初中数学—图形的旋转
初中数学专题复习:旋转(类型全面)
旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
初中数学旋转题型
初中数学旋转题型
在初中数学中,旋转是一个重要的概念和技能。
掌握旋转的原理和方法,可以帮助我们解决很多几何问题。
下面介绍一些初中数学中常见的旋转题型。
1. 点的旋转
在平面直角坐标系中,给定一个点P(x, y),绕原点旋转θ度,求旋转后的点坐标。
解法:设旋转后的点为P'(x', y'),则有:
x' = x*cosθ - y*sinθ
y' = x*sinθ + y*cosθ
其中,cosθ和sinθ可以通过三角函数表查找。
2. 图形的旋转
在平面直角坐标系中,给定一个图形,绕原点旋转θ度,求旋转后的图形。
解法:将图形上的每个点都按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的图形。
3. 对称图形的旋转
在平面直角坐标系中,给定一个对称图形,绕对称轴旋转θ度,求旋转后的图形。
解法:对称轴不变,将图形上的每个点都按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的图形。
4. 正方形的旋转
在平面直角坐标系中,给定一个正方形,绕其中心旋转θ度,求旋转后的正方形。
解法:连接正方形的对角线,得到两个对称轴,分别将正方形上的每个点按照点的旋转方法进行旋转,然后连接这些点,就得到了旋转后的正方形。
5. 圆的旋转
在平面直角坐标系中,给定一个圆,绕其中心旋转θ度,求旋转后的圆。
解法:圆上每个点到圆心的距离不变,因此可以先求出旋转后的圆心坐标,然后将圆心和圆上的每个点都按照点的旋转方法进行旋转,就得到了旋转后的圆。
以上就是初中数学中常见的旋转题型,希望能对大家的学习有所帮助。
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
旋转章节的要求是让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察。
那么接下来的旋转内容请同学们认真记忆了。
旋转知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
初中数学下册图形旋转教案
初中数学下册图形旋转教案教学目标:1. 理解旋转的定义和性质,掌握图形旋转的基本方法。
2. 能够运用旋转的性质解决实际问题,提高学生的解决问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
教学内容:1. 旋转的定义和性质2. 图形旋转的基本方法3. 旋转在实际问题中的应用教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的旋转现象,如旋转门、风车等,引导学生观察和思考。
2. 提问:这些现象有什么共同特点?它们是如何实现的?二、新课讲解(15分钟)1. 讲解旋转的定义:在平面内,将一个图形绕着某一点转动一个角度的图形变换叫做旋转。
2. 讲解旋转的性质:旋转不改变图形的大小和形状,只改变图形的位置。
3. 讲解图形旋转的基本方法:以某一点为旋转中心,将图形绕该点旋转指定角度。
4. 示例讲解:如何将一个图形绕某一点旋转?如何确定旋转后的位置?三、课堂练习(15分钟)1. 让学生独立完成教材中的相关练习题,巩固旋转的基本概念和操作方法。
2. 教师选取部分学生的作业进行点评,指出优点和不足之处。
四、应用拓展(15分钟)1. 出示一些实际问题,让学生运用旋转的知识解决,如:如何设计一个旋转楼梯?如何布局旋转型的园林?2. 学生分组讨论,提出解决方案,并进行展示。
3. 教师对学生的解决方案进行评价和指导。
五、总结(5分钟)1. 回顾本节课所学内容,让学生总结旋转的定义、性质和应用。
2. 强调旋转在实际生活中的重要性,激发学生学习兴趣。
教学评价:1. 课后作业:检查学生对旋转知识的掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
3. 应用拓展:评估学生在解决实际问题时的创新能力和发展空间。
教学反思:本节课通过生活中的旋转现象导入,激发学生的学习兴趣。
在讲解过程中,注重让学生动手操作,培养学生的空间想象能力和逻辑思维能力。
课堂练习和应用拓展环节,及时巩固所学知识,提高学生的解决问题的能力。
初中数学旋转的六大模型
初中数学旋转的六大模型
1. 旋转固定点模型:围绕某一点旋转,例如规定一个点O作为旋转中心,将其他点P绕O旋转α度,那么P'为P绕O旋转α度后所得的点。
