全国各地高考模拟函数综合性大题2
高考数学高三模拟考试试卷压轴题分项汇编 专题02 函数含解析理
高考数学高三模拟考试试卷压轴题分项汇编专题02 函数(含解析)理1. 【高考北京理第5题】已知(31)4,1()log,1aa x a xf xx x-+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a的取值范围是()(A)(0,1)(B)1 (0,)3(C)11[,)73(D)1[,1)7【答案】C2. 【高考北京理第6题】在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x≠,1221|()()|||f x f x x x-<-恒成立”的只有()(A)1()f xx=(B)()||f x x=(C)()2xf x=(D)2()f x x=【答案】A3. .【高考北京理第2题】函数()3(02)xf x x=<≤的反函数的定义域为()A.(0)+∞,B.(19],C.(01),D.[9)+∞,4. 【高考北京理8题】对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假: 命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( ) A.①③B.①②C.③D.②5. 【高考北京理第2题】若0.52a =,πlog 3b =,22πlog sin5c =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】 A考点:函数的映射关系,函数的图像。
6. 【高考北京理第3题】“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】 B考点:充要条件,反函数,映射关系,函数单调性。
2023高考数学全真模拟卷(新高考专用)2
1.已知集合 , ,则 ( )
A. B. C. D.
2.(考点:复数,★)设复数z满足 =|z-2i|,且z在复平面内对应的点为(x,y),则().
A.x+2y-3=0B.2x+4y-3=0
C.2x-4y+3=0D.x-2y+3=0
A.1B.2C.- D.
7.(考点:函数图象的判断,★★)已知定义在R上的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)= 则函数y=f(x)在[2,4]上的大致图象是().
8.(考点:函数的零点,★★★)已知函数f(x)= 则函数g(x)=9[f(x)]2+17f(x)-2的零点个数为().
(1)求点M的轨迹 方程;
(2)点N是轨迹 上的动点,直线 , 斜率分别为 , 满足 ,求 中点横坐标 的取值范围.
22.已知函数f(x)=sin2xsin2x.(1)讨论来自(x)在区间(0,π)的单调性;
(2)证明: ;
(3)设n∈N*,证明:sin2xsin22xsin24x…sin22nx≤
D.若函数 ,且 , 在 上单调递减
12.(2021·福建省福州第一中学高三期中)如图,正方体 的棱长为 ,线段 上有两个动点 ,且 ,以下结论正确的有( )
A.
B.异面直线 所成的角为定值
C.点 到平面 的距离为定值
D.三棱锥 的体积是定值
三、填空题:本题共4小题,每小题5分,共20分.
13.已知圆 上恰有 个点到直线 : 的距离等于 ,则 的值为.
C.b<a<cD.b<c<a
数学一轮复习专练23大题专练二三角函数的综合运用含解析文
专练23 高考大题专练(二)三角函数的综合运用1.[2020·全国卷Ⅱ]△ABC的内角A,B,C的对边分别为a,b,c,已知cos2错误!+cos A=错误!.(1)求A;(2)若b-c=错误!a,证明:△ABC是直角三角形.2.[2019·全国卷Ⅲ]△ABC的内角A,B,C的对边分别为a,b,c.已知a sin错误!=b sin A。
(1)求B;(2)若△ABC为锐角三角形,且c=1,求△ABC面积的取值范围.3.[2019·天津卷]在△ABC中,内角A,B,C所对的边分别为a,b,c。
已知b+c=2a,3c sin B=4a sin C。
(1)求cos B的值;(2)求sin错误!的值.4.[2020·山东青岛一中高三测试]已知函数f(x)=sin2x-cos2x-2错误!sin x cos x(x∈R).(1)求f错误!的值;(2)求f(x)的最小正周期及单调递增区间.5.[2020·全国卷Ⅰ]△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=错误!c,b=2错误!,求△ABC的面积;(2)若sin A+错误!sin C=错误!,求C。
专练23高考大题专练(二)三角函数的综合运用1。
解析:(1)由已知得sin2A+cos A=错误!,即cos2A-cos A +错误!=0.所以错误!2=0,cos A=错误!.由于0<A<π,故A=错误!。
(2)由正弦定理及已知条件可得sin B-sin C=错误!sin A。
由(1)知B+C=错误!,所以sin B-sin错误!=错误!sin错误!。
即错误!sin B-错误!cos B=错误!,sin错误!=错误!.由于0<B<错误!,故B=错误!.从而△ABC是直角三角形.2.解析:本题考查了正弦定理、二倍角公式、三角形面积公式以及学生对三角恒等变换的掌握情况;考查学生逻辑推理能力和运算求解能力;考查了逻辑推理和数学运算的核心素养.(1)由题设及正弦定理得sin A sin错误!=sin B sin A.因为sin A≠0,所以sin错误!=sin B。
高考数学大二轮复习专题2函数与导数第2讲综合大题部分真题押题精练(理)
第2讲 综合大题部分1. (2017·高考全国卷Ⅰ)已知函数f (x )=a e 2x +(a -2)e x-x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解析:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1).①若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. ②若a >0,则由f ′(x )=0得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0. 所以f (x )在(-∞,-ln a )上单调递减, 在(-ln a ,+∞)上单调递增.(2)①若a ≤0,由(1)知,f (x )至多有一个零点.②若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a+ln a .a .当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;b .当a ∈(1,+∞)时,由于1-1a+ln a >0,即f (-ln a )>0,故f (x )没有零点;c .当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0, 故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a-1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝ ⎛⎭⎪⎫3a-1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).2.(2017·高考全国卷Ⅲ)已知函数f (x )=x -1-a ln x . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值. 解析:(1)f (x )的定义域为(0,+∞).①若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意; ②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x )≥0. 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0.令x =1+12n 得ln ⎝ ⎛⎭⎪⎫1+12n <12n .从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 而⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123>2, 所以m 的最小值为3.3.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .解析:(1)证明:当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0.设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)·e -x=-(x -1)2e -x. 当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减. 而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)只有一个零点等价于h (x )在(0,+∞)只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)单调递减,在(2,+∞)单调递增.故h (2)=1-4ae 2是h (x )在(0,+∞)的最小值.①若h (2)>0,即a <e24,h (x )在(0,+∞)没有零点.②若h (2)=0,即a =e24,h (x )在(0,+∞)只有一个零点.③若h (2)<0,即a >e24,因为h (0)=1,所以h (x )在(0,2)有一个零点;由(1)知,当x >0时,e x>x 2,所以h (4a )=1-16a 3e 4a =1-16a3e2a2>1-16a 32a 4=1-1a>0,故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,当f (x )在(0,+∞)只有一个零点时,a =e24.1. 已知函数f (x )=ln(x +1)+ax 2,a >0. (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(-1,0)上有唯一零点x 0,证明:e -2<x 0+1<e -1. 解析:(1)f ′(x )=1x +1+2ax =2ax 2+2ax +1x +1,x >-1,令g (x )=2ax 2+2ax +1, 则Δ=4a 2-8a =4a (a -2), 若Δ<0,即0<a <2,则g (x )>0,故当x ∈(-1,+∞)时,f ′(x )>0,f (x )单调递增. 若Δ=0,即a =2,则g (x )≥0, 仅当x =-12时,等号成立,故当x ∈(-1,+∞)时,f ′(x )≥0,f (x )单调递增. 若Δ>0,即a >2,则g (x )有两个零点,x 1=-a -a a -22a ,x 2=-a +a a -22a,由g (-1)=g (0)=1>0,g (-12)<0得,-1<x 1<-12<x 2<0,故当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,f (x )单调递减,当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0,f (x )单调递增. 综上所述,当0<a ≤2时,f (x )在(-1,+∞)上单调递增, 当a >2时,f (x )在(-1,-a -a a -22a )和(-a +a a -22a ,+∞)上单调递增,在(-a -a a -22a,-a +a a -22a)上单调递减.(2)由(1)及f (0)=0可知:仅当极大值等于零,即f (x 1)=0时,符合要求. 此时,x 1就是函数f (x )在区间(-1,0)上的唯一零点x 0. 所以2ax 20+2ax 0+1=0, 从而有a =-12x 0x 0+1,又f (x 0)=ln(x 0+1)+ax 20=0, 所以ln(x 0+1)-x 02x 0+1=0,令x 0+1=t 0,则ln t 0-t 0-12t 0=0, 即ln t 0+12t 0-12=0,且0<t 0<12,设h (t )=ln t +12t -12,则h ′(t )=2t -12t 2,当0<t <12时,h ′(t )<0,h (t )单调递减,又h (e -2)=e 2-52>0,h (e -1)=e -32<0,所以e -2<t 0<e -1,即e -2<x 0+1<e -1.2.已知函数f (x )=12ln x -mx ,g (x )=x -ax (a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围.解析:(1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x-m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增, 当m >0时,由f ′(x )=0得x =12m;由⎩⎪⎨⎪⎧f ′x >0,x >0得0<x <12m ;由⎩⎪⎨⎪⎧f ′x <0,x >0得x >12m.综上所述,当m ≤0时,f (x )的单调递增区间为(0,+∞); 当m >0时,f (x )的单调递增区间为(0,12m ),单调递减区间为(12m ,+∞).(2)若m =12e 2,则f (x )=12ln x -12e 2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max , 由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,g ′(x )=1+ax2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2]上是增函数,g (x )min =g (2)=2-a2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].3.已知函数f (x )=ln xx +a (a ∈R ),曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(1)试比较:2 0182 019与2 0192 018的大小并说明理由;(2)若函数g (x )=f (x )-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.解析:(1)依题意得f ′(x )=x +ax-ln x x +a 2,所以f ′(1)=1+a 1+a2=11+a, 又曲线y =f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直,所以f ′(1)=1, 即11+a=1,解得a =0. 故f (x )=ln x x ,f ′(x )=1-ln xx2.令f ′(x )>0,则1-ln x >0,解得0<x <e ; 令f ′(x )<0,则1-ln x <0,解得x >e , 所以f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).∴f (2 018)>f (2 019),即ln 2 0182 018>ln 2 0192 019,即ln 2 0182 019>ln 2 0192 018,∴2 0182 019>2 0192 018.(2)不妨设x 1>x 2>0,因为g (x 1)=g (x 2)=0, 所以ln x 1-kx 1=0,ln x 2-kx 2=0, 可得ln x 1+ln x 2=k (x 1+x 2), ln x 1-ln x 2=k (x 1-x 2). 要证x 1x 2>e 2,即证ln x 1x 2>2, 只需证ln x 1+ln x 2>2, 也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2x 1-x 2x 1+x 2.令x 1x 2=t (t >1),则只需证ln t >2t -1t +1(t >1).令h (t )=ln t -2t -1t +1(t >1),则h ′(t )=1t-4t +12=t -12t t +12>0,故函数h (t )在(1,+∞)上是单调递增的, 所以h (t )>h (1)=0,即ln t >2t -1t +1.所以x 1x 2>e 2. 4.已知函数f (x )=exx.(1)求曲线y =f (x )在点P (2,e22)处的切线方程;(2)证明:f (x )>2(x -ln x ).解析:(1)因为f (x )=exx,所以f ′(x )=e x ·x -e xx2=exx -1x 2,f ′(2)=e24, 又切点为(2,e22),所以切线方程为y -e 22=e24(x -2),即e 2x -4y =0.(2)设函数g (x )=f (x )-2(x -ln x )=exx-2x +2ln x ,x ∈(0,+∞),则g ′(x )=exx -1x 2-2+2x =e x-2x x -1x2,x ∈(0,+∞). 设h (x )=e x-2x ,x ∈(0,+∞),则h ′(x )=e x-2,令h ′(x )=0,则x =ln 2. 当x ∈(0,ln 2)时,h ′(x )<0; 当x ∈(ln 2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln 2)=2-2ln 2>0, 故h (x )=e x-2x >0. 令g ′(x )=e x-2xx -1x2=0,则x =1.当x ∈(0,1)时,g ′(x )<0; 当x ∈(1,+∞)时,g ′(x )>0. 所以g (x )min =g (1)=e -2>0, 故g (x )=f (x )-2(x -ln x )>0, 从而有f (x )>2(x -ln x ).。
全国卷高考数学导数、解析几何大题专项训练含答案(二)
全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。
(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。
2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。
3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。
高考大题专项(二) 三角函数与解三角形
B,C= ,
6
?
