太阳能光伏设计方案

合集下载

太阳能光伏并网发电项目设计方案

太阳能光伏并网发电项目设计方案

太阳能光伏并网发电项目设计方案摘要:本文旨在为太阳能光伏并网发电项目设计提供全面的方案。

首先,介绍了太阳能光伏发电的工作原理和优势。

然后,讨论了项目的整体设计和组成部分,包括太阳能光伏阵列、逆变器、电网接入等。

接下来,详细描述了设计流程和技术要求。

最后,给出了项目实施过程中可能面临的挑战和解决方案。

1. 引言太阳能光伏发电是一种可再生能源,具有零排放和可持续利用的优势,因此在全球范围内受到广泛关注。

太阳能光伏并网发电项目是利用太阳能光伏电池板将太阳能转化为电能,并将其并入电网供电的一种方式。

本文将详细介绍该项目的设计方案。

2. 工作原理和优势太阳能光伏发电是通过将太阳能辐射转化为直流电能,然后通过逆变器将其转化为交流电能并注入电网。

光伏电池板是实现这一过程的关键组成部分,其工作原理是利用半导体材料吸收太阳能光子,产生电子与空穴对,并通过电场效应将它们分离,形成电流。

与传统能源相比,太阳能光伏发电具有环保、清洁、可再生及分布式等优势。

3. 项目设计和组成部分太阳能光伏并网发电项目的主要组成部分包括太阳能光伏阵列、逆变器、电网接入及监控系统。

3.1 太阳能光伏阵列太阳能光伏阵列由若干个太阳能光伏电池板组成,其数量和布局应根据项目需求和场地条件进行合理设计。

通常,太阳能电池板采用多晶硅或单晶硅材料制成,并具备耐候性和高转换效率。

3.2 逆变器逆变器是太阳能光伏发电系统中的核心设备,主要负责将直流电能转化为交流电能,并与电网保持同步。

逆变器还可以监测和调节电压、频率等参数,以确保发电系统的稳定运行和最大功率输出。

3.3 电网接入电网接入是将太阳能光伏发电系统的电能注入到电网供电系统中的关键环节。

该部分包括电网连接设备和相关保护装置,如电网接入开关、断路器、保护继电器等,以确保与电网的安全连接和稳定运行。

3.4 监控系统太阳能光伏并网发电项目需要配备监控系统,用于实时监测和分析发电系统的运行状态和性能。

监控系统可以通过无线通信技术与电网中心进行数据传输和远程监控,提高系统的运行效率和故障排除能力。

太阳能光伏电站设计方案

太阳能光伏电站设计方案

引言概述:太阳能光伏电站设计方案是为了充分利用太阳能资源并提供可再生能源解决方案的重要措施。

本文将从选址、系统设计、电池组件选择、并网接入和运维管理五个方面,详细阐述太阳能光伏电站设计方案。

正文内容:一、选址1.根据地形、气象条件以及承载能力对光伏电站选址进行评估。

2.考虑附近的电网接入条件、就近供电的便利性和社会环境等因素。

3.光照条件、风速和风向等气象数据的分析,对选址方案进行评估。

二、系统设计1.根据需求和资源预测,确定光伏电站所需的容量。

2.设计光伏电池板的布局和倾角,优化采光效果,提高发电效率。

3.考虑逆变器、蓄电池组和配电系统的设计和安装。

4.设计并建立科学的能量管理系统,以便及时监测和调整光伏电站的发电和储能情况。

5.考虑清洁能源的利用效率,设计光伏电站与电网的互补性。

三、电池组件选择1.根据电站容量、环境条件和预算等因素,选择合适的太阳能光伏电池组件。

2.考虑光伏电池组件的效能、质量及可靠性等关键指标。

3.对不同厂家的光伏电池组件进行比较评估,选择性价比最高的光伏电池组件。

4.考虑光伏电池组件的维护和保养成本,选择易于维护和损坏率较低的电池组件。

四、并网接入1.根据所在地区的电网规定和标准,设计并建设合规的光伏电站。

2.需要与供电局和电网公司等相关部门进行沟通,了解接入条件和要求。

3.设计电站的交流电池容量及电压等参数,确保与电网的兼容性。

4.保证光伏电站的安全性和稳定性,确保无论是正常运营还是特殊情况下,都不会给电网带来负面影响。

五、运维管理1.建立光伏电站的日常维护和管理机制,包括设备巡检、清洁、维修等。

2.监测光伏电站的发电量和能源利用情况,及时进行调整和优化。

3.建立完善的安全管理制度,确保工作人员的安全和设备的稳定运行。

4.培训电站运维人员,提高他们的专业素质和技能水平。

5.持续更新和改进光伏电站管理系统,提高光伏发电效率和技术水平。

总结:太阳能光伏电站设计方案是为了充分利用太阳能资源并提供可再生能源解决方案的重要措施。

太阳能光伏发电设计方案

太阳能光伏发电设计方案

太阳能光伏发电设计方案一、引言近年来,传统能源的紧缺以及环境污染问题日益凸显,太阳能光伏发电作为一种清洁可再生的能源形式,受到了广泛的关注和应用。

本文旨在提出一个太阳能光伏发电的设计方案,以满足日常用电需求,同时探讨与传统电力系统的联网方式,实现可持续发展的目标。

二、系统概述本设计方案主要由太阳能光伏电池组、逆变器、蓄电池组以及配套的监控系统组成。

太阳能光伏电池组将太阳能转化为直流电能,并通过逆变器将其转化为交流电能,供应给家庭、企事业单位。

同时,蓄电池组用于储存多余的电能,以备不时之需。

监控系统能够实时监测太阳能光伏发电系统的运行状态,并提供故障报警功能。

三、太阳能光伏电池组设计1. 太阳能电池板选择选择高效、耐用的太阳能电池板是太阳能光伏发电系统设计的基础。

