三角函数的图象和性质2

合集下载

第十课时_1.4三角函数的图象与性质(2课时)

第十课时_1.4三角函数的图象与性质(2课时)
1.4.1
正弦、余弦函数的 图象
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象? 途径:利用单位圆中正弦、余弦线来解决。
y=sinx x[0,2]
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
f ( x 2k ) f ( x) 利用图象平移
y=sinx xR
正弦、余弦函数的图象
y 1

2

o -1
2

3 2
2
x
y=sinx x[0,2] y=sinx xR
y
1
正弦曲 线
2
-4
-3
-2
-
o
-1
3
4
5
6
x
如何由正弦函数图像得y 到余弦函数图像?
-4 -3 -2 -
正弦、余弦函数的图象
1
o
-1

2
3
4
5
函数y A sin( x )及y A cos( x ), x R ( A, , 为常数, A 0, 0)的周期T 2

新课讲解. 正弦函数、余弦函数的性质 (三)关于奇偶性(复习)
一般地, •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= f( x ),那么就说f( x )是偶函数 •如果对于函数f( x )的定义域内任意一个x, 都有f(- x )= -f( x ),那么就说f( x )是奇函数 结论:正弦函数是奇函数,余弦函数是偶 函数

, 0)
今日作业
书本P46.A组3.10
B组3+附加
附加.判断下列函数的奇偶性
1) y 2 cos 2 x

三角函数的图象变换与性质

三角函数的图象变换与性质

三角函数的图象变换与性质三角函数是数学中非常重要的一类函数,包括正弦函数、余弦函数、正切函数等。

在数学的应用中,三角函数的图象变换与性质是非常重要的内容。

接下来,我将详细介绍三角函数的图象变换与性质,包括平移、伸缩、翻转等操作以及周期性、奇偶性等性质。

三角函数的图象变换主要包括平移、伸缩和翻转三种操作。

平移是指将函数图象沿横轴或纵轴方向移动一定的距离,可以通过改变函数中的自变量来实现平移。

伸缩是指将函数图象在横轴或纵轴方向上拉伸或压缩,可以通过改变自变量或函数值来实现伸缩。

翻转是指将函数图象关于条直线对称翻转,可以通过改变自变量或函数值的正负来实现翻转。

通过这三种变换操作,可以得到各种不同形态的三角函数图象。

正弦函数是最基本的三角函数之一,其图象为一条连续的波形,由平面直角坐标系中y轴上一点在单位圆上运动时的纵坐标所得。

正弦函数的周期为2π,并且其图象在[-π/2,π/2]处取得最大值1,在[-3π/2,-π/2]和[π/2,3π/2]取得最小值-1、正弦函数的图象关于y轴对称,并且具有奇函数的性质,即f(-x)=-f(x)。

余弦函数是正弦函数的平移变换,其图象为一条连续的波形,由平面直角坐标系中y轴上一点在单位圆上运动时的横坐标所得。

余弦函数的周期也是2π,并且其图象在[0,π/2]处取得最大值1,在[π/2,π]处取得最小值-1、余弦函数的图象关于x轴对称,并且具有偶函数的性质,即f(-x)=f(x)。

正切函数是正弦函数和余弦函数的商,其图象为一条连续的波形,由平面直角坐标系中y轴上一点在单位圆上运动时的纵坐标与横坐标的比值所得。

正切函数的周期为π,其图象在[-π/2,π/2]处为正无穷大,在[π/2,3π/2]处为负无穷大。

正切函数的图象关于原点对称,但不满足奇偶性。

除了正弦函数、余弦函数和正切函数,还有其他的三角函数,如余切函数、正割函数和余割函数等。

它们的图象可以通过适当的变换得到。

例如,余切函数是正切函数的倒数,而正割函数是余弦函数的倒数,余割函数是正弦函数的倒数。

蒋王中学高一三角函数的图象与性质(2)

蒋王中学高一三角函数的图象与性质(2)

三角函数的图象与性质(2)一、学习目标1. 利用性质解决:比较大小、求单调区间、求定义域、值域等有关问题2. 提高识图、数形结合能力重、难点:性质及应用二、课前自学1.画出)62sin(3π+=x y 的简图后,该函数的单调减区间是________________若[]π,0∈x ,则函数的单调减区间是________________2.函数||sin sin x x y +=的值域是__________________3.在单位圆中画出满足21cos ≥x 的角x 的所在区域(用阴影扇形来表示),并写出1cos 2-=x y 的定义域______________________4.函数)2sin(5θ+=x y 的图象关于y 轴对称,则θ=________________三、问题探究例1 不求值,分别比较下列各组中的两个三角函数值的大小:(1))7sin(π-与)5sin(π-; (2))74cos(π与)85cos(π例2求函数)21lg(cos 362-+-=x x y 的定义域.例3已知函数)62sin(2π+=x y ,求函数的单调减区间.变式:求函数)4sin(2x y -=π的单调减区间.四、反馈小结反馈:1必修四P32 T6; P44 T62求函数)4cos(3x y -=π的单调减区间3.不求值,分别比较下列各组中的两个三角函数值的大小: (1) 170sin 与 370sin ; (2)54cosπ与57cos π4.已知b a x a x f ++-=2sin 2)(的值域为[]13,3--,求b a ,的值.小结: 五、课后作业补充:1必修四 P44 T5(1)——(4)2求函数)36sin(2x y -=π的单调增区间3求函数)21(cos log sin +=x y x 的定义域.4.已知下列函数:①)32sin(π-=x y ,②)62sin(π-=x y ,③)62sin(π+=x y ④)62sin(π+=x y 其中,最小正周期为π,且图象关于直线3π=x 对称的序号是___________.。

高一数学三角函数的图象与性质(二)

高一数学三角函数的图象与性质(二)

