六年级数学尺规作图 (4)
2020年中考数学必考考点 专题32 尺规作图(含解析)
专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
小学数学青岛版六年级上册1.3尺规作图学案
小学数学青岛版六年级上册尺规作图导学案1★学习目标:1、掌握尺规作图的基本技能,能完成两种基本作图。
2、对于尺规作图,会写出已知、求作和作法3、会利用基本作图完成已知两边及夹角、两角及夹边和三边作三角形1、尺规作图是指:____________________________________________________________________________________________________________________2、尺规作图:(1)已知∠AOB,作一个角∠AOB(2)、已知:三条线段a、b、c,作⊿ABC,使BC=a,AB=b,AC=b.(3)已知:线段a、b、∠α求作⊿ABC,使BC=a,AB=b,∠B=α.尺规作图导学案2★学习目标:1、掌握尺规作图的基本技能,能完成两种基本作图。
2、对于尺规作图,会写出已知、求作和作法 (4) 已知:线段a 、∠α,∠β 求作⊿ABC ,使BC=a ,∠B=α,∠C=β反馈达标1.用尺规作图,不能作出惟一三角形的( )A.已知两角和夹边;B.已知两边和其中一边的对角C.已知两边和夹角;D.已知两角和其中一角的对边 2.下列画图语言表述正确的是( ) A.延长线段AB 至点C,使AB=BC; B.以点O 为圆心作弧C.以点O 为圆心,以AC 长为半径画弧;D.在射线OA 上截取OB=a,BC=b,则有OC=a+b尺规作图导学案31、如图3点C 在∠AOB 的边OB 上,用尺规作出了CN ∥OA ,作图痕迹中,弧FG 是 ( )A.以点C 为圆心,OD 为半径的弧 B.以点C 为圆心,DM 为半径的弧 C.以点E 为圆心,OD 为半径的弧 D.以点E 为圆心,DM 为半径的弧2.如图,已知∠ABC 边BC 上有一点P ,过P 作平行于AB 的直线.B1.3 尺规作图(2)一、教学目1.进一步熟练尺规作图.2.掌握尺规的基本作图:画线段的垂直平分线,画直线的垂线.3.尺规作图的简单应用,解尺规作图题,会写已知、求作和作法.二、教学重点画图,写出作图的主要画法.三、教学难点.四、教学方法.五、教学过程(一)引入.那么利用尺规还能解决什么作图问题呢?(二)新1.画线段的垂直平分线.请同学们探索用直尺和圆规准确地画出一条线段的垂直平分线. 已知线段a,用直尺和圆规准确地画出已知线段a的垂直平分线.解决这一问题,要利用好线段垂直平分线的性质.请同学们讨论、探索、交流、归纳出具体的作图方法.例1 已知底边及底边上的高作等腰三角形.分析:要完成这个作图,先作出底边,再作底边的垂直平分线,取高,最后完成三角形.已知:底边a、及底边上的高h.(画出两条线段a、h)求作:△ABC,使得一底边为a、底边上的高为h.作法:.2.画直线的垂线.请同学们探索用直尺和圆规准确地画出一条直线的垂线.请同学们讨论、探索、交流、归纳出具体的作图方法.实际上,画出一条直线的垂线,就是转化为画线段的垂直平分线.例2 过直线外一点作直线的垂线.已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B. (4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)3.探索如何过一点、两点和不在同一直线上的三点作圆.思考:如何解决这一实际问题?下面我们共同探寻解决这一问题的办法.练习教材练习第1、2题.探究1:过一个已知点A 如何作圆?(如图,让学生动手去完成)学生讨论并发现:过点A 所作圆的圆心在哪儿?半径多大?可以作几个这样的圆?(圆心不定,半径不定,可以作无数个圆) 探究1 探究2探究2:过已知两点A 、B 如何作圆?(如图,学生动手去完成)学生继续讨论并发现:它们的圆心到A 、B 两点的距离怎样?能用式子表示吗?圆心在哪里?过点A 、B 两点的圆有几个?(OA=OB ,圆心在直线AB 的垂直平分线上,有无数个圆)探究3:过同一平面内三个点的情况会怎样呢? 分两种情况研究:(1)求作一个圆,使它经过不在一直线上三点A 、B 、C.已知:不在一直线上三点A 、B 、C ,求作一个圆,使它同时经过点A 、B 、C.(学生口述作法,教师示范作图过程)学生讨论并发现:这样一共可作几个圆?圆心在哪里?圆心到A 、B 、C 三点的距离怎样?(可作一个圆,圆心是线段AB 、AC 、BC 的垂直平分线的交点,圆心到A 、B 、C 三点距离相等)(2)过在一直线上的三点A 、B 、C 可以作几个圆?(不能作出) 发现结论:不在同一直线上的三点确定一个圆: (三)小.(四) 当堂测试1.已知锐角a 和线段a ,求作等腰三角形,使顶角等于a ,腰长为a (不写作法)2.如图所示,已知线段a,b,m,求作△ABC,使BC=a, CA=b,AB 边上的中线CD=m.mb a教学后记:。
尺规作图资料(完整)
1:尺规作出正三角形2尺规作出正方形3:尺规作出正六边形4:尺规作出正十边形5:尺规作出正十六边形6:尺规作出正十七边形7:尺规作出正十五边形8:尺规作出正五边形9:单尺作出正八边形10:单尺作出正方形11:单尺作出正六边形12:单尺作出正五边形13:单规找出两点间的三等分点14:单规找出两点间的中点15:单规作出等边三角形16:单规作出正八边形17:单规作出正方形18:单规作出正六边形19:单规作出正十边形20:单规作出正十二边形21:单规作出正十六边形22:单规作出正十五边形23单规作出正五边形24:只有两个刻度的直尺作出正三角形25:只有两个刻度的直尺作出正方形初中数学尺规作图专题讲解张远波尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯。
他发现以下作图法:在已知直线的已知点上作一角与已知角相等。
这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中.初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点。
一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
2023年中考数学解答题专项复习:尺规作图(附答案解析)
2023年中考数学解答题专项复习:尺规作图1.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.
求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.
2.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.
(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.
3.(2021•襄阳)如图,BD为▱ABCD的对角线.
(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);
(2)连接BE,DF,求证:四边形BEDF为菱形.