目前市场上常见的太阳能电池板主要有单晶硅、多晶硅和非晶硅等材料。

根据实际需求和预算考虑,选取适当的太阳能电池板。

2. 并联与串联连接为了提高太阳能光伏发电系统的输出电压和电流,可以采用并联与串联连接方式。

通过合理的连接方式,确保系统最大化地利用太阳能资源,同时满足用电需求。

四、逆变器设计1. 逆变器的选择逆变器是将直流电能转化为交流电能的核心设备。

在选择逆变器时,需要考虑其转换效率、输出电压稳定性、负载能力等因素。

2. 逆变器的安装与布置逆变器的安装位置应选择在通风良好、阴凉、干燥的地方,以确保其正常运行和散热。

同时,在布置时要注意与其他设备的间隔,保持空气畅通,防止故障和损坏的发生。

五、蓄电池组设计1. 蓄电池的选择蓄电池是太阳能光伏发电系统的能量储存部分,其选择应考虑电压、容量、寿命以及充放电效率等方面的因素。

根据实际需要,选择适合的蓄电池类型。

2. 蓄电池的安装与管理蓄电池的安装应遵循安全规范,确保其固定牢固,避免因振动而损坏设备。

同时,定期进行蓄电池的充电与放电管理,有效延长蓄电池的使用寿命。

六、系统联网与监控1. 与电力系统的联网方式太阳能光伏发电系统可以选择与传统电力系统进行并网供电,即将太阳能光伏发电系统的电能与电网相连接。

太阳能光伏设计方案

太阳能光伏设计方案

太阳能光伏设计方案一、引言随着环境保护意识的增强和可再生能源的重要性日益凸显,太阳能光伏逐渐成为世界能源领域的焦点。

本文将提出一项太阳能光伏设计方案,旨在充分利用太阳能资源,为可持续发展提供可靠的清洁能源。

二、项目概述为了确保设计方案的实施顺利,我们首先需要进行项目概述。

本项目旨在为某个地区的居民和企业提供太阳能光伏发电系统。

系统将包括太阳能电池板、逆变器以及与电网连接的系统组件。

通过在建筑物屋顶安装太阳能电池板,捕获太阳能并转换为电能储存,再通过逆变器将直流电转换为交流电并注入电网,以供用户使用。

本设计方案将重点考虑系统的可靠性、效率和经济性。

三、资源评估在进行设计方案之前,我们需要对该地区的太阳能资源进行评估。

通过统计太阳辐射数据以及考虑地理位置和气候条件,可以确定每年太阳能光伏发电系统的预期发电量。

同时还需考虑建筑物屋顶的可利用面积以及周围环境对光伏板安装和发电效果的影响。

四、系统设计4.1 太阳能电池板选型根据资源评估的结果,我们可以选择合适的太阳能电池板。

太阳能电池板的效率和质量是影响发电性能的重要因素,因此我们在选择太阳能电池板时需综合考虑功率输出、耐久性和维护成本。

4.2 逆变器选择逆变器是将太阳能电池板输出的直流电转换为交流电的核心设备。

在选择逆变器时,我们需要考虑其转换效率、稳定性和安全性。

合适的逆变器选择将直接影响整个系统的性能。

4.3 电网连接为了实现与电网的连接和电能注入,我们需要选用合适的系统组件,如电网连接控制器和电网逆变器等。

这些组件应具备稳定的功能和良好的互联性,以确保系统安全性和运行可靠性。

五、系统安装与调试在系统设计完成后,我们需要进行安装与调试工作。

包括太阳能电池板的安装、电池板与逆变器的连接、逆变器与电网连接等。

安装与调试的目的是确保系统各组件正常工作,并将电能准确注入电网。

六、系统运行与维护系统运行期间,我们需要进行定期的运行与维护工作,以确保系统的稳定运行和性能优化。

太阳能光伏方案设计及光伏安装

太阳能光伏方案设计及光伏安装
(2)设立安全管理员,负责施工现场的安全监督和事故预防。
(3)对施工人员进行安全知识培训,提高施工人员的安全意识和自我保护能力。
(4)施工现场配备必要的安全生产设施,如安全帽、防护手套、安全带等。
(5)严格执行安全操作规程,对违章作业进行严肃处理。
(6)定期进行安全检查,发现安全隐患及时整改。
(7)制定应急预案,针对可能发生的安全事故,提前做好应急准备。
- 完成施工现场的勘察,制定施工方案。
- 办理施工许可等相关手续。
- 采购施工材料,确保材料按时到场。
- 组织施工人员培训,确保施工人员熟悉施工工艺和安全操作规程。
(2)施工实施阶段(第3-8周):
- 进行光伏支架基础施工,包括土方开挖、混凝土浇筑等。
- 安装光伏支架系统,确保支架稳固可靠。
- 安装光伏组件,并进行串并联连接。
- 对光伏系统进行定期巡检,确保系统稳定运行。
- 及时处理运行过程中出现的问题,确保系统发电效率。
- 对业主进行光伏系统操作和维护培训,提高业主的自我运维能力。
本施工方案在施工材料与进度安排方面,充分考虑了工程实际需求,确保施工过程高效、有序进行。通过科学合理的进度安排,确保工程按时完成,达到预期效果。
1. 文明环保施工:
(1)加强施工现场环境卫生管理,确保施工现场干净、整洁。
(2)设立专门的垃圾存放区,分类存放施工垃圾,定期清理,避免环境污染。
(3)施工现场设置明显的安全警示标志,提醒施工人员注意安全。
(4)合理安排施工时间,减少施工噪音,避免影响周边居民。
(5)加强对施工人员的环保教育,高环保意识,降低施工过程中的环境污染。
(4)采购供应组:
- 采购经理:1名,负责设备、材料的采购和供应工作。

