2015中考数学专题专练---选择题
2015中考数学总复习基础题强化训练测试题(五)及答案
2015中考数学总复习基础题强化训练测试题(五)时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.在-3,0,-2 2,2四个数中,最小的数是( ) A .-3 B .0 C .-2 2 D. 2 2.下列运算正确的是( ) A .a 2·a 3=a 5 B .x 3-x =x 2C.a 2+b 2=a +b D .(a -1)2=a 2-13.已知,如图J11,AD 与BC 相交于点O ,AB ∥CD ,如果∠B =20°,∠D =40°,那么∠BOD 为( )图J11A .40° B.50° C.60° D.70°4.不等式组⎩⎨⎧3x +2>-4,-x -的解集在数轴上表示正确的是( )A BC D5.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图J12所示的折线统计图,下列说法正确的是( )图J12A .平均数是58B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月6.如图J13,AB 是⊙O 的直径,AB =4,AC 是弦,AC =2 3,∠AOC 为( )A .120° B.130° C.140° D.150°二、填空题(本大题共4小题,每小题5分,共20分)7.计算:4m +3+m -1m +3=__________. 8.如图J14,E ,F 分别是正方形ABCD 的边BC ,CD 上的点,BE =CF ,连接AE ,BF ,将△ABE 绕正方形的中心按逆时针方向转到△BCF ,旋转角为∠α(0°<∠α<180°),则∠α=________.9.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图.根据图形所提供的样本数据,可得学生参加科技活动的频率是____________.10.如图J16,点P 在双曲线y =kx (k ≠0)上,点P ′(1,2)与点P 关于y 轴对称,则此双曲线的解析式为________________.三、解答题(本大题共5小题,每小题10分,共50分)11.先化简,再求值:(2a +b )(2a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =-2,b =1.12.如图,已知在平行四边形ABCD 中,点E 为边BC 的中点,延长DE ,与AB 的延长线交于点F .求证:CD =BF .13.如图,有一长方形的仓库,一边长为5米.现要将它改建为简易住房,改建后的住房分为客厅、卧室和卫生间三部分,其中客厅和卧室都为正方形,且卧室的面积大于卫生间的面积.若改建后卫生间的面积为6平方米,试求长方形仓库另一边的长.14.初三(1)班要举行一场毕业联欢会,规定每个同学同时转动图中的①、②两个转盘(每个转盘分别被二等分和三等分),两个转盘停止后,若指针所指的数字之和为奇数,则这个同学要表演唱歌节目;若数字之和为偶数,则要表演其他节目.试求出这个同学表演唱歌节目的概率(要求用树状图或列表方法求解).15.已知抛物线y=ax2-2ax-3a(a<0)与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,点D为抛物线的顶点.(1)求点A,B的坐标;(2)过点D作DH⊥y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)是否存在实数a,使四边形ABDC的面积为18,若存在,求出实数a的值;若不存在,请说明理由.答案1.A 2.A 3.C 4.B 5.C 6.A7.1 8.90° 9.0.2 10.y =-2x11.解:原式=4a 2-b 2+b 2-2ab =2a (2a -b ). 当a =-2,b =1时,原式=2×(-2)×[2×(-2)-1]=20.12.证明:∵四边形ABCD 是平行四边形, ∴DC ∥AB ,即DC ∥AF .∴∠CDF =∠F ,∠C =∠EBF . ∵E 为BC 的中点,∴CE =BE . ∴△DCE ≌△FBE .∴CD =BF .13.解:设长方形的另一边的长为x 米 由题意,得(x -5)[5-(x -5)]=6, 解得x 1=7,x 2=8.当x =7时,卧室面积小于卫生间面积,故舍去. 答:长方形的另一边的长为8米. 14.解:画树状图如图97.图97由图可知,所有等可能的结果有6种,其中数字之和为奇数的有3种.∴P (表演唱歌)=36=12.15.解:(1)令y =0,得 ax 2-2ax -3a =0. ∵a ≠0,∴x 2-2x -3=0. 解得x 1=-1,x 2=3. ∵ 点A 在点B 的左侧,∴点A 的坐标(-1 , 0),点B 的坐标(3 , 0). (2)由y =ax 2-2ax -3a ,令x =0,得y =-3a , ∴C (0 ,-3a ).又∵y =ax 2-2ax -3a =a (x -1)2-4a , ∴D (1 ,-4a ).∴H (0,-4a )∴DH =HC =-4a -(-3a )=-a =1. ∴a =-1.∴C (0 , 3),D (1 , 4).设直线CD 的解析式为y =kx +b ,把点C ,D 的坐标分别代入,得 ⎩⎪⎨⎪⎧ b =3,k +b =4,解得 ⎩⎪⎨⎪⎧b =3,k =1. ∴直线CD 的解析式为y =x +3.(3)存在实数a ,四边形ABDC 的面积为18.理由:S 四边形ABDC =12×(-3a )×1+1×(-4a -3a )×12+12×(-4a )×2=18,解得a =-2.。
2015年中考数学试题及答案
2015年中考数学数 学 试 题 卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分) 1、比-2013小1的数是( )A 、-2012B 、2012C 、-2014D 、2014 2、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=( ) A 、70° B 、65° C 、60° D 、55°3、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a的小正方体, 得到一个如图所示的零件,则这个零件的左视图是( ) A 、 B 、 C 、 D 、 4、某红外线遥控器发出的红外线波长为0.000 00094m ,用科学计数法表示这个数是( )A 、9.4×10-7mB 、9.4×107mC 、9.4×10-8m D 、9.4×108m 5、下列计算正确的是( )A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2) 4=-a 4b 6D 、-2a +(2a -1)=-1 6、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( )A 、240x +4=160x -10B 、240x -4=160x -10C 、240x -10 +4=160xD 、240x -10 -4=160x二、填空题(本大题共8小题,每小题3分,共24分) 7、因式分解:xy 2-x = 。
8、已知x =1是关于x 的方程x 2+x +2k =0的一个根,则它的另一个根是 。
9、已知2x 3y =13 ,则分式x -2y x +2y的值为 。
2015年中考真题初中数学---二次函数
2015年中考真题初中数学---二次函数(1)一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是()A .y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+2.(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A .B.C.D.3.(2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A .B.C.D.4.(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A .B.C.D.5.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A .B.C.D.6.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A .B.C.D.7.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A .1个B.2个C.3个D.4个8.(2015•衢州)下列四个函数图象中,当x>0时,y随x的增大而减小的是()A .B.C.D.9.(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A .B.C.D.10.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x …﹣2 ﹣1 0 1 2 …y …﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A .﹣11 B.﹣2 C.1 D.﹣511.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A .B.C.D.12.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A .1 B.2 C.3 D.413.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A .y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)214.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A m>1B m>0C m>﹣1 D﹣1<m<0....15.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A .函数图象与y 轴的交点坐标是(0,﹣3)B .顶点坐标是(1,﹣3)C .函数图象与x 轴的交点坐标是(3,0)、(﹣1,0)D .当x<0时,y 随x的增大而减小16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A .x=4 B.x=﹣4 C.x=2 D.x=﹣217.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A .m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣118.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A .a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<019.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A .(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)20.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A .正比例函数B.一次函数C.反比例函数D.二次函数21.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A (1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A .①②③B.①③④C.①③⑤D.②④⑤22.(2015•毕节市)二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A .a<0 B.b>0 C.b2﹣4ac>0 D.a+b+c<023.(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A .1 B.2 C.3 D.424.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A .②④B.①④C.①③D.②③25.(2015•兰州)二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A .ac+1=b B.ab+1=c C.bc+1=a D.