训练2] 已知半径为10的圆O 中,弦AB 的长为10, (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形弧长l 及弧所在的弓形的面积S .[解] (1)在△AOB 中,AB =OA =OB =10,∴△AOB 为等边三角形,因此弦AB 所对的圆心角α=π3.5分(2)由扇形的弧长与扇形面积公式,得l =|α|²R =π3³10=10π3, S 扇形=12R ²l =12α²R 2=50π3.10分 又S △AOB =12²OA ²OB ²sin π3=253,∴S 弓形=S 扇形-S △AOB =50⎝ ⎛⎭⎪⎫π3-32.14分(1)若A .sin α>0 B .cos α>0 C .sin 2α>0D .cos 2α>0(2)(2017²浙江名校第三次联考)已知角α的终边经过点A (-3,a ),若点A 在抛物线y =-14x 2的准线上,则sin α=( )A .-32B.32C .-12D.12(1)C (2)D [(1)由tan α>0知角α是第一或第三象限角,当α是第一象限角时,sin 2α=2sin αcos α>0;当α是第三象限角时,sin α<0,cos α<0,仍有sin 2α=2sin αcos α>0,故选C.(2)抛物线方程y =-14x 2可化为x 2=-4y ,∴抛物线的准线方程为y =1. ∵点A 在抛物线y =-14x 2的准线上,∴A (-3,1),由三角函数的定义得sin α=y r=1-3 2+12=12.] [规律方法] 1.用定义法求三角函数值的两种情况.(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.2.确定三角函数值的符号,可以从确定角的终边所在象限入手进行判断.[变式训练3] (1)(2017²绍兴市期中)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan 2α=( )A.247 B .-247C.127D .-127(2)函数y =2cos x -1的定义域为________. 【导学号:51062094】(1)A (2)⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) [(1)由三角函数的定义可得cos α=x x 2+42.∵cos α=15x ,∴x x 2+42=15x ,又α是第二象限角,∴x <0,故可解得x =-3, ∴cos α=-35,sin α=1-cos 2α=45,∴tan α=sin αcos α=-43,∴tan 2α=2tan α1-tan 2α=247.故选A. (2)∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影所示). ∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).][思想与方法]1.在利用三角函数定义时,点P (x ,y )可取终边上任意一点,若点P 在单位圆上,则sin α=y ,cos α=x ,tan α=yx ;若|OP |=r ,则sin α=y r ,cos α=x r ,tan α=y x.2.三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦. 3.利用单位圆和三角函数线是解三角不等式的常用方法. [易错与防范]1.第一象限角、锐角、小于90°的角是三个不同的概念,前者是象限角,后两者是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时分层训练(十五)任意角、弧度制及任意角的三角函数A 组 基础达标 (建议用时:30分钟)一、选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确命题的个数有( ) A .1个 B .2个 C .3个D .4个C [-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.]2.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A .2 B .sin 2 C.2sin 1D .2sin 1C [由题设知,圆弧的半径r =1sin 1,∴圆心角所对的弧长l =2r =2sin 1.] 3.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限B [由题意可得⎩⎪⎨⎪⎧cos α<0,tan α<0,则⎩⎪⎨⎪⎧sin α>0,cos α<0,所以角α的终边在第二象限,故选B.]4.(2017²宁波镇海中学)已知点P ⎝ ⎛⎭⎪⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3C.11π6D.5π3C [因为点P ⎝ ⎛⎭⎪⎫32,-12在第四象限,根据三角函数的定义可知tan θ=-1232=-33,则θ=116π.]5.已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45B [取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.]二、填空题6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________.【导学号:51062095】π3 [设扇形半径为r ,弧长为l ,则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.]7.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.-8 [因为sin θ=y42+y2=-255, 所以y <0,且y 2=64,所以y =-8.]8.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.【导学号:51062096】⎝ ⎛⎭⎪⎫π4,5π4 [如图所示,找出在(0,2π)内,使sin x =cos x的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律找出满足题中条件的角x ∈⎝⎛⎭⎪⎫π4,5π4.]三、解答题9.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . [解] 设扇形的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.4分∴圆心角α=l r=2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad.8分 ∴AH =1²sin 1=sin 1(cm), ∴AB =2sin 1(cm).∴圆心角的弧度数为2,弦长AB 为2sin 1 cm.14分10.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ. [解] ∵θ的终边过点P (x ,-1)(x ≠0), ∴tan θ=-1x,2分又tan θ=-x , ∴x 2=1,即x =±1.4分 当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;9分 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.14分B 组 能力提升 (建议用时:15分钟)1.(2017²杭州二中模拟)已知角φ的终边经过点P (-4,3),函数f (x )=sin(ωx +φ)(ω>0)图象的相邻两条对称轴之间的距离等于π2,则f ⎝ ⎛⎭⎪⎫π4的值为( )A.35 B.45 C .-35D .-45D [由于角φ的终边经过点P (-4,3),所以cos φ=-45.