光伏系统设计方案

光伏系统设计方案

光伏系统设计方案一、系统的组成部分:1.光伏电池板:负责将太阳能光转化为直流电能的关键部件。

2.逆变器:将直流电转化为交流电,并输出到电网或直接供电给负载设备。

3.支架与跟踪系统:用于安装和支撑光伏电池板,并根据太阳光角度进行精确跟踪,提高光伏电池的发电效率。

4.电池储能设备:可选部件,用于储存多余的电能,以便在夜间或低光照条件下供电。

二、工作原理及关键技术:当太阳能光照射到光伏电池板上时,光子的能量被电池中的半导体材料吸收,并激发出电子-空穴对。

这些电子-空穴对产生微弱的电流,通过连接在电池板上的金属导线流动,形成直流电。

逆变器将直流电转化为交流电,并通过电网输送到负载设备上供电。

关键技术包括:1.光伏电池的材料选择:常见的光伏电池材料包括单晶硅、多晶硅、非晶硅、铜铟镓硒等。

在选择材料时,需要考虑电池的效率、成本和可靠性等因素。

2.光伏电池板的布局和朝向选择:为了最大化发电效率,光伏电池板应以合适的角度安装,使其能够充分接收到阳光。

3.跟踪系统的设计:通过跟踪系统,可以实现光伏电池板在整个日照周期内始终朝向太阳光,提高发电效率。

4.逆变器的设计:逆变器是将直流电转化为交流电的关键设备,其设计需要考虑电能质量、输出功率和效率等因素。

三、系统设计原则:1.综合整体效益:在设计过程中,要综合考虑系统的发电效率、经济性以及环保性,以实现最佳的整体效益。

2.合理匹配电池板和逆变器:在选择光伏电池板和逆变器时,要考虑其功率、电压和电流等参数,以确保匹配并提高系统的效率。

3.安全可靠:系统设计中要考虑对系统的保护措施,如过电流保护、过温保护和防雷保护等,以确保系统的安全运行。

4.可维护性:尽量选择可靠性高、维护成本低的设备,并合理布局,方便检修和维护。

总之,光伏系统设计方案是将太阳能光转化为电能的关键步骤。

通过合理选择光伏电池板、逆变器和跟踪系统,并遵循安全可靠、经济环保的设计原则,可以实现高效发电,并为可持续发展做出贡献。

太阳能光伏发电设计方案

太阳能光伏发电设计方案

电池板维护:定期清洁和检查电池板,确保发电效率
电池板串并联:根据系统电压和电流需求,合理设计电池板串并联方式
电池板散热设计:考虑散热措施,提高电池板使用寿命
电池板安装角度:根据当地纬度和光照条件,选择合适的安装角度
03
光伏逆变器的选择与设计
光伏逆变器的种类和特点
04
03
集中式逆变器:适用于大型光伏电站,效率高,但成本也较高。
06
光伏逆变器的工作原理
光伏逆变器是一种将太阳能电池板产生的直流电转换为交流电的设备。
01
光伏逆变器通常具有最大功率点跟踪(MPPT)功能,可以自动调整太阳能电池板的工作状态,以最大化太阳能发电量。
03
其工作原理主要包括:通过太阳能电池板将太阳能转化为直流电,然后经过逆变器将直流电转换为交流电,最后输出到电网或供负载使用。
安装电池板:将电池板固定在支架上,确保电池板朝向正南,倾斜角度与当地纬度一致
太阳能光伏发电系统的调试与运行
01
02
03
04
调试前准备:检查系统各部件是否安装正确,确保无安全隐患
调试步骤:按照说明书进行系统调试,包括光伏组件、逆变器、控制器等设备的调试
运行监测:实时监测系统运行情况,确保系统正常工作
实例分析:以实际项目为例,分析太阳能光伏发电系统的经济效益
内部收益率:计算内部收益率,评估项目的盈利能力
汇报人:XXX
感谢您的观看
03
储能系统的安全性:确保储能系统的安全运行,避免火灾、爆炸等事故
05
储能系统的容量:根据光伏发电系统的规模和需求进行设计
02
储能系统的寿命:考虑储能系统的使用寿命,降低维护成本
04
储能系统的成本:在满足性能要求的前提下,选择成本较低的储能系统

太阳能光伏发电设计方案

太阳能光伏发电设计方案

太阳能光伏发电设计方案1. 简介太阳能光伏发电是一种利用太阳能将光能转化为电能的技术。

光伏发电系统包括太阳能电池板、控制器、逆变器和电池组等组件,可以广泛应用于家庭、商业和工业领域。

2. 方案设计2.1 太阳能电池板太阳能电池板是光伏发电系统的核心组件,其作用是将太阳光转化为直流电能。

根据实际需求和可行性分析,确定电池板的数量和安装位置。

通过测量和计算,确定所需电池板的总功率和布置方式。

2.2 控制器控制器用于监测和控制光伏发电系统的电压、电流和功率等参数,以确保系统的稳定和高效运行。

选择适合系统需求的控制器,并根据系统参数进行配置和调试。

2.3 逆变器逆变器是将直流电转化为交流电的装置,用于将太阳能电池板产生的直流电能转化为家庭、商业或工业用电所需的交流电能。

根据用电负载的需求和系统电压等参数选择逆变器,并进行连接和设置。

2.4 电池组电池组是光伏发电系统的储能装置,用于存储多余的电能以便在夜间或阴天时使用。

选择适合系统容量和性能要求的电池组,并进行正确的连接和配置。

2.5 支架和安装根据安装位置和角度,选择合适的支架和安装方式,确保太阳能电池板能够最大限度地吸收太阳能。

进行合理的线缆布置和安全保护措施,确保光伏发电系统的安全和稳定。

2.6 系统监测和维护安装完毕后,必须进行系统的监测和维护。

定期检查太阳能电池板的清洁情况,确保其表面没有灰尘或污垢影响光吸收效果。

监测光伏发电系统的发电情况,及时发现和解决故障。

3. 性能评估3.1 发电量评估根据地理位置、太阳辐照度和系统参数等因素,对光伏发电系统的理论发电量进行评估。

结合实际使用情况,对系统的实际发电量进行监测和评估,确保系统的性能和稳定性。

3.2 经济效益评估根据太阳能电价、系统建设成本和维护费用等因素,对光伏发电系统的经济效益进行评估。

考虑到系统的回收期和投资回报率等指标,评估系统的经济可行性和可持续性。

3.3 环境影响评估光伏发电是一种清洁能源,对环境几乎没有污染。

太阳能光伏发电系统设计方案(PPT112页)

太阳能光伏发电系统设计方案(PPT112页)

施工图设计包括:
设备接线图。 设备位置图 系统走线图 线缆选型 设备细化选型 防雷设计 配电设计 基础设计 支架强度计算 系统效率计算
2.优化设计原则
1)通过多方案比较,确定较为合理的技术方案。 2)分析选址资源情况。 3)合理布局太阳电池方阵。 4)大尺寸组件安装、快速便捷。 5)设备与设备之间的连线尽量采用短连线,要做
(2)听(沟通,问) 对地面并网工程,通过和 项目客户、相关人员、当地群众的咨询,了解掌握 当地的情况。对老客户,可直接切入重点;对新客 户,积极发展;官方客户,政策方针很重要;对政 府工程,更关注工程带来的形象效应;对于非政府 工程,则更关注工程的投资及经济性;对于BIPV工 程,需要对建筑的结构受力充分的了解。
到近处汇流。 6)选择合适的变压器是提高效率的重要环节。 7)系统要集中监控,预防事故的发生。
二、现场考察内容
1.对拟定安装点环境勘察
环境包括地理环境和人文环境:首先了解地理 环境对当地的气候环境做适当的了解,包括经 纬度、降雨量、湿度、气温,最大风力等。而 后了解人文环境、用户的需求,了解用户每年 每月大致用电量和用户对项目的要求,并记录。
2.并网发电系统的防雷设计
主要有以下几个方面: 1)地线是避雷、防雷的关键,在进行配电室基础建设和太
阳电池方阵基础建设的同时,选择光伏发电站附近土层较厚、 潮湿的地点,挖2m深地线坑,采用40扁钢,添加降阻剂并 引出地线,引出线采用 35mm2 铜芯电缆,接地电阻应小于 1Ω。 2)在配电室附近建一避雷针,高15m,地线与配电室地线 相连。 3)太阳电池方阵电缆进入配电室的电压为 DC220V,采用 PVC管地埋,加防雷器保护。电池板方阵的支架应保证良好 的接地,也与配电室地线相连。 4)并网逆变器交流输出线采用防雷箱一级保护(并网逆变 器内有交流输出防雷器)。