以上都不是26.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y 轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A .4 B.3 C.2 D.127.(2015•南宁)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:•①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A .0个B.1个C.2个D.3个28.(2015•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A .2 B.3 C.4 D.529.(2015•广安)如图,抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A .﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣330.(2015•凉山州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0②当﹣1≤x≤3时,y<0③若(x1,y1)、(x2,y2)在函数图象上,当x1<x2时,y1<y2④9a+3b+c=0其中正确的是()A .①②④B.①④C.①②③D.③④2015年中考真题初中数学---二次函数(2)一.选择题(共30小题)1.(2015•湘潭)如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A .①②B.①④C.②③D.③④2.(2015•枣庄)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A .①②④B.③④C.①③④D.①②3.(2015•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4abB .ax2+bx+c≥﹣6C .若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD .关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣14.(2015•巴中)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A .①②B.只有①C.③④D.①④5.(2015•潜江)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A .1个B.2个C.3个D.4个6.(2015•齐齐哈尔)抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a ﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A .1个B.2个C.3个D.4个7.(2015•乐山)已知二次函数y=ax2+bx+c的图象如图所示,记m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.则下列选项正确的是()A .m<n B.m>nC .m=n D.m、n的大小关系不能确定8.(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A .1 B.2 C.3 D.49.(2015•黔东南州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A .1个B.2个C.3个D.4个10.(2015•包头)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;其中正确的结论是()A .①③④B.①②③C.①②④D.①②③④11.(2015•茂名)在平面直角坐标系中,下列函数的图象经过原点的是()A .y=B.y=﹣2x﹣3 C.y=2x2+1 D.y=5x12.(2015•天水)二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是()A .﹣3 B.﹣1 C.2 D.313.(2015•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A .y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>D.a(y1+y2)>014.(2015•义乌市)如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是()A .y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+1715.(2015•临沂)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A .向左平移1个单位,再向上平移2个单位B .向左平移1个单位,再向下平移2个单位C向右平移1个.单位,再向上平移2个单位D .向右平移1个单位,再向下平移2个单位16.(2015•成都)将抛物线y=x2向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A .y=(x+2)2﹣3B.y=(x+2)2+3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣317.(2015•荆州)将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A .y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+618.(2015•河池)将抛物线y=x2向右平移2个单位,再向上平移3个单位后,抛物线的解析式为()A .y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=(x+2)2﹣3D.y=(x﹣2)2﹣319.(2015•牡丹江)抛物线y=3x2+2x﹣1向上平移4个单位长度后的函数解析式为()A .y=3x2+2x﹣5 B.y=3x2+2x﹣4 C.y=3x2+2x+3 D.y=3x2+2x+420.(2015•攀枝花)将抛物线y=﹣2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A .y=﹣2(x+1)2B.y=﹣2(x+1)2+2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2+121.(2015•乐山)二次函数y=﹣x2+2x+4的最大值为()A .3 B.4 C.5 D.622.(2014•舟山)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A .﹣B.或C.2或D.2或或23.(2014•淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A .y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+224.(2014•成都)将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A .y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+225.(2015•柳州)如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A .x<﹣2 B.﹣2<x<4 C.x>0 D.x>426.(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B .只有一个交点,且它位于y轴右侧C .有两个交点,且它们均位于y轴左侧D .有两个交点,且它们均位于y轴右侧27.(2015•宁波)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A .1 B.﹣1 C.2 D.﹣228.(2015•兰州)二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A .当n<0时,m<0B.当n>0时,m>x2C .当n<0时,x1<m<x2D.当n>0时,m<x129.(2015•天津)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A .B.C.D.30.(2015•苏州)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A .x1=0,x2=4 B.x1=1,x2=5 C.x1=1,x2=﹣5 D.x1=﹣1,x2=5 2015年中考真题初中数学---二次函数(3)一.选择题(共10小题)1.(2015•济南)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A .﹣2<m <B.﹣3<m <﹣C.﹣3<m<﹣2 D.﹣3<m <﹣2.(2015•杭州)设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e (d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A a(x1﹣x2)=dB a(x2﹣x1)=dC a(x1﹣x2)2=dD a(x1+x2)2=d....3.(2015•达州)若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是()A .a(x0﹣x1)(x0﹣x2)<0B.a>0C .b2﹣4ac≥0 D.x1<x0<x24.(2015•贵港)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是()A .0<x<2 B.0<x<3 C.2<x<3 D.x<0或x>35.(2015•泸州)若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A .x<﹣4或x>2B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<26.(2015•六盘水)如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A .60m2B.63m2C.64m2D.66m27.(2015•铜仁市)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为()A .﹣20m B.10m C.20m D.﹣10m8.(2015•金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=﹣(x﹣80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为()A .16米B.米C.16米D.米9.(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A .cm2B.cm2C.cm2D.cm210.(2015•嘉兴)如图,抛物线y=﹣x2+2x+m+1交x轴与点A(a,0)和B(b,0),交y 轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=4;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是()A .①B.②C.③D.④2015年中考真题初中数学---二次函数(1)参考答案一.选择题(共30小题)1.C 2.B 3.C 4.D 5.C 6.A 7.B 8.B 9.C 10.D 11.D 12.C 13.A 14.B 15.B 16.D 17.D 18.D 19.B20.D 21.C 22.D 23.B 24.B 25.A 26.B 27.D 28.B29.B 30.B2015年中考真题初中数学---二次函数(2)参考答案一.选择题(共30小题)1.C 2.A 3.C 4.D 5.B 6.C 7.A 8.B 9.C 10.B 11.D 12.D 13.C 14.B 15.A 16.A 17.B 18.B 19.C20.C 21.C 22.C 23.A 24.D 25.B 26.D 27.A 28.C29.D 30.D2015年中考真题初中数学---二次函数(3)参考答案一.选择题(共10小题)1.D 2.B 3.A 4.C 5.D 6.C 7.C 8.B 9.C 10.C。