再根据函数f (x )=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于π2,可得2πω=2³π2,所以ω=2,所以f (x )=sin(2x +φ),所以f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+φ=cos φ=-45.故选D.]2.函数y =sin x +12-cos x 的定义域是________. 【导学号:51062097】 ⎣⎢⎡⎦⎥⎤π3+2k π,π+2k π(k ∈Z ) [由题意知⎩⎪⎨⎪⎧sin x ≥0,12-cos x ≥0,即⎩⎪⎨⎪⎧sin x ≥0,cos x ≤12,∴x 的取值范围为π3+2k π≤x ≤π+2k π,k ∈Z .]3.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.[解] (1)由sin α<0,知α在第三、四象限或y 轴的负半轴上. 由tan α>0,知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z .4分 (2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限.8分 (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;10分当α2在第四象限时,tan α2<0, sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.14分。
解三角形、数列2018年全国数学高考分类真题(含答案)(精编文档).doc
【最新整理,下载后即可编辑】解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为,则C=( ) A . B . C . D .2.在△ABC 中,cos =,BC=1,AC=5,则AB=( )A .4B .C .D .2 3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 44.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .﹣12B .﹣10C .10D .12二.填空题(共4小题)5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 .6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=,b=2,A=60°,则sinB= ,c= .7.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .8.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 三.解答题(共9小题)9.在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.10.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (﹣,﹣).(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cosβ的值.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知bsinA=acos (B ﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求b 和sin (2A ﹣B )的值.12.在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos ∠ADB ;(2)若DC=2,求BC .13.设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n ﹣b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N*,q ∈(1,],证明:存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m ,q 表示).14.已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1﹣b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.15.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N*),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N*),(i )求T n ;(ii )证明=﹣2(n ∈N*).16.等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .17.记S n 为等差数列{a n }的前n 项和,已知a 1=﹣7,S 3=﹣15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B. C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A .3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4【解答】解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),不成立,即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D . 当q=﹣1时,a 1+a 2+a 3+a 4=0,ln (a 1+a 2+a 3)>0,等式不成立,所以q ≠﹣1;当q <﹣1时,a 1+a 2+a 3+a 4<0,ln (a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3)不成立,当q ∈(﹣1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),能够成立,故选:B .4.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .﹣12B .﹣10C .10D .12【解答】解:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2, ∴=a 1+a 1+d+4a 1+d ,把a 1=2,代入得d=﹣3∴a 5=2+4×(﹣3)=﹣10.故选:B .二.填空题(共4小题)5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 9 .【解答】解:由题意得acsin120°=asin60°+csin60°, 即ac=a+c ,得+=1, 得4a+c=(4a+c )(+)=++5≥2+5=4+5=9, 当且仅当=,即c=2a 时,取等号,故答案为:9.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=,b=2,A=60°,则sinB= ,c= 3 .【解答】解:∵在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==. 由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 a n =6n ﹣3 .【解答】解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴,解得a 1=3,d=6,∴a n =a 1+(n ﹣1)d=3+(n ﹣1)×6=6n ﹣3.