三角函数的图象与性质(二)一、基本知识:了解正弦函数、余弦函数、正切函数的图象,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的图象,理解参数A 、ω、φ的物理意义.掌握将函数图象进行对称变换、平移变换、伸缩变换.会根据图象提供的信息,求出函数解析式.二、例题分析:【例1】(2004年某某卷)设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( A )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312t t y ππ++=【思路串讲】本题主要考查三角函数的图象与性质以及分析问题与解决问题的能力.“会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型”,此类问题的求解一般是先找出周期,定出A 与是的值,最后确定 的值.【标准答案】A【例2】 函数y=Asin (ωx+φ)(A >0,ω>0,|φ|<π2)的最小值为-2,其图象相邻的最高点和最低点横坐标差3π,又图象过点(0,1),求这个函数的解析式.分析 求函数的解析式,即求A 、ω、φ的值.A 与最大、最小值有关,易知A=2,ω与周期有关,由图象可知,相邻最高点与最低点横坐标差3π,即T 2=3π.得 T=6π,所以ω=13.所以y=2sin(x 3+φ),又图象过点(0,1),所以可得关于φ的等式,从而可将φ求出,易得解析式为y=2sin(x 3 +π6).【例3】 右图为某三角函数图像的一段(1)试用y=Asin (ωx+φ)(2)求这个函数关于直线x=2解:(1)T=13π3- π3=4π.∴ω=2πT = 12.又A=3,由图象可知所给曲线是由y=3sin x2沿x 轴向右平移 π3而得到的.∴解析式为 y=3sin 12 (x -π3).(2)设(x ,y)为y=3sin(12 x -π6 )关于直线x=2π对称的图像上的任意一点,则该点关于直线x=2π的对称点应为(4π-x ,y),故与y=3sin(12x -π6)关于直线x=2π对称的函数解析式是y=3sin [12(4π-x)- π6]=-3sin(12 x +π6).点评 y=sin(ωx+φ)(ω>0)的图象由y=sin ωx 的图象向左平移(φ>0)或向右平移(φ<0)|φ|ω个单位.特别要注意不能搞错平移的方向和平移的单位数量.求一个函数的图象关于一条直线对称图象的函数解析式时,要注意解几知识的运用. 【例4】 已知函数y=12cos 2x+ 32sinxcosx+1 (x ∈R).(1)当y 取得最大值时,求自变量x 的集合;(2)该函数图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能以及运算能力.解题突破口:利用三角公式进行恒等变形化简为)sin()(ϕω+=t A x f ,(1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化.必须搞清A 、ω、φ和图象的哪些因素有关;y=sin ωx 和y=sin(ωx+φ)两图象间平移变换的方向和平移的单位数量极易搞错,解题时要倍加小心.解 (1)y= 12·1+cos2x 2 + 32·12 sin2x +1= 12sin(2x+π6)+ 54.当2x+π6 =2k π+π2 ,即x=k π+π6,k ∈Z 时,y max = 74.(2)由y=sinx 图象左移π6个单位,再将图象上各点横坐标缩短到原来的12(纵坐标不变),其次将图象上各点纵坐标缩短到原来的12(横坐标不变),最后把图象向上平移 54个单位即可.点评 (1)回答图像的变换时,不能省略“纵坐标不变”、“横坐标不变”等术语.(2)周期变换后的左右平移要注意平移单位的变化. 【例5】已知函数)cos (sin sin 2)(x x x x f +=.(I )函数)(x f 的最小正周期和最大值;(II )在给出的直角坐标系中,画出函数]2,2[)(ππ-=在区间x f y 上的图象.【思路串讲】本题主要考查三角函数的图象和性质、利用三角公式进行恒等变形的技能、“五点”法作图以及运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式. 要画出函数]2,2[)(ππ-=在区间x f y 上的图象.主要用“五点”法作图.【标准答案】(I )x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+=)42sin(21)4sin 2cos 4cos2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(Ⅱ)由(Ⅰ)知x83π- 8π-8π 83π 85π y1 21- 1 21+ 1故函数)(x f y =在区间]2,2[ππ-上的图象是【例6】(2003年卷)已知函数.sin cos sin 2cos )(44x x x x x f --= (Ⅰ)求)(x f 的最小正周期;(Ⅱ)若]2,0[π∈x ,求)(x f 的最大值、最小值.【思路串讲】本题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力. 解题突破口:要求函数数)(x f 的最小正周期和最值,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】(Ⅰ)因为x x x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x所以)(x f 的最小正周期.22ππ==T ……6分(Ⅱ)因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.2……13分【例7】(2003年春季卷)已知函数)(,2cos 4sin 5cos 6)(24x f xx x x f 求-+=的定义域,判断它的奇偶性,并求其值域.【思路串讲】本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力.解题突破口:要求函数数)(x f 的定义域,转化为02cos ≠x ,要求函数数)(x f 的值域,关键是利用三角公式进行恒等变形化简为y=Asin(ωx+φ)形式.【标准答案】由Z k k x k x x ∈+≠+≠≠,42,2202cos ππππ解得得.所以)(x f 的定义域为}.,42|{Z k k x R x x ∈+≠∈ππ且因为)(x f 的定义域关于原点对称,且)2cos(4)(sin 5)(cos 6)(24x x x x f ---+-=-)(),(2cos 4sin 5cos 624x f x f xx x 所以=-+=是偶函数.当xx x x f Z k k x 2cos 4sin 5cos 6)(,,4224-+=∈+≠时ππ1cos 32cos )1cos 3)(1cos 2(222-=--=x xx x ,所以)(x f 的值域为}221211|{≤<<≤-y y y 或. 三、训练反馈:1.将y=cosx 的图象作关于x 轴的对称变换,再将所得的图象向下平移1个单位,所得图象对应的函数是 ( D )A .y=cosx+1B .y=cosx -1C .y=-cosx+1D .y=-cosx -12.函数f(x)=sin3x 图象的对称中心的坐标一定是 ( B ) A . (12k π,0), k ∈Z B .(13k π,0), k ∈ZC .(14k π,0), k ∈ZD .(k π,0),k ∈Z3.函数y=cos(2x+π2)的图象的一个对称轴方程为 ( B )A .x=- π2B .x=- π4C .x= π8 D .x=π4.为了得到函数y=3sin(3x+π4),x ∈R 的图象,只需把函数y=3sin(x+π4)的图象上所有点( B )A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的13倍,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的13倍,横坐标不变.5.要得到y=sin(2x -π3)的图象,只需将y=sin2x 的图象 ( D )A .向左平移π3个单位B . 向右平移π3个单位C .向左平移π6个单位D . 向右平移π6个单位6.函数y=12sin(2x+θ)的图象关于y 轴对称的充要条件是 ( B )A .θ=2k π+π2B .θ=k π+π2 C .θ=2k π+πD .θ=k π+π(k ∈Z)7.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( D ) A .y=sin(-2x+π3) B .y=sin(-2x -π3)C .y=sin(-2x+ 2π3)D . y=sin(-2x -2π3)8.右图是周期为2π的三角函数y=f(x)的图象,那么f(x)可以写成 ( D )A .sin(1+x)B . sin(-1-x)C .sin(x -1)D . sin(1-x)9.y=tan(12x -π3)在一个周期内的图象是 (A )10.已知函数y=2cosx(0≤x ≤2π)的图象与直线y=2围成一个封闭的平面图形,则该封闭图形面积是.4π-BACD11.将y=sin(3x -π6)的图象向(左、右)平移个单位可得y=sin(3x+π3)的图像.左,π612.已知函数y=Asin(ωx+φ),在同一个周期内,当x=π9时取得最大值12,当x=4π9时取得最小值- 12,若A >0,ω>0,|φ|<π2,求该函数的解析表达式. y=12 sin(3x+π6)13.已知函数y=3sinx+cosx ,x ∈R .(1)当y 取得最大值时,求自变量x 的取值集合; (2)该函数的图象可由y=sinx(x ∈R)的图象经过怎样的平移和伸缩变换得到?(1){x |x=π3+2k π,k ∈Z}; (2)将y=sinx 的图象向左平移π6,得到函数y=sin(x+π6)的图象,再将所得图象上各点横坐标不变,纵坐标伸长到原来的2倍,得到函数y=2sin(x+π6)的图象.word 11 / 11。

【原创】高考理科数学复习第三节 三角函数的图象与性质 (2)

【原创】高考理科数学复习第三节  三角函数的图象与性质 (2)