2. 旋转矩形模型:以矩形的一条边为旋转轴旋转,例如一个矩形ABCDEF,以EF为旋转轴旋转β度,那么A、B两点分别旋转β度后得到A'、B'。
3. 旋转角度模型:以一条线段为旋转轴,在同一平面内,图形每一点绕旋转轴旋转相同角度后,得到的图形与原图形全等。
4. 旋转图形模型:图形绕旋转中心逆时针旋转90度、180度、270度或360度后,得到的图形仍然相同。
5. 旋转正方体模型:正方体绕某一条轴旋转一定角度后,仍然是一个正方体。
6. 旋转几何体模型:某些几何体绕某个轴旋转一定角度后,仍然是相同的几何体,如圆锥、圆筒等。
第三章第02讲 图形的旋转(8类热点题型讲练)(原卷版)--初中数学北师大版8年级下册
第02讲图形的旋转(8类热点题型讲练)1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题;(重点,难点)3.能够根据旋转的性质进行简单的旋转作图.知识点01旋转的概念(1)旋转的概念:把一个平面图形绕着平面内某一点O转动一定角度的变换.点O叫作旋转中心;转动的角度叫作旋转角;图形上点P旋转后得到点P’,这两个点叫作对应点.(2)旋转三要素:①旋转方向;②旋转中心;③旋转角度注:旋转中心可在任意位置.即可在旋转图形上,也可不在旋转图形上.知识点02旋转的性质旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心连线所成的角相等.知识点03确定旋转中心确定旋转中心:由旋转的性质可得,对应点到旋转中心的距离相等,所以旋转中心位于对应点连线的垂直平分线上,即旋转中心是两对对应点所连线段的垂直平分线的交点.知识点04旋转作图旋转作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.题型01判断生活中的旋转现象【例题】(2023上·内蒙古呼和浩特·九年级校考期中)下列运动形式属于旋转的是()A .足球在地上的滚动B .电梯的运行C .热气球点火升空D .钟摆的摆动【变式训练】1.(2023上·广西玉林·九年级统考期中)下列现象属于旋转的是()A .电梯的上下移动B .飞机起飞后冲向空中的过程C .幸运大转盘转动的过程D .笔直的铁轨上飞驰而过的火车2.(2023上·福建福州·九年级校考阶段练习)下列生活中的实例是旋转的是()A .钟表的指针的转动B .汽车在笔直的公路上行驶C .传送带上,瓶装饮料的移动D .足球飞入球网中题型02找旋转中心、旋转角、对应点【例题】(2023上·天津东丽·九年级校联考期中)如图,P 为正方形ABCD 内一点,1PC ,CDP △将绕点C 逆时针旋转得到CBE △,(1)旋转中心是______.旋转角为______度.(2)求PE 的长度.【变式训练】1.(2023上·辽宁大连·九年级统考期中)如图,四边形ABCD 是正方形,E 是CD 上的一点,ABF △是ADE V 的旋转图形.(1)由ADE V 顺时针旋转到△(2)连接EF ,判断并说明AEF △2.(2023上·湖南永州·八年级校考开学考试)(1)旋转中心为点,并求出旋转角=度;(2)求出BAE ∠的度数和AE 的长.题型03根据旋转的性质求解【变式训练】1.(2023上·浙江·九年级专题练习)如图,将若AD BE ,则CAE ∠的度数为2.(2024上·广东肇庆·九年级统考期末)∠与AC交于点G.若B题型04求绕原点旋转90°点的坐标【例题】(2023上·江苏苏州点B,则点B的坐标为2.(2023下·江苏泰州·八年级校联考阶段练习)点B到x轴的距离是8,将题型05求绕某点(非原点)旋转90°点的坐标【例题】(2023上·全国·将AC绕A点顺时针旋转【变式训练】2.(2023·湖北宜昌·统考模拟预测)如图,点点A 按逆时针方向旋转90︒得到线段题型06平面直角坐标系中旋转作图【例题】(2024上·吉林松原·九年级校联考期中)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平而直角坐标系,OAB 的顶点都在格点上,已知点()4,2A --,()2,6B --.(1)将OAB 向右平移4个单位长度得到111O A B △,请画出111O A B △;(2)将OAB 绕点O 顺时针旋转90︒,画出所得的22OA B △.【变式训练】1.(2023上·四川自贡·九年级校考期中)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点()5,5A ,()6,3B ,()2,1C 均在格点上,(1)画出将ABC 向下平移4个单位长度得到的111A B C △;(2)画出ABC 绕点C 逆时针旋转90︒后得到的22A B C ,并写出点2A 的坐标;2.