2015中考模拟 青岛版九年级数学上册第2章解直角三角形中考原题训练
2015中考模拟青岛版九年级数学上册第2章解直角三角形中考原题训练(附答案)一.选择题(共20小题).B.C.D.2.(2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于().B.C.D.3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.4.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是().2D.42.D.6.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()7.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是().1,1,C.1,1,D.1,2,8.(2014•滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S=S D.S1=S210.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是().m D.m11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.4米B.6米C.12米D.24米12.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米13.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里14.(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为().40海里B.40海里C.40海里15.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km16.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米17.(2014•深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.50018.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,()在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)19.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于().B.C.D.20.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.二.填空题(共4小题)21.(2014•铜仁)cos60°=_________.22.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________.23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为_________米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).24.(2013•泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为_________海里(取,结果精确到0.1海里).三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)2015中考模拟青岛版九年级数学上册第2章解直角三角形中考原题训练(附答案)参考答案与试题解析一.选择题(共20小题).B.C.D.首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可.解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==.故选:D.此题主要考查了锐角三角函数关系以及勾股定理等知识,正确记忆锐角三角函数关系是解题关键.2.(2013•贵阳)如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于().B.C.D.锐角三角函数的定义;坐标与图形性质.过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出tanα=,代入求出即可.解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴tanα==,故选C.本题考查了锐角三角函数的定义的应用,注意:在Rt△ACB中,∠C=90°,则sinB=,cosB=,tanB=.3.(2014•威海)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是().B.C.D.作AC⊥OB于点C,利用勾股定理求得AC和AO的长,根据正弦的定义即可求解.解:作AC⊥OB于点C.则AC=,AO===2,则sin∠AOB===.故选:D.本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,4.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是().2D.4计算题.根据锐角三角函数定义得出tanA=,代入求出即可.解:∵tanA==,AC=4,∴BC=2,故选:A.本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.2.D.根据特殊角的三角函数值计算即可.解:原式=()2+×=+=2.故选:A.此题比较简单,解答此题的关键是熟记特殊角的三角函数值.6.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°的度数.解:由题意,得cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三7.(2014•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据.1,1,C.1,1,D.1,2,D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”8.(2014•滨州)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()解直角三角形.根据三角函数的定义来解决,由sinA==,即可得BC.解:∵∠C=90°,AB=10,∴sinA=,∴BC=AB×=10×=6.故选:A.本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.9.(2014•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则().S1=S2B.S1=S2C.S1=S2∠DEH=180°﹣140°=40°,在Rt△ABG中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.10.(2014•丽水)如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是()A.9m B.6m C.m D.m在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.解:在Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=3米,∴AB==6米.故选:B.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.11.(2014•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为().4米B.6米C.12米D先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解:在Rt△ABC中,∵i==,AC=12米,∴BC=6米,根据勾股定理得:AB==6米,故选:B.此题考查了解直角三角形的应用﹣坡度坡角问题,勾股定理,难度适中.根据坡度的定义求出BC的长是解12.(2014•百色)从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是().(6+6)米B.(6+3)米C.(6+2)米D在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米,∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.本题考查仰角俯角的定义,要求学生能借助仰角俯角构造直角三角形并解直角三角形,难度一般.13.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().10海里C.20海里D∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.14.(2014•绵阳)如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为().40海里B.40海里C.40海里过点P作垂直于AB的辅助线PC,利三角函数解三角形,即可得出答案.解:过点P作PC⊥AB于点C,由题意可得出:∠A=30°,∠B=45°,AP=80海里,故CP=AP=40(海里),则PB==40(海里).故选:A.此题主要考查了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.15.(2014•苏州)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km几何图形问题.过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.16.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等17.(2014•深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高().600﹣250B.600﹣250 C.350+350D.500构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角18.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,()在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)的长,则BC即可得到.解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.19.(2014•安顺)如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连接FB,则tan∠CFB的值等于()A.B.C.D.求解.解:根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=x.∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==.故选:C.本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边20.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.计算题.根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.本题考查了互余两角三角函数的关系,属于基础题,解题的关键是掌握三角函数的定义和勾股定理的运用.二.填空题(共4小题)21.(2014•铜仁)cos60°=.根据特殊角的三角函数值计算.解:cos60°=.