第三节三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图❶在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). 在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质❷正切函数的图象是由直线x =k π+π2(k ∈Z)隔开的无穷多支曲线组成的.判断三角函数的奇偶性,应首先判断函数定义域是否关于原点对称.求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx+φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误.写单调区间时,不要忘记k ∈Z.(1)y =tan x 无单调递减区间;(2)y =tan x 在整个定义域内不单调.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期都是2π|ω|,y =A tan(ωx +φ)的最小正周期是π|ω|.[熟记常用结论]1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.奇偶性若f (x )=A sin(ωx +φ)(A ≠0,ω≠0),则: (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z);(2)f (x )为奇函数的充要条件是φ=k π(k ∈Z).[小题查验基础]一、判断题(对的打“√”,错的打“×”) (1)y =sin x 在第一、第四象限是增函数.( ) (2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( ) (4)y =sin|x |是偶函数.( ) 答案:(1)× (2)× (3)× (4)√ 二、选填题1.函数y =tan 3x 的定义域为( ) A.⎩⎨⎧⎭⎬⎫x | x ≠3π2+3k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x ≠π6+k π,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x ≠-π6+k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x ≠π6+k π3,k ∈Z解析:选D 由3x ≠π2+k π(k ∈Z),得x ≠π6+k π3,k ∈Z.2.函数y =2-cos x3(x ∈R)的最大值和最小正周期分别是( )A .2,3πB .1,6πC .3,6πD .3,3π解析:选C 由y =2-cos x 3知,y max =2-(-1)=3,最小正周期T =2π13=6π.3.下列函数中最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6 C .y =2sin ⎝⎛⎭⎫x 2+π3D .y =2sin ⎝⎛⎭⎫2x -π3 解析:选B 函数y =2sin ⎝⎛⎭⎫2x -π6的最小正周期T =2π2=π, ∵sin ⎝⎛⎭⎫2×π3-π6=1, ∴函数y =2sin ⎝⎛⎭⎫2x -π6的图象关于直线x =π3对称. 4.函数y =sin ⎝⎛⎭⎫x -π4的图象的对称轴为______________,对称中心为________________.解析:由x -π4=π2+k π,k ∈Z ,得x =3π4+k π,k ∈Z ;由x -π4=k π,k ∈Z ,得x =π4+k π,k ∈Z ,故函数y =sin ⎝⎛⎭⎫x -π4的图象的对称轴为x =3π4+k π,k ∈Z ,对称中心为⎝⎛⎭⎫π4+k π,0,k ∈Z.答案:x =3π4+k π,k ∈Z ⎝⎛⎭⎫π4+k π,0,k ∈Z 5.函数f (x )=32cos x -12sin x ()x ∈[0,π]的单调递增区间为________. 解析:f (x )=32cos x -12sin x =cos ⎝⎛⎭⎫x +π6,由2k π-π≤x +π6≤2k π(k ∈Z),得2k π-7π6≤x ≤2k π-π6(k ∈Z).∵x ∈[0,π],∴f (x )在⎣⎡⎦⎤5π6,π上单调递增.答案:⎣⎡⎦⎤5π6,π 6.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 解析:由x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22. 答案:-22考点一三角函数的定义域[基础自学过关][题组练透]1.函数f (x )=-2tan ⎝⎛⎭⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x | x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6,k ∈Z解析:选D 由正切函数的定义域,得2x +π6≠k π+π2(k ∈Z),即x ≠k π2+π6(k ∈Z),故选D.2.函数y =sin x -cos x 的定义域为________.解析:法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上函数y =sin x 和函数y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期性,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x | 2k π+π4≤x ≤2k π+5π4,k ∈Z .法二:利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z .答案:⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z) 3.函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2. 答案:⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2 [名师微点]求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.考点二三角函数的值域(最值) [师生共研过关][典例精析](1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________. (2)(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为_________________________________. [解析] (1)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, ∴函数f (x )在区间⎣⎡⎦⎤0,π2上的值域为⎣⎡⎦⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. (3)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22, ∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.∴函数的值域为⎣⎡⎦⎤-12-2,1. [答案] (1)⎣⎡⎦⎤-32,3 (2)1 (3)⎣⎡⎦⎤-12-2,1 [解题技法]求三角函数的值域(最值)的3种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[过关训练]1.若函数f (x )=(1+3tan x )cos x ,-π3≤x ≤π6,则f (x )的最大值为( )A .1B .2 C. 3D.3+1解析:选C f (x )=(1+3tan x )cos x =cos x +3sin x =2sin ⎝⎛⎭⎫x +π6.因为-π3≤x ≤π6,所以-π6≤x +π6≤π3,故当x =π6时,f (x )取最大值为3,故选C.2.(2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32,求m 的最小值. 解:(1)因为f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为T =2π2=π.(2)由(1)知f (x )=sin ⎝⎛⎭⎫2x -π6+12. 由题意知-π3≤x ≤m ,所以-5π6≤2x -π6≤2m -π6. 要使f (x )在区间⎣⎡⎦⎤-π3,m 上的最大值为32, 即sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.考点三三角函数的单调性[全析考法过关][考法全析]考法(一) 求三角函数的单调区间[例1] (1)函数y =sin ⎝⎛⎭⎫π3-2x 的单调递减区间为________________. (2)函数y =|tan x |的单调递增区间为______________,单调递减区间为________________.[解析] (1)函数y =sin ⎝⎛⎭⎫π3-2x =-sin ⎝⎛⎭⎫2x -π3的单调递减区间是函数y =sin ⎝⎛⎭⎫2x -π3的单调递增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z.故所给函数的单调递减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z. (2)作出函数y =|tan x |的图象,如图.观察图象可知,函数y =|tan x |的单调递增区间为⎣⎡⎭⎫k π,k π+π2,k ∈Z ;单调递减区间为⎝⎛⎦⎤k π-π2,k π,k ∈Z.[答案] (1)⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z (2)⎣⎡⎭⎫k π,k π+π2,k ∈Z ⎝⎛⎦⎤k π-π2,k π,k ∈Z 考法(二) 已知三角函数的单调性求参数[例2] (2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π[解析] f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, 函数y =sin ⎝⎛⎭⎫x -π4单调递增, 则函数f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4,∴0<a ≤π4, ∴a 的最大值为π4.[答案] A[规律探求]1.设函数f (x )=sin ⎝⎛⎭⎫2x -π3,x ∈⎣⎡⎦⎤-π2,π,则以下结论正确的是( ) A .函数f (x )在⎣⎡⎦⎤-π2,0上单调递减 B .函数f (x )在⎣⎡⎦⎤0,π2上单调递增 C .函数f (x )在⎣⎡⎦⎤π2,5π6上单调递减 D .函数f (x )在⎣⎡⎦⎤5π6,π上单调递增解析:选C 由x ∈⎣⎡⎦⎤-π2,0,得2x -π3∈⎣⎡⎦⎤-4π3,-π3,所以函数f (x )先减后增;由x ∈⎣⎡⎦⎤0,π2,得2x -π3∈⎣⎡⎦⎤-π3,2π3,所以函数f (x )先增后减;由x ∈⎣⎡⎦⎤π2,5π6,得2x -π3∈⎣⎡⎦⎤2π3,4π3,所以函数f (x )单调递减;由x ∈⎣⎡⎦⎤5π6,π,得2x -π3∈⎣⎡⎦⎤4π3,5π3,所以函数f (x )先减后增.故选C.2.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减,知π2ω=π3,∴ω=32. 答案:323.若函数y =12sin ωx 在区间⎣⎡⎦⎤-π8,π12上单调递减,则ω的取值范围是________.解析:因为函数y =12sin ωx 在区间⎣⎡⎦⎤-π8,π12上单调递减,所以ω<0且函数y =12sin(-ωx )在区间⎣⎡⎦⎤-π12,π8上单调递增,则⎩⎨⎧ω<0,-ω·⎝⎛⎭⎫-π12≥2k π-π2,k ∈Z ,-ω·π8≤2k π+π2,k ∈Z ,即⎩⎪⎨⎪⎧ω<0,ω≥24k -6,k ∈Z ,ω≥-16k -4,k ∈Z ,解得-4≤ω<0.答案:[-4,0)考点四三角函数的周期性、奇偶性、对称性[全析考法过关][考法全析]考法(一) 三角函数的周期性[例1] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③[解析] ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝⎛⎭⎫2x +π6的最小正周期T =2π2=π; ④y =tan ⎝⎛⎭⎫2x -π4的最小正周期T =π2,故选A. [答案] A考法(二) 三角函数的奇偶性[例2] (2019·抚顺调研)已知函数f (x )=2sin ⎝⎛⎭⎫x +θ+π3⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为________.[解析] ∵函数f (x )为偶函数,∴θ+π3=k π+π2(k ∈Z).又θ∈⎣⎡⎦⎤-π2,π2,∴θ+π3=π2,解得θ=π6,经检验符合题意.[答案]π6考法(三) 三角函数的对称性[例3] (1)已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( )A .关于点⎝⎛⎭⎫π3,0对称 B .关于点⎝⎛⎭⎫5π3,0对称 C .关于直线x =π3对称D .关于直线x =5π3对称 (2)(2018·江苏高考)已知函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________.[解析] (1)因为函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,而T =2πω=4π,所以ω=12,即f (x )=2sin ⎝⎛⎭⎫x 2+π6.令x 2+π6=π2+k π(k ∈Z),解得x =2π3+2k π(k ∈Z), 故f (x )的对称轴为x =2π3+2k π(k ∈Z). 令x 2+π6=k π(k ∈Z),解得x =-π3+2k π(k ∈Z), 故f (x )的对称中心为⎝⎛⎭⎫-π3+2k π,0(k ∈Z),对比选项可知B 正确. (2)由题意得f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=±1, ∴2π3+φ=k π+π2(k ∈Z),∴φ=k π-π6(k ∈Z). ∵φ∈⎝⎛⎭⎫-π2,π2,∴φ=-π6. [答案] (1)B (2)-π6[规律探求][过关训练]1.若函数f (x )=3sin(2x +θ)+cos(2x +θ)(0<θ<π)的图象关于⎝⎛⎭⎫π2,0中心对称,则函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值是________. 解析:f (x )=2sin ⎝⎛⎭⎫2x +θ+π6,又图象关于⎝⎛⎭⎫π2,0中心对称,所以2×π2+θ+π6=k π(k ∈Z),所以θ=k π-7π6(k ∈Z),又0<θ<π,所以θ=5π6,所以f (x )=-2sin 2x ,因为x ∈⎣⎡⎦⎤-π4,π6, 所以2x ∈⎣⎡⎦⎤-π2,π3,f (x )∈[-3,2], 所以f (x )的最小值是- 3. 答案:- 32.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0,即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π[课时跟踪检测]一、题点全面练1.y =|cos x |的一个单调递增区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[0,π] C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π 解析:选D 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.2.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π解析:选C 函数y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错;函数y =tan ⎝⎛⎭⎫2x -π3在区间⎝⎛⎭⎫0,π3上单调递增,B 错;最小正周期为π2,D 错;由2x -π3=k π2,k ∈Z ,得x =k π4+π6,k∈Z.当k =0时,x =π6,所以它的图象关于⎝⎛⎭⎫π6,0对称. 3.(2018·昆明第二次统考)若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x |k π+π6≤x <k π+π2,k ∈ZB.⎩⎨⎧⎭⎬⎫x |k π+π4≤x <k π+π2,k ∈ZC.⎩⎨⎧⎭⎬⎫x | k π+π3≤x <k π+π2,k ∈ZD.⎩⎨⎧⎭⎬⎫x |k π-π4≤x ≤k π+π4,k ∈Z解析:选B 由题意得直线x =a π(0<a <1)是正切函数的渐近线,所以x =π2,即a =12,则原不等式可化为tan x ≥1,所以k π+π4≤x <k π+π2,k ∈Z ,故选B.4.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0对称,那么|φ|的最小值为( ) A.π6 B.π4 C.π3D.π2解析:选A 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0,∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.5.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6的值为( ) A .2或0 B .-2或2 C .0D .-2或0解析:选B 因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,所以该函数图象关于直线x =π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.6.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4解析:选B ∵f (x )=2cos 2x -sin 2x +2=1+cos 2x -1-cos 2x 2+2=32cos 2x +52,∴f (x )的最小正周期为π,最大值为4.故选B.7.若函数y =sin ⎝⎛⎭⎫ωx +π6在x =2处取得最大值,则正数ω的最小值为________.解析:由题意得,2ω+π6=π2+2k π(k ∈Z),解得ω=π6+k π(k ∈Z),∵ω>0,∴当k =0时,ωmin =π6.答案:π68.(2019·石家庄模拟)已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上单调递减,则ω=________.解析:因为f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,所以f ⎝ ⎛⎭⎪⎫π6+π22=0,即f ⎝⎛⎭⎫π3=0, 因为f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, 所以f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, 所以π3ω+π3=k π(k ∈Z),解得ω=3k -1(k ∈Z).又12·2πω≥π2-π6,ω>0, 所以ω=2. 答案:29.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )图象的对称轴方程; (2)求函数f (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)令2x +π4=k π+π2,k ∈Z ,得x =k π2+π8,k ∈Z.所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z. (2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z.故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. (3)当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2. 10.(2019·武汉调研)已知函数f (x )=a ⎝⎛⎭⎫2cos 2x2+sin x +b . (1)若a =-1,求函数f (x )的单调递增区间;(2)当x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解:已知函数f (x )=a (1+cos x +sin x )+b =2a sin ⎝⎛⎭⎫x +π4+a +b . (1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),∴f (x )的单调递增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). (2)∵0≤x ≤π,∴π4≤x +π4≤5π4,∴-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,得⎩⎨⎧ 2a +a +b =8,b =5,∴a =32-3,b =5.②当a <0时,得⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.二、专项培优练(一)易错专练——不丢怨枉分1.(2019·长沙模拟)函数f (x )=|sin x |·cos x 的最小正周期是( ) A.π2 B .π C.3π2D .2π解析:选D 易知函数f (x )=⎩⎨⎧12sin 2x (2k π≤x ≤2k π+π),-12sin 2x (2k π-π≤x <2k π)k ∈Z ,结合函数f (x )的图象,易知函数f (x )的最小正周期为2π.2.(2019·厦门模拟)函数y =sin 4x +23sin x cos x -cos 4x ,x ∈[0,π]的单调递增区间为________.解析:y =sin 4x +23sin x cos x -cos 4x =(sin 2x +cos 2x )·(sin 2x -cos 2x )+3sin 2x =-cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,解得k π-π6≤x ≤k π+π3,k ∈Z ,令k =0,得-π6≤x ≤π3,又0≤x ≤π,所以0≤x ≤π3;令k =1,得5π6≤x ≤4π3,又0≤x ≤π,所以5π6≤x ≤π,所以函数y =sin 4x +23sin x cos x -cos 4x 在[0,π]上的单调递增区间为⎣⎡⎦⎤0,π3,⎣⎡⎦⎤5π6,π. 答案:⎣⎡⎦⎤0,π3,⎣⎡⎦⎤5π6,π 3.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.解析:∵x ∈⎣⎡⎦⎤-π3,a ,∴x +π6∈⎣⎡⎦⎤-π6,a +π6, ∵当x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域为⎣⎡⎦⎤-12,1, ∴结合函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π.答案:⎣⎡⎦⎤π3,π(二)素养专练——学会更学通4.[直观想象]设函数f (x )=sin ⎝⎛⎭⎫2x +π4⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( )A .π B.3π4 C.3π2D.7π4解析:选D 由题意x ∈⎣⎡⎦⎤0,9π8,则 2x +π4∈⎣⎡⎦⎤π4,5π2, 画出函数f (x )的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2,得x =π8;由2x +π4=3π2,得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称,点(x 2,a )和点(x 3,a )关于直线x=5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4. 5.[逻辑推理]设定义在R 上的函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π12<φ<π2,给出以下四个论断:①f (x )的最小正周期为π;②f (x )在区间⎝⎛⎭⎫-π6,0上是增函数;③f (x )的图象关于点⎝⎛⎭⎫π3,0对称;④f (x )的图象关于直线x =π12对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p ⇒q ”的形式)__________.(用到的论断都用序号表示)解析:若f (x )的最小正周期为π,则ω=2,函数f (x )=sin(2x +φ).同时若f (x )的图象关于直线x =π12对称,则sin ⎝⎛⎭⎫2×π12+φ=±1,又-π12<φ<π2,∴2×π12+φ=π2,∴φ=π3,此时f (x )=sin ⎝⎛⎭⎫2x +π3,②③成立,故①④⇒②③.若f (x )的最小正周期为π,则ω=2,函数f (x )=sin(2x +φ),同时若f (x )的图象关于点⎝⎛⎭⎫π3,0对称,则2×π3+φ=k π,k ∈Z ,又-π12<φ<π2,∴φ=π3,此时f (x )=sin ⎝⎛⎭⎫2x +π3,②④成立,故①③⇒②④. 答案:①④⇒②③或①③⇒②④6.[数学运算]已知函数f (x )=3cos 2ωx +sin ωx cos ωx -32(ω>0)的最小正周期为π. (1)求函数f (x )的单调递减区间; (2)若f (x )>22,求x 的取值集合. 解:(1)f (x )=3cos 2ωx +sin ωx cos ωx -32=32(1+cos 2ωx )+12sin 2ωx -32=32cos 2ωx +12sin 2ωx =sin ⎝⎛⎭⎫2ωx +π3.因为最小正周期为2π2ω=π,所以ω=1,故f (x )=sin ⎝⎛⎭⎫2x +π3. 由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , 得π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z. (2)由f (x )>22,得sin ⎝⎛⎭⎫2x +π3>22, 由正弦函数的性质得π4+2k π<2x +π3<3π4+2k π,k ∈Z ,解得-π24+k π<x <5π24+k π,k ∈Z , 则x 的取值集合为⎩⎨⎧⎭⎬⎫x |-π24+k π<x <5π24+k π,k ∈Z .7.[直观想象、数学运算]已知函数f (x )=4sin ⎝⎛⎭⎫x -π3cos x + 3. (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 在⎣⎡⎦⎤0,π2上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.解:(1)因为f (x )=4sin ⎝⎛⎭⎫x -π3 cos x +3=4⎝⎛⎭⎫12sin x -32cos x cos x +3=2sin x cos x -23cos 2x +3=sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3, 所以函数f (x )的最小正周期为T =π. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z).所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). (2)函数g (x )=f (x )-m 在⎣⎡⎦⎤0,π2上有两个不同的零点x 1,x 2,即函数y =f (x )与直线y =m 在⎣⎡⎦⎤0,π2上的图象有两个不同的交点,在直角坐标系中画出函数y =f (x )=2sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π2上的图象,如图所示,由图象可知,当且仅当m ∈[3,2)时,方程f (x )=m 有两个不同的解x 1,x 2,且x 1+x 2=2×5π12=5π6,故tan(x 1+x 2)=tan 5π6=-tan π6=-33.。