∴{a n }的通项公式为a n =6n ﹣3.故答案为:a n =6n ﹣3.8.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= ﹣63 .【解答】解:S n 为数列{a n }的前n 项和,S n =2a n +1,①当n=1时,a 1=2a 1+1,解得a 1=﹣1,当n ≥2时,S n ﹣1=2a n ﹣1+1,②, 由①﹣②可得a n =2a n ﹣2a n ﹣1,∴a n =2a n ﹣1,∴{a n }是以﹣1为首项,以2为公比的等比数列,∴S 6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)∵a <b ,∴A <B ,即A 是锐角,∵cosB=﹣,∴sinB===, 由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n ﹣b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N*,q ∈(1,],证明:存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m ,q 表示).【解答】解:(1)由题意可知|a n ﹣b n |≤1对任意n=1,2,3,4均成立, ∵a 1=0,q=2,∴,解得.即≤d ≤.证明:(2)∵a n =a 1+(n ﹣1)d ,b n =b 1•q n ﹣1,若存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,则|b 1+(n ﹣1)d ﹣b 1•q n ﹣1|≤b 1,(n=2,3,…,m+1), 即b 1≤d ≤,(n=2,3,…,m+1),∵q ∈(1,],∴则1<q n ﹣1≤q m ≤2,(n=2,3,…,m+1),∴b 1≤0,>0,因此取d=0时,|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立, 下面讨论数列{}的最大值和数列{}的最小值, ①当2≤n≤m时,﹣==,当1<q ≤时,有q n ≤q m ≤2,从而n (q n ﹣q n ﹣1)﹣q n +2>0, 因此当2≤n ≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f (x )=2x (1﹣x ),当x >0时,f′(x )=(ln2﹣1﹣xln2)2x <0,∴f (x )单调递减,从而f (x )<f (0)=1, 当2≤n ≤m 时,=≤(1﹣)=f ()<1,因此当2≤n ≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d 的取值范围是d ∈[,].14.已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1﹣b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【解答】解:(Ⅰ)等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项, 可得2a 4+4=a 3+a 5=28﹣a 4, 解得a 4=8,由+8+8q=28,可得q=2(舍去), 则q 的值为2;(Ⅱ)设c n =(b n+1﹣b n )a n =(b n+1﹣b n )2n ﹣1, 可得n=1时,c 1=2+1=3,n ≥2时,可得c n =2n 2+n ﹣2(n ﹣1)2﹣(n ﹣1)=4n ﹣1, 上式对n=1也成立, 则(b n+1﹣b n )a n =4n ﹣1,即有b n+1﹣b n =(4n ﹣1)•()n ﹣1,可得b n =b 1+(b 2﹣b 1)+(b 3﹣b 2)+…+(b n ﹣b n ﹣1) =1+3•()0+7•()1+…+(4n ﹣5)•()n ﹣2, b n =+3•()+7•()2+…+(4n ﹣5)•()n ﹣1,相减可得b n =+4[()+()2+…+()n ﹣2]﹣(4n ﹣5)•()n ﹣1=+4•﹣(4n ﹣5)•()n ﹣1,化简可得b n =15﹣(4n+3)•()n ﹣2.15.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N*),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N*), (i )求T n ; (ii )证明=﹣2(n ∈N*).【解答】(Ⅰ)解:设等比数列{a n }的公比为q ,由a 1=1,a 3=a 2+2,可得q 2﹣q ﹣2=0. ∵q >0,可得q=2. 故.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,得b 1+3d=4,由a 5=b 4+2b 6,得3b 1+13d=16, ∴b 1=d=1. 故b n =n ;(Ⅱ)(i )解:由(Ⅰ),可得, 故=;(ii )证明:∵==.∴==﹣2.16.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【解答】解:(1)∵等比数列{a n }中,a 1=1,a 5=4a 3. ∴1×q 4=4×(1×q 2), 解得q=±2, 当q=2时,a n =2n ﹣1, 当q=﹣2时,a n =(﹣2)n ﹣1,∴{a n }的通项公式为,a n =2n ﹣1,或a n =(﹣2)n ﹣1. (2)记S n 为{a n }的前n 项和. 当a 1=1,q=﹣2时,S n ===,由S m =63,得S m ==63,m ∈N ,无解;当a 1=1,q=2时,S n ===2n ﹣1,由S m =63,得S m =2m ﹣1=63,m ∈N , 解得m=6.17.记S n 为等差数列{a n }的前n 项和,已知a 1=﹣7,S 3=﹣15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【解答】解:(1)∵等差数列{a n }中,a 1=﹣7,S 3=﹣15, ∴a 1=﹣7,3a 1+3d=﹣15,解得a 1=﹣7,d=2, ∴a n =﹣7+2(n ﹣1)=2n ﹣9; (2)∵a 1=﹣7,d=2,a n =2n ﹣9, ∴S n ===n 2﹣8n=(n ﹣4)2﹣16,∴当n=4时,前n 项的和S n 取得最小值为﹣16.。
(浙江专用)2018年高考数学总复习 第四章 三角函数、解三角形 专题探究课二 高考中三角函数问题的热点题型
专题探究课二 高考中三角函数问题的热点题型(建议用时:60分钟)1.(2017·湖州调研)函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图象如图所示. (1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上最大值和最小值. 解 (1)由题得,f (x )的最小正周期为π,y 0=3.当y 0=3时,sin ⎝⎛⎭⎪⎫2x 0+π6=1, 由题干图可得2x 0+π6=2π+π2,解得x 0=7π6. (2)因为x ∈⎣⎢⎡⎦⎥⎤-π2,-π12,所以2x +π6∈⎣⎢⎡⎦⎥⎤-5π6,0. 于是:当2x +π6=0,即x =-π12时,f (x )取得最大值0; 当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3. 2.(2017·郑州模拟)在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,已知a sin 2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值. 