解 方案一:选条件①.
由
π
2 + 2 - 2
C= 6 及余弦定理,得 2
3 2 + 2 - 2
于是 2 3 2
=
3
,由此可得
2
=
3
.由
2
sin A= 3sin B 及正弦定理,得 a= 3b.
b=c.
由①ac= 3,解得 a= 3,b=c=1.
因此,选条件①时,存在符合题意的△ABC,此时 c=1.
=sin(A+B)=sin Acos B+cos Asin B=
所以
1
S=2absin
3+ 3
C= 2 .
若选②a=2,由
sin
因为 B∈
π
0, 2
6+ 2
,
4
=
,得
sin
,所以 cos
sin
1
B=2.
sin
B=
=
3
,
2
又因为 sin C=sin[π-(A+B)]=sin(A+B)=sin Acos B+cos Asin B=
要忘记对角的范围的限制,特别是求三角函数值的范围或最值时,先要把自
变量的取值范围求出来,再利用三角函数的单调性确定函数值的范围.
对点训练3(2020山东烟台模拟,17)已知函数f(x)=1-2 3 sin xcos x-2cos2x函数f(x)的单调递增区间;
3.
a-b=2 3(sin A-sin B)=2 3[sin
π
π
π
π
因为 <A< ,所以- <A6
2021届全国新高考仿真模拟试题(二)数学(文)(解析版)
∴CD⊥平面
ABD,∴CD
是三棱锥
C
ABD
的高,∴VC
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)
卷6-备战2022年高考数学(理)【名校地市好题必刷】全真模拟卷(全国卷专用)第二辑(解析版)
备战2022年高考数学(理)【名校地市好题必刷】全真模拟卷(全国卷专用)第六模拟(本卷共22小题,满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2022·河南·高三期末(理))已知集合{}0,N A x x a x =≤≤∈,{}1,2,3B =,若A B B =,则a 的取值范围是( ) A .{}3 B .()3,+∞C .[)3,4D .[)3,+∞【答案】D 【解析】解:因为A B B =,所以B A ⊆, 又{}0,N A x x a x =≤≤∈,{}1,2,3B =, 所以3a ≥. 故选:D.2.(2022·安徽蚌埠·高三期末(理))设复数202212i 2i z +⎛⎫= ⎪-⎝⎭,则z =( )A .1B .1-C .iD .i -【答案】B 【解析】()()()()12i 2i 12i 5i i 2i 2i 2i 5+++===--+,因此()()1011101120222i i 11z ===-=-. 故选:B.3.(2022·内蒙古赤峰·高三期末(理))设0x >且1x ≠,0y >且1y ≠,则“log 0x y <”是“()()110x y --<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】01log 01x x y y <<⎧<⇒⎨>⎩或101x y >⎧⎨<<⎩,因此有(1)(1)0x y --<,充分性满足,当(1)(1)0x y --<时,10,10x y --或10,10x y ->-<,结合前提条件可得log 0x y <,必要性满足.因此是充分必要条件. 故选:C .4.(2022·吉林白山·高三期末(理))某保险公司销售某种保险产品,根据2020年全年该产品的销售额(单位:万元)和该产品的销售额占总销售额的百分比,绘制出如图所示的双层饼图.根据双层饼图,下列说法正确的是( )A .2020年第四季度的销售额为380万元B .2020年上半年的总销售额为500万元C .2020年2月份的销售额为60万元D .2020年12个月的月销售额的众数为60万元 【答案】D 【解析】不妨设全年总销售额为x 万元,则第二季度的销售额可得,(6%9%11%)260x ++=,解得,1000x =,选项A :第四季度销售额为100028%280⨯=(万元),故A 错误; 选项B :由图可知,上半年销售额为160260420+=(万元),故B 错误; 选项C :由图可知,1月份和3月份销售额之和为1000(5%6%)110⨯+=(万元), 故2月份的销售额为16011050-=(万元),故C 错误;选项D :由图易知,2月份的销售额占比为5%,从而由图可知,月销售额占比为6%的月份最多,故月销售额的众数为10006%60⨯=(万元),故D 正确. 故选:D.5.(2022·内蒙古通辽·高三期末(理))酒驾是严重危害交通安全的违法行为.根据国家有关规定:100mL 血液中酒精含量在20~80mg 之间为酒后驾车,80mg 及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2mg/mL ,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为( )(参考数据:lg 20.3≈,lg30.48≈)A .6B .7C .8D .9【答案】C 【解析】设该驾驶员至少需经过x 个小时才能驾驶汽车,则()120120%20x-<,所以81106x⎛⎫< ⎪⎝⎭,则8101lg 6lg 2lg3log 7.86lg 0.83lg 21x --->==≈-,所以该驾驶员至少需经过约8个小时才能驾驶汽车. 故选:C6.(2021·江西宜春·高三期末(理))我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,函数的解析式常用来琢磨函数图象的特征.函数ln ||cos ()sin x xf x x x⋅=+在[,0)(0,]ππ-的图像大致为( )A .B .C .D .【答案】D 【解析】 ()()ln ||cos ()sin x x f x f x x x-⋅--==---,为奇函数,排除A(1)0f =,()02f π=,()03f π>,()0f π<故选:D 【点睛】由解析式找图像的问题,可根据奇偶性,单调性,对称性,特殊值等排除选项,找出答案. 7.(2022·四川巴中·一模(理))已知等比数列{}n a 的公比为q ,前n 项和为n S ,则下列命题中错误的是( ) A .1n n n S S a q +=+⋅ B .11n n S S qS +=+C .2S ,42S S -,64S S -成等比数列D .“12q =-”是“n S ,2n S +,1n S +成等差数列”的充要条件【答案】C 【解析】对于选项A ,因为11n n n S S a ++-=,又等比数列{}n a 的公比为q ,所以1n n a a q +=⋅ 所以1n n n S S a q +-=⋅,即1n n n S S a q +=+⋅,故A 正确;因为()111231123......n n n S qS a q a a a a a a q a q a q a q +=+++++=+++++ 12311...n n a a a a S ++=++++=,所以11n n S S qS +=+,故B 正确;当1q =-时,224640S S S S S =-=-=,显然此时2S ,42S S -,64S S -不能成等比数列,故C 错误;若n S ,2n S +,1n S +成等差数列,则212n n n n S S S S +++-=-,所以221n n n a a a ++++=-, 即122n n a a ++=-,所以1212n n a q a ++==,所以“12q =-”是“n S ,2n S +,1n S +成等差数列”的充要条件,故D 正确.8.(2022·吉林四平·高三期末(理))如图,1F 、2F 分别是双曲线C :22221x ya b-=(0a >,0b >)的左、右焦点,过1F 的直线l 与C 的左、右两支分别交于点A 、B .若2ABF 为等边三角形,则双曲线C 的离心率为( )A .4B 7C 23D 3【答案】B 【解析】解:根据双曲线的定义可得122BF BF a -=,因为2ABF 为等边三角形,所以2BF AB =,12120F AF ∠=︒ 所以112BF AB AF a -==,因为212AF AF a -=,所以2124AF AF a a =+=, 因为在12AF F △中,122,4AF a AF a ==,12120F AF ∠=︒, 所以2221212122cos120F F AF AF AF AF =+-⋅︒, 即222214416224282c a a a a a ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,所以7c a ,所以双曲线的离心率为7ce a= 故选:B9.(2022·四川雅安·高三期末(理))我国无人机技术处于世界领先水平,并广泛民用于抢险救灾、视频拍摄、环保监测等领域.如图,有一个从地面A 处垂直上升的无人机P ,对地面,B C 两受灾点的视角为BPC ∠,且1tan 3BPC ∠=.已知地面上三处受灾点,,B C D 共线,且90ADB ∠=,1km BC CD DA ===,则无人机P 到地面受灾点D 处的遥测距离PD 的长度是( )A 2kmB .2kmC 3kmD .4km【答案】B 【解析】提示:法一:由题意,得BD ⊥面,PAD BD PD ∴⊥.设,PD x =记,PBD PCD ∠α∠β==, ()212tan ,tan ,tan tan 22312xx x x x x x x αβθβα-∴==∴=-===++⋅,解得1x =或2x =,又在Rt PDA △中有1, 2.x x >∴=∴选B .法二:由题,BD ⊥面,PAD BD PD ∴⊥.设PA x =,则22225,2PB x PC x =+=+.由1tan 3BPC ∠=33cos BPC ∠⇒=PBC 中,由余弦定理得2222310521252x x x x +++-=++23x =,进而21 2.PD x +=∴选B. 故选:B.10.(2022·广西·南宁市东盟中学高三期末(理))已知函数()()2sin (00)2f x x πωϕωϕ=+><<,的最小正周期为π,且它的图象关于直线23x π=对称,则下列说法正确的个数为( )①将()f x 的图象向右平移ϕ个单位长度后,得到函数2sin y x ω=的图象;②()f x 的图象经过点()01,; ③()f x 的图象的一个对称中心是5012⎛⎫⎪⎝⎭,π;④()f x 在123ππ⎡⎤⎢⎥⎣⎦,上是减函数;A .0B .1C .2D .3【答案】C 【解析】由最小正周期为π,得2ω=;由23x π=为对称轴,得()4 32k k Z ππϕπ+=+∈,02πϕ<<, 故k 取1,6π=ϕ,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.①()f x 的图象向右平移ϕ个单位长度后,得2sin 26y x π⎛⎫=- ⎪⎝⎭,错误;②()02sin 16f π==,正确;③52sin 012f ππ⎛⎫== ⎪⎝⎭,正确; ④52636x πππ⎡⎤+∈⎢⎥⎣⎦,,错误; 故选:C .11.(2022·宁夏六盘山高级中学高三期末(理))已知圆C :()()22232x y -+-=.若直线l :0x y m ++=上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得60APB ∠=︒,则m 的取值范围是( ) A .(),9-∞- B .(][),91,-∞⋃-+∞ C .()1,-+∞ D .[]9,1--【答案】D 【解析】解:根据题意,圆C :()()22232x y -+-=的圆心为()2,3,半径2r =过点P 作圆O 的两条切线,切点为A ,B ,连接PC , 若60APB ∠=︒,则30APC ∠=︒,又由CA PA ⊥, 则||2||222PC CA r ===若直线l :0x y m ++=上存在点P ,满足60APB ∠=︒, 则有C 到直线l 的距离2211d =≤+ 解可得:91m -≤≤-,即m 的取值范围为[]9,1--, 故选:D .12.