三角函数的图像及其性质

三角函数的图像及其性质

三角函数的图像及其性质1、三角函数的图像及性质sin y xsin y A x k图像值域周期对称轴2x k2x k对称中心(零点)令x k 代入求y令x k 代入,求出x 和y 单调增区间2,222x k k2,222x k k单调减区间32,222x k k32,222x k kcos y xcos y A x k图像值域周期对称轴x kx k 对称中心(零点)2x k代入,求y 2x k求出x 和y 单调增区间 2,2x k k 2,2x k k 单调减区间2,2x k k2,2x k k tan y x图像定义域值域周期单调性与对称性性质【考点分类】考点一:图像变换:1.把函数y =sin x 的图象向右平移个单位得到y =g (x )的图象,再把y =g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.2.将函数f (x )=sin x 图象上所有点的横坐标变为原来的(ω>0),纵坐标不变,得到函数g (x )的图象,若g (x )的最小正周期为6π,则ω=()A.B.6C.D.33.将函数y =2sin2x 图象上的所有点向右平移个单位,然后把图象上所有点的横坐标缩短为原来的倍,(纵坐标不变)得到y =f (x )的图象,则f (x )等于()A.2sin(x ﹣)B.2sin(x ﹣)C.2sin(4x ﹣)D.2sin(4x ﹣)4.已知曲线C 1:y =cos x ,C 2:y =sin(2x +),则下面结论正确的是()A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位长度,得到曲线C 25.把函数y =cos(3x +4)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是()A 向右平移4 B 向左平移4 C 向右平移12 D 向左平移126..函数32sin( x y 的图象是由2sin xy 的图象沿x 轴()得到的。