光伏项目设计方案—380V

光伏项目设计方案—380V

光伏项目设计方案—380V一、项目背景和目的光伏项目是利用太阳能将光能转化为电能的一种可再生能源项目。

该项目的目的是通过建设光伏发电站,利用太阳能发电,为当地提供清洁、可持续的电力资源。

二、项目规模和布局1.项目规模:该光伏项目的设计容量为380V,以满足当地需求。

2.项目布局:根据当地地形和日照条件,光伏发电站将建设在平坦的地面上,选择优质的太阳能收集器,并合理布置,以充分利用太阳能资源。

三、光伏系统设计1.太阳能电池板选择:根据当地的太阳能资源情况和光伏系统的需求,选择高效、稳定的太阳能电池板,如多晶硅太阳能电池板或单晶硅太阳能电池板。

同时,在设计中要注意考虑电池板的耐久性和维护性。

2.逆变器设计:逆变器是将太阳能电池板产生的直流电转化为交流电的关键设备。

在选择逆变器时,要考虑其稳定性、效率和功率因数等因素,以确保电能转换的高效率和稳定性。

3.并网接入设计:光伏发电站应与当地电网进行并网接入。

在设计时,需要考虑并网保护设备和保护装置,确保光伏发电系统与电网的安全连接,并满足当地的电力质量要求。

4.变压器设计:为了将光伏发电产生的380V电能转化为适合当地用户使用的电能,需要设置合适的变压器。

变压器的设计要考虑其容量、效率和可靠性等因素。

5.光伏支架设计:光伏支架是支撑太阳能电池板的结构,应具备足够的强度和稳定性。

在选择材料和设计结构时,考虑到当地的气候条件和土质状况,以确保光伏系统的长期稳定运行。

四、项目实施计划1.前期准备:进行项目调研,确定项目规模和布局,编制项目实施计划。

同时,需要与当地有关部门进行沟通和协调,办理各种行政手续。

2.设计阶段:根据项目需求进行光伏系统的设计,包括太阳能电池板的选择、逆变器和变压器的设计,光伏支架的设计等。

3.采购和建设阶段:根据项目设计方案和采购计划,采购相关设备和材料,并进行光伏发电站的建设。

在建设过程中,需要统筹协调各项工作,确保项目按时、按质量完成。

光伏设计方案说明书

光伏设计方案说明书

光伏设计方案说明书1. 引言本文档旨在对光伏设计方案进行详细说明,包括设计的背景、目标和实施计划等内容。

光伏设计方案是为了利用太阳能光伏发电技术,实现清洁可持续能源的利用和供电。

本方案将涵盖光伏电池组件选择、系统布局、电网接入等关键步骤。

2. 设计背景目前,传统能源的使用带来了严重的环境污染和气候变化,为了减少对环境的负面影响以及降低能源消耗,光伏发电被广泛应用。

本次光伏设计方案的背景包括以下几个方面:2.1 环境保护意识的提高人们对环境保护的意识日益增强,对可再生能源的需求也随之增加。

2.2 政府政策扶持政府出台了一系列支持光伏发电的政策,包括补贴政策和税收优惠。

2.3 经济可行性随着技术的发展和成本的下降,光伏发电的经济效益得到了提升,成为一种可以实现商业化运营的能源形式。

3. 设计目标本次光伏设计方案的目标是将太阳能转化为电能,并将其接入电网,以供给相关设备和家庭用电。

具体的设计目标包括:3.1 提高系统效率通过合理的组件选择、系统布局和优化方案,提高光伏发电系统的整体效率。

3.2 实现电网接入确保光伏发电系统能够与电网进行无缝衔接,实现双向传输电能。

3.3 安全可靠保证光伏发电系统的安全性和可靠性,规避火灾和其他事故风险。

3.4 经济可行设计一个经济可行的光伏发电系统,使投资回报率尽可能高。

4. 设计方案本节将详细介绍光伏设计方案的具体内容,包括组件选择、系统布局和电网接入等。

4.1 组件选择根据实际需求和预算限制,选择合适的光伏电池组件,考虑其转化效率、稳定性和可靠性等因素。

4.2 系统布局合理规划光伏电池组件的布局,使其能够最大程度地接收太阳辐射。

同时,考虑光伏组件的安装角度和阴影遮挡等因素。

4.3 逆变器选择选择适合系统规模和电压要求的逆变器,将直流电能转换为交流电能,以供应给电网或相关设备。

4.4 电网接入设计合适的电网接入方案,包括电网的连接方式、电流容量的选择以及与电网之间的保护装置。

太阳能光伏发电设计方案

太阳能光伏发电设计方案

太阳能光伏发电设计方案
太阳能光伏发电是一种利用太阳辐射能进行能源转换的技术,可以实现清洁、可再生能源的利用。

以下是一个针对太阳能光伏发电的设计方案,包括场地选择、光伏组件选择和电网连接等内容。

首先,场地选择是太阳能光伏发电项目的重要环节。

选址时应优先选择南向朝阳的位置,确保光照条件良好。

同时,要考虑到场地的平整度和遮挡物,以确保太阳能光伏组件能够正常工作。

其次,要选择合适的光伏组件。