解 (1)在△ABC 中,由a sin A =bsin B , 可得a sin B =b sin A ,又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,又B ∈(0,π),所以sin B ≠0,所以cos B =32,得B =π6. (2)由cos A =13,A ∈(0,π),得sin A =223, 则sin C =sin[π-(A +B )]=sin(A +B ),所以sin C =sin ⎝⎛⎭⎪⎫A +π6 =32sin A +12cos A =26+16. 3.(2017·西安调研)设函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6+2sin 2ωx 2(ω>0),已知函数f (x )的图象的相邻两对称轴间的距离为π.(1)求函数f (x )的解析式;(2)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c (其中b <c ),且f (A )=32,△ABC 的面积为S =63,a =27,求b ,c 的值.解 (1)f (x )=32sin ωx +12cos ωx +1-cos ωx =32sin ωx -12cos ωx +1=sin ⎝⎛⎭⎪⎫ωx -π6+1. ∵函数f (x )的图象的相邻两对称轴间的距离为π,∴函数f (x )的周期为2π.∴ω=1.∴函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎪⎫x -π6+1. (2)由f (A )=32,得sin ⎝⎛⎭⎪⎫A -π6=12. 又∵A ∈(0,π),∴A =π3. ∵S =12bc sin A =63,∴12bc sin π3=63,bc =24, 由余弦定理,得a 2=(27)2=b 2+c 2-2bc cos π3=b 2+c 2-24. ∴b 2+c 2=52,又∵b <c ,解得b =4,c =6.4.(2016·济南名校联考)已知函数f (x )=sin ωx +23cos2ωx 2+1-3(ω>0)的周期为π. (1)求f (x )的解析式并求其单调递增区间;(2)将f (x )的图象先向下平移1个单位长度,再向左平移φ(φ>0)个单位长度得到函数h (x )的图象,若h (x )为奇函数,求φ的最小值.解 (1)f (x )=sin ωx +23cos 2ωx 2+1-3= sin ωx +23×1+cos ωx 2+1- 3=sin ωx +3cos ωx +1=2sin(ωx +π3)+1. 又函数f (x )的周期为π,因此2πω=π,∴ω=2. 故f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+1. 令2k π-π2≤2x +π3≤2k π+π2(k ∈Z ), 得k π-5π12≤x ≤k π+π12(k ∈Z ),即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).(2)由题意可知h (x )=2sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π3, 又h (x )为奇函数,则2φ+π3=k π, ∴φ=k π2-π6(k ∈Z ).∵φ>0,∴当k =1时,φ取最小值π3. 5.已知△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,向量m =(2sin B ,-3),n =(cos 2B ,2cos 2B 2-1),且m ∥n . (1)求锐角B 的大小;(2)如果b =2,求S △ABC 的最大值.解 (1)∵m ∥n , ∴2sin B ⎝ ⎛⎭⎪⎫2cos 2B 2-1=-3cos 2B , ∴sin 2B =-3cos 2B ,即tan 2B =- 3.又∵B 为锐角,∴2B ∈(0,π),∴2B =2π3,∴B =π3. (2)∵B =π3,b =2, 由余弦定理b 2=a 2+c 2-2ac cos B ,得a 2+c 2-ac -4=0.又a 2+c 2≥2ac ,代入上式,得ac ≤4,当且仅当a =c =2时等号成立.故S △ABC =12ac sin B =34ac ≤3, 当且仅当a =c =2时等号成立,即S △ABC 的最大值为 3.6.(2017·宁波模拟)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x ,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.解 (1)f (x )=2 cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1,又π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2.百度文库是百度发布的供网友在线分享文档的平台。
专题16 三角函数与三角恒等变换-2018年高考数学母题题源系列(浙江专版)
专题十六 三角函数与三角恒等变换【母题原题1】【2018浙江,18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cos β的值.【答案】(Ⅰ) , (Ⅱ)或(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.【母题原题2】【2017浙江,18】已知函数()()22f x sin x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π, 2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】试题分析:本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力.满分14分.(Ⅰ)由函数概念2222222sin cos cos 33333f πππππ⎛⎫=--⎪⎝⎭,计算可得;(Ⅱ)化简函数关系式得()sin y A x ωφ=+,结合2T πω=可得周期,利用正弦函数的性质求函数的单调递增区间.(Ⅱ)由22cos2cos sin x x x =-与sin22sin cos x x x =得()cos2f x x x =-.2sin 26x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以, ()f x 的单调递增区间是2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,.【母题原题3】【2016浙江,文11理10】已知2cos 2x+sin 2x=Asin(ωx+φ)+b(A >0),则A=______,b=________.,1【解析】22cos sin 2)14x x x π+=++,所以 1.A b == 【考点】降幂公式,辅助角公式.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.【命题意图】考查三角函数的概念、三角公式、三角恒等变换、三角函数的图象和性质,考查数学式子变形能力、运算求解能力、数形结合思想及分析问题与解决问题的能力.【命题规律】近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与图象和性质结合考查,往往先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法. 【答题模板】求解2017年一类问题,一般考虑: 第一步:化简三角函数式成为()sin y A x ωϕ=+的形式. 第二步:代入计算函数值.第三步:将x ωϕ+视为一个整体,利用正弦函数的性质,按要求运算求解. 【方法总结】1. 