故答案为:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函22.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构23.(2014•株洲)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).作出图形,可得AB=500米,∠A=20°,在Rt△ABC中,利用三角函数即可求得BC的长度.解:在Rt△ABC中,AB=500米,∠BAC=20°,∵=tan20°,∴BC=ABtan20°=500×0.3640=182(米).故答案为:182.24.(2013•泰安)如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为67.5海里(取,结果精确到0.1海里).可得出关于x的方程,解出后即可计算AB的长度.解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5(海里).故答案为:67.5.本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段三.解答题(共6小题)25.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.计算题.根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解:∵在直角△ABD中,tan∠BAD==,∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,∴AC===13,∴sinC==.本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.26.(2014•枣庄)如图,一扇窗户垂直打开,即OM⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP上滑动,将窗户OM按图示方向向内旋转35°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为25°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到1cm.参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)(2)在Rt△BDE中,根据三角函数即可得到滑动支架的长.解:(1)在Rt△BOE中,OE=,在Rt△BDE中,DE=,则+=30,解得BE≈11(cm).故B点到OP的距离大约为11cm;(2)在Rt△BDE中,BD=≈26cm.故滑动支架的长约为26cm.此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.27.(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带成为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)几何图形问题;数形结合.如图,过点D作DE⊥AC于点E.通过解Rt△EAD和Rt△EBD分别求得AE、BE的长度,然后根据图示知:AB=AE﹣BE=100,把相关线段的长度代入列出关于ED的方程﹣=100.通过解该方程求得ED的长度.解:如图,过点D作DE⊥AC于点E.∵在Rt△EAD中,∠DAE=60°,∴tan60°=,∴AE=同理,在Rt△EBD中,得到EB=.又∵AB=100米,∴AE﹣EB=100米,即﹣=100.则ED=≈≈323(米).答:观景台D到徒骇河西岸AC的距离约为323米.本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.28.(2014•烟台)小明坐于堤边垂钓,如图,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离.几何图形问题.延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出∠CAD=180°﹣∠ODB﹣∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=4.5米,然后根据BC=BD﹣CD即可求出浮漂B与河堤下端C之间的距离.解:延长OA交BC于点D.∵AO的倾斜角是60°,∴∠ODB=60°.∵∠ACD=30°,∴∠CAD=180°﹣∠ODB﹣∠ACD=90°.在Rt△ACD中,AD=AC•tan∠ACD=•=(米),∴CD=2AD=3米,又∵∠O=60°,∴△BOD是等边三角形,∴BD=OD=OA+AD=3+=4.5(米),∴BC=BD﹣CD=4.5﹣3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.29.(2014•莱芜)如图,一堤坝的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角∠ADB=50°,则此时应将坝底向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)DE,再根据DB=DC﹣BE即可求解.解:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考查了解直角三角形的应用﹣坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类30.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∵DE=EG,∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个。
2015年河南中考数学真题卷含答案解析
2015年河南省普通高中招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各数中最大的数是( )A.5B.√3C.πD.-82.如图所示的几何体的俯视图是( )3.据统计,2014年我国高新技术产品出口总额达40570亿元.将数据40570亿用科学记数法表示为( )A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10124.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数为( )A.55°B.60°C.70°D.75°的解集在数轴上表示为( )5.不等式组{x+5≥0,3-x>16.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为( )A.4B.6C.8D.108.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线.点P从原点O出发,沿这条曲线向右运动,速度为每秒π个单位长度,则第2015秒时,点2P的坐标是( )A.(2014,0)B.(2015,-1)C.(2015,1)D.(2016,0)第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分)9.计算:(-3)0+3-1= .10.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC= .11.如图,直线y=kx与双曲线y=2(x>0)交于点A(1,a),则k= .x12.已知点A(4,y1),B(√2,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.13.现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.14.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB⏜于点E.以点O为圆心,OC 的长为半径作CD⏜交OB于点D.若OA=2,则阴影部分的面积为.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B'处.若△CDB'恰为等腰三角形,则DB'的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:a2-2ab+b2 2a-2b ÷(1b-1a),其中a=√5+1,b=√5-1.17.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连结PD,PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连结OD,当∠PBA的度数为时,四边形BPDO是菱形.18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.19.(9分)已知关于x的一元二次方程(x-3)(x-2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.20.(9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B 的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos48°≈0.67,tan48°≈1.11,√3≈1.73)21.(10分)某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.22.(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连结DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AEBD = ;②当α=180°时,AEBD= .(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.23.(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F.点D,E的坐标分别为(0,6),(-4,0),连结PD,PE,DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.备用图答案全解全析:一、选择题1.A 根据“正数都大于负数”,知-8最小.π在正整数3和4之间,利用平方法可以知道√3在1和2之间,由此可得最大的数是5.故选A.2.B 根据俯视图的定义,可知选B.3.D 40 570亿=4 057 000 000 000=4.057 0×1 000 000 000 000=4.057 0×1012.故选D. 4.A 如图,∵∠1=∠2,∴a ∥b.∴∠5=∠3=125°,∴∠4=180°-∠5=180°-125°=55°.故选A.评析 本题考查了平行线的性质与判定,以及邻补角的关系,属容易题.5.C 解不等式x+5≥0得x ≥-5;解不等式3-x>1得x<2.∴-5≤x<2.在数轴上表示这一解集时,在-5的位置为实心点并向右画线,在2的位置为空心圆圈并向左画线.故选C.6.D ∵85×2+80×3+90×5=86,∴小王的成绩为86分.故选D.7.C 设AE 与BF 交于点O.由题可知AF=AB,∠BAE=∠FAE,∴AE ⊥BF,OB=12BF=3,在Rt △AOB 中,AO=√52-32=4.∵四边形ABCD 是平行四边形,∴AD ∥BC,∴∠FAE=∠BEA, ∴∠BAE=∠BEA,∴AB=BE,∴AE=2AO=8.故选C.8.B ∵半圆的半径r=1,∴一个半圆的弧长=π,又∵每两个半圆为一个循环,∴一个循环内点P 运动的路程为2π.(π2×2 015)÷2π=503……3,∴点P 位于第504个循环的第二个半圆弧的中点位置(即第1 008个半圆弧的中点),∴此时点P 的横坐标为503×4+3=2 015,纵坐标为-1,∴第2 015秒时,点P(2 015,-1).故选B.二、填空题9.答案 43解析 (-3)0+3-1=1+13=43.10.答案 32 解析 ∵DE ∥AC,∴BD DA =BE EC ,∴EC=DA ·BE BD =2×34=32. 11.答案 2解析 把点A(1,a)代入y=2x ,得a=21=2,∴点A 的坐标为(1,2).把点A(1,2)代入y=kx,得2=1×k,∴k=2. 12.