光伏组件的选择需要考虑其转换效率、寿命和可靠性等因素。

高效率的光伏组件能够更好地利用太阳能辐射,提高发电量。

此外,寿命和可靠性也是考虑的关键因素,确保光伏组件能够长期稳定地运行。

再者,电网连接是太阳能光伏发电的关键环节。

可以选择将发电系统与电网直接连接,通过电网购电和售电的方式实现能量的平衡。

同时,也可以考虑使用储能系统,将多余的电能储存起来,供夜间或低光照时使用。

在设计方案中,还需要计算系统的设计容量。

可以根据场地可利用面积和可用的光伏组件的转换效率来确定光伏阵列的装机容量。

同时,也要根据当地的用电需求和电价来制定发电量目标,以确保项目的经济效益。

最后,要对系统进行监测与维护。

通过建立监测系统,实时监
测发电量、运行状态等参数,及时发现故障并进行维护。

同时,定期检查和清洁光伏组件,确保其正常运行,提高发电效率。

综上所述,太阳能光伏发电设计方案需要考虑场地选择、光伏组件选择、电网连接、系统容量计算和监测维护等因素。

通过科学合理的设计,可以实现太阳能光伏发电项目的高效稳定运行,为推动清洁能源利用做出贡献。

太阳能光伏系统设计方案

太阳能光伏系统设计方案

太阳能光伏系统设计方案一、引言随着全球对清洁能源需求的增长和环境保护的呼喊,太阳能光伏系统作为一种可再生能源形式备受关注。

本文将详细介绍太阳能光伏系统的设计方案,着重讨论组件选择、布局设计和电气连接等关键要点。

二、组件选择1. 太阳能电池板太阳能电池板是光伏系统的核心部件,直接负责将太阳光转化为电能。

在选择太阳能电池板时,应考虑以下因素:(1)高转换效率:太阳能电池板的效率越高,单位面积收集到的太阳能就越多。

(2)良好的耐久性:太阳能电池板要能够承受各种气候条件和环境压力,具有长寿命和稳定性。

(3)合适的尺寸与功率:根据实际需求确定太阳能电池板的尺寸和功率,确保系统输出电能满足需求。

2. 逆变器逆变器是将太阳能电池板输出的直流电转换为交流电的装置。

逆变器的选择应注意以下几点:(1)高转换效率:逆变器的转换效率越高,系统的整体效率就越高。

(2)稳定性和可靠性:逆变器应具有良好的稳定性,能够适应电网波动和各种负载条件。

(3)适当的容量:根据太阳能电池板的总功率确定逆变器的容量,以保证系统正常运行。

三、布局设计1. 太阳能电池板的安装太阳能电池板的安装应考虑以下几点:(1)朝向:确保太阳能电池板的朝向能够最大程度地接收到光线,提高能源收集效率。

(2)倾角:根据所在地的纬度选择太阳能电池板的倾角,使其能够在不同季节接收到最大光照。

(3)阴影遮挡:避免太阳能电池板被周围建筑物或树木遮挡,影响能源收集效果。

2. 电气连接太阳能光伏系统的电气连接应遵循以下原则:(1)并联连接:将太阳能电池板通过逆变器并联连接到电网,以实现与电网的互联。

(2)保护装置:在电气连接中配置适当的安全保护装置,包括过流保护器、短路保护器等,以确保系统的安全运行。

(3)调度装置:根据实际需要,安装合适的调度装置,以实现太阳能电池板和电网之间的优化能量调配。

四、系统效益评估对于太阳能光伏系统的设计方案,除了上述的组件选择、布局设计和电气连接等关键要素外,还需要进行系统效益评估。

光伏发电设计方案

光伏发电设计方案

光伏发电设计方案一、引言光伏发电作为近年来备受关注的清洁能源之一,在能源领域具有广阔的应用前景。

为了促进清洁能源的发展,本文将针对光伏发电的设计方案进行研究与讨论。

二、光伏发电原理光伏发电利用太阳光的辐射能将其转化为电能。

太阳光照射到光伏电池上,激发电池内的光生电荷,形成正负电荷分离。

电荷的分离产生电压,从而形成电流。

通过适当的电路连接和光伏组件的布局,可以实现光伏发电系统的输出。

三、设计方案一:分布式光伏发电系统分布式光伏发电系统是将光伏组件安装在建筑物屋顶或其他地面空闲区域的一种方式。

该方案具有以下优势:1. 空间利用率高:通过充分利用建筑物屋顶或地面空闲区域,可以实现光伏系统的大规模安装,提高能源利用效率。

2. 储能与供电稳定性:分布式光伏发电系统可以与储能设备结合,将多余的电能储存起来,以供夜间或阴天的使用,从而提高供电的稳定性。

3. 环境友好:光伏发电系统不会产生污染物和温室气体,对环境友好,有助于减缓气候变化。

四、设计方案二:集中式光伏发电系统集中式光伏发电系统是将大规模的光伏组件集中安装在一个区域内的一种方式。

该方案具有以下优势:1. 建设成本低:集中式光伏发电系统可以通过规模效益降低建设成本,并且便于维护和管理。

2. 电能输送效率高:由于光伏组件集中安装,电能输送的损耗较小,可以提高输电效率。