三角函数恒等变换要注意:(1)观察式子:主要看三点① 整体观察:整个表达式是以正余弦为主,还是正切(大多数情况是正余弦),确定后进行项的统一(有句老话:切割化弦)② 确定研究对象:是以x 作为角来变换,还是以x 的表达式(例如2x )看做一个角来进行变换.③ 式子是否齐次:看每一项(除了常数项)的系数是否一样(合角公式第二条:齐一次),若是同一个角(之前不是确定了研究对象了么)的齐二次式或是齐一次式,那么很有可能要使用合角公式,其结果成为()()sin f x A x ωϕ=+的形式.例如:齐二次式:2sin 2cos sin 2y x x x =-+,齐一次式:sin cos 6y x x π⎛⎫=++⎪⎝⎭(2)向“同角齐次正余全”靠拢,能拆就拆,能降幂就降幂:常用到前面的公式221cos21cos2cos ,sin 22αααα+-==,2sin cos sin2ααα=(还有句老话:平方降幂) 2.三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式; (2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.3.变换技巧:(1)拆角、拼角技巧:2α=(α+β)+(α-β);β=α+β2-α-β2;α-β2=)2()2(βαβα+-+.(3)化简技巧:切化弦、“1”的代换等 4.,,A ωϕ的常规求法: (1)A :① 对于()sin y A x ωϕ=+可通过观察在一个周期中所达到的波峰波谷(或值域)得到 ② 对于()sin y A x b ωϕ=++可通过一个周期中最大,最小值进行求解:max min2y y A -= (2)ω:由2Tπω=可得:只要确定了()sin y A x ωϕ=+的周期,即可立刻求出ω,而T 的值可根据对称轴(最值点)和对称中心(零点)的距离进行求解① 如果()sin y A x ωϕ=+相邻的两条对称轴为(),x a x b a b ==<,则()2T b a =- ② 如果()sin y A x ωϕ=+相邻的两个对称中心为()()(),0,,0a b a b <,则()2T b a =- ③ 如果()sin y A x ωϕ=+相邻的对称轴与对称中心分别为(),,0x a b =,则4T b a =- 注:在()sin y A x ωϕ=+中,对称轴与最值点等价,对称中心与零点等价.(3)ϕ:在图像或条件中不易直接看出ϕ的取值,通常可通过代入曲线上的点进行求解,要注意题目中对ϕ的限制范围1.【浙江省金华十校2018年4月高考模拟】在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则__________,__________.【答案】 02.【浙江省金华十校2018年4月高考模拟】已知函数,则函数的最小正周期__________,在区间上的值域为__________.【答案】【解析】函数的解析式:∴函数f(x)的最小正周期∴当时,,当时,,但取不到.所以值域为.3.【2018届浙江省绍兴市5月调测】已知函数,则____,该函数的最小正周期为_____. 【答案】 0【解析】分析:由题意首先化简函数的解析式,然后结合函数的解析式整理计算即可求得最终结果. 详解:由题意可得:.则,函数的最小正周期为:.4.【2017届四川省成都嘉祥外国语学校4月月考】在平面直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,其终边经过点()2,4P . (1)求tan α的值;(2)求()22sin 2124cos απαπα-+-⎛⎫+ ⎪⎝⎭的值.【答案】(1)2;(2)53. 【解析】试题分析:(1)直接根据任意角三角函数的定义求解即可.(2)利用诱导公式化解,“弦化切”的思想即可解决.试题解析:(1)由任意三角函数的定义可得: 4tan 22α==. (2)()22sin 2cos 124απαπα-+-⎛⎫+ ⎪⎝⎭原式2sin cos 2tan 1415sin cos tan 1213αααααα+++====+++5.【2017届江苏省南京师范大学附属中学模拟二】已知角α的终边上有一点()1,2p , (1)求tan 4πα⎛⎫+⎪⎝⎭的值;(2)求5sin 26πα⎛⎫+ ⎪⎝⎭的值. 【答案】(1)3; (2) 【解析】【试题分析】(1)先依据正切函数的定义求出1tan tan1142tan ,tan 31241tan tan 142παπααπα++⎛⎫=+=== ⎪⎝⎭--进而求得;(2)依据1tan 2α=求得sin αα==555sin 2sin2cos cos2sin 2sin cos 666πππααααα⎛⎛⎫+=+= ⎪ ⎝⎭⎝⎭()21112cos 1?221252α⎛⎛⎫+-=+⋅-⋅ ⎪⎝⎭⎭=解:根据题意1tan ,sin 2ααα===, (1)1tan tan142tan 3141tan tan 142παπαπα++⎛⎫+=== ⎪⎝⎭--; (2)555sin 2sin2cos cos2sin 666πππααα⎛⎫++ ⎪⎝⎭2sin cos 2αα⎛⎫=- ⎪ ⎪⎝⎭()212cos 1?2α+-11221252⎛⎫⎛⎫=-+⋅-⋅⎪ ⎪⎪⎝⎭⎭310+=-. 6.【2018届江苏省盐城中学全仿真模拟】在平面直角坐标系中,以轴为始边作角,角的终边经过点.(I)求的值;(Ⅱ)求的值.【答案】(1);(2).【解析】分析:(1)由于角其终边经过点,故,,再利用两角和与差的正余弦公式即可;(2).则 ,.7.【浙江省杭州市2016-2017学年高二下学期期末】设A 是单位圆O 和x 轴正半轴的交点,P ,Q 是圆O 上两点,O 为坐标原点,∠AOP=π6,∠AOQ=α,α∈[0, π2]. (1)若Q 34,55⎛⎫ ⎪⎝⎭,求cos (α﹣π6)的值; (2)设函数f (α)=sin α•(OP OQ ⋅ ),求f (α)的值域.【答案】(1 (2)30,4⎡⎤⎢⎥⎣⎦【解析】试题分析:(1)由三角函数定义得34cos ,sin 55αα==,再根据两角差余弦公式得cos (α﹣π6)的值;(2)先根据向量数量积得31sin 2OP OQ αα⋅=+,再利用二倍角公式、配角公式得()1π1sin 2264f αα⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数性质求值域试题解析:(1)由已知得34πππcos ,sin cos cos cos sin sin 55666ααααα⎛⎫==∴-=⋅+= ⎪⎝⎭(2)()11π1sin sin sin 22264f ααααα⎫⎛⎫=+=-+⎪ ⎪⎪⎝⎭⎝⎭()πππ5π30,2,0,26664f ααα⎡⎤⎡⎤⎤⎡∈∴-∈-∴∈⎦⎣⎢⎥⎢⎥⎣⎦⎣⎦8.【2018届浙江省绍兴市3月模拟】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若,且,求的值.【答案】(1) (2)【解析】试题分析:(1)第(Ⅰ)问,直接化简函数,再利用三角函数的周期公式求解. (2)第(Ⅱ)问,先解方程得到的值,再求的值.试题解析:(Ⅰ).即.所以的最小正周期.(Ⅱ)由,得,又因为,所以,即.所以.9.【2018届浙江省杭州市第二次检测】已知函数(Ⅰ)求的最小正周期和最大值;(Ⅱ)求函数的单调减区间【答案】(Ⅰ)最小正周期是,最大值是2.(Ⅱ)【解析】试题分析:利用两角和与差的余弦公式,二倍角的三角函数公式和辅助角公式化简,即可得到的最小正周期和最大值先求出,再求单调区间解析:(Ⅰ)因为,所以.所以函的最小正周期是,最大值是2.(Ⅱ)因为,所以单调递减区间为10.【2018届浙江省温州市9月一模】已知函数.(1)求的值;(2)求的最小正周期及单调递增区间.【答案】(1);(2),().【解析】试题分析:(1)将代入,由两角和的余弦公式结合特殊角的三角函数可得结果;(2)将展开与相乘后利用余弦的二倍角公式以及辅助角公式可得,根据周期公式可得的最小正周期,根据利用正弦函数的单调性,解不等式即可得到单调递增区间.