答案 y 2<y 1<y 3 解析解法一:∵A(4,y 1),B(√2,y 2),C(-2,y 3)都在抛物线y=(x-2)2-1上,∴y 1=3,y 2=5-4√2,y 3=15. ∵5-4√2<3<15,∴y 2<y 1<y 3.解法二:设点A 、B 、C 三点到抛物线对称轴的距离分别为d 1、d 2、d 3.∵y=(x -2)2-1,∴对称轴为直线x=2,∴d 1=2,d 2=2-√2,d 3=4,∵2-√2<2<4,且a=1>0,∴y 2<y 1<y 3. 13.答案 58解析 列表如下:1 2 2 3 1 (1,1) (1,2) (1,2) (1,3) 2 (2,1) (2,2) (2,2) (2,3) 2 (2,1) (2,2) (2,2) (2,3) 3(3,1)(3,2)(3,2)(3,3)所有等可能的情况有16种,其中两次抽出卡片所标数字不同的情况有10种,则所求概率P=1016=58. 14.答案√32+π12解析 连结OE.∵点C 是OA 的中点,∴OC=12OA=1, ∵OE=OA=2,∴OC=12OE,∵CE ⊥OA,∴∠OEC=30°, ∴∠COE=60°.在Rt △OCE 中,CE=OC ·tan 60°=√3, ∴S △OCE =12OC ·CE=√32.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°,∴S 扇形OBE =30π×22360=π3,又S 扇形COD =90π×12360=π4. 因此S 阴影=S 扇形OBE +S △OCE -S 扇形COD =π3+√32-π4=π12+√32.评析 求不规则图形的面积可采用割补法,利用规则图形的面积的和差求解.15.答案 16或4√5解析 分三种情况讨论:(1)若DB'=DC,则DB'=16(易知此时点F 在BC 上且不与点C 、B 重合).(2)当CB'=CD 时,连结BB',∵EB=EB',CB=CB',∴点E 、C 在BB'的垂直平分线上,∴EC 垂直平分BB',由折叠可知点F 与点C 重合,不符合题意,舍去.(3)如图,当CB'=DB'时,作B'G ⊥AB 于点G,延长GB'交CD 于点H.∵AB ∥CD,∴B'H ⊥CD.则四边形AGHD 为矩形,∴AG=DH.∵CB'=DB',∴DH=12CD=8,∴AG=DH=8,∴GE=AG -AE=5.又易知EB'=13,∴在Rt △B'EG 中,由勾股定理得B'G=12,∴B'H=GH -B'G=4.在Rt △B'DH 中,由勾股定理得DB'=4√5(易知此时点F 在BC 上且不与点C 、B 重合).综上所述,DB'=16或4√5.三、解答题16.解析 原式=(a -b)22(a -b)÷a -b ab (4分) =a -b 2·ab a -b=ab 2.(6分)当a=√5+1,b=√5-1时,原式=(√5+1)×(√5-1)2=5-12=2.(8分)17.解析 (1)证明:∵D 是AC 的中点,且PC=PB,∴DP ∥AB,DP=12AB.∴∠CPD=∠PBO.(3分)∵OB=12AB,∴DP=OB.∴△CDP ≌△POB.(5分)(2)①4.(7分)②60°.(注:若填为60,不扣分)(9分)18.解析 (1)1 000.(2分)(2)54°.(注:若填为54,不扣分)(4分)(3)图略.(按人数为100正确补全条形图)(6分)(4)80×(26%+40%)=80×66%=52.8(万人).所以估计该市将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数约为52.8万人.(9分)19.解析 (1)证明:原方程可化为x 2-5x+6-|m|=0.(1分)∴Δ=(-5)2-4×1×(6-|m|)=25-24+4|m|=1+4|m|.(3分)∵|m|≥0,∴1+4|m|>0.∴对于任意实数m,方程总有两个不相等的实数根.(4分)(2)把x=1代入原方程,得|m|=2,∴m=±2.(6分)把|m|=2代入原方程,得x 2-5x+4=0,∴x 1=1,x 2=4. ∴m 的值为±2,方程的另一个根是4.(9分)20.解析 延长BD 交AE 于点G,过点D 作DH ⊥AE 于点H.由题意知,∠DAE=∠BGA=30°,DA=6,∴GD=DA=6.∴GH=AH=DA ·cos 30°=6×√32=3√3.∴GA=6√3.(2分)设BC=x 米.在Rt △GBC 中,GC=BC tan ∠BGC =x tan30°=√3x.(4分)在Rt △ABC 中,AC=BC tan ∠BAC =x tan48°.(6分)∵GC -AC=GA,∴√3x-x tan48°=6√3.(8分)∴x ≈13.即大树的高度约为13米.(9分)21.解析 (1)银卡:y=10x+150;(1分)普通票:y=20x.(2分)(2)把x=0代入y=10x+150,得y=150.∴A(0,150).(3分)联立得{y =20x,y =10x +150,∴{x =15,y =300.∴B(15,300).(4分) 把y=600代入y=10x+150,得x=45.∴C(45,600).(5分)(3)当0<x<15时,选择购买普通票更合算;(注:若写为0≤x<15,不扣分)当x=15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,选择购买银卡更合算;当x=45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x>45时,选择购买金卡更合算.(10分)22.解析 (1)①√52.(1分) ②√52.(2分)(2)无变化.(注:若无判断,但后续证明正确,不扣分)(3分)在题图1中,∵DE 是△ABC 的中位线,∴DE ∥AB.∴CE =CD ,∠EDC=∠B=90°.如题图2,∵△EDC 在旋转过程中形状大小不变,∴CE CA =CD CB 仍然成立.(4分)又∵∠ACE=∠BCD=α,∴△ACE ∽△BCD.∴AE BD =AC BC .(6分)在Rt △ABC 中,AC=√AB 2+BC 2=√42+82=4√5.∴AC BC =4√58=√52,∴AE BD =√52. ∴AE BD 的大小不变.(8分)(3)4√5或12√55.(10分)【提示】当△EDC 在BC 上方,且A,D,E 三点共线时,四边形ABCD 为矩形,∴BD=AC=4√5;当△EDC 在BC 下方,且A,E,D 三点共线时,△ADC 为直角三角形,由勾股定理可求得AD=8,∴AE=6,根据AE BD =√52可求得BD=12√55. 23.解析 (1)抛物线的解析式为y=-18x 2+8.(3分)(2)正确.理由:设P (x,-18x 2+8),则PF=8-(-18x 2+8)=18x 2.(4分) 过点P 作PM ⊥y 轴于点M,则PD 2=PM 2+DM 2=(-x)2+[6-(-18x 2+8)]2=164x 4+12x 2+4=(18x 2+2)2. ∴PD=18x 2+2.(6分)∴PD -PF=18x 2+2-18x 2=2.∴猜想正确.(7分)(3)“好点”共有11个.(9分)在点P 运动时,DE 大小不变,∴当PE 与PD 的和最小时,△PDE 的周长最小.∵PD -PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2.当P,E,F 三点共线时,PE+PF 最小.此时点P,E 的横坐标都为-4.将x=-4代入y=-18x 2+8,得y=6. ∴P(-4,6),此时△PDE 的周长最小,且△PDE 的面积为12,点P 恰为“好点”.∴△PDE 的周长最小时“好点”的坐标为(-4,6).(11分)【提示】△PDE 的面积S=-14x 2-3x+4=-14(x+6)2+13.由-8≤x ≤0,知4≤S ≤13,所以S 的整数值有10个.由函数图象知,当S=12时,对应的“好点”有2个.所以“好点”共有11个.。
(中考试题)初中数学专题训练-函数
函数一.选择题(共20小题)1.(2014•射阳县校级模拟)若点P(a,a﹣b)在第四象限,则点Q(b,﹣a)在()A.第四象限B.第三象限C.第二象限D.第一象限2.(2012•翁源县校级模拟)函数的自变量x的取值范围是()A.x≥1B.x≥﹣1或x≠﹣3C.x≥﹣1 D.x≥﹣1且x≠﹣33.(2017春•姜堰区校级月考)如图,在物理实验课上,小明用弹簧秤将铁块A 从完全置身水槽外,到匀速向下放入盛有水的水槽中,直至铁块完全浸入水面下的一定深度,则图能反映弹簧秤的读数y(单位:N)与铁块下降的高度x(单位:cm)之间的函数关系的大致图象是()A.B .C.D.4.(2012•山西模拟)一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是()初中数学A.摩托车比汽车晚到1h B.A,B两地的路程为20kmC.摩托车的速度为45km/h D.汽车的速度为60km/h 5.(2011•大同校级模拟)有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为()升.A.15B.16C.17D.18 6.(2016•阳泉模拟)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm)2.已知y与t的函数关系图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=0.8C.当0<t≤10时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,D是AB边上的一个动点(不与点A,B重合),过点D作CD的垂线交射线CA于点E.设AD=x,CE=y,则下列图象中,能表示与的函数关系的图象大致是()A.B.C.D.8.(2016春•新洲区期末)若一次函数y=(1﹣m)x|m|﹣1+3的函数值y随x的增大而增大,则m的取值为()A.2B.1C.﹣2D.﹣1 9.(2014•泗县校级模拟)函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是()A.B.C.m<﹣1D.m>﹣110.(2014•永嘉县校级模拟)已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较11.(2012春•翠屏区校级期中)直线y=kx+3与x轴的交点是(1,0),则k的值是()A.3B.2C.﹣2D.﹣312.(2014•泗县校级模拟)如果是方程组的解,则一次函数y=mx+n的解析式为()A.y=﹣x+2B.y=x﹣2C.y=﹣x﹣2D.y=x+2 13.(2014•白云区校级模拟)根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为()x﹣21y3pA.3B.1C.﹣2D.﹣614.一次函数y=kx+b(b>0)与反比例函数y=在同一直角坐标系下的大致图象为()A.B.C.D.15.(2014•泗县校级模拟)若反比例函数y=(2m﹣1)的图象在第二,四象限,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.不能确定16.(2014•泗县校级模拟)如图,A为反比例函数图象上一点,AB⊥x轴于=3,则k的值为()点B,若S△AOBA.3B.6C.D.无法确定17.(2014•鼓楼区校级模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1 18.(2014•磐石市校级模拟)已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是()A.B.C.D.19.(2014•溧水县校级模拟)二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣4;(2)若y<0,则x的取值范围为0<x<2;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.0B.1C.2D.320.对二次函数进行配方,其结果及顶点坐标是()A.B.C.D.二.填空题(共20小题)21.根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限第二象限第三象限第四象限22.(2015秋•灯塔市期末)坐标平面内的点与是一一对应的.23.(2017秋•昌平区校级期中)从甲地向乙地打长途电话,按时间收费,3分钟内收费2.4元,每加1分钟加收1元,若时间t≥3(分)时,电话费y(元)与t(分)之间的函数关系式是.24.(2014•新泰市校级模拟)函数y=中,自变量x的取值范围是;函数中,自变量x的取值范围是.25.