(2024上·陕西延安·九年级统考期末)如图,网格中每个小正方形的边长都是单位1,ABC 是格点三角形.(1)画出将ABC 向右平移2个单位得到的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90︒得到的222A B C △,并写出点2B 的坐标.题型07坐标与旋转规律问题【变式训练】1.(2023上·辽宁鞍山·九年级校考阶段练习)如图,在平面直角坐标系中,将11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将的位置,点2C 在x 轴上,将112A B C V 绕点2C 顺时针旋转到222A B C △的位置,点()()B 2.(2023下.广西.七年级广西大学附属中学校考期中)如图,已知点向连续翻转241次,点A 依次落在点1A ,2A ,3A , (241)题型08旋转综合题——几何变换【例题】(2023上·北京朝阳·九年级校考期中)如图,在ABC 中,,BAC AB AC α∠==,点D 为BC 边上一点(不与点B 重合),连接AD ,将ABD △绕点A 逆时针旋转得到ACE △.(1)若80α=︒,写出旋转角及其度数;(2)当α度数变化时,DAE ∠与DCE ∠之间存在某种不变的数量关系.请你写出结论并证明.【变式训练】(1)将ADE V 绕A 点旋转到图2位置时,写出BD 、CE 的数量关系;(2)当90BAC ∠=︒时,将ADE V 绕A 点旋转到图3位置.①猜想BD 与CE 有什么数量关系和位置关系?请就图3的情形进行证明;②当点C 、D 、E 在同一直线上时,直接写出ADB ∠的度数.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD (2)【探究】:把DCE △绕点C 旋转到如图2的位置,连接AD ,(3)【拓展】:把DCE △绕点C 在平面内自由旋转,若6AC =,CE 时,直接写出BE 的长.一、单选题1.(2024上·安徽合肥·九年级统考期末)垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.你认识垃圾分类的图标吗?请选出其中的旋转对称图形()A .可回收物B .有害垃圾C .厨余垃圾D .其他垃圾2.(2024上·河北唐山·七年级统考期末)如图,OAB 绕点O 逆时针旋转70︒,得到OCD ,若15AOB ∠=︒,则AOD ∠等于()A .85︒B .70︒C .55︒D .45︒3.(2024上·江西上饶·九年级统考期末)如图,将一块含有30︒的直角三角板ABC (假定90C ∠=︒,30B ∠=︒)绕顶点A 逆时针旋转100︒得到AB C ''△,则BB C ''∠等于()A .5︒B .10︒C .15︒D .20︒4.(2024上·广东肇庆·九年级统考期末)如图,将线段AB 绕点O 顺时针旋转90︒,得到线段A B '',那么()2,5A -的对应点A '的坐标是()A .()5,2-B .()2,5-C .()5,2D .()2,55.(2024上·山东烟台·八年级统考期末)如图,已知ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕A 点逆时针旋转50︒得到AB C ''△,以下结论:①BC B C ''=,②AC C B '' ,③C B BB '''⊥,④ABB ACC ''∠=∠,正确的有()A .①②③B .②③④C .①③④D .①②④二、填空题7.(2023上·安徽淮南·九年级统考期末)如图将为(,)a b ,则A 的坐标为.8.(2024上·辽宁大连·九年级统考期末)如图,将点B '恰在边AC 上,若2AB =9.(2024上·天津宁河·九年级统考期末)在平面直角坐标系中,点针旋转,得11A BO △,点A O ,为,点1A 的坐标为10.(2024上·辽宁盘锦·九年级校考期末)如图,D 为AB 的中点,点E 在是直角三角形时,AE '的长为三、解答题(1)将ABC 绕坐标原点O 顺时针旋转(2)求111A B C △的面积.12.(2024上·湖北武汉·九年级统考期末)点B 顺时针旋转90°到CBE '△的位置((1)判断BEE ' 的形状为(2)若2AE =,4BE =,13.(2024上·湖北武汉·九年级统考期末)如图,在Rt ABC △中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,延长ED 交AB 于点F .