试题解析:(1).(2).所以,的最小正周期为,当()时,单调递增,即的单调递增区间为().11.【腾远2018年(浙江卷)红卷】已知函数.(1)求的值;(2)当时,求函数的取值范围.【答案】(1)1;(2).【解析】分析:(1)由三角恒等变换的公式化简得,即可求解的值;(2)由(1)得,当时,得,即可求解的取值范围. 详解:(1),则.(2)由(1)得,当时,, 则, 即的取值范围为.12.【2018届浙江省宁波市高三上期末】已知函数()22sin cos 12sin f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值.【答案】(Ⅰ) π,最小值为12-.(Ⅱ)因为34x ππ-≤≤,所以5321244x πππ-≤+≤.当242x ππ+=,即8x π=时, ()f x 当52412x ππ+=-,即3x π=-时,()221sin cos 3332f x f πππ⎛⎫⎛⎫⎛⎫=-=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.即()f x 的最小值为12-.。
专题16 三角函数与三角恒等变换-2018年高考数学母题题源系列(浙江专版)
专题十六 三角函数与三角恒等变换【母题原题1】【2018浙江,18】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cos β的值.【答案】(Ⅰ) , (Ⅱ)或(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.【母题原题2】【2017浙江,18】已知函数()()22f x sin x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π, 2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】试题分析:本题主要考查三角函数的性质及其变换等基础知识,同时考查运算求解能力.满分14分.(Ⅰ)由函数概念2222222sin cos cos 33333f πππππ⎛⎫=--⎪⎝⎭,计算可得;(Ⅱ)化简函数关系式得()sin y A x ωφ=+,结合2T πω=可得周期,利用正弦函数的性质求函数的单调递增区间.(Ⅱ)由22cos2cos sin x x x =-与sin22sin cos x x x =得()cos2f x x x =-.2sin 26x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以, ()f x 的单调递增区间是2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,.【母题原题3】【2016浙江,文11理10】已知2cos 2x+sin 2x=Asin(ωx+φ)+b(A >0),则A=______,b=________.,1【解析】22cos sin2)14x x x π+=++,所以 1.A b == 【考点】降幂公式,辅助角公式.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.【命题意图】考查三角函数的概念、三角公式、三角恒等变换、三角函数的图象和性质,考查数学式子变形能力、运算求解能力、数形结合思想及分析问题与解决问题的能力.【命题规律】近几年高考在对三角恒等变换考查的同时,对三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与图象和性质结合考查,往往先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法. 【答题模板】求解2017年一类问题,一般考虑: 第一步:化简三角函数式成为()sin y A x ωϕ=+的形式. 第二步:代入计算函数值.第三步:将x ωϕ+视为一个整体,利用正弦函数的性质,按要求运算求解. 【方法总结】1. 三角函数恒等变换要注意:(1)观察式子:主要看三点① 整体观察:整个表达式是以正余弦为主,还是正切(大多数情况是正余弦),确定后进行项的统一(有句老话:切割化弦)② 确定研究对象:是以x 作为角来变换,还是以x 的表达式(例如2x )看做一个角来进行变换.③ 式子是否齐次:看每一项(除了常数项)的系数是否一样(合角公式第二条:齐一次),若是同一个角(之前不是确定了研究对象了么)的齐二次式或是齐一次式,那么很有可能要使用合角公式,其结果成为()()sin f x A x ωϕ=+的形式.例如:齐二次式:2sin 2cos sin 2y x x x =-+,齐一次式:sin cos 6y x x π⎛⎫=++⎪⎝⎭(2)向“同角齐次正余全”靠拢,能拆就拆,能降幂就降幂:常用到前面的公式221cos21cos2cos ,sin 22αααα+-==,2sin cos sin 2ααα=(还有句老话:平方降幂) 2.三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式; (2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.3.变换技巧:(1)拆角、拼角技巧:2α=(α+β)+(α-β);β=α+β2-α-β2;α-β2=)2()2(βαβα+-+.(3)化简技巧:切化弦、“1”的代换等 4.,,A ωϕ的常规求法: (1)A :① 对于()sin y A x ωϕ=+可通过观察在一个周期中所达到的波峰波谷(或值域)得到 ② 对于()sin y A x b ωϕ=++可通过一个周期中最大,最小值进行求解:max min2y y A -=(2)ω:由2Tπω=可得:只要确定了()sin y A x ωϕ=+的周期,即可立刻求出ω,而T 的值可根据对称轴(最值点)和对称中心(零点)的距离进行求解① 如果()sin y A x ωϕ=+相邻的两条对称轴为(),x a x b a b ==<,则()2T b a =- ② 如果()sin y A x ωϕ=+相邻的两个对称中心为()()(),0,,0a b a b <,则()2T b a =- ③ 如果()sin y A x ωϕ=+相邻的对称轴与对称中心分别为(),,0x a b =,则4T b a =- 注:在()sin y A x ωϕ=+中,对称轴与最值点等价,对称中心与零点等价.(3)ϕ:在图像或条件中不易直接看出ϕ的取值,通常可通过代入曲线上的点进行求解,要注意题目中对ϕ的限制范围1.【浙江省金华十校2018年4.【答案】2.【浙江省金华十校2018年4__________.【答案】【解析】函数的解析式:∴函数f(x).所以值域为3.【2018届浙江省绍兴市5,该函数的最小正周期为_____. 【答案】【解析】分析:由题意首先化简函数的解析式,然后结合函数的解析式整理计算即可求得最终结果. 详解:由题意可得:4.【2017届四川省成都嘉祥外国语学校4月月考】在平面直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,其终边经过点()2,4P . (1)求tan α的值;(2)求()22sin 2124cos απαπα-+-⎛⎫+ ⎪⎝⎭的值.【答案】(1)2;(2)53. 【解析】试题分析:(1)直接根据任意角三角函数的定义求解即可.(2)利用诱导公式化解,“弦化切”的思想即可解决.试题解析:(1)由任意三角函数的定义可得: 4tan 22α==.(2)()22sin 2cos 124απαπα-+-⎛⎫+ ⎪⎝⎭原式2sin cos 2tan 1415sin cos tan 1213αααααα+++====+++5.【2017届江苏省南京师范大学附属中学模拟二】已知角α的终边上有一点()1,2p , (1)求tan 4πα⎛⎫+⎪⎝⎭的值;(2)求5sin 26πα⎛⎫+ ⎪⎝⎭的值. 