3. 实施监控与管理:集中式光伏发电系统可以通过建立监控和管理系统,对光伏组件进行实时监测和维护,提高系统的可靠性和稳定性。

五、设计方案三:光伏与储能系统结合光伏与储能系统的结合是将光伏发电系统与储能设备相结合,以实现电能的存储和调配。

该方案具有以下优势:1. 能源存储:通过储能设备的加入,可以将多余的电能储存起来,以备不时之需,解决光伏发电在夜间或阴天供电不足的问题。

2. 调配灵活:光伏与储能系统结合后,电能的供应可以更加灵活,根据需求进行调配,满足不同场景的用电需求。

3. 可再生能源的最大化利用:光伏与储能系统结合可以最大化利用太阳能资源,提高可再生能源的比例,减少对传统能源的依赖。

太阳能光伏工程方案范本

太阳能光伏工程方案范本

太阳能光伏工程方案范本一、项目概述随着人们对清洁能源的需求不断增长,太阳能光伏发电作为一种可再生的清洁能源,受到了广泛关注。

本项目位于中国南方地区,气候温暖,光照充足,适宜光伏发电。

本方案旨在利用当地的太阳能资源,建设一座光伏发电站,为当地居民提供清洁、稳定的电力资源。

该项目的建设将有效减少碳排放,提升当地的环境质量,促进经济发展。

二、项目内容1.选址:根据气象数据和地形地貌条件,选取了一块位于当地郊区的适宜建设光伏发电站的土地。

2.规划设计:利用地形地貌的特点,设计了一套高效的光伏板布局方案,确保光伏板能够最大程度地吸收阳光,并且占地面积最小化。

3.建设规模:初步规划建设一座100兆瓦的光伏发电站,满足当地居民的需求并有一定的供电能力。

4.设备选型:选择优质的光伏组件、逆变器等核心设备,并且根据实际情况进行了综合考虑,确保设备的性能稳定可靠。

5.配套设施:光伏发电站建设完成后,将配置相应的配电线路、变电设备等配套设施。

6.运维管理:建设完成后将制定详细的运维管理方案,保障发电设备的正常运行,并确保光伏发电站的长期稳定发电。

三、项目建设进度及投资预算1.项目建设进度:初步计划10个月的建设周期,按照规划依次进行选址、规划设计、设备采购、施工建设、调试运行等工作。

2.项目投资预算:初步预计项目总投资约1亿元,其中包括土地租赁费、设备采购费、建设施工费、配套设施费、运维管理费用等,具体费用将根据实际情况进行调整。

三、项目效益分析1.经济效益:利用太阳能光伏发电,无需燃料消耗,省去了燃煤、燃油等能源的成本,有效降低了发电成本,增加了企业的盈利空间。

2.环境效益:光伏发电是一种清洁能源,不会产生污染物和温室气体,通过建设光伏发电站,可减少大量的二氧化碳排放,对环境有着显著的改善作用。

3.社会效益:光伏发电对当地居民的生活和生产带来了便利,为当地经济发展提供了可靠的动力支持,增加了就业机会,促进了当地经济的快速发展。

光伏系统总体设计方案

光伏系统总体设计方案

一、光伏系统总体设计与发电量计算光伏系统总体方案设计主要包括:光伏组件选型、光伏阵列运行方式选择、逆变器选型、光伏方阵和子方阵设计以及年上网电量计算等。

二、光伏组件选型三、太阳能电池概述太阳能光伏系统中最重要的是电池,是收集阳光的基本单位。

大量的电池合成在一起构成光伏组件。

太阳能光伏电池主要有:晶体硅电池(包括单晶硅Mono-Si、多晶硅Multi-Si、带状硅Ribbon/Sheet-Si)、非晶硅电池(a-Si)、非硅光伏电池(包括硒化铜铟CIS、碲化镉CdTe)。

目前市场生产和使用的太阳能光伏电池大多数是用晶体硅材料制作的;薄膜电池中非晶硅薄膜电池占据薄膜电池大多数的市场。

从产业角度来划分,可以把太阳能光伏电池划分为硅基电池和非硅电池,硅基电池已较佳的性价比和成熟的技术,占据了绝大多数的市场份额。

(1)晶体硅光伏电池晶体硅仍是当前太阳能光伏电池的主流,多晶硅电池的生产主要有两种方法,一种是通过浇铸、定向凝固的方法,制成多晶硅的晶锭,再经过切割、打磨等工艺制成多晶硅片,进一步印刷电级、封装,制成电池。

浇铸方法制造多晶硅片不需要经过单晶拉制工艺,消耗能源较单晶硅电池少,并且形状不受限制,可以做成适合光伏组件布置的方形:除不需要单晶拉制工艺外,制造单晶硅电池的成熟工艺都可以在多晶硅电池的制造中得到应用。

另一种方法是在单晶硅衬底上采用化学气相沉积(VCD)等工艺形成无序分布的非晶态硅膜,然后通过退火形成较大的晶粒,以提高发电效率。

多晶硅电池的效率能够达到13~18%,低于单晶硅电池的水平。

单晶硅电池是最早出现,工艺最为成熟的太阳能光伏电池,也是大规模生产的硅基太阳能电池中效率最高的。

单晶硅电池是将硅单晶进行切割、打磨制成单晶硅片,在单晶硅片上经过印刷电极、封装流程制成的,现代半导体产业中成熟的拉制单晶、切割打磨以及印刷刻版、封装等技术都可以在单晶硅电池生产中直接应用。