(2022·黑龙江·高三期末(理))已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在(0,)+∞单调递减B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】C 【解析】对于选项A ,当1a =-时,()sin x f x e x =-,(0,)x ∈+∞,()cos 0x f x e x -'=>恒成立,所以()f x 在(0,)+∞单调递增,故选项A 不正确;对于选项B ,当时,()sin x f x e x =-,(0)1f =,故切点为(0,1) ,()cos x f x e x '=-,所以切线斜率0)0k f ='(=,故直线方程为:10(0)y x -=-,即切线方程为:1y = ,故选项B 不正确;对于选项C ,当1a =时,()+sin x f x e x =,(,0)x π∈-,()+cos x f x e x '=,()sin 0x f x e x ''=->恒成立,所以()f x '单调递增,又3433()cos()044f e πππ-'-=+-<,2()02f e ππ-'-=> 故()f x '存在唯一极值点,不妨设3,42x ππ⎛⎫∈-- ⎪⎝⎭ ,则0()=0f x ',即00+cos =0x e x ,且003,()0;,()042x x f x x x f x ππ''-<<<<<->, 所以极小值000000()=+sin sin cos =2)(1,0)4xf x e x x x x π=--∈-,故选项C 正确;对于选项D ,对于()+sin x f x e a x =,(,+)x π∈-∞,令()0f x =,即+sin 0x e a x =,当,1x k k π=>-,且Z k ∈, 显然没有零点,故,1x k k π≠>-,且Z k ∈,所以sin x e a x =-则令()sin x e F x x =-,2(cos sin )()sin x e x x F x x -'=,令()=0F x ',解得+,14x k k k Z ππ=≥-∈,,所以3(,)4x ππ∈-- 单调递减,3(,0)4x π∈- 单调递增,有极小值343()240F e ππ-->,于是知(,0)x π∈-时得34()2F x e π- ,所以当342)a e π-∈时,函数无零点,对于条件中任意的0a >均有零点矛盾,故选项D 不正确;故选:C二、填空题(本大题共4小题,每小题5分,共20分)13.(2022·安徽宣城·高三期末(理))已知向量()2,1a =,()1,b λ=-,若()2a b a +⊥,则a 与b 的夹角的余弦值是______. 【答案】213【解析】()()()24,21,3,2a b λλ+=+-=+,由于()2a b a +⊥,所以()()3,22,16280,8λλλλ+⋅=++=+==-, 则()1,8b =--,所以a 与b 的夹角的余弦值是2213565513a b a b⋅--===⨯⨯⋅.故答案为:21314.(2022·山西·祁县中学高三阶段练习(理))曲线()31()e x f x x mx -=-在点(1(1))f ,处的切线与直线410x y --=垂直,则该切线的方程为__________. 【答案】410x y +-= 【解析】由题意得()321()3e x f x x x mx m ---'=+,则(1)42f m '=-, 所以切线的斜率142k m =-.直线410x y --=的斜率214k =. 因为两直线相互垂直,所以121(42)14k k m =-=-,解得4m =, 则1(1)4k f '==-.所以()31()4e x f x x x -=-,则(1)3f =-, 故该切线的方程为34(1)y x +=--,即410x y +-=. 故答案为:410x y +-=15.(2022·云南昆明·高三期末(理))在ABC 中,60BAC ∠=︒,3BC =,D 是BC 上的点,AD 平分BAC ∠,若2AD =,则ABC 的面积为__________.33【解析】∴由正弦定理,sin sin6BDAD B π=,sin sin 6DC ADC π=,即1sin sin 6sin AD BD B Bπ=⋅=,1sin sin 6sin AD DC C Cπ=⋅=,而3BC =, ∴113sin sin B C+=, ∵23sin sin sin AB AC BC C B BAC ===∠123sin C =123sin B =, ∴113AC AB +=3AB AC AB +=⋅, 又由余弦定理知:2222cos AC AB AC AB BAC BC +-⋅⋅∠=,∴229AC AB AC AB +-⋅=,即2()39AC AB AC AB +-⋅=,令x AC AB =⋅, ∴24120x x --=,即6x =(2x =-舍去), ∴133sin 2ABCSAC AB BAC =⋅⋅∠=3316.(2022·四川南充·高三期末(理))已知O 为坐标原点,抛物线C :()220y px p =>上一点A 到焦点F 的距离为4,设点M 为抛物线C 准线l 上的动点,给出以下命题: ①若△MAF 为正三角形时,则抛物线C 方程为24y x =; ②若AM l ⊥于M ,则抛物线在A 点处的切线平分MAF ∠; ③若3MF FA =,则抛物线C 方程为26y x =;④若OM MA +的最小值为213,则抛物线C 方程为28y x =. 其中所有正确的命题序号是________. 【答案】①②③④ 【解析】①若△MAF 为正三角形时,122p AM ==,故①正确; ②若AM l ⊥于M ,设 ()00,A x y ,过A 的切线m 方程为:00x ty ty x =-+,代入22y px =得2002220y pty pty x -+-=,()()20024220pt pty x ∆=---=,又202y px =,()200tp y ∴-=, 0y t p=,所以过A 点的切线的斜率为0p k y =,因为00022MF y yk p p p -==---,所以过A 的切线m MF ⊥,又AM AF =, 故抛物线在A 点处的切线平分MAF ∠,②正确③若3MF FA =,则A M F 、、三点共线,4,12AF MF ==, 由三角形的相似比得12,3164pp ==,故③正确;④设(),0B p -则214,82A p p p ⎛-±- ⎝,O B 、关于准线l 对称,OM BM =,2221482132O p M BM MA A M B p p A ⎛⎫⎛⎫=+≥==++±- ⎪⎪⎝⎭⎭+ ⎝1402p ->,解得4p =,故④正确. 故答案为: ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(2022·安徽宣城·高三期末(理))记n S 为数列{}n a 的前n 项和,n T 为数列{}n S 的前n 项和,已知2n n S T +=.(1)求证:数列{}n S 是等比数列; (2)求数列{}n na 的前n 项和n A . 【解析】(1)因为n T 为数列{}n S 的前n 项和, 当1n =时,1111122S T S S S +=+==,则11S = 当2n ≥时,1n n n T T S --=2n n S T +=① 112n n S T --+=②,①-②得()122n n S S n -=≥,得()1122n n S n S -=≥ 所以数列{}n S 是首项为1公比为12的等比数列.(2)由(1)可得,数列{}n S 是以11S =为首项,以12为公比的等比数列,所以112n n S -⎛⎫= ⎪⎝⎭.当1n =时,1111a S T ===,当2n ≥时,1211111222n n n n n n a S S ----⎛⎫⎛⎫⎛⎫=-=-=- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,显然对于1n =不成立,所以11,11,22n n n a n -=⎧⎪=⎨⎛⎫-≥ ⎪⎪⎝⎭⎩ 当1n =时,111A a ==当2n ≥时,21111123222n n A n -⎡⎤⎛⎫⎛⎫=-⨯+⨯++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦23111112322222nn A n ⎡⎤⎛⎫⎛⎫⎛⎫=-⨯+⨯++⋅⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦上下相减可得2311111111222222n nn A n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++++-⋅⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()211142111112122212n n nn n -⎡⎤⎡⎤⎛⎫-⎢⎥⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎛⎫⎛⎫⎣⎦=-+-⋅=-++⋅ ⎪ ⎪⎢⎥⎝⎭⎝⎭-⎢⎥⎢⎥⎣⎦则()11222n n A n -⎛⎫=+⋅- ⎪⎝⎭又1n =时,13121A =⨯-=综上,()11222n n A n -⎛⎫=+⋅- ⎪⎝⎭18.(2022·安徽蚌埠·高三期末(理))第24届冬奥会将于2022年2月4日至2月20日在北京举行,冬季两项是冬奥会的正式项目之一,冬季两项是把越野滑雪和射击两种特点不同的竞赛项目结合在一起进行的运动,要求运动员既要有由动转静的能力,又要有由静转动的能力.20km 男子个人赛是冬季两项中最古老的奥运项目,分成5个阶段:第1圈滑行后卧射,第2圈滑行后立射,第3圈滑行后卧射,第4圈滑行后立射,第5圈滑行直达终点.比赛时,运动员单个出发,随身携带枪支和20发子弹,每轮射击发射5发子弹,每脱靶一次加罚1分钟.成绩的计算是越野滑雪的全程时间加被罚的时间,比赛结束所耗总时间少者获胜.已知甲、乙两名参赛选手在射击时每发子弹命中目标的概率均为0.8. (1)试求甲选手在一轮射击中,被罚时间X 的分布列及期望;(2)若甲、乙两名选手在滑道上滑行所耗时间相同,在前三轮射击中甲选手比乙选手多罚了3分钟,试求在四轮射击结束后,甲选手所罚总时间比乙选手所罚总时间少的概率(保留小数点后4位).(参考数据:50.80.32768=,40.80.4096=.) 【解析】(1)因为一轮射击中,共发射5发子弹,脱靶一次罚时1分钟, 所以一轮射击中,被罚时间X 的值可能为0,1,2,3,4,5.()500.80.32768P X ===,()1451C 0.20.80.4096P X ==⨯=,()()22352C 0.20.80.2048P X ==⨯=,()()33253C 0.20.80.0512P X ==⨯=,()()4454C 0.20.80.0064P X ==⨯=,()()5555C 0.20.00032P X ===,所以X 的分布列为 X 0 1 2 3 4 5 P0.327680.40960.20480.05120.00640.00032(2)依题意,甲选手所罚总时间比乙选手所罚总时间少,在第四轮射击中,共有两种可能,第一种情况,甲5发子弹都击中,乙击中0发或1发;第二种情况,甲击中4发子弹,乙击中0发,所以甲选手所罚总时间比乙选手所罚总时间少的概率为()5514145550.80.2C 0.20.8C 0.20.80.20.0023P =⨯+⨯+⨯⨯=.19.(2022·江西·新余市第一中学高三期末(理))如图1,已知ADE 为等边三角形,四边形ABCD 为平行四边形,1,2,5BC BD BA ===把ADE 沿AD 向上折起,使点E 到达点P 位置,如图2所示;且平面PAD ⊥平面PBD .(1)证明:PA BD ⊥;(2)在(1)的条件下求二面角A PB C --的余弦值. 【解析】(1)证明:如图,设PD 的中点为F ,连接AF .∵ADP △为等边三角形,∴AF PD ⊥.又平面PAD ⊥平面PBD ,平面PAD 平面PBD PD =,∴AF ⊥平面PBD .∵BD ⊂平面PBD ,∴BD AF ⊥. ∵1,2,5AD BC BD BA ==== ∴222AD BD AB +=,∴BD AD ⊥. 又ADAF A =,∴BD ⊥平面PAD .又∵PA ⊂平面PAD ,∴PA BD ⊥.(2)由(1)知BD ⊥平面PAD ,则平面PAD ⊥平面ABD . 设AD 中点为O ,连接PO ,则PO AD ⊥.又平面PAD ⊥平面ABD ,平面PAD 平面ABD AD =,∴PO ⊥平面ABD . 设AB 中点为O ',连接OO '. ∵//OO BD ',∴OO AD '⊥,故以点O 为坐标原点,OA ,OO ',OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系如图所示,则1133,0,0,,2,0,,2,0,222A B C P ⎛⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,∴1313,0,,,2,222PA PB ⎛⎫⎛=-=- ⎪ ⎝⎭⎝⎭,33,2,2PC ⎛=- ⎝⎭.