【答案】(1)3; (2)【解析】【试题分析】(1)先依据正切函数的定义求出1tan tan1142tan ,tan 31241tan tan 142παπααπα++⎛⎫=+=== ⎪⎝⎭--进而求得;(2)依据1tan 2α=求得sin αα==555sin 2sin2cos cos2sin 2sin cos 666πππααααα⎛⎛⎫+=+= ⎪ ⎝⎭⎝⎭()21112cos 1?221252α⎛⎛⎫+-=+⋅-⋅ ⎪⎝⎭⎭=.解:根据题意1tan ,sin 2ααα=== (1)1tan tan142tan 3141tan tan 142παπαπα++⎛⎫+=== ⎪⎝⎭--; (2)555sin 2sin2cos cos2sin 666πππααα⎛⎫++ ⎪⎝⎭2sin cos αα⎛= ⎝⎭()212cos 1?2α+-1122152⎛⎛⎫=+⋅-⋅ ⎪⎝⎭⎭=.6.【2018(I).【答案】【解析】分析:(1和与差的正余弦公式即可;7.【浙江省杭州市2016-2017学年高二下学期期末】设A 是单位圆O 和x 轴正半轴的交点,P ,Q 是圆O 上两点,O 为坐标原点,∠AOP=π6,∠AOQ=α,α∈[0, π2]. (1)若Q 34,55⎛⎫ ⎪⎝⎭,求cos (α﹣π6)的值; (2)设函数f (α)=sin α•(OP OQ ⋅ ),求f (α)的值域.【答案】(1 (2)30,4⎡⎤⎢⎥⎣⎦【解析】试题分析:(1)由三角函数定义得34cos ,sin 55αα==,再根据两角差余弦公式得cos (α﹣π6)的值;(2)先根据向量数量积得31sin 2OP OQ αα⋅=+,再利用二倍角公式、配角公式得()1π1sin 2264f αα⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数性质求值域试题解析:(1)由已知得34πππcos ,sin cos cos cos sin sin 55666ααααα⎛⎫==∴-=⋅+= ⎪⎝⎭410(2)()11π1sin sin sin 22264f ααααα⎫⎛⎫=+=-+⎪ ⎪⎪⎝⎭⎝⎭()πππ5π30,2,0,26664f ααα⎡⎤⎡⎤⎤⎡∈∴-∈-∴∈⎦⎣⎢⎥⎢⎥⎣⎦⎣⎦8.【2018届浙江省绍兴市3.【答案】【解析】试题分析:(1)第(Ⅰ)问,直接化简函数,再利用三角函数的周期公式求解. (2)第(Ⅱ)问,先解.试题解析:9.【2018;【答案】2.【解析】试题分析:二倍角的三角函数公式和辅助角公式化简,即可得到解析:2.10.【2018届浙江省温州市9(1(2【答案】(1);(2.【解析】试题分析:(1可得结果;(2的单调性,解不等式即可得到单调递增区间.试题解析:(1(2.11.【腾远2018(1(2.【答案】(1)1;(2【解析】分析:(1(2)由(1.详解:(1,(2)由(1,12.【2018届浙江省宁波市高三上期末】已知函数()22sin cos 12sin f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值.【答案】(Ⅰ) π.(Ⅱ)因为34x ππ-≤≤,所以5321244x πππ-≤+≤.当242x ππ+=,即8x π=时, ()f x 当52412x ππ+=-,即3x π=-时,()221sin cos 3332f x f πππ⎛⎫⎛⎫⎛⎫=-=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.即()f x 的最小值为.。
高考数学浙江版5.3 正弦、余弦定理及解三角形
答案 A 本题考查三角公式的运用和正弦定理、余弦定理. 解法一:因为sin B(1+2cos C)=2sin Acos C+cos Asin C, 所以sin B+2sin Bcos C=sin Acos C+sin(A+C), 所以sin B+2sin Bcos C=sin Acos C+sin B, 即cos C(2sin B-sin A)=0, 所以cos C=0或2sin B=sin A, 即C=90°或2b=a, 又△ABC为锐角三角形,所以0°<C<90°,故2b=a.故选A. 解法二:由正弦定理和余弦定理得
(1)求 sin 2sAin2cAos2 A 的值; (2)若B= ,a=3,求△ABC的面积.
4
解析
(1)由tan 4
A
=2,得tan
A= 13 ,
所以 sin 2A
sin 2A cos
2
A
= 2 tan A
2 tan A
1
= 2 .
5
(2)由tan A= 1 ,A∈(0,π),得
答案 A 在△ABC中,设A,B,C所对的边分别为a,b,c,则由c2=a2+b2-2abcos C,得13=9+b2-2×3b×
12
,即b2+3b-4=0,解得b=1(负值舍去),即AC=1.故选A.
评析 本题考查了余弦定理的应用和方程思想,属容易题.
5.(2018课标全国Ⅰ文,16,5分)△ABC的内角A,B,C的对边分别为a,b,c,已知bsin C+csin B=
5
5
又因为sin
B=sin(A+C)=sin 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十二 解三角形【母题原题1】【2018浙江,13】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =,b =2,A =60°,则sin B =___________,c =___________. 【答案】 (1).(2). 3【解析】分析:根据正弦定理得sin B ,根据余弦定理解出c . 详解:由正弦定理得,所以由余弦定理得(负值舍去).【母题原题2】【2017浙江,14】已知△ABC,AB=AC=4,BC=2. 点D 为AB 延长线上一点,BD=2,连结CD ,则△BDC 的面积是___________,cos∠BDC=__________.【答案】 【解析】取BC 中点E ,由题意: AE BC ⊥,△ABE 中, 1cos 4BE ABC AB ∠==,∴1cos ,44DBC sin DBC ∠=-∠=,∴1sin 2BCDSBD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=cos BDC ∠=.综上可得,△BCD 面积为2cos 4BDC ∠=.【名师点睛】利用正、余弦定理解决实际问题的一般思路:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可以利用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及两个或两个以上三角形,这时需作出这些三角形,先解够条件的三角形,再逐步解其他三角形,有时需要设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要的解.【母题原题3】【2016浙江,理16】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B +=.(1)证明: 2A B =;(2)若ABC ∆的面积24a S =,求角A 的大小.【答案】(1)证明见解析;(2)2A π=或4A π=.【解析】试题分析:(1)由正弦定理得sin sin 2sin cos B C A B +=,进而得()sin sin B A B =-,根据三角形内角和定理即可得结论;(2)由24a S =得21sin 24a ab C =,再根据正弦定理得及正弦的二倍角公式得sin cos C B =,进而得讨论得结果.(2)由24a S =得21sin 24a ab C =,故有1sin sin sin2sin cos 2B C B B B ==,因sin 0B ≠,得sin cos C B =.又(),0,B C π∈,所以2C B π=±.