大规模生产的单晶硅电池效率可以达到14~20%。

太阳能光伏系统设计方案

太阳能光伏系统设计方案

太阳能光伏系统设计方案太阳能光伏系统设计方案步骤一:需求分析首先,我们需要对太阳能光伏系统的需求进行分析。

这包括了系统的规模,即需要发电的功率大小,以及电力需求的时间和地点。

还需确定系统的可靠性要求、使用寿命、维护成本和其他特殊要求等。

根据这些需求,我们可以制定出合适的设计方案。

步骤二:光伏电池板选型在选择光伏电池板时,需要考虑其效率、耐候性、可靠性和成本等因素。

高效率的光伏电池板可以在相对较小的面积上产生更多的电能,而耐候性和可靠性则可以确保系统在各种环境条件下稳定运行。

综合考虑这些因素,我们选择了适合需求的光伏电池板。

步骤三:逆变器选型逆变器是将光伏电池板所产生的直流电能转换为交流电能的关键设备。

在选型时,需考虑逆变器的效率、输出功率、保护功能和可靠性等。

高效率的逆变器可以最大限度地提高光伏电池板所产生的电能利用率。

同时,保护功能可以保证系统在过载、短路和其他故障情况下的安全运行。

步骤四:支架和安装方式选择支架的选择应考虑光伏电池板的安装角度和方向,以最大程度地接收太阳辐射。

此外,还需考虑支架的稳定性和耐久性,以确保系统长期稳定运行。

根据安装地点的特点,我们选择了适合的支架和安装方式。

步骤五:电缆和连接器设计电缆和连接器是将光伏电池板、逆变器和电网连接在一起的重要组成部分。

在设计时,需考虑电缆的导电能力、耐候性和安全性。

连接器的选择应保证良好的接触性能和防水防尘功能,以及方便的安装和维护。

同时,还需保证系统的电气安全和防雷措施。

步骤六:系统监控和维护在太阳能光伏系统设计方案中,系统监控和维护也是非常重要的一环。

通过系统监控,可以实时监测光伏电池板的发电情况、逆变器的运行状态和电池组的存储电量等。

这有助于及时发现和解决故障,并提高系统的可靠性和运行效率。

此外,定期的维护保养也可以延长系统的使用寿命。

步骤七:系统验收和运行最后,进行系统的验收和运行。

在验收过程中,需要检查所有设备的安装质量和电气连接,确保系统符合设计要求和相关标准。

光伏典型设计方案

光伏典型设计方案

光伏典型设计方案
随着环保意识的不断提高,光伏发电作为一种清洁能源,受到越来越多人的关注。

光伏发电系统的设计方案是影响其发电效率和经济效益的重要因素。

下面介绍一种光伏典型设计方案。

1. 组件选型
组件是光伏发电系统的核心部件,其选型直接影响系统的发电效率和寿命。

在选型时,应考虑组件的转换效率、温度系数、光衰减系数、防反射涂层等因素。

一般来说,单晶硅组件的转换效率较高,但价格也相对较高;多晶硅组件的价格相对较低,但转换效率较低。

根据实际情况选择合适的组件。

2. 逆变器选型
逆变器是将直流电转换为交流电的关键设备,其选型应考虑其转换效率、输出功率、保护功能等因素。

一般来说,逆变器的转换效率越高,系统的发电效率也越高。

同时,逆变器的输出功率应与组件的总功率匹配,以充分利用组件的发电能力。

3. 布局设计
光伏发电系统的布局设计应考虑组件的朝向、倾角、阴影等因素。

一般来说,组件的朝向应朝向南方,倾角应与当地的纬度相等。

同时,应避免组件被树木、建筑物等遮挡,以充分利用太阳能资源。

4. 系统监控
光伏发电系统的监控是保证其正常运行的重要手段。

通过监控系统,可以实时了解系统的发电情况、故障情况等信息,及时进行维护和修复。

同时,监控系统还可以对系统的发电效率、经济效益等进行评估和分析,为后续的优化提供参考。

光伏发电系统的设计方案应综合考虑组件选型、逆变器选型、布局设计和系统监控等因素,以实现系统的高效、稳定、可靠运行。

光伏建设方案

光伏建设方案

光伏建设方案光伏建设方案1. 引言光伏建设方案是指利用太阳能光伏发电技术建设太阳能发电项目的具体设计和实施计划。

光伏发电作为一种清洁、可再生的能源发电方式,在全球范围内得到了广泛的应用和发展。

本文将介绍光伏建设方案的关键要素和步骤,以帮助读者更好地了解并实施光伏发电项目。

2. 光伏建设方案的关键要素光伏建设方案的设计和实施需要考虑以下几个关键要素:2.1 选址选址是光伏发电项目的第一步,合理选址可以最大程度地发挥太阳能资源。

选址主要考虑以下因素:- 光照条件:选择光照充足、阳光照射时间长的地点,以保证光伏电池板的发电效率。

- 地形地貌:选择平整、无阻挡的地区,以便于光伏组件的安装和调整。

- 动植物保护:避免对珍稀动植物生态环境的破坏,选择对生态环境影响小的区域。

2.2 设计光伏建设方案的设计是确保光伏发电系统最高效运行的重要环节。

设计要素包括:- 光伏组件:选择高效、可靠的光伏组件,确保光电转换的效率和寿命。

- 电池储能系统:根据发电需求确定储能系统的容量和类型,保证夜间或低光照条件下的电力供应。

- 逆变器与控制系统:选择逆变器和控制系统,确保将直流电能转换为交流电能并与电网连接。

2.3 施工与安装光伏建设方案的施工与安装是将设计方案转化为实际项目的重要步骤。

施工与安装要注意以下几点:- 安全与稳定性:确保光伏系统的安装与运行过程中不会对施工人员和其他设施造成危险。

- 组件布局与调整:根据选址和设计方案,合理安排光伏组件的布局和调整,最大程度地利用太阳能资源。

- 电气连接:确保光伏发电系统与电网的安全连接,满足电能的输送需求。

- 监测与维护:建立监测系统,及时发现故障并进行维护,确保光伏系统的正常运行。

3. 光伏建设方案的实施步骤光伏建设方案的实施步骤包括:3.1 前期准备前期准备包括市场调研、项目可行性研究和资金筹措等工作。

市场调研可以了解光伏发电项目的市场需求以及竞争格局,项目可行性研究可以评估光伏发电项目的可行性和可行性,资金筹措可以通过投资、贷款等方式融资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。

随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。

它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。

太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。

另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况1.1项目背景及意义本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。

本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。

1.2光伏发电系统的要求因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。

2.系统方案2.1现场资源和环境条件江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。

气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。

年降水量1041.6毫米,年平均气温15.2℃。

具有气候温和、雨量充沛、四季分明等特点。

其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

Nature Resources:2.2光伏系统方案的确定本项目采用独立型光伏系统方案。

系统由电池组件PV阵列,充电控制器、逆变器、蓄电池等部件组成。

(原理图如下:)独立系统原理图本系统由太阳电池组件,跟踪控制系统,控制器,逆变器,蓄电池等部分组成。

太阳电池组件在太阳光的照射下产生直流电流;而充电控制器则协调太阳能电池板、蓄电池和负载的工作,具有自动防止太阳能光伏系统的储能蓄电池过充电和过放电的功能。

蓄电池在系统中的作用就是存储能量,还能对系统起着调节电量、稳定输出的作用。

逆变器的作用是将蓄电池的直流电转变为适合负载使用的正弦波交流电,逆变器输出的交流电能进入配电柜;在配电柜内装有用于输出控制、过流保护、防雷保护等器件。

2.3计算机仿真2.3.1太阳能资源2.3.2能源模型2.4系统方框图系统方框图2.5配置方案1. 本系统共使用了18块电池组件,组件每2块为一串,在接线盒里9串并联后输出。

占地面积约22m2。

2.充电控制器选用48V50A的直流控制器,它是是具有自动防止太阳能光伏系统的储能蓄电池过充电和过放电的设备,由它协调太阳能电池板、蓄电池和负载的工作。

在系统运行时,它能对蓄电池的荷电状况和环境温度自动、连续地进行监测,按照用户设置的参数对其充、放电过程进行控制,起到有效管理光伏系统能量、保护蓄电池及保证整个光伏系统正常工作的作用。