(1)直接写出AFE ∠的度数;(2)若67.5A Ð=°,求证:2DE AF =.14.(2023上·陕西渭南·九年级统考期末)如图,将一个钝角ABC (其中120ABC ∠=︒)绕点B 顺时针旋转得111A B C △,使得C 点落在AB 的延长线上的点1C 处,连接1AA .(1)求证:1AA BC ∥;(2)若120A AC ∠=︒,求11AA C ∠的度数.15.(2024上·甘肃武威·九年级校联考期末)如图,在ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF 、EF 与AC 交于点G .(1)求证:BC EF =;(2)若64ABC ∠=︒,25ACB ∠=︒,求AGE ∠的度数.16.(2024上·浙江台州·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,旋转角为α,CD ,DE 分别交AB 于点F ,G ,连接BD .(1)求证:AGD α∠=;(2)若2BC =,30a =︒,BD AC ∥.①求AB 的长;②连接AD ,BE ,AE ,求四边形ADBE 的面积.17.(2024上·陕西西安·七年级校考期末)如图,已知ABC 中,90B Ð=°,将ABC 沿着射线BC 方向平移得到DEF ,其中点A 、点B 、点C 的对应点分别是点D 、点E 、点F ,且CE DE =.(1)如图①,如果6AB =,3BC =,那么平移的距离等于______;(请直接写出答案)(2)如图②,将DEF 绕着点E 逆时针旋转90︒得到CEG ,连接AG ,如果AB a =,BC b =,求ACG 的面积;(3)如图③,在(2)题的条件下,分别以AB ,BC 为边向外作正方形,正方形的面积分别记为1S ,2S ,且满足1216S S -=,如果平移的距离等于8,求出ACG 的面积.(1)如图1,当EC 与BC 重合,30α=︒时,ACD ∠=;(2)如图2,三角形ABC 固定不动,将三角形CDE 绕点C 旋转,使点E 落到AB 的延长线上,当射线EC 平分DEA ∠时,求ECB ∠的度数;(3)三角形ABC 固定不动,将三角形CDE 绕点C 旋转,当25ACE ∠=︒且射线CD 平分。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计一. 教材分析旋转是几何学中的一个重要概念,也是初中数学的重要内容。
本节课主要通过图形的旋转,使学生理解旋转的性质,学会如何对图形进行旋转,并能够运用旋转解决一些实际问题。
教材通过丰富的实例,引导学生探索旋转的规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。
但是,对于图形的旋转,可能还停留在直观的认识上,缺乏对旋转性质的深入理解。
因此,在教学过程中,需要通过大量的实例和实践活动,让学生感受旋转的魅力,逐步引导学生掌握旋转的性质和运用。
三. 教学目标1.理解旋转的定义,掌握旋转的性质。
2.学会对图形进行旋转,并能运用旋转解决一些实际问题。
3.培养学生的空间想象能力和抽象思维能力。
4.提高学生的合作交流能力和问题解决能力。
四. 教学重难点1.旋转的性质的理解和运用。
2.对图形进行旋转的方法和技巧。
五. 教学方法1.采用问题驱动法,引导学生主动探索旋转的性质。
2.利用多媒体辅助教学,直观展示图形的旋转过程。
3.采用合作交流的方式,让学生在实践中掌握旋转的方法。
4.通过解决实际问题,培养学生运用旋转解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.旋转的相关教具和模型。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门、旋转木马等,引导学生对旋转现象产生兴趣,进而提出本节课的学习主题——图形的旋转。
2.呈现(10分钟)利用多媒体展示图形的旋转过程,让学生直观感受旋转的魅力。
同时,引导学生观察和思考旋转前后图形的变化,初步感知旋转的性质。
3.操练(10分钟)让学生分组进行实践活动,每组选择一个图形,进行旋转操作,并观察旋转前后的变化。
然后,各组汇报实验结果,共同总结旋转的性质。
4.巩固(10分钟)出示一些练习题,让学生运用旋转的性质进行解答。
人教版初中数学23.1 图形的旋转 (第1课时) 课件
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE ∴△ACD≌△BCE(SAS).
连接中考
23.1 图形的旋转/
(2)当AD=BF时,求∠BEF的度数.
解:(2)∵∠ACB=90°,AC=BC,