《1.3.2三角函数的图象与性质(二)》教学案

《1.3.2三角函数的图象与性质(二)》教学案

《1.3.2三角函数的图象与性质(二)》教学案第2课时 正切函数的图象与性质●三维目标 1.知识与技能(1)能画出y =tan x 的图象,并能借助图象理解y =tan x 在(-π2,π2)上的性质.(2)会利用正切函数的单调性比较函数值大小.(3)理解正切函数的对称性. 2.过程与方法通过图象变换的学习,培养运用数形结合思想分析、解决问题的能力. 3.情感、态度与价值观通过本节的学习,培养学生掌握从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃. ●重点难点重点:正切函数的图象与性质.难点:理解正切函数在(-π2,π2)上的性质,并会运用性质解决简单问题.教学方案设计●教学建议 1.正切函数的性质建议教师引导学生根据正、余弦函数的图象和性质研究正切函数的性质. 2.正切函数的图象建议教师在教学中,让学生先画出在区间(-π2,π2)内的图象,体会正切函数图象的形态,并对图象进行平移,观察函数的性质,有条件的话,可以借助多媒体演示作图的过程和图象的变化趋势.提醒学生对正切函数图象的理解并记忆正切函数的性质. ●教学流程创设问题情境,引导学生探究正切函数的图象和性质.⇒通过例1及其变式训练,使学生掌握正切函数定义域、值域的应用,并总结在求定义域、值域时注意的事项.⇒通过例2及其变式训练,解决利用正切函数的单调性求函数的单调区间和比较正切值大小问题.⇒通过例3及其互动探究,掌握与正切函数有关的函数图象变换问题的解决方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正. 课前自主导学1.说出正切函数y =tan x 的定义域与值域. 【提示】 定义域为{x |x ≠kπ+π2,k ∈Z },值域为R . 2.正切函数的奇偶性如何?【提示】 正切函数的定义域关于原点对称,又由tan (-x )=-tan x 可知,正切函数y =tan x 为奇函数.正切函数的图象与性质例1 (1)函数y =log 12tan (π4-x )的定义域是________. (2)求函数y =tan 2(3x +π3)+tan (3x +π3)+1的定义域和值域.【思路探究】 (1)列出使函数有意义的不等式,再求解即可.(2)求定义域可把3x +π3看成一个整体,结合函数y =tan x 的定义域求解,利用换元法求值域.【自主解答】 (1)由题意tan (π4-x )>0,即tan (x -π4)<0,∴kπ-π2<x -π4<kπ,∴kπ-π4<x <kπ+π4,k ∈Z .【答案】 (kπ-π4,kπ+π4)(k ∈Z )(2)由3x +π3≠kπ+π2,得x ≠k π3+π18(k ∈Z ),∴函数的定义域为{x |x ≠k π3+π18(k ∈Z )},设t =tan (3x +π3),则t ∈R ,y =t 2+t +1=(t +12)2+34≥34, ∴原函数的值域是[34,+∞). 规律方法1.求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义,即x ≠kπ+π2(k ∈Z ),而对于构建的三角函数不等式,常利用三角函数的图象求解.2.求解与正切函数有关的函数的值域时,要注意函数的定义域,在定义域内求值域;对于求由正切函数复合而成的函数的值域时,常利用换元法,但要注意新“元”的范围. 变式训练(1)函数y =1tan x (-π4<x <π4)的值域是________. (2)求函数y =1x 的定义域.【解】 (1)∵-π4<x <π4, ∴-1<tan x <1,即1tan x ∈(-∞,-1)∪(1,+∞). 【答案】 (-∞,-1)∪(1,+∞)(2)要使y =1an x 有意义,必须满足⎩⎪⎨⎪⎧x ≠k π+π2k ∈Z ,tan x >0,tan x ≠1,即⎩⎪⎨⎪⎧x ≠k π+π2k ∈Z ,k π<x <k π+π2k ∈Z ,x ≠k π+π4k ∈Z∴函数y =1x 的定义域为(kπ,kπ+π4)∪(π4+kπ,π2+kπ)(k ∈Z ).例2 (1)求函数y =tan (-12x +π4)的单调区间; (2)比较tan 1,tan 2,tan 3的大小.【思路探究】 (1)将函数转化为y =-tan (12x -π4),然后把12x -π4看成一个整体,利用y =tan x 单调区间求解.(2)把各角化归到同一单调区间内,再利用函数的单调性进行比较. 【自主解答】 (1)y =tan (-12x +π4)=-tan (12x -π4). 由kπ-π2<12x -π4<kπ+π2(k ∈Z ), 得2kπ-π2<x <2kπ+32π(k ∈Z ).∴函数y =tan (-12x +π4)的单调递减区间是 (2kπ-π2,2kπ+32π)(k ∈Z ).(2)tan 2=tan (2-π),tan 3=tan (3-π). 又∵π2<2<π, ∴-π2<2-π<0, ∵π2<3<π, ∴-π2<3-π<0,显然-π2<2-π<3-π<1<π2, 且y =tan x 在(-π2,π2)内是增函数,∴tan (2-π)<tan (3-π)<tan 1,即tan 2<tan 3<tan 1. 规律方法1.求y =A tan (ωx +φ)的单调区间,可先用诱导公式把ω化为正值,由kπ-π2<ωx +φ<kπ+π2求得x 的范围即可.比较两个同名函数的大小,应保证自变量在同一单调区间内. 2.运用正切函数单调性比较大小时,先把各角转化到同一个单调区间内,再运用单调性比较大小. 变式训练(1)比较大小:tan 1与tan 4. (2)求函数y =tan (π2x +π3)的单调区间.【解】 (1)∵tan 4=tan [π+(4-π)]=tan (4-π),-π2<4-π<1<π2且y =tan x 在(-π2,π2)上是增函数,∴tan (4-π)<tan 1,即tan 1>tan 4. (2)由kπ-π2<π2x +π3<kπ+π2(k ∈Z ), 得2k -53<x <2k +13(k ∈Z ).∴函数y =tan (π2x +π3)的单调增区间是(2k -53,2k +13)(k ∈Z ).例3 【思路探究】 画y =tan x 图象→y =|tan x |图象→研究性质 【自主解答】 由y =|tan x |得,y =⎩⎨⎧tan x k π≤x <k π+π2k ∈Z ,-tan x -π2+k π<x <kk ∈Z ,其图象如图.由图象可知,函数y =|tan x |是偶函数, 单调递增区间为[kπ,π2+kπ)(k ∈Z ),单调递减区间为(-π2+kπ,kπ)(k ∈Z ),周期为π. 规律方法1.用图象法研究三角函数性质,体现了数形结合思想方法,其优点是直观、形象,但前提是必须正确作出相应函数图象,本题可采用对称的办法通过变换作出函数图象. 2.只有熟练掌握正切函数的图象和性质才能更好地研究与正切函数有关的一些函数的图象和性质. 互动探究将本例中的函数y =|tan x |改为y =tan |x |解答同样的问题. 【解】 由y =tan |x |得y =⎩⎨⎧tan x x ≥0且x ≠k π+π2,k ∈Z ,-tan x x <0且x ≠k π+π2,k ∈Z ,根据y =tan x 的图象,作出y =tan |x |的图象如图:由图象可知,函数y =tan |x |是偶函数,单调增区间为[0,π2),(kπ+π2,kπ+32π)(k =0,1,2,…); 单调减区间为(-π2,0],(kπ-32π,kπ-π2)(k =0,-1,-2,…),不具有周期性.易错易误辨析忽视正切函数的定义域致误典例 求函数y =1tan xx -3 的定义域.【错解】 要使y =1tan x x -3有意义,必须满足⎩⎨⎧tan x ≠0,tan x -3≠0,即⎩⎪⎨⎪⎧x ≠k k ∈Z ,x ≠k π+π3k ∈Z∴函数y =1tan xx -3的定义域为{x |x ≠kπ且x ≠kπ+π3,k ∈Z }.【错因分析】 忽略了保证正切函数有意义,即y =tan x 中x ≠kπ+π2,k ∈Z .【防范措施】 求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数y =tan x 有意义即x ≠π2+kπ,k ∈Z . 【正解】 要使y =1tan xx -3有意义,必须满足⎩⎪⎨⎪⎧x ≠π2+k k ∈Z ,tan xx -3,解得⎩⎪⎨⎪⎧x ≠π2+kk ∈Z ,x ≠k k ∈Z ,x ≠k π+π3k ∈Z∴函数y =1tan x x -3的定义域为(-π2+kπ,kπ)∪(kπ,kπ+π3)∪(kπ+π3,kπ+π2)(k∈Z ).1.正切函数的图象的作法 (1)几何法就是利用单位圆中的正切线来作出正切函数的图象,该方法作图较为精确,但画图时较繁. (2)三点两线法“三点”是指(-π4,-1),(0,0),(π4,1);“两线”是指x =-π2和x =π2. 2.准确理解正切函数的性质(1) 正切函数y =tan x 的定义域是{x |x ≠kπ+π2,k ∈Z },这与正弦、余弦函数不同. (2)正切函数y =tan x 的最小正周期是π.一般地,函数y =A tan (ωx +φ)(A >0,ω>0)的周期为T =πω.(3)正切函数y =tan x 无单调减区间,在每一个单调区间内都是递增的,并且每个单调区间均为开区间.(4)正切函数y =tan x 是奇函数,正切函数的图象关于原点对称,并且有无穷多个对称中心,对称中心坐标是(k π2,0)(k ∈Z ),正切函数的图象无对称轴,正、余弦函数图象既中心对称又轴对称. 当堂双基达标1.函数y =tan (x +π4)的定义域为________. 【解析】 x +π4≠kπ+π2,k ∈Z , ∴x ≠kπ+π4,k ∈Z .【答案】 {x |x ≠kπ+π4,k ∈Z } 2.函数y =tan x3的周期为________. 【解析】 由公式得T =π13=3π.【答案】 3π3.函数y =3tan (12x +π4)的增区间为________.【解析】 kπ-π2<12x +π4<kπ+π2,k ∈Z ,∴kπ-3π4<12x <kπ+π4,k ∈Z , ∴2kπ-3π2<x <2kπ+π2,k ∈Z . 【答案】 (2kπ-3π2,2kπ+π2),k ∈Z4.求函数y =tan 2x 的定义域、值域和周期,并作出它在区间[-π,π]内的图象. 【解】 定义域为{x ∈R |x ≠π4+k π2,k ∈Z };值域为R ;周期为π2.图象如下:课后知能检测一、填空题1.下列说法正确的有________.(填序号) ①y =tan x 是增函数;②y =tan x 在第一象限是增函数;③y =tan x 在每个区间(kπ-π2,kπ+π2)(k ∈Z )上是增函数; ④y =tan x 在某一区间上是减函数.【解析】 根据正切函数的单调性,可知③正确. 【答案】 ③2.(2013·南通高一检测)函数y =lg (3tan x -3)的定义域为________. 【解析】 由y =lg (3tan x -3)得3tan x -3>0,即tan x >33, ∴kπ+π6<x <kπ+π2,k ∈Z ,∴y =lg (3tan x -3)的定义域为(kπ+π6,kπ+π2)(k ∈Z ). 【答案】 (kπ+π6,kπ+π2)(k ∈Z )3.函数y =tan (2x +π4)的单调递增区间是________.【解析】 由kπ-π2<2x +π4<kπ+π2(k ∈Z ),得k π2-3π8<x <k π2+π8(k ∈Z ). 【答案】 (k π2-3π8,k π2+π8)(k ∈Z ) 4.比较大小:tan π5________tan 13π10. 【解析】 tan 13π10=tan (π+3π10)=tan 3π10. ∵y =tan x 在(0,π2)上是增函数且0<π5<3π10<π2. ∴tan π5<tan 3π10,即tan π5<tan 13π10. 【答案】 <5.函数y =tan x +sin x -|tan x -sin x |在区间(π2,3π2)内的图象是图1-3-3中的________.图1-3-3【解析】 函数y =tan x +sin x -|tan x - sin x |=⎩⎨⎧2tan x ,π2<x ≤π,2sin x ,π<x <32π.【答案】 (4)6.y =tan x2满足下列哪些条件________.(填序号) ①在(0,π2)上单调递增; ②为奇函数; ③以π为最小正周期;④定义域为{x |x ≠π4+k π2,k ∈Z }.【解析】 令x ∈(0,π2),则x 2∈(0,π4),所以y =tan x 2在(0,π2)上单调递增正确;tan (-x2)=-tan x 2,故y =tan x 2为奇函数;T =πω=2π,所以③不正确;由x 2≠π2+kπ,k ∈Z 得,定义域为{x |x ≠π+2kπ,k ∈Z },所以④不正确. 【答案】 ①②7.函数y =3tan (2x +π3)的对称中心是________. 【解析】 2x +π3=k π2,k ∈Z ,∴x =k π4-π6,k ∈Z . 【答案】 (k π4-π6,0)(k ∈Z )8.已知函数y =tan ωx 在(-π2,π2)内是减函数,则ω的取值范围是________. 【解析】 y =tan ωx 在(-π2,π2)是减函数,∴ω<0且π|ω|≥π⇒-1≤ω<0. 【答案】 [-1,0) 二、解答题9.求下列函数的定义域.(1)y =3-tan x ;(2)y =tan x +lg (1-tan x ).【解】 (1)由3-tan x ≥0,得tan x ≤ 3.在(-π2,π2)内满足不等式的范围是(-π2,π3].又y =tan x 的周期为π,故原函数的定义域为(kπ-π2,kπ+π3),k ∈Z .(2)函数y =tan x +lg (1-tan x )有意义,等价于⎩⎪⎨⎪⎧tan x ≥0,1-tan x >0,所以0≤tan x <1.由正切曲线可得kπ≤x <kπ+π4,k ∈Z .故原函数的定义域为{x |kπ≤x <kπ+π4,k ∈Z }.10. 已知-π3≤x ≤π4,f (x )=tan 2x +2tan x +2,求f (x )的最值及相应的x 值.【解】 ∵-π3≤x ≤π4, ∴-3≤tan x ≤1,f (x )=tan 2x +2tan x +2=(tan x +1)2+1,当tan x =-1,即x =-π4时,f (x )有最小值1,当tan x =1即x =π4时,f (x )有最大值5.11.判断下列函数的奇偶性.(1)f (x )=tan x +1tan x ;(2)f (x )=lg |tan x |.【解】 (1)要使函数有意义,需满足:tan x ≠0,且tan x 有意义,即x ∈(kπ-π2,kπ)∪(kπ,kπ+π2),k ∈Z ,可知定义域关于原点对称.又对于定义域内的任意x ,都有f (-x )=-tan x -1tan x =-f (x ),∴函数f (x )为奇函数.(2)由⎩⎪⎨⎪⎧ x ≠π2+k k ∈Z ,|tan x |>0得⎩⎪⎨⎪⎧x ≠π2+k k ∈Z ,x ≠k k ∈Z ,∴函数f (x )的定义域为(-π2+kπ,kπ)∪(kπ,π2+kπ),k ∈Z ,定义域关于原点对称.又对任意x ∈(-π2+kπ,kπ)∪(kπ,π2+kπ),k ∈Z ,都有f (-x )=lg |tan (-x )|=lg |-tan x |=lg |tan x |=f (x ),∴函数f (x )是偶函数.教师备课资源备选例题观察正切函数图象,写出下列不等式的解集:(1)tan x >0;(2)|tan x |≤1.【思路探究】 画出正切函数在(-π2,π2)内的图象,结合图象求解集.【自主解答】 (1)设y =tan x ,则它在(-π2,π2)内的图象如图所示.由图可知满足不等式tan x >0的解集为{x |kπ<x <kπ+π2,k ∈Z }.(2)设y =|tan x |,则它在(-π2,π2)内的图象如图所示.由图可知满足不等式|tan x |≤1的解集为{x |kπ-π4≤x ≤kπ+π4,k ∈Z }.规律方法解决与正切函数的图象有关的问题,关键是正确画出正切函数的图象,然后根据正切函数图象的性质进行求解,求解过程中注意整体思想的应用.备选变式不等式tan (2x -π6)≥-1的解集为________.【解析】 令u =2x -π6,由tan u ≥-1及相应图象可知:kπ-π4≤u <kπ+π2, 即kπ-π4≤2x -π6<kπ+π2. ∴k π2-π24≤x <k π2+π3(k ∈Z ).∴原不等式解集为{x |k π2-π24≤x <k π2+π3,k ∈Z }. 【答案】 {x |k π2-π24≤x <k π2+π3,k ∈Z }。

高三数学三角函数的图象和性质2

高三数学三角函数的图象和性质2
2. 由图象求解析式时,”第一零点”的确定 很重要,尽量使A取正值. 3. 由图象求解析式 y A sin(x ) k 或 由代数条件确定解析式时,应注意:
1 (1) 振幅 A= ( y max y min ) 2
2
(2) 相邻两个最值对应的横坐标之差,或一个单 1 调区间的长度为 T ,由此推出 的值. 3)确定 值,一般用给定特殊点坐标代入解析式 来确定.
(1) 若f ( x) a b,且 f ( x)的最小正周期为 ,求f ( x)
f ( x)沿向量 c (2) 在(1)的条件下, 到函数 y 2 sin 2 x, 求向量 c 。
的最大值, 并求 f ( x) 取得最大值时x的集合; 平移可得
热点题型3 导数与三角函数的图象和性质的综合
重难点归纳 1、考查三角函数的图象和性质的基础题目, 此类题目要求考生在熟练掌握三角函数图象 的基础上要对三角函数的性质灵活运用
y=sinx
-4 -7 -3 2 -5 2 -2 -3 - 2
y
2
1 o -1
2
3 2 2 5 3 2
7 2 4
x
y=cosx
-4 -7 2 -5 -3 2 -2 -3 2
y
- - 2
1 o -1
2
3 2 2 5 2
y7 3 24xyy=tanx
y=cotx
3 2
-
-
2
o
2

3 2
x
-
-
2
o
2

3 2
2
x
2 三角函数与其他知识相结合的综合题目, 此类题目要求考生具有较强的分析能力和逻 辑思维能力 在今后的命题趋势中综合性题 型仍会成为热点和重点,并可以逐渐加强

2三角函数的图像与性质

2三角函数的图像与性质
cos2α=1,∴5sin2α=1,sin2α=15,又 sin α>0,∴sin α= 55,故选 B.
【答案】 (1)B
(2)(多选题)[2020·山东师大附中月考]在平面直角坐标系 xOy
中,角 α 顶点在原点 O,以 x 正半轴为始边,终边经过点 P(1,
m)(m<0),则ห้องสมุดไป่ตู้列各式的值恒大于 0 的是( )
对于 B,将 y=sin2x+3π的图象 C2 沿 x 轴方向向右平移1112π个
单位也可得到,y=sin2x-1112π+3π=sin2x-32π=cos 2x 的图象 C1,故选项 B 正确;
对于 C,先作 C2 关于 x 轴对称,得到 y=-sin2x+π3的图象 C3,再将图象 C3 沿 x 轴方向向右平移152π个单位,得到 y=-
3.[2020·山东枣庄质量检测]在平面直角坐标系 xOy 中,角 α 的 顶 点 是 O , 始 边 是 x 轴 的 非 负 半 轴 , 0<α<2π , 点 P1+tan1π2,1-tan1π2是 α 终边上一点,则 α 的值是________.
解析:因为 1+tan1π2>0,1-tan1π2>0,即 P 点在第一象限,所以 0<α<2π,又 tan α=11+-ttaann11ππ22=1t+anπ4ta-nπ4ttaann1π1π22=tanπ6,∴α=6π.
2x,∴fπ6=-2sin3π=- 3.故选 D. 答案:D
3.[2020·山东临沂期末检测]已知函数 f(x)=2cos2ωx-1π2(ω>0)
的图象关于直线 x=4π对称,则 ω 的最小值为( )
1
1
A.3
B.6
4

专题二 第2讲 三角函数的图象与性质

专题二 第2讲 三角函数的图象与性质
(3)奇偶性:φ=kπ(k∈Z)时,函数 y=Asin(ωx+φ)为奇函数;φ=kπ+π2(k∈Z) 时,函数 y=Asin(ωx+φ)为偶函数.
例 3 (1)(2021·淄博模拟)已知 f(x)=cos x(cos x+ 3sin x)在区间-π3,m上 的最大值是32,则实数 m 的最小值是
π A.12
例2 (1)(多选)(2021·肇庆模拟)函数f(x)=Asin(ωx+φ)(A>0)的部分图象 如图所示,则f(x)等于
A.2sin2x+23π
√C.2cos2x-π6
√B.2sin2x-53π
D.2cosx-76π
解析 根据图象,可得A=2,设f(x)的最小正周期为T,
则34T=71π2--π6=34π,解得 T=π,所以 ω=2Tπ=2.
∴2m+π6≥π2, ∴m≥π6. 故 m 的最小值为π6.
(2)(多选)设函数 f(x)=cosωx+π3(ω>0),已知 f(x)在[0,2π]上有且仅有 3 个 极小值点,则 A.f(x)在(0,2π)上有且仅有 5 个零点
B.f(x)在(0,2π)上有且仅有 2 个极大值点
√C.f(x)在0,π6上单调递减 √D.ω 的取值范围是73,130
(先伸缩后平移)y=sin x―横―坐――标―变―纵为――坐原―标来―不―的―变ω1―(―ω―>―0)―倍→y=sin ωx 向左φ>0或右φ<0
―――平―移―|―ωφ|―个―单――位―长―度――→y=sin(ωx+φ) 纵坐标变为原来的AA>0倍 ――――――横―坐―标――不―变―――――→y=Asin(ωx+φ).
A.-65
B.-25
√C.25
D.65
解析 方法一 因为tan θ=-2,所以角θ的终边在第二或第四象限,

三角函数图像与性质知识点总结

三角函数图像与性质知识点总结

函数图像与性质知识点总结一、三角函数图象的性质1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0) ⎝ ⎛⎭⎪⎪⎫π2,1 (π,0)⎝ ⎛⎭⎪⎪⎫32π,-1 (2π,0)(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝ ⎛⎭⎪⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎪⎫3π2,0,(2π,1)2.三角函数的图象和性质函数 性质y =sin x y =cos x y =tan x定义域 R R{x |x ≠k π+π2,k ∈Z}图象值域[-1,1][-1,1]R一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)4.求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sin x≤1,-1≤cos x ≤1,所以1叫做y =sin x ,y =cos x 的上确界,-1叫做y =sin x ,y =cos x 的下确界.(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎪⎫π4-2x .6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φω)确定φ.二、三角函数的伸缩变化 先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−→ 得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. .。

专题2 第2讲 三角函数的图象与性质(学生版)

专题2   第2讲 三角函数的图象与性质(学生版)

第2讲 三角函数的图象与性质【要点提炼】考点一 三角函数的定义、诱导公式及基本关系1.同角关系:sin 2α+cos 2α=1,sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z .2.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.【热点突破】【典例】1 (1)已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值为( )A.5π6 B.11π6 C.5π3 D.2π3(2)(2020·山东师范大学附中模拟)若sin θ=5cos(2π-θ),则tan 2θ等于( )A .-53 B.53 C .-52 D.52【拓展训练】1 (1)(2020·全国Ⅲ)已知2tan θ-tan ⎝ ⎛⎭⎪⎫θ+π4=7,则tan θ等于( )A .-2B .-1C .1D .2(2)已知α∈(0,π),且cos α=-1517,则sin ⎝ ⎛⎭⎪⎫π2+α·tan(π+α)等于( )A .-1517 B.1517 C .-817 D.817【要点提炼】考点二 三角函数的图象与【解析】式 三角函数图象的变换【热点突破】【典例】2 (1)已知函数f(x)=Asin(ωx +φ)(A>0,ω>0,|φ|<π)是奇函数,且f(x)的最小正周期为π,将y =f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8等于( ) A .-2 B .- 2 C. 2 D .2(2)设函数g(x)=sin ωx(ω>0)向左平移π5ω个单位长度得到函数f(x),已知f(x)在[0,2π]上有且只有5个零点,则下列结论正确的是________. ①f(x)在(0,2π)上有且只有3个极大值点,2个极小值点;②f(x)在⎝ ⎛⎭⎪⎫0,π10上单调递增; ③ω的取值范围是⎣⎢⎡⎭⎪⎫125,2910. 【拓展训练】2 (1)(2020·全国Ⅰ)设函数f(x)=cos ⎝ ⎛⎭⎪⎫ωx +π6在[-π,π]上的图象大致如图,则f(x)的最小正周期为( ) A.10π9 B.7π6 C.4π3 D.3π2(2)已知函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫|φ|<π2,ω>0的图象在y 轴右侧的第一个最高点为P ⎝ ⎛⎭⎪⎫π6,1,在原点右侧与x 轴的第一个交点为Q ⎝ ⎛⎭⎪⎫5π12,0,则f⎝ ⎛⎭⎪⎫π3的值为( )A .1 B.12 C.22 D.32【要点提炼】考点三 三角函数的性质函数y =Asin(ωx +φ)(A>0,ω>0)的性质(1)奇偶性:φ=k π(k ∈Z )时,函数y =Asin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =Asin(ωx +φ)为偶函数.(2)三角函数的周期性:f(x)=Asin(ωx +φ)和f(x)=Acos(ωx +φ)的最小正周期为2πω;y =Atan(ωx +φ)的最小正周期为πω.(3)根据y =sin t 的性质研究y =sin(ωx +φ)(ω>0)的性质:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )可得减区间;由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.【热点突破】【典例】3 (1)已知函数f(x)=cos ⎝ ⎛⎭⎪⎫π6-2x ,把y =f(x)的图象向左平移π6个单位长度得到函数g(x)的图象,则下列说法正确的是( ) A .g ⎝ ⎛⎭⎪⎫π3=32B .g(x)的图象关于直线x =π2对称 C .g(x)的一个零点为⎝ ⎛⎭⎪⎫π3,0 D .g(x)的一个单调递减区间为⎣⎢⎡⎦⎥⎤-π12,5π12(2)设函数f(x)=3sin ωx +cos ωx(ω>0),其图象的一条对称轴在区间⎝ ⎛⎭⎪⎫π6,π3内,且f(x)的最小正周期大于π,则ω的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1 B .(0,2) C .(1,2) D .[1,2) 【拓展训练】3 (1)(多选)(2020·武汉模拟)已知函数f(x)=|cos x|-|sin|x||,下列说法正确的是( ) A .f(x)是偶函数B .f(x)是周期为π的函数C .f(x)在区间⎝ ⎛⎭⎪⎫π,3π2上单调递减D .f(x)的最大值为 2(2)(2020·北京海淀区模拟)已知函数f(x)=2sin ωx ,g(x)=2cos ωx ,其中ω>0,A ,B ,C 是这两个函数图象的交点,且不共线. ①当ω=1时,△ABC 的面积的最小值为________;②若存在△ABC 是等腰直角三角形,则ω的最小值为________.专题训练一、单项选择题1.已知角α的终边过点P(-3,8m),且sin α=-45,则m 的值为( )A .-12 B.12 C .-32 D.322.已知直线3x -y -1=0的倾斜角为α,则cos α-2sin αsin α+cos α的值为( )A .-1110B .-12C .-114D .-543.若f(x)=sin x +3cos x 在[-m ,m](m>0)上是增函数,则m 的最大值为( ) A.5π6 B.2π3 C.π6 D.π34.已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎪⎫2x -2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移7π12个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移7π12个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π6个单位长度,得到曲线C 25.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<π2,f ()x 1=1,f ()x 2=0,若||x 1-x 2min =12,且f ⎝ ⎛⎭⎪⎫12=12,则f(x)的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤-16+2k ,56+2k ,k ∈ZB.⎣⎢⎡⎦⎥⎤-56+2k ,16+2k ,k ∈ZC.⎣⎢⎡⎦⎥⎤-56+2k π,16+2k π,k ∈ZD.⎣⎢⎡⎦⎥⎤16+2k ,76+2k ,k ∈Z 6.已知函数f(x)=asin x -bcos x(a ,b 为常数,a ≠0,x ∈R )的图象关于x =π4对称,则函数y =f ⎝⎛⎭⎪⎫3π4-x 是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点⎝⎛⎭⎪⎫3π2,0对称C .奇函数且它的图象关于点⎝⎛⎭⎪⎫3π2,0对称D .奇函数且它的图象关于点(π,0)对称7.已知函数f(x)=12cos ωx -32sin ωx ()ω>0在[0,π]内的值域为⎣⎢⎡⎦⎥⎤-1,12,则ω的取值范围为( )A.⎣⎢⎡⎦⎥⎤23,43B.⎝ ⎛⎦⎥⎤0,43 C.⎝ ⎛⎦⎥⎤0,23 D.(]0,18.已知函数f(x)=tan(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<π2的相邻两个对称中心的距离为32,且f(1)=-3,则函数y =f(x)的图象与函数y =1x -2(-5<x<9且x ≠2)的图象所有交点的横坐标之和为( )A .16B .4C .8D .12 二、多项选择题9.(2020·新高考全国Ⅰ)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)等于( )A .sin ⎝⎛⎭⎪⎫x +π3B .sin ⎝ ⎛⎭⎪⎫π3-2xC .cos ⎝⎛⎭⎪⎫2x +π6 D .cos ⎝⎛⎭⎪⎫5π6-2x10.(2020·河北衡水中学考试)已知向量a =(2sin x ,-1),b =(sin x +3cos x,1),且函数f(x)=a ·b ,则下列说法正确的是( )A .若x 1,x 2是方程f(x)=1的两根,则x 1-x 2是π的整数倍B .当x =π6时,f(x)取得最大值C.⎣⎢⎡⎦⎥⎤-π6,π3是函数f(x)的一个单调递增区间 D .将函数f(x)的图象向左平移π3个单位长度后得到一个偶函数的图象11.(2020·佛山模拟)已知函数f(x)=sin x +sin πx ,下列结论正确的是( )A .f(x)是奇函数B .f(x)是周期函数C .f(x)在区间(0,π)上有三个零点D .f(x)的最大值为212.设函数f(x)=cos ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),已知f(x)在[0,2π]上有且仅有3个极小值点,则( )A .f(x)在(0,2π)上有且仅有5个零点B .f(x)在(0,2π)上有且仅有2个极大值点C .f(x)在⎝⎛⎭⎪⎫0,π6上单调递减D .ω的取值范围是⎝ ⎛⎦⎥⎤73,103三、填空题13.(2017·全国Ⅱ)函数f(x)=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.14.已知函数f(x)=3sin xcos x +12cos 2x ,若将其图象向右平移φ(φ>0)个单位长度后所得的图象关于原点对称,则φ的最小值为________.15. (2020·北京市八一中学调研)已知函数f(x)=1sin ωx +φ⎝ ⎛⎭⎪⎫其中ω>0,|φ|<π2的部分图象如图所示,则ω=________,φ=________.16.(2020·济南模拟)已知函数f(x)=sin(ωx +φ)⎝ ⎛⎭⎪⎫其中ω>0,|φ|<π2,f ⎝ ⎛⎭⎪⎫-π8=0,f(x)≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫3π8恒成立,且f(x)在区间⎝ ⎛⎭⎪⎫-π12,π24上单调,则下列说法正确的是________.(填序号)①存在φ,使得f(x)是偶函数;②f(0)=f ⎝ ⎛⎭⎪⎫3π4;③ω是奇数;④ω的最大值为3.。

三角函数的图象与性质(2)_韦余玲

三角函数的图象与性质(2)_韦余玲

1.3.2 三角函数的图象与性质(2)教学目标:1.了解由变换得出余弦函数图象的方法,掌握“五点法”作余弦曲线;2.结合余弦函数的图象性质得出余弦函数的性质,并应用性质解决一些简单问题;教学重点:“五点法”做余弦函数简图,余弦函数的性质及其应用. 教学难点:应用余弦函数的性质解决有关三角函数问题.教学方法:学生探究、教师引导.教学过程:一、问题呈现自学教材P 28~29内容思考下列问题:问题1 如何由正弦函数的图象经过变换得到余弦函数的图象? 问题2 正余弦函数图象有什么区别联系?二、学生活动全班分成若干组,每组6人.学生分组讨论研究,总结交流成果.一方面分组合作探究,展示动手结果,上黑板板演,同时回答同学们提出的问题.问题3 回顾正弦函数的图象的对称性得出余弦函数图象的对称轴和对称中心.问题4 作余弦函数的简图是否也可以用“五点法”?与做正弦函数图象的“五点法”有什么不同?三、建构数学1.余弦函数的图象. 由于)2sin()](2sin[)cos(cos ππ+=--=-==x x x x y ,所以余弦函数x y cos =,R x ∈与函数)2sin(π+=x y ,R x ∈是同一个函数;这样,余弦函数的图象可由正弦曲线向左平移2π个单位得到,即:2.例题. 例1 利用“五点法”画出下列函数的简图:(1)R x x y ∈=,cos 2; (2)R x x y ∈+=,1cos .例2 求出函数3cos x y =的最大值及取得最大值时自变量x 的集合. 例3 求函数)34cos(x y -=π的单调增区间. 四、要点归纳与方法小结1.“五点法”作图的一般步骤;2.余弦函数的图象与性质;3.思想方法:“以已知探求未知”、类比. sin y x =,x R ∈ π π-2π- cos y x =,x R ∈ 2π 32π 2π- 32π- 向左平移 2π个单位。

三角函数图象与性质

三角函数图象与性质

5、已知下图是函数
y A sin( x ) 的图象
2
1 –1
(1)求 、 的值;
(2)求函数图象的对称轴方程.
y
11 12
O
x
–2 2 0 6 ⑴ y 2sin(2 x ) 6 11 2 6 12
注意:当0<x<1,arcsinx,arccosx表示一个锐角, 而-1<x<0时,arcsinx表示一个锐角的负值,arccosx表示 一个钝角,两者不要混淆。 x>0时arctanx表示一个锐角。 x<0时arctanx表示一个锐角负值。
注意: 在给出三角函数值求角时,需注意反三角表 示的角的范围 对于不满足反三角范围的角,我们利用诱导公 式,对角 k 的整数倍,(整数倍需注意) 练习册:P43 P44 3 5
内容提要
函数图像变换
向上(b>0)或向下(b<0) 移︱b︱单位 向左(φ>0)或向右(φ<0)移︱ φ︱单位 y=f(x)+b图象
y=f(x+φ)图象
y=f(x)图象
点的纵坐标变为原来的A倍 y=Af(x)图象 横坐标不变 点的横坐标变为原来的1/ω倍 y=f(ωx)图象 纵坐标不变
3、求y=Asin(ωx+φ)+K 的解析式的方法
⑷函数的图象可以由函数 y 2 sin 2 x, x R的图象经过怎 样的变换得到。
解:y sin 2 x 2 sin x cos x 3 cos 2 x 1 sin 2 x 2 cos 2 x
1 sin 2 x cos 2 x 1 2 2 sin( 2 x ) 4 ⑶ 当2 x 2k , 即x k (k Z )时, y最大值 2 2 4 2 8 ⑷ y 2 sin 2 x 图象向左平移 8 个单位 y 2 sin( 2 x ) 4 图象向上平移2个单位 y 2 2 sin( 2 x ) 4

第2讲 三角函数的图象及性质

第2讲 三角函数的图象及性质

结合正弦函数、余弦函数的图象,同时注意考虑所有可能情况,避免漏解.
(3)若函数g(x)=f(x)+1在区间(a,b)上恰有10个零点,求b-a的最大值.
核心题型突破 栏目索引
解析
(1)由图象可得A=2,
T 4
=
3
-
12
=
2

,则ω=2,所以f(x)=2sin
2x
3
.
(2)令- +2kπ≤2x+ ≤ +2kπ,k∈Z,得-5 +kπ≤x≤ +k高π考,k导∈航Z,
即g(x)在
4
,
3
4
上的值域为
3 2
,
3
.
核心题型突破 栏目索引 高考导航
核心题型突破 栏目索引
题型二 由三角函数的局部图象求解析式并研究其性质
例2
(2018江苏扬州中学阶段测试)已知函数f(x)=Asin
ω高x考导3航(A>0,ω>0)的
部分图象如图所示.
(1)求A和ω的值;
(2)求函数y=f(x)在[0,π]的单调增区间;
=cos 2x-
3
sin
2x+2=2cos
2x
3
+2,当2x+
3
=2kπ+π(k∈Z),即x=kπ+
3
(k∈Z)
时,f(x)取得最小值0.
此时,自变量x的取值集合为
x
|
x
k
π 3
,
k
Z.
(2)因为f(x)=2cos
2x
3
+2,
令π+2kπ≤2x+ ≤2π+2kπ(k∈Z),

三角函数的图象与性质(解析版)

三角函数的图象与性质(解析版)

三角函数的图象与性质(解析版)三角函数的图象与性质(解析版)三角函数是数学中重要的函数之一,它们在解析几何、物理、工程等领域中具有广泛的应用。

本文将对三角函数的图象与性质进行解析,便于读者更好地理解与掌握三角函数的特点。

一、正弦函数的图象与性质正弦函数是最基本的三角函数之一,它的图象是一条连续的波浪线。

我们可以通过数学方法推导出正弦函数的周期性、奇偶性和对称性等性质。

1. 图象特点:正弦函数的图象是一条在坐标平面上连续波动的曲线。

它的振幅表示峰值与谷值之间的差距,周期则代表两个峰值或谷值之间的距离。

2. 周期性:正弦函数的一个周期内,曲线的形状相同,并且可以无限延伸。

周期为2π,即当x增加2π时,曲线的形状重复出现。

3. 奇偶性:正弦函数是奇函数,即f(x) = -f(-x)。

这意味着当自变量x取负值时,函数值会发生变号。

4. 对称性:正弦函数关于原点对称,即f(x) = -f(x + π)。

这意味着以原点为对称中心,曲线的左右两侧完全相同。

二、余弦函数的图象与性质余弦函数也是常见的三角函数之一,它的图象是一条连续的波浪线。

与正弦函数相似,余弦函数也有周期性、奇偶性和对称性等特点。

1. 图象特点:余弦函数的图象是一条波动的曲线,与正弦函数相比,它的最高点与最低点位置不同。

余弦函数的振幅表示波峰与波谷之间的差距,周期代表两个波峰或波谷之间的距离。

2. 周期性:余弦函数的周期也是2π,当自变量x增加2π时,曲线的形状重复出现。

3. 奇偶性:余弦函数是偶函数,即f(x) = f(-x)。

这意味着当自变量x取负值时,函数值保持不变。

4. 对称性:余弦函数关于y轴对称,即f(x) = f(π - x)。

这意味着以y轴为对称中心,曲线的左右两侧完全相同。

三、正切函数的图象与性质正切函数是三角函数中的另一个重要函数,它的图象是一条连续的波动曲线。

我们也可以通过数学方法推导出正切函数的周期性、奇偶性和对称性等性质。

三角函数的图象和性质

三角函数的图象和性质

在区间 [0,
2
]
上是单调函数,
必有
2

,
即 0<≤2.
∴0<
4k+2 3
≤2(kZ).
解得 k=0 或 1.
∴=2

2 3
.
综上所述,
=
2
,
=2 或
2 3
.
6.如果函数 的值.
y=sin2x+acos2x
的图象关于直线
x=-
8
对称,
求a
解: y=sin2x+acos2x= a2+1 sin(2x+), 其中, tan=a.
3.周期性: ①y=sinx、y=cosx 的最小正周期都是
Asin(x+) 和 f(x)=Acos(x+)的最小正周期都是
2;
T=
2|②| .f(x)=
4.奇偶性与对称性: 正弦函数y=sinx(xR)是奇函数, 对称中心
是 (x(kR),是0)偶(k函Z数),,对对称称轴中是心直是线(kx=+k2,+02)((kkZZ)),;对余称弦轴函是数直y=线coxs=x k (kZ) (正(余)弦型函数的对称轴为过最高点或最低点且垂
性, 如果是周期函数, 求出它的一个周期.
解:
(1)由∴∵∴2kfsfs((iixnx+n))xx=的4--lcoc<定oogxss<21xx义(2s=>ik域n0,x2+为-s即ic5n4o{(xsx,x2|-k)s2≥ik4nlZ)(o≤x+g-21424<2,)x>=<0-2得k12:.+
5
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图象和性质2
类型(三)换元转化为二次函数
例1.求函数f(x)=sin x+cos x+sin x·cos x,x∈R的最值及取到最值时x 的值.
变式题求函数f(x)=sin x—cos x+sin x·cos x,x∈R的最值及取到最值时x的值.
探究点2 图象与解析式、平移问题
例1.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2
)的部分图象如图所示.
(1)求函数f (x )的解析式;
(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程.
变式题
在已知函数f (x )=A sin(ωx +φ),x ∈R ⎝
⎛⎭⎪⎫其中A >0,ω>0,0<φ<π2的图象与x 轴的交点中,相邻两个交点之间的距离为π2
,且图象上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2.(I)求f (x )的解析式;(II)当x ∈⎣⎢⎡⎦
⎥⎤π12,π2时,求f (x )的值域.
自我测评
1.已知函数f (x )=A sin(ωx +φ) (A >0且ω>0,0<φ<
π2
)的部分图象,如图所示.
(1)求函数f (x )的解析式;
(2)若方程f (x )=a 在⎝
⎛⎭⎪⎫0,5π3上有两个不同的实根,试求a 的取值范围.
5.已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.
(1)求ω的值;
(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12
,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间[0,π16
]上的最小值.
3.已知函数f(x)=1
2
sin 2x sin φ+cos2x cos φ-
1
2
sin(
π
2
+φ)(0<φ<π),其
图象过点(π
6

1
2
).
(1)求φ的值;
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的1
2
,纵坐标不变,得到函
数y=g(x)的图象,求函数g(x)在[0,π
4
]上的最大值和最小值.。

相关文档
最新文档