(2012秋•合肥期末)根据图中所示的程序计算变量y的值,若输入自变量x 的值为,则输出的结果是.26.(2016春•西和县校级月考)用描点法画函数图象的一般步骤是、、.27.(2014•无棣县校级模拟)如图(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合.设x 秒时,三角形与正方形重叠部分的面积为ym 2.则y 与x 的关系式为,当重叠部分的面积是正方形面积的一半时,三角形移动时间是.28.(2015秋•深圳校级期中)函数的三种表示方式分别是.29.(2017•和平区校级模拟)当m=时,函数y=(m +3)x 2m +1+4x ﹣5(x≠0)是一次函数.30.(2014•泗县校级模拟)已知函数y=2x ﹣3,当x 时,y ≥0;当x时,y <5.31.一次函数y=kx +b 的图象与性质k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图象的大致位置经过象限第象限第象限第象限第象限性质y 随x 的增大而y 随x 的增大而y 随x 的增大而y 随x 的增大而32.(2014•射阳县校级模拟)如图,点A (﹣3,4)在一次函数y=﹣3x ﹣5的图象上,图象与y 轴的交点为B ,那么△AOB 的面积为.33.(2014秋•路北区期末)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于.34.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.35.(2008春•通城县期中)反比例函数y=的图象经过点(﹣,5)和(a,﹣3),则a=.36.(2014•泗县校级模拟)已知y﹣2与x成反比例,当x=3时,y=1,则y与x 的函数关系式为.37.二次函数y=2x2﹣4x+5的对称轴方程是x=;当x=时,y有最小值是.38.已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,1)的下方.下列结论:①a﹣b+c=0,②0<b<﹣a,③a+c>0,④a﹣b+1>0,其中正确结论的个数是个.39.(2014•射阳县校级模拟)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2.(填“>”,“<”或“=”)40.(2014•大石桥市校级模拟)将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为.三.解答题(共10小题)41.已知点M(3a+8,﹣1﹣a),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点M在一、三象限角平分线上;(3)点M在第四象限,并且a为最小自然数;(4)N点坐标为(﹣3,6),并且直线MN∥y轴.42.在平面直角坐标系中,已知点A(﹣3,4),点B(﹣1,﹣2),点C(1,2),O是坐标原点.(1)求△AOB的面积;(2)求△ABC的面积.43.求下列函数自变量x的取值范围.(1)y=﹣x2﹣5x+6;(2)y=;(3)y=;(4)y=.44.已知一次函数y=(m+2)x+2﹣n,求:(1)y随x的增大而增大,m的取值范围;(2)函数的图象与y轴的交点在x轴的下方时,m,n的取值范围;(3)m,n为何值时图象与坐标轴交于原点;(4)函数的图象经过第一、二、三象限,m,n的取值范围.45.(2016•阳泉模拟)已知方程x2+mx+n=0的两根是直角三角形的两个锐角的余弦.(1)求证:m2=2n+1;(2)若P(m,n)是一次函数y=x﹣图象上的点,求点P的坐标.46.(2014•浙江模拟)如图,直线AB与x轴交于点A(1,0),与y轴交于点B (0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S=2,求点C的坐标.△OBC47.(2016•阳泉模拟)如图所示,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(6,n)在边AB上,反比例函数y=(k ≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的表达式和n的值.48.如图所示,直线y=2x+3与双曲线y=相交于A,B两点,与轴交于点C,且△OCA的面积为1.5.(1)求双曲线y=的解析式;(2)若点D,B关于原点对称,一动点P沿着x轴运动,则|PA﹣PD|是否有最大值?如果有,请确定点P的位置;如果没有,请说明理由.49.(2014•溧水县校级模拟)已知:二次函数y=ax2+bx+c(a≠0)中的x,y满足下表:x…﹣10123…y…0﹣3﹣4﹣3m…(1)求m的值;(2)根据上表求y>0时的x的取值范围;(3)若A(p,y1),B(p+1,y2)两点都在该函数图象上,且p<1,试比较y1与y2大小.50.如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线过y=ax2+bx+c(a≠0)点A.(1)求c的值;(2)若a=﹣1,且抛物线与矩形有且只有三个交点,A,D,E,求△ADE的面积S的最大值.第11页(共11页)。
济宁2015年中考数学试卷(含答案)
山东省济宁2015年中考数学试卷第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1. 的相反数是( )A. B. C . D.【答案】C2. 化简的结果是( )A. B. C. D.【答案】D3. 要使二次根式有意义,x必须满足( )A.x≤2B. x≥2C. x<2D.x>2【答案】B4. 一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“值”字相对的字是( )A.记B.观C.心D.间【答案】A5. 三角形两边长分别为3和6,第三边是方程的根,则三角形的周长为( )A.13B.15C.18D.13或18【答案】A6. 匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律如图所示(图中OABC为一折线).这个容器的形状是下图中哪一个( )【答案】C7.只用下列哪一种正多边形,可以进行平面镶嵌( )A.正五边形B.正六边形C.正八边形D.正十边形【答案】B8. 解分式方程时,去分母后变形正确的为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)【答案】D9. 如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )A.5米B.6米C. 8米D.米【答案】A考点:解直角三角形10. 将一副三角尺(在中,∠ACB=,∠B=;在中,∠EDF=,∠E=)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C.将绕点D 顺时针方向旋转角,交AC于点M,交BC于点N,则的值为( )A. B. C. D.【答案】C【解析】试题分析:由题意知D为Rt△ABC的斜边上的中点,根据直角三角形斜边上的中线等于斜边的一半,可得CD=AD=BD=AB,再由∠B=60°可知△BCD是等边三角形,因此可得∠DCP=30°,且可求∠DPC=60°,因此tan30°=.根据旋转变换的性质,可知∠PDM=∠CDN,因此可知△PDM∽△CDN,再由相似三角形的性质可得,因此是一个定值.二、填空题:本大题共5小题,每小题3分,共15分。
2015北京中考数学试题及答案word
2015北京中考数学试题及答案word一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个是正确的。
)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3正确答案是B。
无理数是指不能表示为两个整数的比值的实数,√2就是一个典型的无理数。
2. 已知一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14正确答案是B。
等腰三角形的两边相等,所以周长为3+5+5=13。
3. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3 - 2x正确答案是B。
一次函数的一般形式为y=kx+b,其中k和b是常数。
4. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10正确答案是A。
一个数的相反数是与它相加等于0的数,所以-5的相反数是5。
5. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π正确答案是B。
圆的面积公式为A=πr^2,所以半径为5的圆的面积是25π。
6. 一个正数的绝对值等于它本身,那么这个数是?A. 负数B. 零C. 正数D. 非负数正确答案是C。
绝对值是一个数与0的距离,正数的绝对值等于它本身。
7. 下列哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则图形D. 等腰梯形正确答案是D。
轴对称图形是指沿着一条直线折叠后,两部分能够完全重合的图形。
8. 一个数的平方是25,那么这个数是多少?A. 5B. -5C. ±5D. 25正确答案是C。
一个数的平方是25,那么这个数可以是5或者-5。
9. 一个数的立方是-8,那么这个数是多少?A. -2B. 2C. -8D. 8正确答案是A。
一个数的立方是-8,那么这个数是-2。
10. 下列哪个选项是正确的不等式?A. 3 > 2B. 5 < 3C. 7 ≥ 7D. 9 ≤ 10正确答案是C。
2015年河南省中考数学试题及解析
2015年河南省中考数学试卷一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)(2015•河南)下列各数中最大的数是()A.5B.C.πD.﹣82.(3分)(2015•河南)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)(2015•河南)据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10124.(3分)(2015•河南)如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B .60°C.70°D.75°5.(3分)(2015•河南)不等式的解集在数轴上表示为()A .B.C.D.6.(3分)(2015•河南)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分7.(3分)(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.108.(3分)(2015•河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的虚线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二、填空题(共7小题,每小题3分,满分21分)9.(3分)(2015•河南)计算:(﹣3)0+3﹣1=.10.(3分)(2015•河南)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.11.(3分)(2015•河南)如图,直线y=kx与双曲线y=(x>0)交于点A(1,2),则k=.12.(3分)(2015•河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.13.(3分)(2015•河南)现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.14.(3分)(2015•河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA 交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.15.(3分)(2015•河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F 是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题(共8小题,满分75分)16.(8分)(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.17.