如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点
(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针
方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.
(1)求证:△ACD≌△BCE;
(2)当AD=BF时,求∠BEF的度数.
解:(1)由题意可知:CD=CE,∠DCE=90°,
人教版 数学 九年级 上册
23.1 图形的旋转/
23.1 图形的旋转 (第1课时)
导入新知
23.1 图形的旋转/
新 疆 的 风 车 田
导入新知
23.1 图形的旋转/
荷 兰 的 大 风 车
导入新知
23.1 图形的旋转/
游 乐 场 的 摩 天 轮
导入新知
23.1 图形的旋转/
卫星 拍摄 到的 台风 “桑 美” 的中 心旋 涡
旋转中心 旋转角 旋转方向
温馨提示:①旋转的范围是“平面内”,其中 “旋转中心,旋转方向,旋转角度”称之为旋转 的三要素;②旋转变换同样属于全等变换.
探究新知
23.1 图形的旋转/
素养考点 2 旋转角度的计算
例2 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则 旋转的角度为( C )
初中数学辅助线添加秘籍5、图形变换 旋转
初中数学辅助线添加秘籍5、图形变换—旋转一:如何构造旋转图形1、遇中点,旋180°,构造中心对称图形,即倍长中线。
2、遇90°,旋90°,构造垂直—等腰直角三角形、正方形。
3、遇60°,旋60°,构造等边。
口诀:边相等,就旋转。
二:倒角(旋转后,常见图形)、如图,边长为的正方形AB=AD,由图形旋转的性质可知AD=AB′,故可得出Rt△ADE≌Rt△AB′E,由直角三角形的性质可得出DE的长,再由S阴影=S正方形ABCD-S四边形ADEB′即可得出结论.解答:解:连接AE,∵∠BAB′=30°,∴∠DAB′=60°,∵四边形ABCD是正方形,∴AB=AD,∠D=∠B=90°,∵正方形AB′C′D′是正方形ABCD旋转而成,∴AD=AB′,∠B′=90°,在Rt△ADE与Rt△AB′E中,AD=AB′,AE=AE,∴Rt△ADE≌Rt△AB′E,∴∠DAE==30°,∴DE=AD?tan∠DAE=×=1,∴S四边形ADEB′=2S△ADE=2××AD×DE=,∴S阴影=S正方形ABCD-S四边形ADEB=3-.2、如图,P是正△ABC内的一点,且PA=6,PB=8,PC=10.若将△PA C绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为????,∠APB=????°.答案此题答案为:6;150°.解:连接PP′.∵△P′AB是△PAC绕点A旋转得到的,∴△P′AB≌△PAC.∵△P′AB≌△PAC,PA=6,PB=8,PC=10,∴P′A=PA=6,P′B=PC=10,∠PAC=∠P′AB.∵△ABC为正三角形,∴∠BAC=60°,∴∠PAC+∠BAP=60°.∵∠PAC=∠P′AB,∴∠P′AB+∠BAP=∠P′AP=60°.∵∠P′AP=60°,PA=P′A,∴△PAP′是等边三角形,∴PP′=PA=6,∴∠P′PA=60°.∵在△PBP′中PP′=6,PB=8,P′B=10,∴△PBP′是直角三角形,∴∠BPP′=90°,∴∠APB=∠P′PA+∠BPP′=60°+90°=150°.3、如图,P是等边△ABC内一点,∠APB、∠BPC、∠CPA的大小之比为5:6:7,则以PA、PB、PC为边的三角形三内角大小之比(从小到大)是().A.2:3:4B.3:4:5C.4:5:6D.以上结果都不对答案此题答案为:A.解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C-∠AP′P=∠APB-∠AP′P=100°-60°=40°,∠P′PC=∠APC-∠APP′=140°-60°=80°,∠PCP′=180°-(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.4、如图,为线段上一动点(不与点、重合),在同侧分别作正和正,与交于点,与交于点,与交于点,连接。
初中数学旋转的六大模型,初中几何旋转经典例题
初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。
本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。
旋转是指一个图形绕着某一点转动一定的角度。