4.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、
C的距离相等.(尺规作图,保留作图痕迹,不写作法)
第1 页共13 页。
第24讲 尺规作图-2020年中考数学考点必过精品专题(解析版)
第24讲 尺规作图1.尺规作图的作图工具 圆规和没有刻度的直尺 2.基本尺规作图类型一:作一条线段等于已知线段 步骤:①作射线OP ;②以O 为圆心,a 为半径作弧,交OP 于A ,OA 即为所求线段.图示:类型三:作线段的垂直平分线步骤:①分别以点A ,B 为圆心,以大于12AB 长为半径,在AB 两侧作弧,两弧交于M ,N 点;②连接MN ,直线MN 即为所求垂直平分线.图示:类型四:作一个角等于已知角:步骤:①以O 为圆心,以任意长为半径作弧,交∠α的两边于点P ,Q ; ②作射线O′A;③以O′为圆心,OP 长为半径作弧,交O′A 于点M ; ④以点M 为圆心,PQ 长为半径作弧,交前弧于点N ; ⑤过点N 作射线O′B,∠AO ′B 即为所求角.图示:类型五:过一点作已知直线的垂线步骤:点在直线上:①以点O 为圆心,任意长为半径作弧,交直线于A ,B 两点; ②分别以点A ,B 为圆心,以大于12AB 长为半径在直线两侧作弧,交点分别为M ,N ;③连接MN ,MN 即为所求垂线.点在直线外:①在直线另一侧取点M ; ②以PM 为半径画弧,交直线于A ,B 两点;③分别以A ,B 为圆心,以大于12AB 长为半径画弧,交M 同侧于点N ;④连接PN ,则直线PN 即为所求的垂线.图示:3.常见几种基本尺规作图作三角形 ①已知三边作三角形; ②已知两边及其夹角作三角形; ③已知两角及其夹边作三角形; ④已知底边及底边上的高作等腰三角形; ⑤已知一直角边和斜边作直角三角形. 4.作图的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明; (6)讨论.步骤(5)(6)常不作要求,步骤(3)一般不要求,但作图中一定要保留作图痕迹.考点1:简单尺规作图【例题1】尺规作图,已知顶角和底边上的高,求作等腰三角形. 已知:如图,∠α,线段a.求作:△ABC,使AB=AC,∠BAC=α,AD⊥BC于D,且AD=a.【解析】:作图如图,(1)作∠EAF=∠α;(2)作AG平分∠EAF,并在AG上截取AD=a;(3)过D作MN⊥AG,MN与AE,AF分别交于B,C.则△ABC即为所求作的等腰三角形归纳:1.熟悉五个基本的作图步骤及作图痕迹.2.平时多体会和理解一些复杂作图的依据及作图过程.3.会在常见的作图语言与对应的几何语言之间进行转化.4.提倡在平时画图时,采用尺规作图,强化自己的作图意识和规范性.考点2:复杂尺规作图【例题2】如图,在△ABC中,已知∠ABC=90°.(1)请在BC上找一点P,作⊙P与AC,AB都相切,与AC的切点为Q;(尺规作图,保留作图痕迹)(2)连接BQ ,若AB =3,(1)中所作圆的半径为32,求sin ∠CBQ.【分析】 (1)要求作⊙P 与AB 、AC 相切,根据切线的性质,即点P 到AB 、AC 的距离相等,且点P 在边BC 上,想到角平分线上的点到角两边的距离相等,即作∠BAC 的平分线交BC 于P 点,以点P 为圆心,PB 为半径作圆即可;(2)由切线长定理得AB =AQ ,又PB =PQ ,则判定AP 为BQ 的垂直平分线,利用等角的余角相等得到∠CBQ =∠BAP ,然后在Rt △ABP 中利用正弦函数求出sin ∠BAP,从而可得到sin ∠CBQ 的值. 解:(1)如图所示,⊙P 即为所求:(2)∵AB、AQ 为⊙P 的切线,∴AB =AQ ,∵PB =PQ ,∴AP 为BQ 的垂直平分线,∴∠BAP +∠ABQ=90°,∵∠CBQ +∠ABQ=90°,∴∠CBQ =∠BAP,在Rt △ABP 中,AP =AB 2+PB 2=32+(32)2=352,∴sin ∠BAP=BPAP=32352=55,∴sin∠CBQ=55考点3:关于尺规作图的应用【例题3】(2019▪广西池河▪8分)如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=12∠BAC,由圆周角定理得到∠BAD=12∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=12AC.【解答】解:(1)如图所示;(2)OE∥AC,OE=12AC.理由如下:∵AD平分∠BAC,∴∠BAD=12∠BAC,∵∠BAD=12∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE=12 AC.一、选择题:1.(2018年湖北省宜昌市3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()【答案】B【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.2. (2018•襄阳)如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选:B.3. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【答案】C【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.4. (2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE =1,则EC的长度是()A.2 B.3 C.D.【答案】D【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.5. (2018•河南)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE 的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【答案】A【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.二、填空题:6. (2018•南京)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= cm.【答案】5【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.7. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为 .【答案】2.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=22.8. (2018•淮安)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是.【答案】【解答】解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=,∴CD=BC﹣DB=5﹣=,故答案为.三、解答题:9. 2.如图,在Rt△ABC中,∠ACB=90°.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作AC的垂直平分线,交AB于点O,交AC于点D;②以O为圆心,OA为半径作圆,交OD的延长线于点E.(2)在(1)所作的图形中,解答下列问题.①点B与⊙O的位置关系是_____________;(直接写出答案)②若DE=2,AC=8,求⊙O的半径.解:(1)如图所示: (2)①连接OC ,如图,∵OD 垂直平分AC ,∴OA =OC ,∴∠A =∠ACO,∵∠A +∠B=90°,∠OCB +∠ACO=90°,∴∠B =∠OCB,∴OC =OB ,∴OB =OA ,∴点B 在⊙O 上; ②∵OD ⊥AC ,且点D 是AC 的中点,∴AD =12AC =4,设⊙O 的半径为r ,则OA =OE =r ,OD =OE -DE =r -2,在Rt △AOD 中,∵OA 2=AD 2+OD 2,即r 2=42+(r -2)2,解得r =5.∴⊙O 的半径为510. (2018•安徽•分) 如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BC 的交点E(保留作图痕迹,不写作法); (2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.11. (2019•江苏泰州•8分)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【分析】(1)分别以A,B为圆心,大于12AB为半径画弧,两弧交于点M,N,作直线MN即可.(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.12. (2018·广东·6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.13. (2019•湖北孝感•8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB=13,知sin∠DAF=DFAD=BCAB,即12+xx=5 13,解之求得x=152,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB=13,∴sin∠DAF=DFAD=BCAB,即12+xx=513,解得x=152,∵BC=BF=5,∴tan∠DBF=DFBF=152×15=32.。
2020年中考数学人教版专题复习:尺规作图