(9分)(2015•河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.18.(9分)(2015•河南)为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.19.(9分)(2015•河南)已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.20.(9分)(2015•河南)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)21.(10分)(2015•河南)某旅游馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.22.(10分)(2015•河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.23.(11分)(2015•河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A会点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,丙说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.2015年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)(2015•河南)下列各数中最大的数是()A.5B.C.πD.﹣8考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣8,所以各数中最大的数是5.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2015•河南)如图所示的几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看左边一个正方形,右边一个正方形,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,注意所有看到的线的都用实线表示.3.(3分)(2015•河南)据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中40570亿,有13位整数,n=13﹣1=12.解答:解:40570亿=4057000000000=4.057×1012,故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.表示时关键要正确确定a的值以及n的值.4.(3分)(2015•河南)如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°考点:平行线的判定与性质.分析:利用平行线的性质定理和判定定理,即可解答.解答:解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.点评:此题考查了平行线的性质和判定定理.此题难度不大,注意掌握数形结合思想的应用.5.(3分)(2015•河南)不等式的解集在数轴上表示为()A .B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先将每一个不等式解出来,然后根据求解的口诀即可解答.解答:解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.点评:此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.6.(3分)(2015•河南)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分考点:加权平均数.专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:85×+80×+90×=17+24+45=86(分),故选D点评:此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.7.(3分)(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.8.(3分)(2015•河南)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的虚线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)考点:规律型:点的坐标.专题:规律型.分析:根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.解答:解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.点评:此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题(共7小题,每小题3分,满分21分)9.(3分)(2015•河南)计算:(﹣3)0+3﹣1=.考点:负整数指数幂;零指数幂.分析:根据任何非零数的零次幂等于1,有理数的负整数指数次幂等于正整数次幂的倒数进行计算即可得解.解答:解:(﹣3)0+3﹣1=1+=.故答案为:.点评:本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.10.(3分)(2015•河南)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.考点:平行线分线段成比例.分析:根据平行线分线段成比例定理即可直接求解.解答:解:∵DE∥AC,∴,即,解得:EC=.故答案为:.点评:本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.11.(3分)(2015•河南)如图,直线y=kx与双曲线y=(x>0)交于点A(1,2),则k= 2.考点:反比例函数与一次函数的交点问题.分析:直接利用图象上点的坐标性质进而代入求出即可.解答:解:∵直线y=kx与双曲线y=(x>0)交于点A(1,2),∴2=k,故答案为:2.点评:此题主要考查了反比例函数与一次函数的交点,利用图象上点的坐标性质得出是解题关键.12.(3分)(2015•河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.考点:二次函数图象上点的坐标特征.分析:分别计算出自变量为4,和﹣2时的函数值,然后比较函数值得大小即可.解答:解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.点评:本题考查了二次函数图象上点的坐标特征,解题的关键是:明确二次函数图象上点的坐标满足其解析式.13.(3分)(2015•河南)现有四张分别标有1,2,2,3的卡片,它们除数字外完全相同,把卡片背面向上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.考点:列表法与树状图法.分析:列表将所有等可能的结果列举出来,然后求得两次抽出的卡片所标数字不同的情况,再利用概率公式求解即可.解答:解:列表得:1 2 2 31 11 12 12 132 21 22 22 232 21 22 22 233 31 32 32 33∵共有16种等可能的结果,两次抽出的卡片所标数字不同的有10种,∴两次抽出的卡片所标数字不同的概率是=.故答案为:.点评:考查了列表与树状图的知识,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2015•河南)如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA 交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.考点:扇形面积的计算.分析:连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形ABO的面积减去扇形CDO的面积,再减去S空白AEC即可求出阴影部分的面积.解答:解:连接OE、AE,∵点C为OC的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形ABO﹣S扇形CDO﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.点评:本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.15.(3分)(2015•河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F 是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.考点:翻折变换(折叠问题).专题:分类讨论.分析:根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.解答:解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.点评:本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.三、解答题(共8小题,满分75分)16.(8分)(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=•=,当a=+1,b=﹣1时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(9分)(2015•河南)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为4;②连接OD,当∠PBA的度数为60°时,四边形BPDO是菱形.考点:菱形的判定;全等三角形的判定与性质.分析:(1)根据中位线的性质得到DP∥AB,DP=AB,由SAS可证△CDP≌△POB;(2)①当四边形AOPD的AO边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形,再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.解答:(1)证明:∵PC=PB,D是AC的中点,∴DP∥AB,∴DP=AB,∠CPD=∠PBO,∵BO=AB,∴DP=BO,在△CDP与△POB中,∴△CDP≌△POB(SAS);(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP=BO,∴四边形BPDO是平行四边形,∵四边形BPDO是菱形,∴PB=BO,∵PO=BO,∴PB=BO=PO,∴△PBO是等边三角形,∴∠PBA的度数为60°.故答案为:4;60°.点评:考查了菱形的判定,全等三角形的判定与性质,中位线的性质,解题的关键是SAS 证明△CDP≌△POB.18.(9分)(2015•河南)为了了解市民“获取新闻的最主要途径”某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是1000;(2)扇形统计图中,“电视”所对应的圆心角的度数是54°;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用“电视”所占的百分比乘以360°,即可得出答案;(3)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(4)用全市的总人数乘以“电脑和手机上网”所占的百分比,即可得出答案.解答:解:(1)这次接受调查的市民总人数是:260÷26%=1000;(2)扇形统计图中,“电视”所对应的圆心角的度数为:(1﹣40%﹣26%﹣9%﹣10%)×360°=54°;(3)“报纸”的人数为:1000×10%=100.补全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:80×(26%+40%)=80×66%=52.8(万人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.19.(9分)(2015•河南)已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.