3.逆变器选用的规格为48V,3KVA,输出电压:220V AC,它的作用是将蓄电池的直流电压转变为适合负载使用的正弦波交流电压。

在本系统中采用的正弦波逆变器具有波形失真小、保护功能全、转换效率高、可靠性高的特点。

4.蓄电池在系统中的作用就是存储能量。

由于系统采用48V电压,蓄电池组由24节2V800Ah的蓄电池串联而成。

太阳能电池将太阳辐射能转换为直流电能,通过蓄电池将直流电能转换为化学能储存起来。

另外它还能对系统起着调节电量、稳定输出的作用。

全部蓄电池置于两排双层电池架上。

电池架上装有输出控制开关,可方便地进行投入和切除。

2.6系统主要设备2.6.1电池组件本系统拟采用江苏林洋新能源有限公司生产的SF-160单晶硅电池组件。

江苏林洋新能源有限公司是一家集晶体硅太阳能电池和组件的研发、生产、销售、服务为一体并在美国成功上市的国际性公司。

公司采用世界上最先进的电池片和组件生产设备加之完善的质量管理体系,从而保证了完美的产品品质。

产品通过了IEC61215、TUV、和UL国际认证,在国内享有盛誉。

该太阳能电池片转换效率高,表面玻璃为高透光低铁钢化玻璃,边框材料为轻质电镀铝合金。

SF-160单晶硅电池组件性能SF-160单晶硅太阳能电池的机械特性。

图2 SF-160单晶硅太阳能电池的I-V特性2.6.2充电控制器光伏控制器性能、参数性能特点:1)微电脑芯片控制充放电各参数点、温度补尝系数可编程任意设定,可适应不同场合的特殊要求;2)LCD液晶模块点阵显示,中英文操作菜单,用户可根据需要选择;3)LED指示灯显示各路光伏充电状态和负载通断状态;4)9个轻触按键操作;5)控制电路与主电路完全隔离,具有极高的抗干扰能力;6)1—18路太阳能电池输入控制;7)实时显示蓄电池电压、负载电流、总光伏电流、每路光伏电流、蓄电池温度、累计光伏发电安时数、累计负载用电安时数等十几个参数;8)历史数据统计显示:过充电次数、过放电次数、过载次数、短路次数;9)可编程设定发电机启停电压、次要负载通断电压、风机卸载和恢复电压、路灯光敏切换电压等参数;10)用户可分别设置蓄电池过充电保护和过放电保护时负载的通断状态;11)具有二次下电控制能力,即对主要负载和次要负载在不同蓄电池电压点的下电控制能力;12)各路充电电压检测具有“回差”控制功能,可防止开关进入振荡状态;13)保护功能:具有蓄电池过充电、过放电、输出过载、短路、浪涌、太阳能电池接反或短路、蓄电池接反、夜间防反充等一系列报警和保护功能;14)可配RS232/485 接口,便于远程遥信、遥控;PC监控软件可测实时数据、报警信息显示、修改控制参数,读取30天的每天蓄电池最高电压、蓄电池最低电压、每天光伏发电量累计和每天负载用电量累计等历史数据;15)参数设置具有密码保护功能且用户可修改密码;16)告警:过压、欠压、过载、短路等保护报警;17)多路无源输出报警或控制接点:蓄电池过充电、蓄电池过放电、柴油机启动控制、负载断开、控制器故障;其它备用报警接点用户可选择,如水淹报警等;18)工作模式有阶梯式逐级限流模式、PWM工作模式、一点式工作模式、光开光断模式、光开时断模式、时钟控制模式、光开时断凌晨亮模式,其中前三种模式是针对通用负载场合的,后四种模式是针对路灯负载场合的,所有的延时长度和定时时钟都可以设置;19)用户可设置参数还包括:均充电压、浮充电压、吸收电压、启动电压、动态稳压系数、静态稳压系数、均充状态时间和吸收状态时间等。

20)不掉电实时时钟功能,显示与设置时钟;21)防雷:根据系统要求,可安装不同等级的防雷装置;22)具有温度补偿功能;2.6.3逆变器·32位DSP控制·日本三菱第五代IPM功率模块单元·高效逆变效率达94%(DC220V系列)·多语种液晶显示功能·标准RS485/232通信接口·完美的保护功能·故障记录功能·低电压保护逆变器器性能、参数2.6.4蓄电池3.工程施工3.1工程费用概算:3.2工程周期本项目自签订合同并提交工程首付款后,我公司将着手进行工程所有材料和设备的准备工作,直至系统通过调试,备货期为30天,进场后大约需要10天完成施工。

3.3施工期间需要业主配合的事项⑴按要求提供施工时使用的动力电源。

⑵提供暂时保管进场物资(材料、设备、工具等)的临时仓库。

⑶协助施工方处理在当地施工时意外可能发生的问题。

⑷在调试结束后按合同要求会同我方进行现场验收。

⑸若条件许可,建议业主在工程开始时指派有一定电气基础知识的人员参于现场工作,以便今后更好地做好系统维护工作。

4.经济和社会效应独立系统:它由太阳能电池采集阳光,转化为电能,通过控制和逆变设备,把直流电转换成目前家庭通用的220V交流电。

目前采用高性的胶体铅酸蓄电池作为储能装置,有可有效地为业主在任意时间连续提供电力。

它的配置主要包括:太阳能电池板(光伏组件),控制器,逆变器,供配电柜等设备,主要应用于与国家电网离得比较远的别墅,比如,在一些山区,林地或离城市较远的郊区.这种别墅由于配高低压电线和安装成本昂贵(包括输电线路,电线竿/电塔安装),比较适合安装太阳能独立系统.1.优势特点1)使用寿命长,无需专人维护.其中太阳能电池寿命长达25年以上.2)自给自足,蓄电池作为蓄能装置,把白天太阳能电池收集的电能储存起来,方便业主使用,阴雨天气,可按用户要求连续供电(3-10天);3)一次投资,终身受益,太阳能清洁无辐射,无污染.4)绿色能源,安全环保.间接地减少对大气二氧化碳等温室气体的排放。

5)安全可靠、无噪声、无污染、能量随处可得,不受地域限制6)无须消耗燃料,无机械转动部件, 无须另外架输电线路,可以按照业主的要求,方便地与任意地面或建筑物相接合.7)建造的周期很短,实际建造时间按规模大小来算。

8)不破坏建筑的外观。

太阳能电池板一般安装在屋顶或倾斜面,不会破坏原有建筑外观,甚至有时会增加其建筑的美感。

2.减排效果:光伏发电属于清洁可再生能源,无论从能源角度,还是从环境角度,都是未来发展的重点,光伏并网发电的推广应用,无疑会带来良好的环境效益。

可以粗略计算“环境效益”如下:①每KWh电耗煤:目前我国发电耗煤为平均390g标煤/KWh (能源基础数据汇编,国家计委能源所,1999。

1,p16)②每发1KWh电排放CO2C + O2 = CO212 32 4444/12⨯390 =1430g CO2/KWh ≈ 1.4kg CO2/KWh=1.4⨯10-3TCO2/KWh③每瓦光伏组件平均每年发2KWh.④每瓦光伏组件平均每年相当减排CO2吨数2KWh⨯1.4⨯10-3吨CO2/KWh=2.8⨯10-3T按照EPIA的估计,光伏发电取代柴油发电机的CO2减排效果为1Kg/KWh; 光伏并网发电的平均减排效果为0.6Kg/KWh。

到2020年,全世界光伏发电的累计安装量将达到195GWp,其中大约50%为光伏并网发电。

2000-2020年通过光伏发电达到的CO2的减排量将是7亿吨,仅2020年当年CO2的减排将达到1.64亿吨,相当于4400万辆汽车或75个大型火力发电厂的排放量。

5.公司的服务我公司将坚持质量第一、服务至上的原则,向业主提供最优化的系统设计方案,做好技术和现场施工质量管理。

5.1技术培训在系统调试完毕并投入正常运行后,我公司将指派专业技术人员来业主方对相关人员进行技术培训,培训时间和地点由用户决定。

相关文档
最新文档