设平面PAB 的法向量为(,,)m x y z =,由130,213202m AP x m PB x y z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩得3,3,x z y ⎧=⎪⎨=⎪⎩取 2z =,则(23,3,2)m =设平面PBC 的法向量为(,,)n a b c =,由1320,233202n PB a b n PC a b ⎧⋅=-+=⎪⎪⎨⎪⋅=-+=⎪⎩得0,3a b =⎧⎪⎨=⎪⎩取4c =-,则(0,3,4)n =--,11cos ,19||||1919m n m n m n ⋅-〈〉===-⨯∴二面角A PB C --的余弦值为1119-20.(2022·四川·成都七中高三期末(理))已知两圆222212:(2)54,:(2)6C x y C x y -+=++=,动圆M 在圆1C 内部且和圆1C 内切,和圆2C 外切. (1)求动圆圆心M 的轨迹C 的方程;(2)过点()3,0A 的直线与曲线C 交于,P Q 两点.P 关于x 轴的对称点为R ,求ARQ 面积的最大值. 【解析】(1)依题意,圆1C 的圆心()12,0C ,半径136r =,圆2C 的圆心()22,0C -,半径26r 设圆M 的半径为r ,则有11MC r r =-,22MC r r =+,因此,121212464MC MC r r C C +=+=>=,于是得点M 的轨迹是以12,C C 为焦点,长轴长246a =24c =,短半轴长b 有:22220b a c =-=,所以动圆圆心M 的轨迹C 的方程为:2212420x y +=. (2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为3(0)x my m =+≠,1122(,),(,)P x y Q x y , 由22356120x my x y =+⎧⎨+=⎩消去x 得:22(56)30750m x my ++-=,则1223056my y m +-+=,1227565y y m =-+,点P 关于x 轴的对称点11(,)R x y -,1211|2|||2PQRSy x x =⋅⋅-,111232APRS y x =⋅⋅-,如图,显然1x 与2x 在3的两侧,即21x x -与13x -同号, 于是得()()()1211121133AQRPQRAPRSSSy x x x y x x x =-=---=⋅---121212275||656765||5|5||5302||3|||||||||||m y x y m m m my my y m m ++⋅=≤==⋅-=⋅==, 当且仅当|||65|m m =,即30m =“=”,因此,当30m =时,max(50)3AQR S =所以ARQ 530. 21.(2022·江西·新余市第一中学高三期末(理))已知函数1()ln f x x a x=++. (1)当12a =-时,求函数()f x 在(2,(2))f 处的切线方程;(2)当(0,2)a ln ∈,证明:函数()()x g x e f x =存在唯一极值点0x ,且0()0g x >. 【解析】解:(1)当12a =-时,11()ln 2f x x x =+-,22111()x f x x x x -'=-=,f ∴'(2)14=,f (2)ln 2=, ∴函数()f x 在(2,f (2))处的切线方程为:1ln 2(2)4y x -=-,整理为44ln 220x y -+-=.(2)证明:函数1()()()x x g x e f x e lnx a x==++,(0,)x ∈+∞.221()(ln )x g x e x a x x '=+-+, 设221()ln h x x a x x =+-+, x R ∀∈,0x e >,因此()'g x 与()h x 的符号相同.2233122(1)1()x h x x x x x '-+=-+=,显然,当0x >时,()0h x '>,函数()h x 单调递增.又h (1)02110a a =+-+=+>,11()ln 44ln 2022h a a =+-+=-<.((0,2))a ln ∈,∴存在唯一01(2x ∈,1),使得0()0h x =.对于()g x ,则有0(0,)x x ∈时,()0g x '<;0(x x ∈,)+∞时,()0g x '>.∴函数()()x g x e f x =存在唯一极值点0x ,01(2x ∈,1).由0()0h x =,可得:020021ln 0x a x x +-+=,解得020021ln a x x x =--+,0000000222000000111211()(ln ln )()x x x x g x e x x e e x x x x x x -∴=++--=-=, 01(2x ∈,1),0()0g x ∴>.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(2022·西藏昌都市第三高级中学高三期末(理))在直角坐标系xOy 中,直线l 的参数方程为1cos 2sin x t y t αα⎧=+⎪⎨⎪=⎩(t 为参数,0απ<<).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22cos sin θρθ=. (1)求曲线C 以及直线l 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,若||8AB =,求α值. 【解析】 解:(1)由22cos sin θρθ=,得2sin 2cos ρθθ=,22sin 2cos ρθρθ∴=,即22y x =, 由题知sin y t α=,代入1cos 2x t α=+整理得2sin 2cos sin 0x y ααα--=. (2)将直线l 的参数方程代入曲线C 的方程得:22sin 2cos 10t t αα--= ()222cos 4sin 40αα∆=-+=>设12,t t 是方程的根,则:1222cos sin t t αα+=,1221sin t t α=- ∴()221212124224cos 4248sin sin sin AB t t t t t t αααα=-+-+== 21sin 4α∴=,又0απ<< 1sin 2α∴=6πα∴=或56π23.(2022·陕西宝鸡·一模(理))关于x 的不等式3ax x -≤的解集为[]1,b ,其中1a >. (1)求实数a ,b 的值; (2)若正数m ,n 满足2m a n +=,求2n m+的最小值. 【解析】(1)依题意,不等式3ax x -≤化为:22(1)690a x ax --+≤,而1a >,则1,b 是方程22(1)690a x ax --+=的二根,且1b >,因此,2680a a -+=且291b a =-,解2680a a -+=得2a =或4a =, 当2a =时,3b =,符合题意,当4a =时,315b =<不符合题意, 所以2a =,3b =. (2)由(1)知,2a =,22m n+=,而0,0m n >>, 则有21221414()()(4)(42)4222n m n mn mn m n m mn mn+=++=++≥+⋅=,当且仅当4mn mn =时取“=”,由422mn mn m n ⎧=⎪⎪⎨⎪+=⎪⎩解得:1,2m n ==,所以当1,2m n ==时,2n m+取最小值4.。
统考版2022届高考数学一轮复习专练24高考大题专练二三角函数与解三角形的综合运用练习理含解析
专练24 高考大题专练(二) 三角函数与解三角形的综合运用1.已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos2α的值;(2)求tan(α-β)的值.2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin ⎝⎛⎭⎫2B +π6的值.3.[2020·全国卷Ⅱ]△ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求△ABC 周长的最大值.4.设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π122+⎣⎡⎦⎤f ⎝⎛⎭⎫x +π42的值域.5.[2021·某某某某一中高三测试]设函数f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2,其中0<ω<3,已知f ⎝⎛⎭⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤-π4,3π4上的最小值.专练24 高考大题专练(二) 三角函数与解三角形的综合运用1.解析:(1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255, 因此tan(α+β)=-2. 因为tan α=43,所以tan2α=2tan α1-tan 2α=-247, 因此,tan(α-β)=tan[2α-(α+β)]=tan2α-tan (α+β)1+tan2αtan (α+β)=-211. 2.解析:(1)在△ABC 中,由正弦定理b sin B =c sin C,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sin C ,即3b =4a .又因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a =-14. (2)由(1)可得sin B =1-cos 2B =154,从而sin2B =2sin B cos B =-158, cos2B =cos 2B -sin 2B =-78, 故sin ⎝⎛⎭⎫2B +π6=sin2B cos π6+cos2B sin π6=-158×32-78×12=-35+716. 3.解析:(1)由正弦定理和已知条件得BC 2-AC 2-AB 2=AC ·AB .①由余弦定理得BC 2=AC 2+AB 2-2AC ·AB cos A .②由①②得cos A =-12.因为0<A <π,所以A =2π3. (2)由正弦定理及(1)得AC sin B =AB sin C =BC sin A=23,从而AC =23sin B ,AB =23sin(π-A -B )=3cos B -3sin B .故BC +AC +AB =3+3sin B +3cos B =3+23sin ⎝⎛⎭⎫B +π3. 又0<B <π3,所以当B =π6时,△ABC 周长取得最大值3+2 3. 4.解析:(1)因为f (x +θ)=sin(x +θ)是偶函数,所以,对任意实数x 都有sin(x +θ)=sin(-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=π2或3π2. (2)y =⎣⎡⎦⎤f ⎝⎛⎭⎫x +π122+⎣⎡⎦⎤f ⎝⎛⎭⎫x +π42 =sin 2⎝⎛⎭⎫x +π12+sin 2⎝⎛⎭⎫x +π4 =1-cos ⎝⎛⎭⎫2x +π62+1-cos ⎝⎛⎭⎫2x +π22 =1-12⎝⎛⎭⎫32cos2x -32sin2x =1-32cos ⎝⎛⎭⎫2x +π3. 因此,函数的值域是⎣⎡⎦⎤1-32,1+32. 5.解析:(1)因为f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝⎛⎭⎫12sin ωx -32cos ωx =3sin ⎝⎛⎭⎫ωx -π3. 由题设知f ⎝⎛⎭⎫π6=0,所以ωπ6-π3=k π,k ∈Z , 所以ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3,所以g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. 因为x ∈⎣⎡⎦⎤-π4,3π4,所以x -π12∈⎣⎡⎦⎤-π3,2π3.当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。
精品解析:2023年全国新高考数学仿真模拟卷(二)数学试题(原卷版)
(2)若___________;求花卉种植区域总面积.