在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。
旋转的角度一般用角度或者弧度来表示。
中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。
绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。
旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。
旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。
旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。
旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。
例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。
求证:EF平分∠AEB。
证明:我们可以通过旋转证明。
把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。
因为CF=2AF,所以FG=2FE。
所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。
例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。
求证:EF^2=AE^2+BF^2。
证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。
浙教版初中数学九年级上册32图形的旋转教案
浙教版初中数学九年级上册32图形的旋转教案一、教学内容本节课选自浙教版初中数学九年级上册第32章,主要教学内容为图形的旋转。
详细内容包括:旋转的定义、性质和运用;旋转对称图形的概念及性质;运用旋转进行图形的变换。
二、教学目标1. 理解并掌握旋转的定义、性质和应用,能够运用旋转进行图形变换。
2. 能够识别旋转对称图形,并掌握其性质。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点教学难点:旋转的性质及运用;旋转对称图形的识别和性质。
教学重点:旋转的定义;旋转对称图形的性质。
四、教具与学具准备1. 课件:展示旋转的定义、性质、应用以及旋转对称图形的示例。
2. 直尺、圆规、量角器等绘图工具。
3. 练习题:包括旋转图形的绘制和旋转对称图形的识别。
五、教学过程1. 导入:通过展示生活中的旋转现象,如风车、风扇等,引发学生对旋转的兴趣。
a. 提问:你们在生活中还见过哪些旋转的现象?b. 学生分享并讨论。
2. 基本概念:介绍旋转的定义和性质。
a. 展示旋转的定义。
b. 解释旋转的性质,如旋转角度、旋转中心、旋转方向等。
c. 演示旋转的过程,让学生直观感受。
3. 实践操作:运用旋转进行图形变换。
a. 出示例题,让学生绘制旋转后的图形。
b. 学生操作,教师巡回指导。
4. 知识拓展:介绍旋转对称图形。
a. 展示旋转对称图形的例子。
b. 讲解旋转对称图形的性质,如旋转角度、对称轴等。
5. 随堂练习:完成旋转图形的绘制和旋转对称图形的识别。
六、板书设计1. 旋转的定义、性质和运用。
2. 旋转对称图形的概念及性质。
3. 例题及解答过程。
七、作业设计1. 作业题目:绘制给定旋转角度和旋转中心的旋转图形;识别旋转对称图形。
答案:见附件。
八、课后反思及拓展延伸1. 反思:本节课学生对旋转的定义、性质和运用掌握程度如何?哪些地方需要加强?2. 拓展延伸:研究旋转与轴对称、平移等其他图形变换的关系;探索旋转在生活中的应用。
九年级上册数学旋转知识点总结
九年级上册数学旋转知识点总结九年级上册数学旋转知识点1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征 (3分)1、关于原点对称的点的特征两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)初中数学有理数的运算知识点加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
人教版九年级数学上册《图形的旋转》旋转PPT课件
又由∠CAC′=90°可知△CAC′为等腰直角三角形,所
以∠ CC′ A= 45°.又由∠ AC′ B′ =∠ACB=90°-60°
=30°,可得∠ CC′ B′ =15°.