2020年中考数学人教版专题复习:尺规作图基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例精析典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.1 2【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.拓展1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.复杂作图利用五种基本作图作较复杂图形.典例精析典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.拓展3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)同步测试1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3 cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AHD .AB =AD4.如图,点C 在∠AOB 的OB 边上,用尺规作出了∠AOB =∠NCB ,作图痕迹中,弧FG 是A .以点C为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧5.如图,△ABC 中,∠C =90°,∠CAB =50°.按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于EF 长为半径画弧,两弧相交于点G ; ③作射线AG 交BC 边于点D . 则∠ADC 的度数为A .65°B .60°C .55°D .45°6.如图,△ABC 为等边三角形,要在△ABC 外部取一点D ,使得△ABC 和△DBC 全等,下面是两名同学做法: 甲:①作∠A 的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求;12乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.。
《尺规作图》教学设计教案
课题:《尺规作图》课题:《尺规作图》教学设计【课标要求】①完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。
②利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。
③探索如何过一点、两点和不在同一直线上的三点作圆。
④了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。
【教材分析】在尺规作图知识的学习过程中,教材设计了许多让学生经历尺规作图的活动,解决了一些简单的问题,如:七下作三角形,九上作等腰三角形,感受到尺规作图在数学中的一定作用,获得了从事尺规作图活动的一些数学活动经验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
【学情分析】学生在七年级上册的学习中,教材(139页)介绍了如何用直尺和圆规作一条线段等于已知线段;在七年级下册的学习中,教材(77页)学习了用尺规作一个角等于已知角;九年级上册(27页)学习了用尺规作线段的垂直平分线、(34页)学习了作已知角的平分线。
学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为复习课的学习奠定了良好的知识基础。
【教学目标】中考基于“课标”而课标要求了四个基本作图,它们是作图的基础,是解决更为复杂的尺规作图的基础。
作为一节复习课不但要注重基础的扎实,而且还应注重它的运用。
为此,本节课的教学目标是:知识与技能:(1)再认识什么是尺规作图;经历四个基本作图的复习与巩固;学会利用基本图形作“三边”“两边及夹角”“两角及夹边”三角形;底边和底边上的高作等腰三角形;会作三角形的内切圆(内心)和外接圆(外心);(2)对尺规基本作图题,能写出已知,求作和作法或口头表述作法,并能正确作出图形(保留作图痕迹)(不要求写出证明过程)。
过程与方法:经历四个基本作图的复习与巩固,感受尺规作图的几何意义,规范学生的作图语言,积累一些尺规作图的方法与经验,感受数学的严谨性以及数学结论的确定性。
尺规作图(人教版)(含答案)
尺规作图(人教版)试卷简介:本套试卷集中测试学生的几何作图能力和数学语言的精准表达。
尺规作图和规范的几何用语是学生做几何证明题需要具备的基本能力,本套试卷可以检测同学们这一块的问题,通过不断发现问题,寻找资源解决问题,提升自己的数学水平。
一、单选题(共10道,每道10分)1.尺规作图是指( )A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.用量角器和无刻度的直尺作图答案:C解题思路:尺规作图是指用没有刻度的直尺和圆规作图.“尺”指没有刻度的直尺、“规”指圆规,故选C.试题难度:三颗星知识点:尺规作图的定义2.下列关于作图的语句中正确的是( )A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行答案:D解题思路:做这类题要结合定义、定理来思考:(1)A选项:直线没有端点,向两端无限延伸,故无法度量,A错误,(2)B选项:射线有一个端点,向一端无限延伸,也无法度量,B错误;(3)C选项:两点确定一条直线,但是不能保证第3点也落在直线上,C错误;(4)D选项,经过直线外一点有且只有一条直线与已知直线平行,而且利用尺规作图可以实现.具体实现方法,同学们可以自己尝试,在尝试的基础上去学习“2013~2014八年级上册数学拔高课人教版→→初中数学全等三角形拔高课→→第1讲尺规作图→→第7题”.故选D试题难度:三颗星知识点:尺规作图——几何语言的规范使用3.下列作图语句中,不准确的是( )A.过点A,B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解题思路:尺规作图是指利用没有刻度的直尺和圆规作图,几何作图重在操作的准确性和几何用语的规范性。
需注意两点:①直尺必须没有刻度,所以只可以用它来将两个点连在一起,不可以在上画刻度;②圆规可以开至无限宽,但上面亦不能有刻度。
重庆中考数学 尺规作图(55题)
尺规作图(55题)1.如图,在平行四边形ABCD中,AB>AD.(1)尺规作图:在AB上截取AE,使得AE=AD;作∠BCD的平分线交AB于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE交CF于点P,求证:△CDP为直角三角形.(请补全下面的证明过程,不写证明理由)证明:∵AE=AD,∴∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠EDC,∴∵CF平分∠BCD,∴又∵AD∥CB,∴∠ADC+∠BCD=180°,∴∠ADC+∠BCD=90°,∴∴∠CPD=90°,∴△CDP是直角三角形.2.如图,在▱ABCD中,AB<AD.(1)用尺规完成以下基本作图:在AD上截取AE,使AE=AB;作∠BCD的平分线交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接BE交CF于点G,证明:AF=DE.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD∴∠DFC=∠BCF∵CF平分∠BCD∴∠BCF=∠DCF∴∠DFC=∴CD=又∵AB=AE∴AB=CD=DF=AE∴AE﹣EF=﹣即AF=DE.3.如图,在▱ABCD中AD>AB.(1)尺规作图:在AD上截取AE,使得AE=AB.作∠ADC的平分线交BC于点F(保留作图痕迹,不写作法);(2)在(1)所作图形中,连接BE,求证:四边形BEDF是平行四边形.(请补全下面的证明过程,不写证明理由).证明:∵DF平分∠ADC,∴∵在▱ABCD中,BC∥AD,∴∴∠CDF=∠CFD,∴CD=CF.∵在▱ABCD中,AB=CD,又∵AE=AB,∴AE=CF.∵在▱ABCD中,AD=BC,∴AD﹣AE=BC﹣CF,即又∵∴四边形BEDF是平行四边形.4.如图,∠BAM+∠ABN=180°.(1)用尺规完成基本作图:作∠BAM的角平分线AC交BN于点C,在射线AM上截取AD=AB,连接CD.(保留作图痕迹,不写作法、不下结论).(2)求证:四边形ABCD为菱形.(请补全下面的证明过程)证明:∵∠BAM+∠ABN=180°∴AM∥∴∠DAC=∠BCA∵AC平分∠BAD∴∠DAC=∠BAC∴∠BAC=∴AB=BC∴AD=AB∴=AD∵BC∥AD∴四边形ABCD是平行四边形∵AB=BC∴平行四边形ABCD是菱形()(填推理依据).。
上海版六年级数学线段与角的画法全章内容
7.1 线段的大小的比较一、课前思考怎样比较两条线段的大小?什么叫两点之间的距离?在所有连接两点的线中, 什么线最短?二、课堂练习(1)填空: 比较线段AB, CD大小的方法有:___________比较法:如果AB=acm, CD=bcm若a>b则AB____CD, 若a<b则AB__CD.(2)___________比较法:将端点___与端点___重合, 线段___与线段___叠合, 如果B点在线段CD上, 则AB____CD, 如果点B与点D重合, 则AB____CD, 如果点B在线段CD的延长线上则AB___CD.2. 按要求画图, 并写全画法.已知线段a, 用圆规、直尺画出线段AB, 使AB=a.a解(1)画射线________;(2)在射线_______上截取_______.________就是___________.三、课后测试知识巩固1.根据要求画图, 并理解文字语言和图形语言的对应关系:(1)点C在线段AB上;(2)线段MN上有一点P;(3)点P在线段CD的延长线上;(4)点P在线段DC的延长线上;2.根据要求做题, 并理解文字语言、图形语言和数学符号语言的对应关系. (1)用两种形式的文字语言表达点B与线段CD的关系:BC D①_________________________________________________________________;②_________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空): CD______BC,BD______CD. (2)用两种形式的文字语言表达点P与线段MN的关系:NM P①_________________________________________________________________;②_________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空): MP_____MN,NP_____MP.(3)用两种形式的文字语言表达点M与线段EF的关系:M FE①_________________________________________________________________;②_________________________________________________________________. 数学符号语言(用“>”、“<”或“=”填空): MF_____EF,ME_____MF.3.用直尺、圆规按要求画图, 理解比较线段大小的方法:在射线OC上截取OA=a, OB=b.OC比较a与b的大小: a_____b.4.根据要求做题, 并理解叠合的意义.已知线段AB、CD, 如果将AB移动到CD, 使点A与点C重合, CD与AB重叠, 则点B的位置状况怎样?点D的位置状况怎样?A BCD第4题图从点A到点B 有4条路可以到达, 你认为哪条路最短?理由是什么?BA第5题图知识拓展铁路上海站与南京站之间途经四个车站, 车站应准备多少种不同的车票?7.2画线段的和、差、倍一、课前思考1.理解截取、顺次截取的意义.你会画线段的和(a+b)、差(a-b)、倍(2a)吗?你会用尺规作图法作图法作线段的中点吗?“画图”与“作图”的工具要求有点不同, 你明白吗?二、课堂练习 1.根据如图填空D A _B C_(1) AD=___+BC+___=AB+___=CD+___ (2) AB=AD-___;(3) AC=BC+___=AD-___; BD-CD+AB=___.2、如图:已知点C是线段AB的中点, AC=___, AB=2___=2___, AB=___=___.CAB第2题图三、课后测试知识巩固1.如图, A.B.C.D.四点在一条直线上, 图中有( )条线段.ADCB第1题图2.根据所示图形填空, 理解截取、顺次截取的意义, 熟练掌握基本画图语句. 已知线段a 、b, 画出一条线段, 使它等于a+b.ab第3题图 解: (1)画射线OP ;(2)在射线OP 上顺次截取( )=a, ( )=b. 线段( )就是所要画的线段.POBA3.根据所示图形填空, 理解截取、顺次截取的意义, 熟练掌握基本画图语句. 已知线段a 、b, 画出一条线段, 使它等于a-b.a b解法一: (1)画射线OP;(2)在射线OP上截取()=a, 在线段()上截取()=b.线段()就是所要画的线段.O B AP解法二: (1)画射线OP;(2)在射线OP上截取()=a, 在线段()上截取()=b.线段()就是所要画的线段.O D CP4.如图, 点M是线段AB上的一点, 点C是线段AM的中点, 点D 是线段MB的中点, 已知AM=8cm, MD=2cm.根据图形填空:A BC M D第4题图AC=( )cm,BM=( )cm,BC=( )cm,AB=( )cm,CD=( )cm,CD=( )AB.5.根据所示图形填空, 理解截取、顺次截取的意义, 熟练掌握基本画图语句.已知线段a、b、c, 画出一条线段, 使它等于2a-b+c.a b c第5题图解: (1)画射线OP;(2)在射线OP上顺次截取()=a, ()=b, ()=c;(3)在线段()上截取CD=b.线段()就是所要画的线段.O A D B CP知识拓展6.A、B、C、D四个小区在同一条路上, 为了给小区的居民出行带来方便准备在这条路上增设一个车站, 车站应建在哪里使车站与各个小区的距离和最短,请同学们设计出方案.C DA B7.3角的概念与表示一、课前思考1.角的顶点、边、外部、内部, 你理解吗?2.角有四种表示方法, 是不是任何一个角都可以用四种方法表示?你会表示两个点的相对方位吗?二、课堂练习1.如下左图所示, 把图中用数学表示的角, 改用大写字母表示分别是________.用阴影部分表示角的外部.三、课后测试知识巩固1.分别用三种形式表示下图中的角:B2.分别说出∠ABC.∠MON 、∠PCQ 的顶点和边.3.把下图中小于平角的角用三个大写字母的形式表示出来:ABOMABE F4.下图中, 标明了上海、哈尔滨、呼和浩特、西安与北京的大致方位, 请你用规范的数学用语写出上海、哈尔滨、呼和浩特、西安分别在北京的什么方向?5.图中共有()个角.能用一个大写字母表示的就用一个大写字母表示出来, 否则就用三个大写字母表示出来.ABCFED6.图中共有.. )个角.能用一个大写字母表示的就用一个大写字母表示出来, 否则就用三个大写字母表示出来.知识拓展7、如果点B在点O南偏东60°方向, 在点A的正南方向, 你能确定点B的位置吗?试着找出点B的位置.西东北南A7.4角的大小的比较、画相等的角一、课前思考怎么比较两个角的大小?你会用量角器画一个角等于已知角吗?你会用直尺和圆规作一个角等于已知角吗?二、课堂练习1.因为OA与OA是公共边, 边OC在∠AOB的__, 所以∠AOC____∠AOB;2.因为OA与OA是公共边, 边____与边OC叠合, 所以∠AOC____∠AOD;3、因为OB与OB是公共边, 边OA在___的___, 所以∠BOC____∠BOA.O第1题图ABCD三、课后测试知识巩固1.用量角器分别量出下图中∠B.∠A.∠ACD的大小,指出最大的角.B DAC B DAC2.根据图形, 写出OC与∠AOB的位置关系, 并用数学符号写出∠AOB与∠COB的大小关系.O BBO B3.用量角器画∠AOB=35°, 以OB 为一边, 在∠AOB 的外部画∠BOC=55°, 比较一下∠AOC 与三角板的直角的大小.4.用量角器画∠AOB=135°, 以OB 为一边, 在∠AOB 的外部画∠BOC=45°, 用直尺比画一下∠AOC 与平角的大小.5.已知射线BC, ∠β, 仿照上题, 用直尺和圆规作∠ABC, 使∠ABC=∠β(不写作法, 保留作图痕迹).注意, 点A 在射线BC 的上边还是下边?βC6.用量角器量图中的角, 45°的角有( )个, 90°的角有()个.7、用量角器量图中的角, 30°的角有()个, 60°的角有()个, 90°的角有()个, 120°的角有()个.知识拓展8、学校的绿化带有一个花坛, 花坛的各种变长都相等, 相邻的两条边的夹角都是120°, 其中的一条边AB长5. 5米, 按比例画出图形, 花坛的周长是多少米?A B7.5画角的和、差、倍一、课前思考1.你会用量角器画两个角的和(α+β)、差(α-β), 倍(2a)吗?你会用直尺和圆规作一个角的平分线吗?二、课堂练习1.如图, 从点O出发有4条射线OA.OB.OC.OD, 图中共有()个角.ODBAC∠AOD=()+∠COD ;∠AOB=()-∠COB;∠AOC=()+();∠DOB=()-∠AOB;∠BOC=∠AOD-()-∠COD.2.已知∠AOB=78°, 射线OE是∠AOB的平分线, ∠AOE=____.3、已知射线OE平分∠AOB, ∠AOE=30°, ∠AOB=____三、课后测试知识巩固1.如图: 根据图形填空∠BOC=∠AOD-____-____=____-∠AOB=____-∠DOC;∠BOD=∠AOD-____=∠DOC+____.第1题图DCB2.已知∠α、∠β, 用量角器画出∠AOB=∠α+∠β.(不写作法, 标明字母)αβ3.已知∠α、∠β, 用量角器画出∠AOB=∠α+2∠β.(不写作法, 标明字母)αβ4.已知∠α、∠β,用量角器画出∠AOB=2∠α-∠β.(不写作法,标明字母)αβ5.已知∠1+∠2=180°,∠1-∠2=90°, 求∠1.∠2的度数.6.已知∠A+∠B+∠C=180°, ∠A: ∠B: ∠C=1: 2: 3, 求∠A.∠B.∠C 的度数.7、如图, 作∠A.∠B 的平分线, 并作出它们的交点O, 再连结OC, 用量角器度量、比较∠ACO 、∠BCO 的大小.(不写作法, 保留作图痕迹)ACBAC知识拓展8、如图已知点O为直线AC上一点, OE平分∠AOB, ∠DOB: ∠DOC=1: 3, ∠EOD=65°, 求∠DOC的度数?7.6余角、补角 一、课前思考1.两个角互余(或互补), 和这两个角所在的位置有关吗?2.你会用计算器进行度、分、秒互化吗?3.你会根据角的互余(或互补)关系列方程吗?4.同角的余角__________;同角的补角__________.二、课堂练习1.如果∠α与∠β=互为余角, 则∠α+∠β=____°, ∠α=____-∠β, ∠β=____-____.2.1°=____', 1'=____''.3、∠1=a°, ∠1的余角=____°, ∠1的补角=____°.4、如图:已知∠BOD=∠AOC=90°, ∠AOB=25°, 则∠COD____°, 理由_______________________.?ACO第4题图DOACB第5题图OBACD5.如图:已知AB与CD相交于点O,∠AOD=34°, 则∠BOC=________°, 理由____________. 三、课后测试知识巩固 1.填空:(1)30°角的余角的度数是( ); (2)45°角的余角的度数是( ); (3)30°角的补角的度数是( ); (4)120°角的补角的度数是( );(5)36°30’20” 角的余角的度数是( ); (6)108°19’40” 角的补角的度数是( ); 2.(1)一个角与它的余角相等, 这个角的度数为_____; (2)一个角等于它的余角的2倍, 这个角的度数为_____; (3)一个角等于它的补角的2倍, 这个角的度数为_____; (4)一个角比它的补角大36°, 这个角的度数为_____; (5)一个角比它的补角小90°, 这个角的度数为_____;3.在左下图中画射线OC.OD, 使∠COA.∠DOB 都与∠AOB 互余.在右下图中画射线OP 、OQ, 使∠POM 、∠QON 都与∠MON 互补.BOMN∠COA=∠DOB, 可以概括为:_________________________________;∠POM=∠QON, 可以概括为:_________________________________.4.(1)18°19’14”+17°26’41”=_______________;(2)98°47’55”-68°15’24”=_______________;(3)36°47’51”+59°48’47”=_______________;(4)104°33’31”-59°57’45”=_______________;(5)68°13’-59°48’45”=_______________;5.动手做一做: 剪一张直角三角形的纸片ABC, 将点B折到线段AB上, 折痕经过点C, 探究一下图中互余的角有哪几对?CDAB6.动手做一做:剪一张直角三角形的纸片ABC, 将点A 与点B 重合, 折痕为DE,探究一下图中与∠A互余的角有哪几个?CBDA E知识拓展动手做一做: 将一张长方形的纸块ABCD折一下, 折痕为MN,再将MC与MN叠合、MB与MN叠合, 折痕分别为ME、MF, 探究一下∠EMF的大小, 与∠CMF互余的角有哪些?图中以M为顶点的哪些角互补?M CB第七章测试(A )卷(时间: 45分钟, 满分: 100分) 一、填空题(每小题3分, 共36分)1.点D 在线段AB 的延长线上, 则AD_____BD(填“<”或“>”).2.点C 是线段MN 的中点, 则CM=_____MN.3.如图, A 、B 、C 、D 四点在一条直线上, 图中共有_____条线段.ADCB4.如图, 点C 是线段AD 的中点, AC=2cm, BC=5cm, 则BD=_____cm.ABCD5.已知线段a=4cm, b=3cm, c=2cm 则a-2b+3c=_____cm.6.OC 在∠AOB 的内部, 则∠COB_____∠AOB(填“<”或“>”).7.OD 是∠MON 的平分线, 则∠MOD=_____∠MON.8.如图,A 、O 、B 三点在一条直线上,图中小于180°的角共有_____个. 9.72°角的补角比它的余角大_____.10.一个角是它的补角的 , 这个角的度数为_____. 11.58°19’34”+16°55’41”=__________.12.如图, 浦东国际机场大致在人民广场的什么位置? 答:__________.二、判断题(每小题3分, 共12分)13.互余的两个角都是锐角........................) 14. 互补的两个角一个是锐角, 一个是钝角............. ...) 15.连接两点的线段叫做两点之间的距离..................) 16.角的平分线是一条射线........................) 三、选择题(每小题3分, 共12分)17.一个钝角与一个锐角的差是 ( )A.锐角;B.直角;C.钝角;D.锐角、直角或钝角.18.点C.D 是线段AB 的三等分点, 点E 是线段AB 的中点,则下面结论中正确的是ABCDE( )A.AC=21AD;B.AD=32AB ;C.AD=4CE;D.CE=61AB.19. 如图, A.O 、B 三点在一条直线上, OC 为∠AOE 的平分线, OD 为∠BOE 的平分线, 图中共有__________对互余的角.................... ...)A BOA.1;B.2;C.3;D.4.20. 用两个三角板(一个是30°的, 一个是45°的)可以画出的角度是()A.75°;B.15°;C.135°;D.115°.四、作图题(每小题10分, 共20分)21.已知线段a、b, 用直尺和圆规画出一条线段, 使它等于2a-b.(不写作法, 保留作图痕迹, 表明字母, 说明结论)22.已知∠ABC, 用直尺和圆规画出∠ABC的平分线.(不写作法, 保留作图痕迹, 表明字母, 说明结论)C五、解答题(每小题10分, 共20分)23.如图, 点M是线段AB上的一点, 点C是线段AM的中点, 点D 是线段MB的中点, 已知AM=18cm, MD=3cm.通过计算、比较, 说明线段CD与线段AB有什么关系?C DA BM24.一个角的补角比它的余角的3倍多40°, 求这个角的度数.第七章测试(B)卷一、 填空题1. 点C在线段AB上, 则AC____AB. (天上“<”, “>”或“=”) 已知线段AB=8, 点C是线段AB的中点, 点D是线段BC的中点, AD=____.如图:已知OB平分∠AOC, OC平分∠BOD, ∠AOB=25°, 则∠AOB=____.第3题图A2. 将一个直角3等分, 每份是____度. 时针由3点钟走到11点, 时针走了____度.如图:已知AB-AC=5cm, AC:BC=2:3, AB=____cm.第6题图B第7题图O3. 如图: 已知OC是∠AOB的平分线, 图中所有角的度数和是120度,∠AOC=____度.如图:已知∠AOC=∠BOD=90°, ∠AOD:∠DOC=5:1, ∠AOB=____度.第8题图A第10题图C4. 45°54'=____°.5. 如图: ∠1=(x-4)度, ∠2=3x度, 则∠1=____度, ∠2=____度.6. 一个角的余角与这个角的补角互为补角, 这个角是____度.7. 画出∠α的邻补角第12题图二、 选择题如图: 已知点C是线段AB上一点, 一下天健不能确定点C是线段AB中点的是( )A. AB=2AC B. BC= AB C. AC=BC D. AC+BC=AB第13题图C第14题图图中小于平角的角有____个. ( )8. A. 7个 B. 8个 C. 9个 D. 10个 一个角的补角是____角. ( )A. 锐角 B. 直角 C. 钝角 D. 锐角, 直角或钝角 如果AB=10cm, BC=5cm, 则AC=____cm.A. 15㎝ B. 5㎝ C. 15㎝或5㎝ D. 无法确定 三、简答题 9. 计算:(1) 180°-14°25'15''+25°34'45''; 10.33°23'14''×4.已知线段a, b, 用直尺, 圆规作出AB= (a+b).第18题图如图: 已知AC: CD: DB=2: 3: 4, 点E、F、G分别是线段AC、CD、DB的中点, EF=10cm, 线段AD, AB的长分别是多少厘米?第19题图一个角的余角比这个角的补角的 小10°, 这个角是多少度?如图:已知点A、O、B在同一条直线上, OD平分∠BOC, ∠BOC-∠AOC=56°, 求∠BOD的度数?O第21题图ABDC四、解答题如图: 已知∠AOC=58°, ∠BOC=112°, OD, OE分别平分∠AOC, ∠BOD, 求∠AOE的度数?第22题图如图: 已知点C, D在线段AB上, AC: BC=2:3, AD: BD=2:5, DC=8cm, 求AB长多少厘米?第23题图五、能力题①已知线段AB=10cm, 点C是线段AB上任意一点, 点D、E分别是线段AC、BC的中点,②求线段DE的长度?如果点C在线段AB的延长线上, 求线段DE的长度?如果点C在线段AB的反方向延长线上, 求线段DE的长度?。
2024中考备考热点09 尺规作图(7大题型+满分技巧+限时分层检测)(原卷版)
热点09 尺规作图中考数学中《尺规作图》部分主要考向分为三类:一、尺规作图的痕迹(每年1道,3~8分)二、尺规作图画图(每年1道,3~12分)三、网格问题中的作图设计(每年1题,6~8分)尺规作图指的是只用无刻度的直尺和圆规,作已知线段的中垂线、已知角的角平分线;部分题型则考察由作图痕迹逆向推导是什么线,然后利用中垂线或者角平分线的性质继续解题。
最近几年又出现一类不用“尺规”,只用无刻度的直尺在网格图中按要求画图或找点。
当考察作图痕迹时,基本以选择题为主,实际画图题或者网格类问题则是简单题,虽然难度中等,但是对应考点的综合性已经越来越强,需要在做题时更加全面的分析。
考向一:尺规作图的痕迹【题型1 线段中垂线的尺规作图痕迹】满分技巧1、线段垂直平分线的画图痕迹:2、线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等1.(2023•凉山州)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°2.(2023•西宁)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于P,Q两点,作直线PQ交AB,AC于点D,E,连接CD.下列说法错误的是()A.直线PQ是AC的垂直平分线B.CD=ABC.DE=BCD.S△ADE:S四边形DBCE=1:43.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是()A.AE=CF B.DE=BF C.OE=OF D.DE=DC4.如图,在△ABC中,∠C=40°,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于M,N两点,作直线MN,交边AC于点D,连接BD,则∠ADB的度数为()A.40°B.50°C.80°D.100°5.(2023•西藏)如图,在△ABC中,∠A=90°,分别以点B和点C为圆心,大于的长为半径画弧,两弧相交于M,N两点;作直线MN交AB于点E.若线段AE=5,AC=12,则BE长为.6.(2023•广元)如图,a∥b,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点E,F,作直线EF,分别交直线a,b于点C,D,连接AC,若∠CDA =34°,则∠CAB的度数为.【题型2 角平分线的尺规作图痕迹】满分技巧1、角平分线的画法:2、角平分线的性质:角平分线上的点到角两边的距离相等1.(2023•衢州)如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是()A.AB=AC B.AG⊥BC C.∠DGB=∠EGC D.AG=AC2.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为()A.B.C.D.3.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线BP,过点C作BP 的垂线分别交BD,AD于点M,N,则CN的长为()A.B.C.D.45.(2023•丹东)如图,在四边形ABCD中,AB∥CD,以点B为圆心,以任意长为半径作弧,分别交AB,BC于点E,F,分别以E,F为圆心,以大于长为半径作弧,两弧在∠ABC内交于点P,作射线BP,交AD于点G,交CD的延长线于点H.若AB=AG=4,GD=5,则CH的长为()A.6B.8C.9D.106.(2023•内蒙古)如图,在△ABC中,∠ABC=90°,∠BAC=60°,以点A为圆心,以AB的长为半径画弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径画弧,两弧交于点P,作射线AP交BD于点M,交BC于点E,连接DE,则S△BDE:S△CDE是()A.1:2B.1:C.2:5D.3:87.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD 于点F,则的值为.8.(2023•鞍山)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.9.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为°.10.(2023•阜新)如图,在矩形ABCD中,AB=6,AD=8.连接AC,在AC和AD上分别截取AE,AF,使AE=AF,分别以点E和点F为圆心,以大于EF的长为半径作弧,两弧交于点G,作射线AG交CD 于点H,则线段DH的长是.考向二:尺规作图画图【题型3 作一条线段的垂直平分线】满分技巧线段垂直平分线的画图步骤:1、分别以线段两端点为圆心,相同适当长(大于线段的一半)为半径画圆弧,上下各得两个弧的一个交点;2、过两个弧的交点作一条直线,则该直线即为所求作的线段中垂线。
(完整)尺规作图专题详尽归纳,推荐文档
考点名称:尺规作图【学习目标】1.了解什么是尺规作图.2.学会用尺规作图法完成下列五种基本作图:(1)画一条线段等于已知线段;(2)画一个角等于已知角;(3)画线段的垂直平分线;(4)过已知点画已知直线的垂线;(5)画角平分线.3.了解五种基本作图的理由.4.学会使用精练、准确的作图语言叙述画图过程.5.学会利用基本作图画三角形等较简单的图形.6.通过画图认识图形的本质,体会图形的内在美.【基础知识精讲】1.尺规作图:①定义:限定只用直尺和圆规来完成的画图,称为尺规作图.注意:这里所指的直尺是没有刻度的直尺,由于免去了度量,因此,用尺规作图法画出的图形的精确度更高,它在工程绘图等领域应用比较广泛.②步骤:(1)根据给出的条件和求作的图形,写出已知和求作部分;(2)分析作图的方法和过程;(3)用直尺和圆规进行作图; (4)写出作法步骤,即作法。
(根据题目要求来定是否需要写出作法)2.尺规作图中的最基本、最常用的作图称为基本作图.任何尺规作图的步骤均可分解为以下五种.3.基本作图共有五种:(1)画一条线段等于已知线段.如图24-4-1,已知线段DE.求作:一条线段等于已知线段.作法:①先画射线AB.②然后用圆规在射线AB上截取AC=MN.线段AC就是所要作的线段.(2)作一个角等于已知角.如图24-4-2,已知∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:①作射线O′A′;②以点O为圆心,以任意长为半径作弧,交OA于C,交OB于D.③以点O′为圆心,以OC长为半径作弧,交O′A′于C′.④以点C′为圆心,以CD为半径作弧,交前弧于D′.⑤经过点D′作射线O′B′,∠A′O′B′就是所求的角.(3)作线段的垂直平分线.如图24-4-3,已知线段AB.求作:线段AB的垂直平分线.作法:①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于点C和D.②作直线CD.直线CD就是线段AB的垂直平分线.注意:直线CD与线段AB的交点,就是AB的中点.(4)经过一点作已知直线的垂线.a.经过已知直线上的一点作这条直线的垂线,如图24-4-4.已知:直线AB和AB上一点C,求作:AB的垂线,使它经过点C.作法:作平角ACB的平分线CF.直线CF就是所求的垂线,如图24-4-4.b.经过已知直线外一点作这条直线的垂线.如图24-4-5,已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:①任意取一点K,使K和C在AB的两旁.②以C为圆心,CK长为半径作弧,交AB于点D和E.③分别以D和E为圆心,大于的长为半径作弧,两弧交于点F.④作直线CF.直线CF就是所求的垂线.注意:经过已知直线上的一点,作这条直线的垂线转化成画线段垂直平分线的方法解决.(5)平分已知角.如图24-4-6,已知∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:①在OA和OB上,分别截取OD、OE.②分别以D、E为圆心,大于的长为半径作弧,在∠AOB内,两弧交于点C.③作射线OC.OC就是所求的射线.注意:以上五种基本作图是尺规作图的基础,一些复杂的尺规作图,都是由基本作图组成的,同学扪要高度重视,努力把这部分内容学习好.通过这一节的学习,同学们要掌握下列作图语言:(1)过点×和点×画射线××,或画射线××.(2)在射线××上截取××=××.(3)以点×为圆心,××为半径画弧.(4)以点×为圆心,××为半径画弧,交××于点×.(5)分别以点×,点×为圆心,以××,××为半径作弧,两弧相交于点×.(6)在射线××上依次截取××=××=××.(7)在∠×××的外部或内部画∠×××=∠×××.注意:学过基本作图后,在作较复杂图时,属于基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了.如:(1)画线段××=××.(2)画∠×××=∠×××.(3)画××平分∠×××,或画∠×××的角平分线.(4)过点×画××⊥××,垂足为点×.(5)作线段××的垂直平分线××,等等.但要注意保留全部的作图痕迹,包括基本作图的操作程序,不能因为作法的叙述省略而作图就不按程序操作,只有保留作图痕迹,才能反映出作图的操作是否合理.【经典例题精讲】例1已知两边及其夹角,求作三角形.如图24-4-7,已知:∠α,线段a、b,求作:△ABC,使∠A=∠α,AB=a,AC=b.作法:①作∠MAN=∠α.②在射线AM、AN上分别作线段AB=a,AC=b.③连结BC.如图24-4-8,△ABC即为所求作的三角形.注意:一般几何作图题,应有下面几个步骤:已知、求作、作法,比较复杂的作图题,在作图之前可根据需要作一些分析.例2如图24-4-9,已知底边a,底边上的高h,求作等腰三角形.已知线段a、h.求作:△ABC,使AB=AC,且BC=a,高AD=h.分析:可先作出底边BC,根据等腰三角形的三线合一的性质,可再作出BC的垂直平分线,从而作出BC边上的高AD,分别连结AB和AC,即可作出等腰△ABC来.作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MN,MN与BC交于点D.(3)在MN上截取DA,使DA=h.(4)连结AB、AC.如图24-4-10,△ABC即为所求的等腰三角形.例3已知三角形的一边及这边上的中线和高,作三角形.如图24-4-11,已知线段a,m,h(m>h).求作:△ABC使它的一边等于a,这边上的中线和高分别等于m和h(m>h).分析:如图24-4-12,假定△ABC已作出,其中BC=a,中线AD=m,高AE=h,在△AED中AD=m,AE=h,∠AED=90°,因此这个Rt△AED可以作出来(△AED为奠基三角形).当Rt△AED作出后,由的关系可作出点B和点C,于是△ABC即可得到.作法:(1)作△AED,使∠AED=90°,AE=h,AD=m.(2)延长ED到B,使.(3)在DE或BE的延长线上取.(4)连结AB、AC.则△ABC即为所求作的三角形.注意:因为三角形中,一边上的高不能大于这边上的中线,所以如果h>m,作图题无解;若m=h,则作出的图形为等腰三角形.例4如图24-4-13,已知线段a.求作:菱形ABCD,使其半周长为a,两邻角之比为1∶2.分析:因为菱形四边相等,“半周长为a”就是菱形边长为,为此首先要将线段a等分,又因为菱形对边平行,则同旁内角互补,由“邻角之比为1∶2”可知,菱形较小内角为60°,则菱形较短对角线将菱形分成两个全等的等边三角形.所以作图时只要作出两个有公共边的等边三角形,则得到的四边形即为所求的菱形ABCD.作法:(1)作线段a的垂直平分线,等分线段a.(2)作线段AC,使.(3)分别以A、C为圆心,为半径,在AC的两侧画弧,两弧分别交于B,D.(4)分别连结AB、BC、CD、DA得到四边形ABCD,则四边形ABCD为所求作的菱形(如图24-4-14).注意:这种通过先画三角形,然后再画出全部图形的方法即为“三角形奠基法”.例5如图24-4-15,已知∠AOB和C、D两点.求作一点P,使PC=PD,且使点P到∠AOB的两边OA、OB的距离相等.分析:要使PC=PD,则点P在CD的垂直平分线上,要使点P到∠AOB的两边距离相等,则P应在∠AOB的角平分线上,那么满足题设的P点就是垂直平分线与角平分线的交点了.作法:(1)连结CD.(2)作线段CD的中垂线l.(3)作∠AOB的角平分线OM,交l于点P,P点为所求.注意:这类定点问题应需确定两线,两直线的交点即为定点,当然这两直线应分别满足题目的不同要求.【中考考点】例6 (2000·安徽省)如图24-4-16,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A.一处 B.二处C.三处 D.四处分析:到直线距离相等的点在相交所构成的角的平分线上,可利用作角平分线的方法找到这些点.解:分别作相交所构成的角平分线,共可作出六条,三条角平分线相交的交点共有四个.答案:D.注意:本题应用了角平分线的性质,在具体作图时,不可只作出位于中心位置的一处,而要全面考虑其他满足条件的点.例7 (2002·陕西省)如图24-4-17,△ABC是一块直角三角形余料,∠C=90°,工人师傅要把它加工成—个正方形零件,使C为正方形的—个顶点,其他三个顶点分别在AB、BC、AC边上.(1)试协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);(2)工人师傅测得AC=80 cm,BC=120cm,请帮助工人师傅算出按(1)题所画裁割线加工成的正方形零件的边长.解:(1)作∠ACB的平分线与AB的交点E即为正方形—顶点,作CE线段的中垂线HK 与AC、BC的交点F、D即为所作正方形另两个顶点,如图24-4-17.(2)设这个正方形零件的边长为x cm,∵DE∥AC,∴,∴.∴x=48.答:这个正方形零件的边长为48cm.注意:本题是几何作图和几何计算相结合题目,要求读者对基本作图务必掌握,同时对作出图形的性质要清楚.例8 (2002·山西省)如图24-4-18①,有一破残的轮片(不小于半个轮),现要制作一个与原轮片同样大小的圆形零件,请你根据所学的有关知识,设计两种方案,确定这个圆形零件的半径.分析:欲确定这个圆形零件的半径,可以借助三角板,T形尺或尺规作图均可,图②中是这个零件的半径,图③中OB是这个零件半径.解:如图24-4-18②③所示.【常见错误分析】例9如图24-4-19,已知线段a、b、h.求作△ABC,使BC=a,AC=b,BC边上的高AD=h.并回答问题,你作出的三角形唯一吗?从中你可以得到什么结论呢?错解:(1)作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a.如图24-4-20,则△ABC就是所求作的三角形.(2)作出的三角形唯一.(3)得出结论:有两边及一边上的高对应相等的两三角形全等.误区分析:本题错解在于忽略了三角形的高可能在三角形内部也可能在三角形的外部.正解:如图24-4-21,作法:①作Rt△ADC,使AD=h,AC=b.②在直线CD上截取CB=a(在点C的两侧).则△ABC,△AB′C都是所求作三角形.(2)作出的三角形不唯一.(3)得出结论有两边及—边上的高对应相等的两三角形不一定全等.注意:与三角形的高有关的题目应慎之又慎.【学习方法指导】学习基本作图,主要是运用观察法,通过具体的操作,了解各种基本作图的步骤,掌握作图语言.【规律总结】画复杂的图形时,如一时找不到作法,—般是先画出一个符合所设条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.有时,也可以根据已知条件和基本作图,先作局部三角形,再以此为基础,根据有关条件画出其余部分,从而完成全图,这种方法称为三角形奠基法.拓展: 1.利用基本作图作三角形:(1)已知三边作三角形; (2)已知两边及其夹角作三角形; (3)已知两角及其夹边作三角形; (4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图:(1)过不在同一直线上的三点作圆(即三角形的外接圆). (2)作三角形的内切圆.(3)作圆的内接正方形和正六边形.附件:尺规作图简史:“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.•。
尺规作图知识归纳+真题解析
尺规作图知识归纳+真题解析【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【知识归纳答案】一)尺规作图1.定义只用没有刻度的直尺和圆规作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.真题解析一.选择题(共8小题)1.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.2.如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分∠EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】直接根据线段垂直平分线的作法即可得出结论.【解答】解:由题意可得,GH垂直平分线段EF.故选C.3.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.4.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误的是()A.①B.②C.③D.④【考点】N2:作图—基本作图.【分析】利用作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P 作已知直线的垂线的作法进而判断得出答案.【解答】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③作一条线段的垂直平分线缺少另一个交点,作法错误;④过直线外一点P作已知直线的垂线的作法正确.故选:C.5.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8【考点】N2:作图—基本作图;KO:含30度角的直角三角形.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,故CD是斜边AB的中线,据此可得出BD的长,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故选B.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【考点】N2:作图—基本作图.【分析】根据作一个角等于一直角的作法即可得出结论.【解答】解:用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.故选D.学科网7.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据已知条件可知直线BC是线段AD的垂直平分线,由此一一判定即可.【解答】解:A、正确.如图连接CD、BD,∵CA=CD,BA=BD,∴点C、点B在线段AD的垂直平分线上,∴直线BC是线段AD的垂直平分线,故A正确.B、错误.CA不一定平分∠BDA.C、错误.应该是S△ABC=?BC?AH.D、错误.根据条件AB不一定等于AD.故选A.8.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】N2:作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.学科网二.填空题(共5小题)9.如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP 射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.10.如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【考点】N2:作图—基本作图.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.11.如图,依据尺规作图的痕迹,计算∠α=56°.【考点】N2:作图—基本作图.【分析】先根据矩形的性质得出AD∥BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°﹣34°=56°,∴∠α=56°.故答案为:56.学科网12.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0.【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.13.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义..【考点】N3:作图—复杂作图;MA:三角形的外接圆与外心.【分析】由于90°的圆周角所对的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB 的中垂线得到圆心后即可得到Rt△ABC的外接圆.【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三.解答题(共8小题)14.如图,△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(不要求写作法,保留作图痕迹);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.【考点】N2:作图—基本作图;S9:相似三角形的判定与性质.【分析】(1)根据尺规作图的方法,以AC为一边,在∠ACB的内部作∠ACM=∠ABC即可;(2)根据△ACD与△ABC相似,运用相似三角形的对应边成比例进行计算即可.【解答】解:(1)如图所示,射线CM即为所求;。
6年级数学必背知识点总结
6年级数学必背知识点总结一、位值和数位在六年级数学中,学生需要掌握位值和数位的概念。
位值是指数字在一个数中所处的位置所决定的值,数位是指一个数中各位数所包含的值。
在一个多位数中,每一个数字都有自己的位值和数位。
例如,在数字7234中,7的位值是千位,数位是7;2的位值是百位,数位是2;3的位值是十位,数位是3;4的位值是个位,数位是4。
掌握位值和数位的概念可以帮助学生理解数字的构成和大小。
二、整数的比较和大小六年级学生需要掌握整数的比较和大小。
在比较整数大小时,首先需要比较它们的绝对值,然后根据正负号来确定大小关系。
绝对值较大的整数通常更大,但是要注意正负号的影响。
另外,六年级还需要学会比较两个小数的大小。
一般情况下,小数点右侧的数字越大,小数的值就越大。
而如果小数点右侧的数字相同,就需要比较小数点左侧的数字。
三、小数的加减运算在六年级,学生需要学习小数的加减运算。
小数的加减运算和整数的加减运算有些类似,首先要对齐小数点,然后进行按位相加或相减。
在进行小数的加减运算时,需要注意进位和借位的处理。
对齐小数点后,可以从小数点的右侧开始逐位相加或相减,需要借位或进位时要注意。
四、小数的乘法和除法除了加减运算,六年级学生还需要学习小数的乘法和除法。
小数的乘法和除法通常都需要将小数转化为整数进行计算,然后再将结果转化为小数。
在进行小数的乘法时,可以先忽略小数点,将乘数和被乘数分别相乘,然后根据小数点的位置确定小数点的位置。
对于小数的除法,通常需要将小数转化为整数,然后进行整数的除法运算,最后再根据小数点的位置确定商的小数点位置。
五、分数的加减乘除六年级学生需要学习分数的加减乘除运算。
在进行分数的加减乘除运算时,首先要找到分子和分母的最小公倍数或最大公约数,然后进行相应的计算。
在分数的加减运算中,需要找到分母的最小公倍数,然后将分数转化为相同的分母进行计算。
在乘法和除法运算中,需要将分数化简为最简形式,然后进行相应的计算。
六年级数学尺规作图
探索直线平行的条件(二)导学案【学习目标】1.能抓住内错角、同旁内角的特征熟练识别内错角和同旁内角.2.会用内错角相等、同旁内角互补判定二条直线平行. 【学习过程】一、知识链接,温故知新1如图1,∠C =31°,当∠ABE = 度时,就能使BE//CD . 2.下图中∠1和∠2是同位角的是( )A.⑴、⑵、⑶B.⑵、⑶、⑷C.⑶、⑷、⑸D.⑴、⑵、⑸.3..如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠DNF ,∠1=∠2,那么MQ ∥NP ,为什么? .二:创设情境,引入新知(一)创设情境如图,是一块小木板,在它上画了一条线段AB 如果要求用量角器,通过度量某些角的大小来判断木板的上下边缘是否平行,你准备怎样去做?(二)实践与探究【探究1】.直线a 、b 被直线c 所截∠2=∠3直线a 与直线b 平行吗?说明理由。
完成下列过程∵∠1=∠2 ( )∠2=∠3 ( )∴∠1=∠3 ( ) ∴a ∥b ( )你知道∠1、∠2是什么位置关系吗 【新知1】定义:具有∠1、∠2位置关系的角称为内错角 内错角的特征:两条直线被第三条直线所截,①在二条直线的 侧,②且在第三条直线的 的二个角叫内错角结论 两直线被第三条直线所截,如果内错角 ,那么这两条直线平行 简称 内错角 ,两直线平行【探究2】直线a 、b 被直线c 所截∠2+∠3=1800,直线a 与直线b 平行吗?为什么? 完成下列过程∵∠1+∠3=1800( )∠2+∠3 =1800( ) ∴∠1=∠2 ( ) ∴a ∥b ( )你知道∠2、∠3是什么位置关系吗 【新知2】定义:具有∠2、∠3位置关系的角称为同旁内角.同旁内角的特征:两条直线被第三条直线所截, ①在两条直线的 侧,②且在第三条直线的 的两个角叫同旁内角.结论 两直线被第三条直线所截,如果同旁内角 ,那么这两条直线平行 简称 同旁内角 ,两直线平行。
【应用新知】 1.图中内错角有同旁内角2. 如图∠1=∠2、∠B+∠BDE=180°图中那些线互相平行,为什么? (提示∠1与∠2是 角 、∠B 与∠BDE 是 角 )a bc12 3图1PQMN 21FEDCB AABba c1 23 123 74 8 65ba c2B ACD FE 1做一做如图9,由三个相同的含30°的三角板拼接成的图形,请找出图 中有哪些直线平行(不增添新的字母)?并说明理由.【归纳总结】现在你有几种方法证明两直线平行? 1. 两直线平行。
(完整版)初中最基本的尺规作图总结
尺规作图一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
尺规作图
教学过程一、复习预习我们熟悉的尺规作图——画线段、画角那么尺规作图还能解决什么问题呢?二、知识讲解考点/易错点1理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.考点/易错点2熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .考点/易错点3了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出已知,求作,作法三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.三、例题精析【例题1】【题干】作一条线段等于已知线段。
尺规作图的基本步骤和作图语言
尺规作图的基本步骤和作图语言一、作线段等于已知线段已知:线段a求作:线段AB,使AB=a作法:1、作射线AC2、在射线AC上截取AB=a,则线段AB就是所要求作的线段二、作角等于已知角已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.三、作角的平分线已知:∠AOB,求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于的长为半径作弧,在∠AOB 内,两弧交于点C.(3)作射线OC.OC就是所求作的射线.四、作线段的垂直平分线(中垂线)或中点已知:线段AB求作:线段AB的垂直平分线作法:(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点(2)经过E、F,作直线EF(作直线EF交AB于点O)直线EF就是所求作的垂直平分线(点O就是所求作的中点)五、过直线外一点作直线的垂线.(1)已知点在直线外已知:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.(4)经过点A、B作直线AB. 直线AB就是所画的垂线b.(如图) (2)已知点在直线上已知:直线a、及直线a上一点A.求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b常用的作图语言:(1)过点×、×作线段或射线、直线;(2)连结两点××;(3)在线段××或射线××上截取××=××;(4)以点×为圆心,以××的长为半径作圆(或画弧),交××于点×;(5)分别以点×,点×为圆心,以××,××的长为半径作弧,两弧相交于点×;(6)延长××到点×,使××=××。
六年级数学尺规作图 (1)
用尺规作角
学习目标:1能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2.能利用尺规作角的和、差、倍。
学习过程:
一问题的引入:
如图,要在长方形木板上截一个平行四边形,
使它的一组对边在长方形木板的边缘上,
另一组对边中的一条边为AB。
(1)请过点C画出与AB平行的另一条边
(2)如果你只有一个圆规和一把没有刻度的直尺,
你能解决这个问题吗?
二.新课:预习课本81页到82页的内容,完成下列问题
(一) 用尺规作一个角等于已知角.
(1)已知:∠AOB 求作:∠A′O′B′,使∠A′O′B′=∠AOB (2)已知:∠α求作:∠AOB,使∠AOB=∠α
(二) 用尺规作一个角等于已知角的倍数:
(3) 已知:∠1
求作:∠MON,使∠MON=2∠1 (三) 用尺规作一个角等于已知角的和:
(4) 已知:∠1、∠2、∠3
求作:①∠AOB,使∠AOB=∠1+∠2
②∠POQ,使∠POQ=∠1+∠2+∠3
(四) 当堂检测
(1)如图,点P为∠ABC的边AB上的一点,过点P作直线EF//BC
(2)已知:直线L和L外一点P,
求作:一条直线,使它经过点P,并与已知直线L平行
五,教学反思
A o
α
1
3
2
A
P
L 1
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质
学习目标:1、利用平行线的性质1推导平行线的性质2,性质3。
2、通过对平行线的性质2,性质3的推导,培养学生“言之有据”的思考习惯。
学习重点:平行线的性质2,性质3的推导。
学习难点:对平行线的性质2,性质3的理解。
一探究新知
在平行线的判定一节,我们利用“同位角相等,两直线平行”推出了“内错角相等,两直线平行”,类似的,我们能由平行线的性质1,推出两条直线平行时,内错角之间的关系吗?
二、感悟新知
1、如右图:a∥b,试说明内错角∠2和∠3的关系。
解:∵a∥b()
∴∠1=∠2()
∵∠1=∠3()
∴∠2=∠3()
2、由此,做出结论:--------------------------------
用数学符号表示:---------------------------------------
3、观察右图:试说明同旁内角∠2和∠4的关系。
解:∵a∥b()
∴∠1=∠2()
∵∠1+∠4=180°()
∴∠2+∠4=180°()
4、有此,得出结论:--------------------------------------
用数学符号表示:------------------------------------------------
三、运用新知
1、如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?
解:∵四边形ABCD是梯形
∴AB∥CD
∴∠D=180°-∠A=180°-100°=80°
()
∴∠C=180°-∠B=180°-115°=65°()
2、如图,已知DE∥BC,BE平分∠DBC,∠D=110°,求∠E的度数。
解:∵DE∥BC()
∴∠DBC=180°-∠D=180°-110°=70°
()
∵BE平分∠DBC()
∴∠1=
2
1
∠DBC=
2
1
×70°=35°
()
∴∠E=∠1=35°()
四、当堂检测
1、如图,在甲、乙两地之间要修一条笔直的公路,
从甲地测得公路的走向是北偏东72°,如果甲、
乙两地同时开工,若干天后公路能准确接通,乙地
所修公路的走向应怎样?
2、已知,如图,AD∥BE,DE∥AB,试说明∠A=∠E。
五、教后记
1。