从① ,② 这两个条件中任选一个,补充在上面问题中并作答.
注:如果选择多个条件分别解答,按第一个解答计分.
20.(12分)
如图所示的四棱锥 的底面 是一个等腰梯形, ,且 , 是 的中线,点 是棱 的中点.
(1)证明: 平面 .
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若集合 , ,则 ( )
A. B. C. D.
2.已知 为虚数单位, 、 ,复数 ,则 ( )
A. B. C. D.
3. 如图是一学校期末考试中某班物理成绩的频率分布直方图,数据的分组依次为 、 、 、 、 、 ,若成绩不低于70分的人数比成绩低于70分的人数多4人,则该班的学生人数为( )
A. 45B. 50C. 55D. 60
4. “ ”是“函数 是奇函数”的( )
A. 充分不必要条件B. 必要不充分条件
C. 充要条件D. 既不充分也不必要条件
5.已知数列 中, ,且 ( ),则 ( ).
A. B. C. D.
6. 将 的图像的纵坐标不变,横坐标变为原来的一半,再将所得图像向左平移 个单位长度得到 的图像,则 ( )
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(10分)
在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
高考数学模拟复习试卷试题模拟卷1921 (2)
高考模拟复习试卷试题模拟卷【高频考点解读】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解. 【热点题型】题型一函数零点的判断与求解【例1】 (1)设f(x)=ex +x -4,则函数f(x)的零点位于区间() A .(-1,0) B .(0,1) C .(1,2) D .(2,3)(2)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【提分秘籍】(1)确定函数的零点所在的区间时,通常利用零点存在性定理,转化为确定区间两端点对应的函数值的符号是否相反.(2)根据函数的零点与相应方程根的关系可知,求函数的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即方程f(x)=g(x)的根.【举一反三】已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x≤1,1+log2x ,x >1,则函数f(x)的零点为()A.12,0 B .-2,0 C.12 D .0题型二根据函数零点的存在情况,求参数的值【例2】已知函数f(x)=-x2+2ex +m -1,g(x)=x +e2x (x >0). (1)若y =g(x)-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g(x)-f(x)=0有两个相异实根.【提分秘籍】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】(1)函数f(x)=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是() A .(1,3) B .(1,2) C .(0,3) D .(0,2)(2)已知函数f(x)=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x≥2,若方程f(x)-a =0有三个不同的实数根,则实数a 的取值范围是()A .(1,3)B .(0,3)C .(0,2)D .(0,1)题型三与二次函数有关的零点问题【例3】是否存在这样的实数a ,使函数f(x)=x2+(3a -2)x +a -1在区间[-1,3]上恒有一个零点,且只有一个零点?若存在,求出a 的取值范围;若不存在,说明理由.【提分秘籍】解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.【举一反三】已知f(x)=x2+(a2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.【高考风向标】【高考安徽,文14】在平面直角坐标系xOy 中,若直线a y 2=与函数1||--=a x y 的图像只有一个交点,则a 的值为.【高考湖北,文13】函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【高考湖南,文14】若函数()|22|xf x b =--有两个零点,则实数b 的取值范围是_____.【高考山东,文10】设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b = ( ) (A )1 (B )78 (C )34 (D)12(·北京卷)已知函数f(x)=6x -log2x ,在下列区间中,包含f(x)的零点的区间是() A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)(·浙江卷)已知函数f(x)=x3+ax2+bx +c ,且0<f(-1)=f(-2)=f(-3)≤3,则() A .c≤3 B .3<c≤6 C .6<c≤9 D .c >9(·重庆卷)已知函数f(x)=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g(x)=f(x)-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是()A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23(·福建卷)函数f(x)=⎩⎪⎨⎪⎧x2-2,x≤0,2x -6+ln x ,x >0的零点个数是________.(·湖北卷)已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x2-3x ,则函数g(x)=f(x)-x +3的零点的集合为()A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}(·江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.(·江西卷)已知函数f(x)=⎩⎪⎨⎪⎧a·2x ,x≥0,2-x ,x<0(a ∈R).若f[f(-1)]=1,则a =() A.14 B.12 C .1 D .2(·浙江卷)设函数f(x)=⎩⎪⎨⎪⎧x2+2x +2,x≤0,-x2,x >0.若f(f(a))=2,则a =________.(·全国卷)函数f(x)=ax3+3x2+3x(a≠0). (1)讨论f(x)的单调性;(2)若f(x)在区间(1,2)是增函数,求a 的取值范围.(·天津卷)已知函数f(x)=⎩⎪⎨⎪⎧|x2+5x +4|,x≤0,2|x -2|,x >0.若函数y =f(x)-a|x|恰有4个零点,则实数a 的取值范围为________.【高考押题】1.函数f(x)=2x +x3-2在区间(0,2)内的零点个数是 () A .0B .1C .2D .32.函数y =ln(x +1)与y =1x 的图象交点的横坐标所在区间为() A .(0,1) B .(1,2)C .(2,3)D .(3,4)3.若a <b <c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间 () A .(a ,b)和(b ,c)内B .(-∞,a)和(a ,b)内C .(b ,c)和(c ,+∞)内D .(-∞,a)和(c ,+∞)内4.若函数f(x)=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是 ()A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞C.⎝⎛⎭⎫-1,15D .(-∞,-1)5.已知函数f(x)=x +2x ,g(x)=x +ln x ,h(x)=x -x -1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是()A .x2<x1<x3B .x1<x2<x3C .x1<x3<x2D .x3<x2<x16.函数f(x)=x -ln(x +1)-1的零点个数是________.7.函数f(x)=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N)内,则n =________.8.已知函数f(x)=⎩⎪⎨⎪⎧2x -1,x >0,-x2-2x ,x≤0,若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围是________.9.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围.10.已知关于x 的二次方程x2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的取值范围.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
2020高考函数综合模拟训练(一)与(二)及答案
2020高考函数综合模拟训练(一)一. 选择题(每小题5分,共50分)1. 函数431)(2--=x x x f 的定义域为A ,函数||2)(a x x g +-=的定义域为B ,若φ=⋂B A ,则实数a 的取值范围是( )A. 12-≤≤-aB. 12-<<-aC. 21≤≤aD. 21<<a2. 函数)56(log 25.0-+-=x x y 在区间)1,(+m m 上递减,则实数m 的取值范围是( ) A. ]5,3[ B. ]4,2[ C. ]4,1[ D. ]2,1[3. 已知R y x ∈,,且xy y x --+≤+3232,则y x ,满足( )A. 0≥+y xB. 0≤+y xC. 0≥-y xD. 0≤-y x 4. 定义在R 上的奇函数)(x f 为减函数,设0≤+b a ,给出下列不等式: (1)0)()(≤-⋅a f a f (2)0)()(≥-⋅b f b f(3))()()()(b f a f b f a f -+-≤+ (4))()()()(b f a f b f a f -+-≥+ 其中正确的不等式序号是( ) A. (1)(2)(4) B. (1)(4) C. (2)(4) D. (1)(3)5. 偶函数||log )(b x x f a +=在),0(+∞上单调递减,则)2(-b f 与)1(+a f 的大小关系为( )A. )1()2(+>-a f b fB. )1()2(+=-a f b fC. )1()2(+<-a f b fD. 不能确定6. 已知定义域为R 的函数)(x f 满足R b a ∈∀,,有)()()(b f a f b a f ⋅=+,且0)(>x f ,若21)1(=f ,则=-)2(f ( )A. 2B. 4C. 21D. 417. 已知定义在R 上的偶函数)(x f 在区间),0[+∞上为增函数,且0)31(=f ,则不等式)(log 81>x f 的解集为( )A. )21,0(B. ),2(+∞C. ),2()21,0(+∞⋃D. ),2()1,21(+∞⋃8. 已知函数)(x f 是R 上的偶函数,且满足:1)()1(=++x f x f ,当]2,1[∈x 时,x x f -=2)(,则=-)5.2005(f ( )A. 5.0B. 1C. 5.1D. 5.1-9. 函数)(x f y =是)2,0(上的增函数,函数)2(+=x f y 是偶函数,则下列结论中正确的是( )A.)27()25()1(f f f << B. )25()1()27(f f f << C. )1()25()27(f f f << D.)27()1()25(f f f << 10. 设)(x f 、)(x g 分别是定义在R 上的奇函数和偶函数,当0<x 时,0)()()()(>'+'x g x f x g x f ,且0)3(=g ,则不等式0)()(<x g x f 的解集是( )A. ),3()0,3(+∞⋃-B. )3,0()0,3(⋃-C. ),3()3,(+∞⋃--∞D. )3,0()3,(⋃--∞二. 填空题(每小题4分,共24分)11. 定义在R 上的函数)(x f 满足2)21()21(=-++x f x f ,则Λ++)82()81(f f + =)87(f 。