新课讲解
知识点3 用旋转的知识画图
• 简单旋转作图的一般步骤: • (1)找出图形的关键点; • (2)确定旋转中心,旋转方向和旋转角; • (3)将关键点与旋转中心连接起来,然 后按旋转方向 • 分别将它们旋转一个角,得到关键点的对应点; • (4)按照原图形的顺序连接这些对应点,所得到的图 • 形就是旋转后的图形.
新课讲解
练一练
如图,A,B,C三点共线,△ACD和△BCE都是等边三角形,
△ACE旋转后到达△DCB的位置. (1) 旋转中心是哪一点? (2) 旋转角是多少度?
(1) 点C是在△ACE旋转过程中不动的点,所以点C是旋转中心. (2) △ACE旋转后到达△DCB的位置,AC绕点C转过的角即∠ACD就 是旋转角.因为△ACD是等边三角形,所以∠ACD =60°,即旋转角是
新课讲解
例 2 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中 心,把△ADE顺时针旋转90°,画出旋转后的图形.
图(1) 分析:关键是确定△ADE三个顶点的对应点,
即它们旋转后的位置.
新课讲解
解:因为点A是旋转中心,
所以它知的识对点应点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,
所以旋转后点D与点B重合.
设点E的对应点为点E′.因为旋转后的图形
图(2)
与旋转前的图形全等,所以∠ABE′=∠ADE
=90°,BE′=DE.
因此,在CB的延长线上取点E′,使BE′=DE,则
九年级数学上人教版《 旋转的应用》课堂笔记
《旋转的应用》课堂笔记
一、旋转对称图形的概念
1.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重
合,这种图形叫做旋转对称图形。
2.旋转对称图形的性质:旋转对称图形具有旋转不变性和对称性,即旋转前
后图形的形状和大小保持不变,只改变位置和方向。
二、如何判断一个图形是否为旋转对称图形
1.观察图形的形状和大小是否在旋转前后保持不变。
2.观察旋转前后图形的位置和方向是否发生变化。
3.判断旋转中心是否存在,以及旋转角度是否为360°的整数倍。
三、旋转对称图形的应用
1.在几何中,可以利用旋转对称图形的性质证明一些几何定理和性质。
2.在生活中,很多机械零件和建筑物都是利用旋转对称设计的,如螺旋桨、
圆形屋顶等。
3.在艺术中,旋转对称可以创造出很多美丽的图案和造型,如旋转对称的花
朵、旋转对称的舞蹈动作等。
四、注意事项
1.要注意区分旋转对称图形与其他图形变换的不同之处,如平移、翻折等。
2.在进行旋转对称图形的判断时,要注意观察图形是否具有旋转不变性和对
称性,并确定旋转中心和旋转角度。
3.在实际应用中,要注意选择合适的旋转中心和旋转角度,以达到预期的效
果。
人教课标版 初中数学九级上册第二十二章图形的旋转(共16张PPT)
3、分析图中①,②,④中阴影部分的分布规律,
按此规律在图③中画出其中的阴影部分.