当2B C π+=时, 2A π=;当2C B π-=时, 4A π=.综上, 2A π=或4A π=.【母题原题4【2016浙江,文16】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知b+c="2acos" B. (Ⅰ)证明:A=2B ; (Ⅱ)若cos B=23,求cos C 的值. 【答案】(Ⅰ)证明详见解析;(Ⅱ) 22cos 27C =. 【解析】试题分析:本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力. 试题解析:(Ⅰ)由正弦定理得sin sin 2sin cos B C A B +=, 故()2sin cos sin sin sin sin cos cos sin A B B A B B A B A B =++=++, 于是()sin sin B A B =-,又(),0,πA B ∈,故0πA B <-<,所以()πB A B =--或B A B =-, 因此πA =(舍去)或2A B =,所以, 2A B =.【思路点睛】(Ⅰ)用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A , B 的式子,根据角的范围可证2A B =;(Ⅱ)先用同角三角函数的基本关系及二倍角公式可得cos2B ,进而可得cos A 和sin A ,再用两角和的余弦公式可得cos C .【命题意图】1.考查三角公式、正弦定理、余弦定理及其应用;2.考查式子变形运算求解能力、转化与化归思想、数形结合思想以及分析问题解决问题的能力.【命题规律】高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等. 【答题模板】解答解三角形大题,一般考虑如下三步:第一步:分析图形特征,选择适用公式.即根据三角形的形状、已知条件,确定选用何种三角公式、定理; 第二步:正确运用公式,实施边角转化.根据已有条件,利用三角公式、正弦定理或余弦定理,将问题向边或角实施转化;第三步:运算求解.根据题目要求,进一步求解. 【方法总结】1.化简三角函数式的规律一看“角”,这是最重要的一环,通过角之间的差别与联系,把角进行合理地拆分,从而正确使用公式 二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“弦切互化”三看“结构特征”,分析结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇根式化被开方式为完全平方式”等2. 化简三角函数式注意事项:(1)常用技巧:弦切互化,异名化同名,异角化同角,降幂或升幂,“1”的代换根式的化简常常需要升幂去根号,在化简过程中注意角的范围,以确定三角函数值的正负5. 利用正弦定理与余弦定理解题,经常需要转化思想,一种是边转化为角,另一种是角转化为边.具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,在解题过程中常用到以下规律: (1)分析已知等式中的边角关系,若要把“边”化为“角”,常利用“2,2,2a RsinA b RsinB c RsinC ===”,若要把“角”化为“边”,常利用sin A=,sin B=,sin C=,cos C=等.(2)如果已知等式两边有齐次的边的形式或齐次的角的正弦的形式,可以利用正弦定理进行边角互换.如果已知中含有形如222(b c a bc λλ+-=为常数)的代数式,一般向余弦定理靠拢. (3)余弦定理与完全平方式相联系可有:()()2222221a b c bccosA b c bc cosA =+-=+-+.可联系已知条件,利用方程思想进行求解三角形的边;与重要不等式相联系,由222b c bc +≥,得()22222221a b c bccosA bc bccosA bc cosA =+-≥-=-,可探求边或角的范围问题.1.【2018届腾远(浙江卷)红卷】在中,内角所对的边分别是,若,则角的值为( )A. B. C. D. 【答案】C2.【2018届辽宁省凌源市上期末】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且ABC ∆的面积,则c =( )【答案】B【解析】 ,所以tan 2C =,由余弦定理得2222cos 17c a b ab C =+-=,所以 B.3.【2018届青海省西宁市二模】在中,内角的对边分别为,若,且的面积为,则________________.【答案】【解析】分析:先利用三角形的面积公式得到,再利用正弦定理将边角公式转化为边边关系,进而利用余弦定理进行求解.详解:因为的面积为,所以,即,由,得,即,则.4.【2018届河南省最后一次模拟】已知的内角的对边分别为,且,则__________.【答案】【解析】分析:由题意结合正弦定理角化边可得,结合余弦定理求得c的长度,最后利用正弦定理即可求得最终结果.详解:因为,所以.由余弦定理得,又,所以.,所以.由正弦定理得,即,解得.5.【2018届浙江省教育绿色评价联盟5月适应性】在△中,内角的对边分别为.已知,,,则______,______.【答案】【解析】分析:由,,,利用正弦定理和余弦定理及三角形的面积公式可求出结果.详解:由于,则,解得,由于,利用正弦定理,则,整理得,解得,由,解得,,则,故答案为,.6.【2018届浙江省杭州市第二次检测】设内切圆与外接圆的半径分别为与.且则=_________;当时,的面积等于__________.【答案】 -【解析】令,,则,7.【浙江省嵊州市高三上期末】在ABC中,内角A,B,C所对的边分别为a,b,c,b=,则sin A=__________,c=__________.2a=,4【答案】【解析】2120c c +-=,得3c =或4c =-(舍去),故答案为,(2) 3.8.【2018届浙江省杭州市学军中学5月模拟】已知中,角的对边分别为,且满足,则__________,__________.【答案】 . 2.【解析】分析:由已知利用三角函数恒等变换的应用可得sin (2A+)=,可求范围:2A+∈(,),利用正弦函数的图象和性质可求A 的值,利用三角形面积公式可求c 的值,进而利用余弦定理可求a 的值,根据比例的性质及正弦定理即可计算得解. 详解:∵,可得:cos2A+sin2A=1,∴sin(2A+)=,∵0<A <π,可得:2A+∈(,),∴2A+=,可得:A=.∵b=1,S △ABC ==bcsinA=,∴c=2,∴由余弦定理可得:a==,∴故答案为:,2.9.【2018届宁夏石嘴山市4月一模】在中,内角的对边是,若,则等于__________. ·【答案】10.【2018届北京市丰台区一模】在△ABC 中, 2a =, 4c =,且3sin 2sin A B =,则cos C =____.【解析】在△ABC 中, 2a =, 4c =,且3sin 2sin A B =,故答案为:点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o等特殊角的三角函数值,以便在解题中直接应用.11.【2018年河南省濮阳市升级考试】在中,,,分别为角,,所对的边长,已知的周长为,,且的面积为.(Ⅰ)求边的长;(Ⅱ)求角的余弦值.【答案】(Ⅰ)1;(Ⅱ).【解析】分析:(Ⅰ)由三角形周长得到三边之和,已知等式利用正弦定理化简得到关系式,两式联立求出AB的长即可;(Ⅱ)利用三角形面积公式列出关系式,把已知面积代入求出,,利用余弦定理表示出.(Ⅱ)由(Ⅰ)知:,又,得,.12.【2018届宁夏回族自治区银川一中考前训练】已知△内角,,的对边分别为,,,.(1)求;(2)若,,求△的面积.【答案】(1);(2).【解析】分析:(1)先根据二倍角公式以及同角三角函数关系得,解得A;(2)根据正弦定理得,再根据余弦定理得,最后根据三角形面积公式得结果.详解:(1)由于,所以,.因为,故.11。