高中函数综合试题及答案
高中函数综合试题及答案一、选择题1. 函数f(x) = 2x^2 - 3x + 1在x = 2处的导数是()。
A. 5B. 7C. 9D. 112. 已知函数y = 3x - 2,当x = 1时,y的值是()。
A. 1B. 0C. -1D. -23. 函数y = x^3 - 2x^2 + 3x + 1的极小值点是()。
A. x = 1B. x = 2C. x = 3D. x = 0二、填空题4. 若f(x) = x^2 + 2x + 1,求f(-1)的值为______。
5. 函数g(x) = 1/x的值域是______。
三、解答题6. 求函数h(x) = x^3 - 6x^2 + 9x的单调区间。
7. 已知函数f(x) = x^2 - 4x + 4,求f(x)的最小值。
四、证明题8. 证明函数f(x) = x^3在R上是增函数。
五、应用题9. 某工厂生产一种产品,其成本函数为C(x) = 2x + 500,其中x是生产数量。
求当生产数量为多少时,单位成本最低。
六、综合题10. 已知函数f(x) = 2x - 3,g(x) = x^2 + 1。
求f(g(x))的表达式,并讨论其单调性。
答案:1. B. 7 (导数为4x - 3,代入x = 2得7)2. A. 1 (代入x = 1得3x - 2 = 1)3. A. x = 1 (求导得3x^2 - 4x,令导数为0得x = 4/3或0,检验得x = 4/3为极小值点)4. 2 (代入x = -1得1 - 2 + 1 = 2)5. (0, +∞) ∪ (-∞, 0) (因为分母不能为0,所以值域不包括0)6. 单调增区间为(3, +∞),单调减区间为(-∞, 3)(求导得3x^2 -12x + 9,令导数大于0得x > 3,令导数小于0得x < 3)7. 最小值为0(当x = 2时,f(x) = 0)8. 证明:任取x1,x2 ∈ R,且x1 < x2,有f(x2) - f(x1) = (x2 - x1)(x2^2 + x1x2 + x1^2) > 0,故f(x)在R上是增函数。
全国100所名校2020年最新高考模拟示范卷(二)数学理科试题+答案+详解MNJ.Y
全国100所名校最新高考模拟示范卷·数学卷(二)(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{0,1,2,3}, {2,3,4,5}A B ==,则A B =U ( ) A.{}1,2,3,4,5B.{}0,1,4,5C.{}2,3D.{}0,1,2,3,4,52.i 是虚数单位,2z i =-,则z =( )A.B.2C.3.已知向量()1,2a =r ,(1,)b λ=-r ,若a b r r∥,则实数λ等于( )A.-1B.1C.-2D.24.“22x -<≤”是“22x -≤≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D 既不充分也不必要条件5.双曲线22221x y a b -= (0a >,0b >)的离心率为53,则该双曲线的渐近线方程为( ) A.45y x =±B.54y x =±C.43y x =±D.34y x =±6.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是( )A.第一场得分的中位数为52B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等7.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若5b =,22625c c a ---,则cos A =( )A.45 B.35C.310D.258.函数1())1x xe f x x e-=+的图象大致为( )A BC D9.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A.152πB.12πC.112π D.212π10.图为祖冲之之子祖晒“开立圆术”中设计的立体模型.祖晒提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于323d (d 为球的直径),并得到球的体积为316V d π=,这种算法比外国人早了一千多年.人们还用过一些类似的近似公式,根据3.1415926π=⋅⋅⋅,判断下列公式中最精确的一个是( )A.d ≈B.d ≈C.d ≈D.d ≈11.已知32cos cos 2αβ-=,2sin sin 2αβ+=,则cos()αβ+等于( ) A.12 B.12-C.14D.14-12.已知A B C ,,为椭圆2214x y +=上三个不同的点,若坐标原点O 为ABC △的重心,则ABC △的面积为( )A.B.2C.2D.二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设()f x 是定义在R 上的函数,若()()g x f x x =+是偶函数,且()24g -=-,则()2f =___________.14.已知数列()*(}n f a n ∈N 是等差数列,其前n 项和为n S ,若66nS =,则4a =___________.15.已知函数()sin()(0)f x x ωϕω=+>,点2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是函数()f x 图象上相邻的两个对称中心,则ω=___________.16.在正三棱柱111ABC A B C -中,12AB AA ==,E F ,分别为111AB AC ,的中点,平面a 过点1C ,且平面a ∥平面11A B C ,平面a I 平面111A B C l =,则异面直线EF 与l 所成角的余弦值为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.从中国教育在线官方公布的考研动机调查来看,本科生扎堆考研的原因大概集中在这6个方面:本科就业压力大,提升竞争力;通过考研选择真正感兴趣的专业;为了获得学历;继续深造;随大流;有名校情结如图是2015~2019年全国硕士研究生报考人数趋势图(单位:万人)的折线图.(1)求y 关于t 的线性回归方程;(2)根据(1)中的回归方程,预测2021年全国硕士研究生报考人数. 参考数据:()()51311iii t t y y =--=∑.回归方程$$y abt =+$中斜率和截距的最小二乘估计公式分别:()()()121ii i ni i tty y b t t ∞==--=-∑∑,$a y bt=-$. 18.已知数列{}n a 的前n 项和为n S ,()()21112,4,314,(1)log n n nn n n n S aS a b a -++==-=-⋅.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .19.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,AB AD ⊥ ,BC AD ∥,2222AD BC PA AB ====,点E F G ,,分别为线段AD DC PB ,,的中点.(1)证明:直线AG ∥平面PEF.(2)求多面体 ACCPEF 的体积.20.已知函数2()e ,x f x ax x a =--∈R ,()g x 为函数()f x 的导函数.(1)若函数()gx 的最小值为0,求实数a 的值;(2)若0x ∀>,2()(1)(1)1f x a x a x --++…恒成立,求实数a 的取值范围.21.已知点()(),80Pt t <是抛物线2(:20)C x py p =>上一点,点F 为抛物线C 的焦点,||10PF =.(1)求直线PF 的方程; (2)若直线l 过点()0,4,与抛物线相交于M N ,两点,且曲线C 在点M 与点N 处的切线分别为m n ,,直线m n ,相交于点G ,求||PG 的最小值.(二)选考题:共10分请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x ay α=⎧⎨=⎩(a 为参数),在以坐标原点为极点,,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 3m πρθ⎛⎫-= ⎪⎝⎭. (1)若直线l 与曲线C 至多只有一个公共点,求实数m 的取值范围;(2)若直线l 与曲线C 相交于A B ,两点,且A B ,的中点为P ,求点P 的轨迹方程. 23.[选修4-5:不等式选讲] 已知a b ,为正实数,222a b +=. (1)证明:2a b ab +≥. (2)证明:442a b +….2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.D 本题考查集合的运算因为{0,1,2,3}, {2,3,4,5}A B ==,所以{}0,12,3,4,5A B =U .2C 本题考查复数的模.因为2z i =-,所以||z ==3.C 本题考查向量的平行.因为a b r r∥,所以20λ--=,解得2λ=-.4.A 本题考查充分、必要条件“22x -<≤”是“22x -≤≤”的充分不必要条件.5.C 本题考查双曲线的渐近线.22225161199b e a =-=-=,即43b a =,故双线的渐近线方程为43y x =±. 6.C 本题考查茎叶图.由茎叶图可知第一场得分的中位数为52,众数为0,极差为19,第二场得分的众数为 0,平均数为193,极差为2,所以选项C 的说法是错误的. 7.B 本题考查解三角形.因为225625b c c a =⋅---,所以2226b c a c +-=,所以62cos c bc A =⋅, 所以3cos 5A =. 8.B 本题考查函数的图象.因为()()f x f x -=,所以()f x 为偶函数,排除CD 项,又因为)1(1)ln 101cf e-=>+,所以排除A 项.9.A 本題考查三视图.根据三视图可知,该几何体是由14个圆锥和18个球组成的, 如图所示,其中球的半径为3,圆锥的底面半径也为3,高为4,故该几何体的体积为2311119153433438322x ππππ⨯⨯⨯+⨯⨯-+=.10.C 本题考查数学史与立体几何.由316V xd =,解得36V x d =,选项A 化简得3916V d ≈, 所以69 3.37516π⨯≈=;选项B 化简得212V d ≈,所以632π≈=;选项C 化简得3157300V d ≈, 所以6157 3.14300π⨯≈=;选项D 化简得2815V d ≈,所以683.215π⨯≈=;所以选项C 的 公式最精确.11.A 本题考查三角恒等变换.