第十一页,共16页。
4.下列四个圆形图案中,分别以它们所在圆的圆心 为旋转中心,顺时针旋转120°后,能与原图形完全重合的是
()
第十二页,共16页。
5、将一个直角三角板绕30°角的顶点顺时针旋转, 使一直角边与原斜边在同一条直线上。你知道旋转
且AD⊥BC,∠BAC的度数为( 1、如选图择中不的同的Rt旋△A转B中C向心右或翻不滚同,的下旋列转说角法,旋转
使7.点如A图和,点直D、线点y=B-和点xE+、4点与Cx轴和、点yF轴对分应别。交
)
△相E等D的C,正此方时形点ABDC在D斜的边中A心BO上旋,转斜任边意D角E交度A,C求于图点F.则图中阴影部分的面积为( )
转后的 图形△DEF.
1点、A如′就图是中所的求R做t△的A图BC形向右翻滚,下列说法
得使到一△直A角DE边.与若原∠斜C边AE在=同65一°,条∠直E=线7上0°,。
2.将△ABC绕点A逆时针旋转一定角度, 51、将如一图个中直的角Rt三△A角B板C向绕右30翻°角滚的,顶下点列顺说时法针旋转,
例按1此:规如律图在,图画③出中点画A出绕其点中O的顺阴时影针部旋分转.600后的图形
五画:顺次连接所得的点,从而画出旋转得到的图形.
第三页,共16页。
例1:如图,画出点A绕点O顺时针旋转600后的图形
A′
A
O
点A′就是所 为旋转中心,将△ABC逆时针旋转900, 使点A和点D、点B和点E、点C和点F对应。画出旋
转后的 图形△DEF.
D F
得到△ADE.若∠CAE=65°,∠E=70°, △5、ED将C一,个此直时角点三D在角斜板边绕A30B°上角,的斜顶边点D顺E时交针AC旋于转点,F.则图中阴影部分的面积为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的旋转
1.如图,如果把钟表的指针瞧做三角形OAB,它绕O 点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心就是什么?旋转角就是什么?
(2)经过旋转,点A、B分别移动到什么位置?
2.(学生活动)如图,四边形ABCD、四边形EFGH都就是边长为1的正方形.
(1)这个图案可以瞧做就是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心与旋转角
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
3.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.
,△ABF就是△ 4.如图,四边形ABCD就是边长为1的正方形,且DE=1
4
ADE的旋转图形.
(1)旋转中心就是哪一点?
(2)旋转了多少度?
(3)AF的长度就是多少
(4)如果连结EF,那么△AEF就是怎样的三角形?
5.如图,K就是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK与DM,试用旋转的思想说明线段BK与DM的关系.
参考答案
1、解:(1)旋转中心就是O,∠AOE、∠BOF等都就是旋转角.
(2)经过旋转,点A与点B分别移动到点E与点F的位置.
2、 (1)可以瞧做就是由正方形ABCD的基本图案通过旋转而得到
的.(2)•画图略.(3)点A、点B、点C、点D移到的位置就是点E、
点F、点G、点H.
(3)旋转前、后的图形全等.
3、分析:绕C点旋转,A点的对应点就是D点,那么旋转角就就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.
解:(1)连结CD
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD
(3)在射线CE上截取CB′=CB
则B′即为所求的B的对应点.
(4)连结DB′
则△DB′C就就是△ABC绕C点旋转后的图形.
4、分析:由△ABF就是△ADE的旋转图形,可直接得出旋转中心与旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE就是完全重合的,所以它就是直角三角形.
解:(1)旋转中心就是A点.
(2)∵△ABF就是由△ADE旋转而成的
∴B就是D的对应点∴∠DAB=90°就就是旋转角
(3)∵AD=1,DE=1
4∴AE=221
1()
4
=17
4
∵对应点到旋转中心的距离相等且F就是E的对应点∴AF=17
4
(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF就是等腰直角三角形.
5、分析:要用旋转的思想说明就就是要用旋转中心、旋转角、对应点的知识来说明.
解:∵四边形ABCD、四边形AKLM就是正方形
∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°
∴△ADM就是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM。