雷电冲击电压发生器
高电压5-3

1. 分压器与数字记录仪(示波器)
由于可同时测定波形和峰值,所以在测量中被广泛使用。由 于数字记录仪的输入电压一般小于数百伏,所以常和分压器一起 构成冲击电压测量系统来进行测量,如图5-30所示。
图5-30 冲击电压测量系统
冲击电压分压器的分类
对雷电冲击电压的测量,都可采用; 对操作冲击电压的测量,主要采用电容分压式
• 5-9最常用的测量冲击电压的方法有哪几种 • 答: • 目前最常用的测量冲击电压的方法有:①分 压器-示波器;②测量球隙;③分压器-峰值 电压表。 • 球隙和峰值电压表只能测量电压峰值,示波 器则能记录波序,即不仅指示峰值而且能显 示电压随时间的变化过程。
小 结
交流耐压试验时,试验变压器的容量与被试品的 电容量成正比; 当需要较高试验电压时,可采用几台试验变压器 串接的形式,随着串接台数的增加,装置的利用 率减低;
冲击电压发生器的效率:
Um C0 U 0 C0 C f
主电容C0上的 最大 充电电压
2.基本回路 标准雷电冲击全波采用的是非周期性双指数波。
t t
u(t ) A(e
1
e
2
)
1
——波尾时间常数
2 ——波前时间常数
图5-23 (a) 双指数函数冲击电压波
波前, u(t ) A(1 e
x
y
F O T O’ f
Tt
t
标准操作冲击电压: 250/2500[s]
冲击高电压试验是用来检验各种高压电气设备
在雷电过电压和操作过电压作用下的绝缘性能或保
护性能。
冲击电压 发生器本体
整流充电
被试品
控制系统
冲击电压 测量系统
GDCY-2400kV-360kJ冲击电压发生器技术方案2019.01.22

GDCY-2400kV/360kJ冲击电压发生器技术方案一、使用范围:GDCY系列冲击测试系统能够产生冲击电压用于模拟雷击和开关浪涌。
级能量范围在2.5-1620千焦。
最大放电电压为100-7200千伏..产品不仅满足IEC,ANSI/IEEE等国际标准,还满足其他国家的国家标准。
基本系统可以用不同的方式容易地进行升级,以满足各种特殊的试验。
大量的附加电路和配件都可以用来优化冲击测试系统以便其测试不同的被试品。
发生器以其独特性的,模块化的以及专有的完美结构适用于运输以及在线安装。
其内部的回路电感被做得非常的小。
二、系统配置:三、适用标准:IEC60060-1/2/3 高压测试技术IEC60076-1/2/3/4/6 电力变压器IEC61083-1/2 在高压脉冲试验中测量用的仪器和软件IEC60243-1 绝缘材料电气强度IEC60099-1-4 避雷器IEC61010-1-2-3 测量,控制和实验室用电器设备的安全要求GB7449-87 电力变压器和电抗器的雷电冲击和操作冲击试验导则ZBF24001-90 冲击电压测量实施细则GB311.1-1997 高压输变电设备的绝缘配合GB/T16927.2-1997 高压试验技术(测量系统)GB/T16896.1-1997 高电压冲击试验用数字记录仪GB/T3048.13-92 电线电缆冲击电压试验方法GB4704-92 脉冲电容器及直流电容器四、冲击电压测试系统工作条件:海拔高度: ≤1000 m高压部件的极限温度: - 5℃~+45℃非冷凝条件下周围的相对湿度: ≤90% (at 20℃)使用环境: 室内抗震强度: ≤7.5 级需有可靠的接地点,接地电阻: ≤ 0.5Ω五、冲击电压测试系统2400kV/360kJ技术参数:结构型式: H额定输入电压: 0.4kV额定输入电流: 125A额定输入频率: 50/60Hz额定冲击电压: ±2400 kV (1.2/50μS)额定级充电电压: ±200kV额定充电时间(0-100%): <90s额定冲击容量: 125nF (每个电容3μF/100kV)级数: 12级容量: 1.5μF额定能量: 360kJ级能量: 30 kJ电容器寿命: 100000次全电压充放电运行时间: 在100%额定电压下, 设备可持续运行. 波形参数:标准雷电波(LI): 1.2±30%/50±20%μS 满足IEC60060-2 标准转换波(SI): 250±20%μs /2500±60%μs雷电截波(LIC): 2-6us陡波:>2500kV/us最低输出电压: <10 %Un充电电压的不稳定性: <±1.0 %同步范围: >20%同步放电失控率: <2%点火范围: 10%~100%Un效率: LI: >85% (负载)LI: >90% (空载)SI: >70% (负载)SI: >75%(空载)冲击电压系统图纸:六、主要产品技术参数:1. 冲击电压发生器结构模式: H额定冲击电压: ±2400 kV额定级充电电压: 200kV额定冲击容量: 125nF (每个电容3μF/100kV)级数: 12级容量: 1.5μF额定能量: 360kJ级容量: 30 kJ波形: LI / SI满足IEC60060-2同步范围: >20%同步放电失控率: <2%点火范围: 10%~100%Un电容器寿命: 100000次全电压充放电运行时间: 在100%额定电压下, 设备可持续运行..结构特征:1.1 GDCY-2400kV/360kJ冲击电压发生器用H型结构电容器的每级都是由四个玻璃纤维所支撑,构成一个稳定的冲击电压发生器组件结构。
最新雷电冲击电压波形

雷电冲击电压波形(1) 1.2/50us冲击电压:雷击时户内走在线产生的感应过电压模拟波形,用于设备过电压耐受水平测试,主要测试范围:通信设备的电源端和建筑物内走线的信号线测试。
(2) 1.2/50us(8/20us)混合波:浪涌发生器输出的一种具有特定开路/短路特性的波形。
发生器输出开路时,输出波形是1.2/50us的开路电压波;发生器输出短路时,输出波形是8/20us 的短路电流波。
具有这种特性的浪涌发生器主要用于设备端过电压耐受水平测试,主要测试范围:通信设备的电源端和建筑物内走线的信号线测试。
(3) 10/700us冲击电压:雷击时户外走在线产生的感应雷过电压的模拟波形。
用于设备过电压耐受水平测试时用的波形,主要测试范围:建筑物外走线的信号线测试。
(4) 8/20us冲击电流:雷击时线缆上产生的感应过电流模拟波形,设备的雷击过电流耐受水平测试用标准波形,主要用于通信设备的电源口、信号口、天线口。
冲击波形表示(expression of impulse waveform):冲击波用两数值的组合T1/T2来表示,T1表示波头时间(从10%峰值上升到90%峰值的时间),T2表示半峰值时间(从波头始点到波尾降至50%峰值的时间),时间单位均为us,记作T1/T2,符号“/”无数学意义。
其中如:1.2/50us冲击电压,其波头时间为1.2us,半峰值时间为50us;8/20us冲击电流,其波头时间为8us,半峰值时间为20us;10/350us最大冲击电流,其波头时间为10us,半峰值时间为350us。
冲击电流实验的模拟脉冲波形需要尽量接近自然环境中雷击时通信设备电缆上产生的感应雷过电流的波形。
因此冲击电流测试一般采用国际上防雷学科给出的一些标准波形。
根据国家、地区、研究机构的不同,目前各国在冲击电流测试中对脉冲波形的要求有一定差异。
在IEC标准、国标中规定的雷击测试波形主要有:8/20us、10/350us(电流波)、10/700us 以及 1.2/50us(电压波)等。
(整理)冲击电压发生器说明书.

HYJD—1200KV型冲击电压发生器使用说明书用户手册上海冠春电气有限公司目录一、概述:二、使用条件:三、主要技术参数:四、设备组成:五、使用方法:六、注意事项:七、日常维护:八、成套设备的主要部件:九、随机文件及附件:HYJD—1200KV系列冲击电压发生器说明书一、概述:用途及性能:系列冲击电压发生器主要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。
1200KV、2400KV和4800KV系列冲击电压发生器可产生标准雷电全波、操作波和雷电截波三种冲击电压波形,1200KV系列冲击电压发生器可产生标准雷电波、操作波、雷电截波、振荡雷电波、振荡操作波、线路绝缘子陡波、合成绝缘子陡波和变压器感应操作波共八种冲击电压波形,技术指标符合国家标准和IEC标准的规定,已通过鉴定,主要技术性能处于国内领先地位,达到国际同类产品的先进水平。
特点:1、成套装置配套完整,电压等级齐全。
2、冲击电压发生器回路电感小,并采取带阻滤波措施,在大电容负载下仍能产生标准冲击波,负载能力大。
3、电压利用系数高,雷电波和操作波分别不低于85%和80%。
4、调波方便,操作简单,同步性能好,动作可靠。
5、采用恒流充电自动控制技术,自动化程度高,抗干扰能力强。
6、成功开发冲击波形数字分析系统和冲击电压试验数据微机在线处理系统,大大提高了冲击电压试验技术水平和试验效率。
冲击电压发生器是产生冲击电压波的装置,用于检验电力设备耐受大气过电压和操作过电压的绝缘性能,冲击电压发生器能产生标准雷电冲击电压波形、雷电冲击电压截波,标准生操作冲击电压波形等及用户指定非标冲击电压波包括陡波。
本系列冲击电压发生器可对绝缘子串、长空气间隙、套管、互感器、变压器等试品进行冲击电压试验和其它科学研究。
HYJD系列冲击电压发生器主回路电路如下:HYJD-Ⅰ型图中:T:充电变压器D1 D2:高压硅整流器K1 K2:自动接地开关R01 R02 R03:充电保护电阻R1、R2:直流电阻分压器C P:耦合电容器R0:触发电阻C:主电容器R:充电电阻R´:充电箝位电阻R t R,t:波尾电阻R f R,f:波头电阻C´:充电兼操作波尾电阻R´f:操作波外波头电阻C1´C1´´:截波触发电容分压器C´s0:点火电容C0:串联放电球隙R0´:触发球箝位电阻G´0 :隔离球R0:分压器阻尼电阻C0 C0´:弱阻尼电容分压器C0´´:电容分压器低压臂C3:陡化电容r1:截波均压电容器的阻尼电阻C´1截波均压电容器R2 R´2:截波触发分压电阻G0´´:截波球隙G:试品Z0:截波延时器HYJD-Ⅱ型1B:充电变压器D:高压整流硅堆R0:充电保护电阻R1.R2:直流电阻分压器C:主电容器R:充电电阻Rf:波头电阻Rt:波尾电阻r1:阻尼电阻C1.C2:电容分压器二、使用条件:2.1安装、使用处海拔高度不超过1000米2.2周围空气温度:-20℃~+40℃,空气相对湿度不大于85%(20℃) 2.3无导电尘埃存在2.4无火灾及爆炸危险品2.5不含有腐蚀金属和绝缘的气体和蒸汽2.6无剧烈振动、碰撞和强烈颠簸2.7地平水平面不超过3度,移动式装置地面不平度±1mm/m22.8电源电压的波形为正弦波,波形畸变率小于3%,频率50Hz,电源侧应不遭受来自外部的过电压。
雷电冲击试验

截波电压的产生
产生截波的方法从原理上讲是很简单的,在试 验回路中与被试品并联一个放电间隙(如图所示)。 在冲击电压下使该间隙击穿放电就可形成截波。 通常间隙的放电分散性是相当大的,要产生满 足国家标准要求的截波波形,且使得截断分散 性在±0.1µs是比较困难的。冲击电压试验中的 截波的产生根据具体试验的条件多用以下三种 方法取得: (1)将全波试验波形的波前拉长,然后用球间隙 来截断,截断的电压幅值由球隙来控制。此时
当变压器内部安装了用来限制内部部件上的冲击过电压的非线性元件(如:避雷 器)时。设备在运行中带的任何内部非线性元件要随设备一 起进行试验。外部非 线性元件和其他外部电压控制元件(如:电容器)在试验期间应断开。
应保持校准时与全电压试验时的冲击线路及测量接线不变。
中性点雷电冲击试验接线: 所有其他端子接地,雷电冲击直接施加在中性点端子上。
GB/T 1094.3-2017 国家标准规定对于Um≤72.5kV变压器的线端雷电冲击全波 试验为型式试验,大于72.5kV的为例行试验,而线端雷电截波冲击试验和中性 点端子雷电全波冲击试验均为型式试验。雷电冲击试验的目的是用来检验变压 器每一线端对地,对其他绕组以及被试绕组本身的冲击电压耐受强度。 1 雷电冲击电压波形 在运行的电力系统中,出现的大气过电压会有各种各样的波形,但不能用多种 波形进行试验。根据系统的运行情况,世界各国都把全波和截波作为模拟雷电 冲击的标准波形。当雷电波进入变电站而没有外绝缘放电时,电压即为全波, 而当变电站空气绝缘间隙或设备的外绝缘等发生放电时,即为截波。
设备最高电压范围
绝缘类型
全绝缘
全绝缘
分级绝缘 全绝缘和分级绝缘
线端雷电全波冲击试验 (LI)
线端雷电截波冲击试验 (LIC)
电力变压器和电抗器的雷电冲击

电力变压器和电抗器的雷电冲击和操作冲击试验导则UDC621.314.222.6∶621.316.933∶621.317GB7449—87本导则等效采用IEC722(1982)《电力变压器和电抗器的雷电冲击试验与操作冲击试验的导则》。
本导则引用了GB311.2~311.6—83《高电压试验技术》和GB1094.3—85《电力变压器第三部分绝缘水平和绝缘试验》中的内容。
1范围本导则的目的是对电力变压器的雷电冲击和操作冲击试验的现行方法提供一个准则并作一些说明,以作为GB1094.3—85的补充。
本导则的内容通常也适用于电抗器,至于电磁式电压互感器也可以参照执行。
本导则包括试验电路、接线、波形及试验时接地、故障检测方法、试验程序、测量技术以及试验结果分析等方面。
本导则所述的一切试验技术,尽可能采用GB311.2~311.6—83中所规定的内容。
2总则本导则是以通用的冲击电压发生器对变压器和电抗器进行雷电冲击和操作冲击试验为基础而编制的。
至于另用电容器组对变压器的低压或中压绕组放电,产生操作冲击波的方法也是适用的。
但对于在电路中另加串联电感调波,对高压绕组传递一种弱衰减振荡波的方法,本导则没有涉及。
本导则不规定其它产生或模拟操作冲击波的方法,如从低压或中压绕组通入直流励磁电流然后截断,用工频电压的一个周波或某一段波形等方法。
选择变压器和电抗器的雷电冲击和操作冲击试验时的试验电路及端子接线有不同的考虑。
雷电冲击试验时,变压器和电抗器所有端子和绕组均可分别地按规定的耐受电压水平值进行试验;但在操作冲击试验下,由于各绕组之间主要是靠磁耦合传递电压,一个绕组加压时,则传递至其它非试绕组的端电压是一定的,因此规定的耐受电压水平只能在一个绕组上达到。
电抗器的雷电冲击试验与变压器相似,在本导则中是放在一起叙述的。
但在操作冲击试验中,电抗器和变压器有不同的考虑,且出现的问题也不完全一样,故分别加以叙述。
3标准波形按GB1094.3—85的规定,试验时采用的标准波形为:a.雷电冲击全波:1.2±30%/50±20%μs;b.雷电冲击截波:截断时间2~5μs,过零系数接近于0.3(0.25~0.35);c.操作冲击波:视在波前时间(T1)为20~250μs,超过90%峰值的时间(T d)至少为200μs,从视在原点到第一个过零点的时间(T Z)至少为500μs。
冲击高压发生器

式中:b=1/[C1C2(RdRt+RdRf+RfRt)] a=[C1(Rd+Rt)+C2(Rt+Rf)]· b d=C1Rt· b
u2(t)=U1ε[exp(s1t)-exp(s2t)] s1、s2为方程s2+as+b=0的两个根 从根和系数的关系可知 s1· 2=b ; s s1 + s2= -a
发生器电压效率
发生器电压效率的近似计算式为
ŋ=[C1/(C1+C2)][Rt/(Rd+Rt)]
这意味着输出电压u2的 峰值U2m低于电容C1上 的初始充电压U1。它是 由于C1与C2之间的分压 和Rt与Rd之间的分压造 成的
放电时基本回路的等值回路
考虑回路电感后的近似计算
在计算波前时间时,仍采用简化条件, 认为Rt→∞,把回路电感L考虑进去, 则放电回路将变为R-L-C串联回路 如图所示。 其中R应为阻尼电阻Rd与波前电阻Rf 之和。为获得非振荡冲击波,应使
单级冲击电压发生器回路
回路1
正极性冲击电压
回路2
负极性冲击电压
由于受到硅堆和电容 器额定电压的限制,单级 冲击电压发生器的最高电 压不超过200~300kV。
多级冲击电压发生器回路
T:供电高压变压器; D:整流用高压硅堆; r:保护电阻,一般为几 百千欧; R:充电电阻,一般为几 十千欧; rd:每级的阻尼电阻; C:每级的主电容,一般 为零点几个微法; Cs:每级相应点的对地 杂散电容,一般仅为 几个皮法; g1:点火球隙; g2~g4:中间球隙; g0:隔离球隙;
400kv雷电冲击电压发生器 (自动保存的)

电气与电子工程学院《高电压》课程设计(400kv冲击电压发生器的设计)姓名:学号:U*********专业班号:电气1303班评阅人:****:**日期:2016.08.15目录一、设计背景和意义 (3)二、冲击电压发生器基本原理 (4)1、雷电冲击电压波形 (4)2、多级充电电压发生器 (4)三、设计目标 (6)四、设计步骤 (7)1)确定冲击电压发生器级数n (7)2)负荷电容C2选择 (7)3)冲击电容C1选择 (8)4)冲击电压发生器的效率 (8)5)波头电阻R f、波尾电阻R t选择 (8)6)充电电阻R、保护电阻r选择 (10)7)充电时间 (10)8)变压器选择 (11)9)硅堆选择 (11)10)球隙直径选择 (11)五、设计总结与感想 (12)六、附录 (13)七、参考文献 (17)一、设计背景和意义电力系统中的高压电气设备在运行过程中可能会承受短时间的雷电冲击电压和操作过电压的作用。
冲击电压实验就是用来检测各种高压电气设备在雷电压和操作过电压作用下的绝缘性能或保护性能。
雷电冲击电压实验采用全波冲击电压波形或者截波冲击电压波形,其持续时间较短,约数微秒至数十微秒。
其中雷电冲击电压波形由冲击电压发生器产生,而操作冲击电压波可以利用冲击电压发生器产生,也可以利用变压器产生。
因此,很多高压实验室的冲击电压发生器既可以用来产生雷电冲击电压波,也可以用来产生操作冲击电压波。
在此重点讨论雷电冲击电压发生器的设计。
随着超高压输电工程的发展,冲击电压发生器已成为各高压实验室的重要实验设备之一。
其电压和容量不断提高。
可以相信,在超高压输电的工程的发展过程中,必将对冲击电压实验技术提出更高的要求。
二、冲击电压发生器基本原理1、雷电冲击电压波形多级冲击电压发生器的作用原理可以简单地概括为多级电容器并联充电,然后自动串联放电,形成幅值很高的冲击电压波。
雷电冲击电压波形分为全波和截波两种。
全波是具有一定极性的非周期性脉冲电压波,这种非周期性的冲击电压波可以用双指数函数表示:u(t)=A(e−tT1−e−tT2)式中:T1——波尾时间常数,T2——波头时间常数,通常T1≫T2。
冲击电压发生器

1000kV冲击电压发生器及测量系统的设计摘要:本文介绍了1000kV冲击电压发生器及测量系统的基本工作原理,分析了设计过程中的主要问题,结合冲击电压发生器的主要技术指标,对设计过程进行了详细讨论,给出了电路原理图及实物结构图,并对主要元器件进行了选择,最后利用仿真软件ATP对输出波形进行了仿真,以验证选择参数的正确性,同时对某些电路参数对冲击电压波形的影响作出了分析。
关键词:冲击电压发生器;电路设计;结构图;ATP仿真电力系统的高压电气设备在运行时不仅要经常承受正常的工作电压作用,而且还有可能遭受短时雷电过电压和内部过电压的侵袭,所以高压电气设备在安装前要进行必要的过电压的绝缘耐受试验,比如模拟雷电过电压和操作过电压作用。
冲击高压实验是耐压实验的一种,进行冲击高压实验是为了研究电气设备在运行中遭受雷电过电压和操作过电压作用时的绝缘性能[1]。
冲击电压发生器是高压实验室的基本设备之一,它是一种产生脉冲波的高电压发生装置。
由于绝缘耐受冲击电压的能力与施加电压的波形有关,而实际冲击电压波形具有分散性,因此必须对于冲击电压波形参数做统一规定,以保证多次试验的重复性和不同试验条件下的结果的可比较性。
我国采用国际电工委员会(IEC)标准规定标准冲击电压波形。
即规定冲击电压波形为双指数型,波头时间为1.2uS,波尾时间为50us,冲击电压峰值一般为几十千伏到几兆伏。
1设计要求1.1设计指标设计一台1000kV的冲击电压发生器及测量系统,可以对2000pF的试品电容做冲击试验。
1.2基本要求冲击电压发生器应该满足以下几个要求:1) 能产生1.2/50μs 的标准雷电波。
2) 能给2000pF 以内的试品作冲击电压试验。
3) 要求画出结构简图。
4) 要求设计出各种元器件的参数(如电容、电阻器参数和型号等,球隙间 距等)。
5) 给出仿真波形并进行分析。
2冲击电压发生器的设计原理如图1所示,为标准冲击电压波形。
在经过时间T1时,电压从零上升到最大值,然后经过时间T2-T1,电压下降到最大值的一半。
35KV电力变压器雷电冲击试验技术方案

35KV电力变压器雷电冲击试验技术方案一、适用范围本发生器用于35kV及以下电压等级的电力变压器、互感器、电抗器、避雷器、开关、及其它试品进行标准雷电冲击电压全波/截波试验。
二、使用条件海拔高度:≤1000m环境温度:-25℃~+45℃相对湿度:≤90%(20℃时)最大日温差:≤25℃抗地震能力:≤8级烈度安装地点:户内电源电压的波形为实际正弦波波形畸变率<3%设有一可靠接地点,接地电阻<0.5Ω三、遵循标准GB7449 电力变压器和电抗器的雷电冲击和操作冲击的试验导则GB1094.3-03 电力变压器第三部分绝缘水平和绝缘试验GB/T.311.1-1997 高压输变电设备的绝缘与配合GB/T 16927.1-1997 高电压试验技术第一部分一般试验要求GB/T 16927.2-1997 高电压试验技术第二部分测量系统GB/T 16896.1 高电压冲击试验用数字记录仪DL/T 848.5 高压试验装置通用技术条件第5部分冲击电压发生器四、额定参数值1、额定标称电压:±400kV2、额定级电压:±100kV3、额定能量:20kJ4、冲击总电容:0.25μF5、总级数:4级6、额定级电容量:1μF7、冲击电压波形参数:负荷电容为300~5000PF以下时能产生:标准雷电冲击电压全波 1.2±30%μs /50±20%μs,幅值±3%,峰值处振荡不大于幅值的5%;雷电截波截断时间2-6μs;这2种冲击电压波形参数及其偏差均符合有关国家GB311及GB16927标准的要求。
8、同步范围:级电压在10%~100%额定电压范围内,正负极性同步范围不小于20%;9、点火范围10%~100%10、同步放电失控率:< 2%11、输出电压:≤10un12、充电电压不稳定度:≤±1.0%13、使用持续时间:>70%un额定电压以上,每90秒充放电一次可连续运行;在<70%un额定电压下,每45秒充放电一次可连续运行。
RDCJ-300KV雷电冲击

RDCJ-300KV雷电冲击电压发生器技术条件一、使用条件海拔高度:<1000米相对湿度:<90%环境温度:-10℃~+40℃无灰尘、无毒、无腐蚀气体。
当湿度>90%凝露时,表面揩干,自然风干后,可继续使用。
相对湿度大于90%时,输出不降低。
二、额定参数值1、额定标称电压:±300千伏2、额定级电压:±150千伏3、额定能量:11.25千焦耳4、冲击总电容:0.25微法(脉冲电容器1微法/2×75千伏,共3台)5、负载能力:0~5000微微法。
6、输出冲击电压波形(1)1.2/50微秒雷电冲击电压全波,电压(空载)不小于95%;(2)截断时间2~5微秒雷电冲击电压截波,电压效率大于85%;冲击电压波形参数及其偏差均符合有关国家标准的要求。
7、使用持续时间:在80%额定电压以上,每90秒充放电一次可连续运行;在80%额定电压以下,每45秒充放电一次可连续运行。
三、主要部件1.充电部分(1)、采用恒流充电装置(2)、采用绝缘筒油浸式充电变压器,原边电压220伏,付边电压85千伏,额定容量5千伏安,变压器密封良好,无渗漏油;(3)、采用2DL-200千伏/100毫安的高压整流硅堆;(4)、高压整流硅堆保护电阻采用漆包电阻丝有感密绕在绝缘管上;(5)、采用不对称倍压充电方式;(6)、恒流充电装置在20%~100%额定充电电压范围内,实际充电电压与整定电压偏差不大于±1%,充电电压的不稳定性不大于±1%,充电电压的可调精度为1%.(7)、直流电阻分压器采用150千伏,300兆欧油浸式金属膜电阻,低压臂电阻装在分压器底法兰内,低压臂上的电压信号用屏蔽电缆引入控制台内。
(8)、自动接地开关采用电磁铁分合接地机构,试验停止时可自动将主电容器经保护电阻接地。
(9)、恒流充电的电感、电容装在控制台内,充电变压器、高压整流硅堆、保护电阻、自动接地开关和绝缘支柱等安装在一个移动式底盘上。
雷电冲击电压发生器原理 波头波尾电阻

雷电冲击电压发生器原理1. 概述雷电是自然界中常见的电现象,其强大的能量往往会对人类的生产生活造成严重的影响。
为了防止雷电对设备和建筑物造成损害,人们发明了各种防雷设备,其中就包括雷电冲击电压发生器。
本文将重点介绍雷电冲击电压发生器的原理以及其在防雷领域的应用。
2. 雷电冲击电压发生器的作用我们需要了解雷电冲击电压发生器在防雷领域的作用。
雷电冲击电压发生器是一种专门用于防雷的设备,其主要作用是在雷电冲击发生时把电压分配到耐雷设备上,从而避免雷击对设备造成损害。
3. 雷电冲击电压发生器的原理雷电冲击电压发生器的工作原理主要包括两个方面:波头电阻和波尾电阻。
4. 波头电阻波头电阻是指在雷电冲击发生时,电压波前的电阻,其作用是降低电压的波峰,从而减小雷电冲击对设备的影响。
波头电阻需要具备高强度、高频率响应和快速放电的特点,用于消耗雷电冲击的能量,保护被保护设备的安全。
5. 波尾电阻波尾电阻是指在雷电冲击后的电压波尾的电阻,其作用是将残余的电压波尾导向接地,以确保雷电冲击后设备的安全。
波尾电阻需要具备高功耗、高耐压、高放电容量和长寿命等特点,用于将电压波尾慢速放电,保障设备不受雷电冲击的损坏。
6. 雷电冲击电压发生器的应用雷电冲击电压发生器在工业、建筑、交通等领域都有广泛的应用。
例如在电力系统中,雷电冲击电压发生器可以保护变压器、线路等设备免受雷电冲击的影响;在建筑领域中,它可以抵御雷电对建筑物的损害;在交通领域中,它可以保护信号设备、通信设备等免受雷击的影响。
7. 结语雷电冲击电压发生器作为一种重要的防雷设备,其原理及应用对防止雷击对人类生产生活造成的损失具有重要意义。
通过了解其原理和应用,我们可以更好地了解防雷设备的工作原理,提高防雷设备的使用效果。
希望本文对读者有所帮助,多谢关注。
8. 雷电冲击电压发生器的发展趋势随着科技的不断发展,雷电冲击电压发生器的技术也在不断进步。
未来,人们对雷电冲击电压发生器提出了更高的要求,希望其在防雷领域能够有更加广泛和深远的应用。
雷电冲击电压发生器的特点有哪些 发生器如何操作

雷电冲击电压发生器的特点有哪些发生器如何操作雷电冲击电压发生器紧要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。
多种波形冲击电压发生器可雷电冲击电压发生器紧要用于电力设备等试品进行雷电冲击电压全波、雷电冲击电压截波和操作冲击电压波的冲击电压试验,检验绝缘性能。
多种波形冲击电压发生器可产生标准雷电波、操作波、雷电截波、振荡雷电波、振荡操作波、线路绝缘子陡波、合成绝缘子陡波和变压器感应操作波共八种冲击电压波形,技术指标符合国家标准和IEC标准的规定。
产品特点:回路电感小,并实行带阻滤波措施,在大电容量负载下能产生标准冲击波,负载本领大;电压利用系数高,雷电波和操作波分别不低于85%和80%;调波便利,操作简单,同步性能好,动作牢靠;接受恒流充电自动掌控技术,自动化程度高,抗干扰本领强;成套装置:冲击电压发生器本体、充电装置、弱阻尼电容分压器、多球截波或单球截波装置、陡波装置、陡波分压器、掌控台和测量装置。
能产生:标准雷电波、操作波、雷电截波、振荡雷电波、振荡操作波、线路绝缘子陡波、合成绝缘子陡波、变压器感应操作波等八种冲击电压波形雷电冲击电压发生器额定参数值标称电压:±900kV级电压:±150kV额定能量:21.9kJ每级主电容:0.325μF150kV(单台脉冲电容器0.65μF/75kV)冲击总电容:0.05417μF总级数:6级负荷电容:300—2000PF以下能产生以下几种波形1、标准雷电冲击电压全波,±1.2/50μs电压利用系数>90%(空载);波头时间1.2±30%微秒,波尾时间50±20%微秒。
2、1000~1500V/nS合成绝缘子陡波冲击电压,最大幅值600kV。
3、盘形悬式绝缘子2.8p.u.4、针式绝缘子2.0p.u.5、柱式绝缘子2.3p.u.这几种冲击电压波形参数及其偏差均符合有关国家GB311及GB16927标准的要求。
变压器雷电冲击试验波形调节方法

变压器雷电冲击试验波形调节方法变压器雷电冲击试验是电力行业中非常重要的一项试验,能够评估变压器在雷电冲击下的抗扰度和耐受能力。
而在变压器雷电冲击试验中,波形的调节是至关重要的,它直接影响着试验结果的准确性和可靠性。
今天,我们就来讨论一下关于变压器雷电冲击试验波形调节的方法。
我们需要了解一下变压器雷电冲击试验中的波形特点。
雷电冲击波形可以分为前沿波、尖顶波和震荡波三部分。
前沿波是一种瞬态高压脉冲,它的上升时间非常短,具有很高的峰值电压,能够引发大量的气体放电现象。
尖顶波是前沿波的延续部分,它的峰值电压相对较低,但持续时间较长。
震荡波是由气体放电引起的高频振荡电压,具有很高的频率和较小的幅值。
这些波形特点决定了我们在进行变压器雷电冲击试验时,需要对波形进行有效的调节和处理,以便更好地模拟实际的雷电冲击环境。
我们来讨论一下变压器雷电冲击试验波形调节的方法。
在进行试验之前,我们需要首先选择合适的波形发生器和调节装置。
波形发生器可以通过调节输出电压、电流和频率等参数,来模拟不同的雷电冲击波形。
调节装置可以对波形进行实时监测和调节,以确保波形的稳定和准确性。
我们还需要注意在进行波形调节时,需要对变压器本身的特性和参数进行充分考虑。
因为不同类型和规格的变压器,在雷电冲击试验中所受到的影响和损伤程度是不同的。
波形调节和优化的过程中,需要根据具体的变压器型号和参数,来进行个性化的调节和处理,以确保试验结果的准确性和可靠性。
我们需要进行波形调节的实时监测和反馈。
在进行变压器雷电冲击试验时,波形的稳定性和准确性是非常重要的,它直接影响着试验结果的可信度。
我们需要通过实时监测装置,对波形进行持续的监测和反馈,以确保试验过程中波形的稳定和准确性。
如果发现波形出现异常或不符合要求,需要及时做出调整和处理,以保证试验过程的顺利进行和结果的准确可靠。
变压器雷电冲击试验波形调节是一个复杂而重要的过程,它需要我们充分了解雷电冲击波形特点,选择合适的波形发生器和调节装置,进行波形的调节和优化,考虑变压器本身的特性和参数,以及进行波形调节的实时监测和反馈。
变压器雷电冲击试验波形调节方法

变压器雷电冲击试验波形调节方法变压器是电力系统中的重要设备,用于变换电压、电流和功率的装置,同时也是系统中最易受雷电冲击影响的设备之一。
在电力系统中,雷电冲击是一种不可避免的自然现象,可能对变压器造成严重损坏甚至导致整个系统的瘫痪。
对变压器的雷电冲击试验至关重要。
为了确保变压器在雷电冲击下的稳定运行,需要对变压器进行雷电冲击试验,并对试验波形进行调节。
雷电冲击试验是通过模拟雷电冲击对变压器产生的影响,检验变压器的耐雷电冲击能力。
试验波形是模拟雷电冲击的电压波形,其具有高峰值、急剧上升和迅速衰减的特点。
在进行变压器的雷电冲击试验时,需要对试验波形进行调节,以保证试验的真实性和有效性。
以下将介绍一些变压器雷电冲击试验波形调节的方法。
一、选择合适的试验波形参数在进行变压器雷电冲击试验时,需首先确定试验波形的参数,包括波形的峰值电压、上升时间、脉冲宽度和脉冲重复频率等。
这些参数的选择需符合变压器的额定参数和试验要求。
峰值电压应该能够覆盖变压器可能遇到的最高雷电冲击电压,上升时间和脉冲宽度则要符合实际雷电冲击的特点。
脉冲重复频率也需要合理选择,以保证试验的效果和安全。
二、采用合适的波形发生器在进行变压器雷电冲击试验时,需要使用合适的波形发生器来产生试验波形。
波形发生器是产生雷电冲击试验波形的主要设备,其稳定性和精度对试验结果具有重要影响。
需要选择具有良好性能和可靠性的波形发生器,以确保试验波形的准确性和真实性。
三、调节试验波形的波形准确性四、采用合适的试验装置和保护措施在进行变压器雷电冲击试验时,需要采用合适的试验装置和保护措施,以保证试验的安全和有效。
试验装置应该具有良好的接地和屏蔽性能,以防止试验波形对周围设备和人员造成危害。
还需要对变压器进行有效的保护和监测,以确保试验过程的安全和变压器的完整性。
五、加强数据分析和处理在进行变压器雷电冲击试验时,需要加强对试验数据的分析和处理,以确保试验结果的准确性和可靠性。
第7章冲击电流发生器

3、非振荡波 1(R 2 L )
C
电流波形: i(t)
u
2 1
C e (t / LC ) sinh( L
2 1
t) LC
峰值时间: tm
LC
2 1
arctan h(
)
2 1
电流峰值: Im U
C e( / 2 1) arctan h( 2 1 / )
L
2 冲击电流发生器的基本原理
2 高压实验室的净空距离
净空距离是指高电压试验设备,测量装置和被试物相互之间及它们 对墙、天花板地和周围带电或不带电物体之间应有间隔距离。 净空距离的要求决定于以下三方面的原因:
安全距离:即设备或试品不应对周围物体放电(应留有裕度); 测量准确度:即周围物体与测量装置间的距离大到足以略去它们对
坏作用和承受能力。 指数波(模拟雷电流)
标准冲击电流波形
方波(模拟操作冲击电流)
1 概述
标准冲击电流(指数)波形
Tf/Tt(波前/半峰时间) ① ±1/20μs ② ±4/10μs ③ ±8/20μs ④ ±30/80μs 波形要求: ①峰值、 Tf、Tt容许偏差<10% ②冲击波峰值附近的过冲和振荡不应超过峰值的5%;反极性振荡<20%
3.1 冲击电流发生器结构的基本考虑因素
回路电感组成及减小电感量措施: 电容器残余电感(选择小电感电容;多级并联) 连线电感 (连线短,减小互感) 球隙电感(缩小尺寸和火花长度) 试品电感 分流器电感
3.2 冲击电流发生器回路
(a)并联放电
(b)串联放电
3.3 冲击电流发生器主回路结构
(a)圆环式
(b)方框式
(c)母线式
环形排列(圆环式、方框式):电容电流同时到达试品,电流大;但 不利于试品放置。
冲击电压的间隙

冲击电压的间隙
冲击电压一般是指持续时间很短,只有约几个微秒到几十个微秒的非周期性变化的电压。
由雷电产生的过电压就属于这样的电压。
由于电压作用时间短到可以与放电需要的时间相比拟,所以空气间隙在雷电冲击电压作用下有着一系列的特点。
为了检验冲击电压下绝缘耐受雷电冲击电压的能力,在实验室中可以利用冲击电压发生器产生冲击高压,以模拟雷电放电引起的过电压,同时为了使所得到的结果可以互相比较,需要规定标准波形。
冲击电压的波形是通过波前时间T1和半峰值时间T2来决定的。
通常在实验室中,用示波器获取的冲击电压波形图往往在原点附近不够清晰,而且波峰附近的波形较平,难以精确确定原点和峰值的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷电冲击电压发生器
简述:
CDY系列冲击电压发生器主要用于对电力设备等试品进行雷电冲击全波、操作波、截波、震荡波和其他特殊波形试验。
结构形式:
HAEFELYS.E.结构、H、L等结构。
电压范围:
20kv-7200kv,所有产生的波形钧符合国家标准和IEC世界标准,所有技术指标达到国际同类产品的先进水平。
主要技术特点:
1. 成套装置配套完整,电压等级齐全;
2. 回路电感小,并采取带阻滤波措施,在大容量负载下也能产生标准波形,带负载能力大;
3. 电压利用系数高;
4. 调波方便。
操作简单,同步范围大,动作可靠。
5. 采用恒流充电自动控制技术,自动化程度高,抗干扰能力强。