因为32cos cos 2αβ-=,2sin sin αβ+-,所以2294cos 4cos cos cos 4ααββ-+=,2234sin 4sin sin sin 4ααββ++=, 两式相加得54(cos cos sin sin )3αβαβ--=,解得1cos()2αβ+=. 12.B 本题考查直线与椭圆的位置关系.不妨设直线AB 的方程为y kx m =+代人椭圆方程得()()222148410k xkmx m +++-=.设()11,Ax y ,()22,B x y ,则122814kmx x k +=-+,()21224114m x x k-=+. 设()33,Cx y ,因为O 为ABC △的重心,所以()2122814kmxx x k=-+=+, ()()2121222214my y y k x x m k =-+=-++=-⎡⎤⎣⎦+,代入椭圆方程得22441m k -+,12|||AB x x -, 点O 到直线AB的距离d -,所以OMB △的面积111||||22S AB d m =⨯⨯-⨯因为22441m k -+,所以1S =, 因为O 为ABC △的重心,所以ABC △的面积132S S ==. (另解:不妨设()2,0A,因为O 为ABC △的重心,所以BC 横坐标为1-,可得||BC =ABC△的面积为1322S =⨯=.) 13.6本题考查函数的性质,由题知,(2)(2)2(2)4g f g -+--=-,解得()26f =-.14.6本题考查等差数列基本量的求解设等差数列{}n a 的公差为d ,因为66n S =,所以41166a =,解得a6.15.2本题考查三角函数的性质因为点2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是函数()f x 图象上相邻的两个对称中心,所以是72632wππππ=--,解得2ω=.16.4本题考在异面直线所成角.因为平面a ∥平面11A B C , 平面a I 平面111A B C l =,平面11A B C I 平面11111A B C A B =,所以11l A B ∥,取11A B ,11B C 的中点分别为H G ,,连接EH BG GH GF AC ,,,,,如图所示,则11GF A B ∥, 所以GF l ∥所以异面直线EF 与所成的角为GFE ∠或其补角,又因为AB =12AA =,所以14AC =,1EH =,HP GP ==所以2EG EF -=,所以22cos 24GF GFE RP ∠==.【解题方法】本题以三棱柱为载体,综合考查异面直线所成角的概念.解答的基本方法是通过平移直线,把异面直线平移到两条相交直线上,明确异面直线所成角的概念,应用三角函数知识求解,充分利用图形特征,则可事半功倍.例如本题利用图形易得11D A B ∥,这是本题的题眼. 17.解:本题考查线性回归方程. (1)由题中数据计算得1(12345)35t =++++=, ()2223215(2)(1)01210i i i a t =---+-+++=∑,由参考数据知,()()51311iii t t y y =--=∑,所以()()()532131131.110iiiii tty y b tt=--=-=-∑∑,$214.2-31.13120.9ay bt --=⨯=$, 故所求回归方程为31.1120.9yt =+.(2)将2021年对应的7t =代人回归方程得31.17120.9338.6y =⨯+=, 所以预测2021年全国硕士研究生报考人数约为338.6万人. 18.解:本题考查数列通项公式及前n 项和 (1)因为()1311n nn S a+=-,所以当2n ≥时,所以()1314n n n S a +--,所以()11314(14)nn n n n a aa ++-=--,整理得()()11440nn n aa +--=,所以14,(2)n n a a n +=>,当1n =时,()12314nS a--,14a =,所以216a =,所以24a a =,所以数列{}n a 是首项和公比均为4的等比数列,所以1444n n a +=⨯=,即4n n a =.(2)由(1)知4n na =,所以()()221121222(1)log 4(1)log 24(1)n n n n n n b n +++=-⋅--⋅--⋅22222241234(21)(2)4[37(41)]4(21)n T n n n n n ⎡⎤=-+-++--=-----=-⋅+⎣⎦L L ,故数列{}n b 的前2n 项和24(21)n T n n =-+.【名师点睛】等差数列、等比数列的通项公式及前n 项和问题,是高考的常考内容,解题过程中要注意应用函数与方程思想,构建方程(或方程组)求基本量,例如此题,从已知出发,构建1,a d 的方程组求数列通项公式,利用前后项合并,构造等差数列,求数列的前n 项和. 19.解:本题考查线面平行及多面体的体积.(1)证明:因为2BC AD AD BC E =∥,,为线段AD 的中点,所以BC AE ∥,连接EC ,因为AB AD ⊥,所以四边形ABCE 为矩形,连接BE 交AC 于点O ,连GO ,因为G 为线段PB 的中点,所以OG PE ∥,因为GO ⊄平面PEF ,PBC 平面PEF , 所以GO ∥平面PEF ,由题易知,AC ∥平面PEF , 又因为GC ⊂平面GAC ,AC ⊂平面GAC .AC GO O =I ,所以平面PEF ∥平面GAC ,又因为AGC 平面GMC ,所以直线AC ∥平面PEF .(2)因为22 2 AD BC PA ===,1AB =,所以四棱锥P ABCD -的体积111(12)11322S =⨯⨯+⨯⨯=,三棱锥G ABC -的体联11111132212S =⨯⨯⨯⨯=,棱锥P DEF -的体积 11111132212S =⨯⨯⨯⨯=,故所求多面体AGCPEF 的体积为1111212123--=.20.解:本题考查函数最值及恒成立求参数范围. (1)()21x f x e ax '=--,所以()21xg x eax =--,()2x g x e a '=-,①当0a ≤时,()0g x '>,所以()21x g x e ax =--在R 上单词递增,不合题意;②当0a >时,(,ln 2)x a ∈-∞,()0g x '<,(ln 2,)x a ∈+∞,()0g x '>, 所以函数()gx 在区间(,ln 2)a -∞上单调递减,在区间(ln 2,)a +∞上单调递增,()(ln 2)2(1ln 2)10g x g a a a ----…,令()ln 1x x x x μ'---,则()ln x x μ'=-,所以()x μ在区间()0,1上单调递增,在区间(1,)+∞上单调递减,所以()()10x μμ≤=,所以由2(1ln 2)10a a --=,解得12a =, 即实数a 的值为12. (2)因为0x ∀>,2()(1)(1)1f x a x a x >--++恒成立,所以210x e x ax -+-≥,即21x e x a x ---<对任意0x >恒成立,令21()x e x x xϕ---,则()2(1)1()x x e x x x ϕ---'=,由(1)知,10x e x --≥,当且仅当0x =时,等号成立,所以函数()x ϕ在区间()0,1上单调递减,在区间(1,)+∞上单词递增,所以()(1)2x e ϕϕ=-…,所以2a e -≤-,即2a e ≥-. 所以实数a 的取值范围为[2,)e -+∞. 21.解:本题考查抛物线的性质. (1)因为||10PF =,所以8102p+-,解得4p =,所以()0,2F , 因为288t =⨯,且0t <,所以8t =-,所以()8,8P -,故直线PF 的方程为822(0)80y x ------, 化简得3480x y +-=.(2)由(1)知,抛物线方程为28x y =,点()0,2F .设()()1122,,,Mx y N x y ,又因为14y x '=, 所以直线m 的方程为()11114y y x x x -=- 整理得1114y x x y =-, 同理可得直线n 的方程为1214y x x y =-,设()33,G x y , 联立311332321414y x x y y x x y⎧--⎪⎪⎨⎪=-⎪⎩,得直线l 的方程为3314y xx y =-,又因为直线l 过点()0,4,所以4y =-,即点G 在定直线4y =-上,所以PG 的最小值为()8412--=.【解题思路】解决直线与抛物线的综合问题时,需要注意:(1)观察、应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.解:本题考查坐标与参数方程: (1)由题知,曲线C 的直角坐标方程为224x y +=,直线l20y m -+=,因为直线l 与曲线C||2m =≥, 所以实数m 的取值范围为(,2][2,)-∞-+∞U . (2)设()()1122,,,,(,)Ax y B x y P u v ,由(1)知,(2,2)m ∈-,由22204y m x y -+=+=⎪⎩,解得224440x m ++-=,所以122u x x -+-=,)121224v y y x x m m -+++=,所以2u =-,即u =,故点P的轨迹方程为0(11)x y +=-<<.23.解:本题考查不等式证明.(1)因为222a b +=所以1ab ≤,所以1ab ≤≤,2a b +≤,所以2a b ab +≤, 即2a b ab +≥,当且仅当a b =时等号成立, (2)()244222222242a b a b a b a b +-+-=-, 由(1)知1ab ≤,所以221a b ≤,所以2242422a b -≥--,即442a b +≥,当且仅当a b =时等号成立.。
新教材2023年高考数学总复习考案2周测卷二函数的概念与性质课件
1
2
C.f(-10)=-14
D.f(x)在区间[2,4]上单调递增
[解析] 根据已知条件,求出 x∈[-1,1]时,f(x)=1-x2;x∈(1, 3]时,f(x)=(x-2)2-1,再结合 x>3 时,f(x)=12f(x-4)及偶函数的性质, 对各选项逐一分析即可求解.
解:因为 f(x)为 R 上的偶函数,所以 f(x)=f(-x),又 x∈[0,1]时, f(x)=1-x2,所以 x∈[-1,0]时,f(x)=f(-x)=1-(-x)2=1-x2,所以 f(x)=1-x2,x∈[-1,1],当 1<x≤3 时,-1<x-2≤1,由题意,f(x)= -f(x-2)=-[1-(x-2)2]=(x-2)2-1,所以 x∈[-1,3]时,f(x)max=f(0) =1,f(x)min=f(2)=-1,因为 x>3 时,f(x)=12f(x-4),所以 f(x)不是周期 函数,故选项 A 错误;因为 f(x)为 R 上的偶函数,且 x>3 时,f(x)=12f(x -4),所以任意 x1,x2∈R,|f(x1)-f(x2)|≤|f(0)-f(2)|=2,故选项 B 正确;
A.a=2
B.f(2)=2
C.f(x)是增函数
D.f(-3)=-12
[解析] 由f(x)是R上的奇函数,则f(0)=0可算出a=2,代入可算得 f(2),根据f(x)的对称性可得出单调性,根据f(-3)=-f(3)可求得f(-3).对 于A项,f(x)是R上的奇函数,故f(0)=a-2=0,得a=2,故A对.对于B 项,f(2)=4+2=6,故B错.对于C 项,当x≥0时,f(x)=x2+x在[0,+ ∞)上为增函数,利用奇函数的对称性可知,f(x)在(-∞,0]上为增函 数,故f(x)是R上的增函数,故C对.f(-3)=-f(3)=-9-3=-12,故D 对.故选:ACD.
全国各地高考模拟及高考真题汇编与解析专题二中国军民维护国家主权的斗争(必修Ⅰ)
必修一专题二:2、中国军民维护国家主权的斗争(每课名题4)一、选择题(本大题共13小题,共0分)1.(20XX年5月徐州市三模6题)“宰相有权能割地,孤臣无力可回天,扁舟去作鸱夷子,回首河山意黯然。
”这是近代爱国诗人丘逢甲的一首诗,它充分表达了作者()A.对清政府剖台的强烈不满B.对宰相擅权割地的谴责C.对收回祖国河山充满信心D.对人民反抗斗争的歌颂2.(20XX年1月永州市一模8题)20世纪初,中国出现“文明排外”的思想。
其直接原因是()A.对义和团运动盲目排外的反思 B.对西方列强侵略的认识逐渐全面C.西方启蒙思想在中国的广泛传播 D.新文化运动中民主思想的影响3.(20XX年1月龙岩市高三质检9题)十九世纪末流行的一则民谣:“还我江山还我权,刀山火海爷敢站,哪怕皇上服了外,不杀洋人誓不完。
”你认为该民谣应出自()A.太平天国运动期间B.义和团运动期间C.辛亥革命期间D.北伐战争期间4.(20XX年高考山东文综12题)1918年陈独秀曾撰文严厉指责义和团野蛮、保守、盲目排外和传播迷信;1924年,他又认为义和团是反对帝国主义的爱国者。
促成这一转变的主要原因是A.十月革命的影响B.民族主义的高涨C.民主主义成为时代主流D.社会性质发生变化5.(20XX年3月湘潭市一模27题)当代著名历史学家雷姬在谈及民族主义时说:“一个正义的运动,只有情感是不够的,民族主义也一样。
没有理性的指导和束缚,就很容易被各式各样的人所利用。
”下列能够论证上述观点的是()A.义和团运动B.太平天国运动C.戊戌变法D.辛亥革命6.(20XX年高考北京文综17题)图8是一幅法国报刊上的政治讽刺漫画:义和团杀外国人为“野蛮”(BARBARIE);外国人杀义和团为“文明”(CIVILISATION)。
这幅漫画的作者意在A.主张武力解决争端B.抨击西方殖民侵略C.混淆文明与野蛮的界限D.承认殖民者的双重标准7.(20XX年4月湘西质检27题)当代著名历史学家雷姬在谈及民族主义时说:“一个正义的运动,只有情感是不够的,民族主义也一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数综合性大题21. 已知函数2()8,()6ln .f x x x g x x m =-+=+ (1)求()f x 在区间[],1t t +上的最大值();h t(2)是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。
解:(1)22()8(4)16.f x x x x =-+=--+ 当14,t +<即3t <时,()f x 在[],1t t +上单调递增,22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f == 当4t >时,()f x 在[],1t t +上单调递减,2()()8.h t f t t t ==-+综上,2267,3,()16,34,8,4t t t h t t t t t ⎧-++<⎪=≤≤⎨⎪-+>⎩ (2)函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。
22()86ln ,62862(1)(3)'()28(0),x x x x m x x x x x x x x x x φφ=-++-+--∴=-+==> 当(0,1)x ∈时,'()0,()x x φφ>是增函数; 当(0,3)x ∈时,'()0,()x x φφ<是减函数; 当(3,)x ∈+∞时,'()0,()x x φφ>是增函数; 当1,x =或3x =时,'()0.x φ=()(1)7,()(3)6ln315.x m x m φφφφ∴==-==+-最大值最小值当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ>∴要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须()70,()6ln 3150,x m x m φφ=->⎧⎪⎨=+-<⎪⎩最大值最小值 即7156ln 3.m <<-所以存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m的取值范围为(7,156ln 3).-1. 设函数321()()3f x ax bx cx a b c =++<<,其图象在点(1,(1)),(,())A f B m f m 处的切线的斜率分别为0,a -. (1)求证:01ba<≤; (2)若函数()f x 的递增区间为[,]s t ,求||s t -的取值范围;(3)若当x k ≥时(k 是与,,a b c 无关的常数),恒有()0f x a '+<,试求k 的最小值. 解:(1)2()2f x ax bx c '=++,由题意及导数的几何意义得(1)20f a b c '=++=, (1)2()2f m am bm c a '=++=-, (2)又a b c <<,可得424a a b c c <++<,即404a c <<,故0,0,a c <> 由(1)得2c a b =--,代入a b c <<,再由0a <,得113ba-<<, (3) 将2c a b =--代入(2)得2220am bm b +-=,即方程2220ax bx b +-=有实根.故其判别式2480b ab ∆=+≥得2b a -≤,或ba≥0, (4) 由(3),(4)得01ba<≤;(2)由2()2f x ax bx c '=++的判别式2440b ac '∆=->,知方程2()20()f x ax bx c '=++=*有两个不等实根,设为12,x x ,又由(1)20f a b c '=++=知,11x =为方程(*)的一个实根,则有根与系数的关系得122122,10b bx x x x a a+=-=--<<, 当2x x <或1x x >时,()0f x '<,当21x x x <<时,()0f x '>, 故函数()f x 的递增区间为21[,]x x ,由题设知21[,][,]x x s t =, 因此122||||2b s t x x a -=-=+,由(Ⅰ)知01ba<≤得 ||s t -的取值范围为[2,4);(3)由()0f x a '+<,即220ax bx a c +++<,即2220ax bx b +-<,因为0a <,则2220b b x x a a +⋅-⋅>,整理得2(22)0bx x a-+>, 设2()(22)b b g x x a a =-+,可以看作是关于ba的一次函数,由题意()0bg a>对于01b a <≤恒成立,故(1)0,(0)0,g g -⎧⎨>⎩≥ 即22220,0,x x x ⎧-⎪⎨>⎪⎩≥+得1x ≤或1x ,由题意,[,)(,1]1,)k +∞⊆-∞+∞ ,故1k ,因此k 1. 2. 已知函数)0()(>+=t xtx x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(Ⅰ)设)(t g MN =,试求函数)(t g 的表达式;(Ⅱ)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n ,在区间]64, 2[nn +内总存在1+m 个实数m a a a ,,,21 ,1+m a ,使得不等式)()()()(121+<+++m m a g a g a g a g 成立,求m 的最大值..解:(Ⅰ)设M 、N 两点的横坐标分别为1x 、2x ,21)(x t x f -=', ∴切线PM 的方程为:))(1()(12111x x x tx t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x tx t x --=+-, 即02121=-+t tx x , ………………………………………………(1) 同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .…………(2) 由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ………………( * )22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-= ])1(1][4)[(22121221x x t x x x x -+-+=, 把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g .(Ⅱ)当点M 、N 与A 共线时,NA MA k k =,∴01111--+x x t x =01222--+x x t x , 即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. ………………(3) 把(*)式代入(3),解得21=t . ∴存在t ,使得点M 、N 与A 三点共线,且 21=t . (Ⅲ)易知)(t g 在区间]64,2[nn +上为增函数, ∴)64()()2(nn g a g g i +≤≤)1,,2,1(+=m i , 则)64()()()()2(21nn g m a g a g a g g m m +⋅≤+++≤⋅ . 依题意,不等式)64()2(nn g g m +<⋅对一切的正整数n 恒成立, )64(20)n 6420(n 22022022nn m +++<⋅+⋅,即)]64()n 64[(n 612nn m +++<对一切的正整数n 恒成立,. 1664≥+n n , 3136]1616[61)]64()n 64[(n 6122=+≥+++∴n n , 3136<∴m . 由于m 为正整数,6≤∴m .又当6=m 时,存在221====m a a a ,161=+m a ,对所有的n 满足条件. 因此,m 的最大值为6.3. 已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x –1)=f (3–x )且方程f (x )=2x有等根(1)求f (x )的解析式;(2)是否存在实数m ,n (m <n =,使f (x )定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由、解 (1)∵方程ax 2+bx =2x 有等根,∴Δ=(b –2)2=0,得b =2由f (x –1)=f (3–x )知此函数图象的对称轴方程为x =–ab2=1得a =–1,故f (x )=–x 2+2x ……………………………………6分(2)f (x )=–(x –1)2+1≤1,∴4n ≤1,即n ≤41 而抛物线y =–x 2+2x 的对称轴为x =1 ∴n ≤41时,f (x )在[m ,n ]上为增函数 若满足题设条件的m ,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(…………………………12分⎩⎨⎧-==-==⇒⎪⎩⎪⎨⎧=+-=+-2020424222n n m m nn n m m m 或或即又m <n ≤41,∴m =–2,n =0,这时定义域为[–2,0],值域为[–8,0] 由以上知满足条件的m 、n 存在,m =–2,n =0 ……………………………16分4. 已知函数||1y x =+,y =11()2ty x x-=+(0)x >的最小值恰好是方程320x ax bx c +++=的三个根,其中01t <<.(1)求证:223a b =+;(2)设1(,)x M ,2(,)x N 是函数32()f x x ax bx c =+++的两个极值点.若122||3x x -=,求函数()f x 的解析式.解:(1)三个函数的最小值依次为1,………………………2分 由(1)0f =,得1c a b =---∴3232()(1)f x x ax bx c x ax bx a b =+++=++-++2(1)[(1)(1)]x x a x a b =-+++++,故方程2(1)(1)0x a x a b +++++=.(1)a =-+1a b =++.……………………………5分22(1)a =+,即222(1)(1)a b a +++=+∴ 223a b =+. ………………………………………………………………………7分 (2)①依题意12,x x 是方程2'()320f x x ax b =++=的根, 故有1223a x x +=-,123bx x =, 且△2(2)120a b =->,得3b <.由12||x x -===10分23=;得,2b =,2237a b =+=.由(1(1)0a =-+>,故1a <-,∴ a =(1)3c a b =-++=∴ 32()23f x x x =+.………………………………………………14分5. 已知函数22()ln (0),f x x a x x x=++> (1)若()f x 在[1,)+∞上单调递增,求a 的取值范围;(2)若定义在区间D 上的函数)(x f y =对于区间D 上的任意两个值21x x 、总有以下不等式12121[()()]()22x x f x f x f ++≥成立,则称函数)(x f y =为区间D 上的“凹函数”.试证当0a ≤时,()f x 为“凹函数”解: (1)由()22ln f x x a x x=++,得()'222a f x x x x =-+若函数为[1,)+∞上单调增函数,则()'0f x ≥在[1,)+∞上恒成立即不等式2220a x x x -+≥在[1,)+∞上恒成立. 也即222a x x≥-在[1,)+∞上恒成立令22()2x x x ϕ=-,上述问题等价于max ()a x ϕ≥,而22()2x x xϕ=-为在[1,)+∞上的减函数,则max ()(1)0x ϕϕ==,于是0a ≥为所求(2)证明:由()22ln f x x a x x=++ 得 ()()()()1222121212111ln ln 222f x f x ax x x x x x +⎛⎫=+++++ ⎪⎝⎭()2212121212x x x x a x x +=+++2121212124ln 222x x x x x x f a x x +++⎛⎫⎛⎫=++ ⎪ ⎪+⎝⎭⎝⎭而()()2222212121212112242x x x x x x x x +⎛⎫⎡⎤+≥++= ⎪⎣⎦⎝⎭① 又()()2221212121224x x x x x x x x +=++≥, ∴1212124x x x x x x +≥+ ②122x x +≤∴12ln 2x x +, ∵0a ≤∴12ln2x x a a + ③ 由①、②、③得()22212121212121422x x x x x x a a x x x x ++⎛⎫+++++ ⎪+⎝⎭即()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,从而由凹函数的定义可知函数为凹函数 6. 已知函数()242f x ax x =+-满足对任意1x ,2x ∈R 且12x x ≠,都有()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭.(1)求实数a 的取值范围;(2)试讨论函数()x f y =在区间[]1,1- 上的零点的个数;(3)对于给定的实数a ,有一个最小的负数()M a ,使得(),0x M a ∈⎡⎤⎣⎦时,()44f x -≤≤都成立,则当a 为何值时,()M a 最小,并求出()M a 的最小值.解:(1)∵()()121222f x f x x x f ++⎛⎫-⎪⎝⎭22212121122222x x x x ax bx c ax bx c a b c +++++++⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭()21204a x x =--<, 4分 又∵12x x ≠,∴必有0a >,∴实数a 的取值范围是),0(+∞. 2分(2)a 816+=∆,由(1)知:0>a ,所以0>∆。