考点:根的判别式;一元二次方程的解;根与系数的关系.分析:(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.解答:(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.点评:此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.20.(9分)(2015•河南)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求出问题即可.解答:解:如图,过点D作DG⊥BC于GDH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)解得:x≈13,∴大树的高度为:13米.点评:本题考查了仰角、坡角的定义,解直角三角形的应用,能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.21.(10分)(2015•河南)某旅游馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.考点:一次函数的应用.分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解答:解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通片合算;当x>45时,金卡消费更划算.点评:此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.22.(10分)(2015•河南)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.考点:几何变换综合题.分析:(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.解答:解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,在△ABC和△CDA中,∴BP=DQ,BP∥DQ,PQ⊥DQ,∴四边形BDQP为矩形,∴BD=PQ=AC﹣AP﹣CQ==.综上所述,BD的长为4或.点评:(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了相似三角形、全等三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了线段长度的求法,以及矩形的判定和性质的应用,要熟练掌握.23.(11分)(2015•河南)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A会点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,丙说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线解析式即可;(2)首先表示出P,F点坐标,再利用两点之间距离公式得出PD,PF的长,进而求出即可;(3)根据题意当P、E、F三点共线时,PE+PF最小,进而得出P点坐标以及利用△PDE 的面积可以等于4到13所有整数,在面积为12时,a的值有两个,进而得出答案.解答:解:(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(﹣8,0),设抛物线解析式为:y=ax2+c,则,解得:故抛物线的解析式为:y=﹣x2+8;(2)正确,理由:设P(a,﹣a2+8),则F(a,8),∵D(0,6),∴PD===a2+2,PF=8﹣(﹣a2+8)=a2,∴PD﹣PF=2;(3)在点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,∵PD﹣PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2,∴当P、E、F三点共线时,PE+PF最小,此时点P,E的横坐标都为﹣4,将x=﹣4代入y=﹣x2+8,得y=6,∴P(﹣4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点,∴△PDE的周长最小时”好点“的坐标为:(﹣4,6),由(2)得:P(a,﹣a2+8),∵点D、E的坐标分别为(0,6),(﹣4,0),∴设直线DE的解析式为:y=kx+b,则,解得:∴l DE:y=x+6,则PE=﹣a2+8﹣a﹣6,∴S△PDE=×4×(﹣a2+8﹣a﹣6)=﹣a2﹣3a+4=﹣(a+6)2+13,∵﹣8≤a≤0,∴4≤S△PDE≤13,∴△PDE的面积可以等于4到13所有整数,在面积为12时,a的值有两个,所以面积为整数时好点有11个,经过验证周长最小的好点包含这11个之内,所以好点共11个,综上所述:11个好点,P(﹣4,6).点评:此题主要考查了二次函数综合以及两点距离公式以及配方法求二次函数最值等知识,利用数形结合得出符合题意的答案是解题关键.。
2015年福建中考数学真题卷含答案解析
2015年福州市初中毕业会考、高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确选项)1.a的相反数是( )A.|a|B.1C.-aD.√aa2.下列图形中,由∠1=∠2能得到AB∥CD的是( )的解集在数轴上表示正确的是( )3.不等式组{x≥-1,x<24.计算3.8×107-3.7×107,结果用科学记数法表示为( )A.0.1×107B.0.1×106C.1×107D.1×1065.下列选项中,显示部分在总体中所占百分比的统计图是( )A.扇形图B.条形图C.折线图D.直方图6.计算a·a-1的结果为( )A.-1B.0C.1D.-a7.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点8.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为( )A.80°B.90°C.100°D.105°9.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是( )A.0B.2.5C.3D.510.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y 随x的增大而减小,则符合上述条件的函数可能是( )A.正比例函数B.一次函数C.反比例函数D.二次函数第Ⅱ卷(非选择题,共120分)二、填空题(共6小题,每题4分,满分24分)11.分解因式a2-9的结果是.12.计算(x-1)(x+2)的结果是.13.一个反比例函数图象过点A(-2,-3),则这个反比例函数的解析式是.14.一组数据:2015,2015,2015,2015,2015,2015的方差是.15.一个工件,外部是圆柱体,内部凹槽是正方体,如图所示.其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2πcm,则正方体的体积为cm3.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=√2.将△ABC绕点C逆时针旋转60°,得到△MNC,连结BM,则BM的长是.三、解答题(共10小题,满分96分)17.(7分)计算:(-1)2015+sin30°+(2-√3)(2+√3).18.(7分)化简:(a+b)2a 2+b 2-2aba 2+b 2.19.(8分)如图,∠1=∠2,∠3=∠4,求证:AC=AD.20.(8分)已知关于x 的方程x 2+(2m-1)x+4=0有两个相等的实数根,求m 的值.21.(9分)有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛,篮球、排球队各有多少支参赛?22.(9分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,则n的值是;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率..半径为2的☉C,分别交AC,BC于点D,E, 23.(10分)如图,Rt△ABC中,∠C=90°,AC=√5,tan B=12得到DE⏜.(1)求证:AB为☉C的切线;(2)求图中阴影部分的面积.24.(12分)定义:长宽比为√n∶1(n为正整数)的矩形称为√n矩形.下面,我们通过折叠的方式折出一个√2矩形,如图①所示.操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.则四边形BCEF为√2矩形.图①证明:设正方形ABCD的边长为1,则BD=√12+12=√2.由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形,∴∠A=∠BFE.∴EF∥AD.∴BGBD =BFAB,即√2=BF1.∴BF=12.∴BC∶BF=1∶1√2=√2∶1.∴四边形BCEF为√2矩形.阅读以上内容,回答下列问题:(1)在图①中,所有与CH相等的线段是,tan∠HBC的值是;(2)已知四边形BCEF为√2矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN 是√3矩形;(3)将图②中的√3矩形BCMN沿用(2)中的方式操作3次后,得到一个“√n矩形”,则n的值是.图②25.(13分)如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.26.(13分)如图,抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m 与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;S△PAQ,求m的值;(2)若两个三角形面积满足S△POQ=13(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ 的最大值;②PD·DQ的最大值.备用图答案全解全析:一、选择题1.C只有符号不同的两个数叫做互为相反数,所以a的相反数是-a,故选C.2.B根据内错角相等,两直线平行,可知B选项正确,故选B.3.A不等式组的解集为-1≤x<2,故选A.4.D 3.8×107-3.7×107=0.1×107=1×106,故选D. 5.A 扇形图可以反映部分在总体中所占的百分比,故选A. 6.C a ·a -1=a 1-1=a 0=1,故选C.7.B 以点B 为坐标原点,网格线所在直线为坐标轴,建立平面直角坐标系,则点A,C 关于坐标轴对称,故选B.8.B 在以C 为圆心的圆中,AB 是直径,M 为圆周上一点,所以∠AMB=90°,故选B. 9.C 当x ≤2时,中位数是2,此时1+2+3+4+x5=2,解得x=0,符合题意;当2<x<3时,中位数是x,此时1+2+3+4+x5=x,解得x=2.5,符合题意;当x ≥3时,中位数是3,此时1+2+3+4+x5=3,解得x=5,符合题意.故符合题意的x 的值为0,2.5,5,不可能是3,故选C. 评析 本题重点考查平均数和中位数的概念,属于中等难度题.10.D 易知经过点(1,-4),(2,-2)的直线不经过原点,所以所求函数不是正比例函数,A 不符合;若为一次函数或反比例函数,则在自变量x 的某个取值范围内,函数值y 随x 的增大而增大,所以B 、C 不符合题意;只有D 正确,故选D.二、填空题11.答案 (a+3)(a-3) 解析 a 2-9=a 2-32=(a+3)(a-3).12.答案 x 2+x-2解析 (x-1)(x+2)=x 2+2x-x-2=x 2+x-2.13.答案 y=6x解析 设这个反比例函数的解析式为y=kx (k ≠0),代入点A 的坐标,得k=6,故这个反比例函数的解析式为y=6x . 14.答案 0解析 该组数据的平均数为2 015,方差s 2=16×[6×(2 015-2 015)2]=0.15.答案 2√2解析 由题意可知圆柱底面的直径为2 cm,则圆柱底面内接正方形的对角线长为2 cm,边长为√2 cm,故正方体的体积是2√2 cm 3.16.答案 √3+1解析 如图,连结AM,易知△AMC 是等边三角形,所以CM=AM,易证△BMC ≌△BMA,所以∠CBM=∠ABM=45°,∠CMB=∠AMB=30°,所以∠CDM=∠CDB=90°.在Rt △CDB 中,CD=CB ·sin 45°=1,所以BD=CD=1.在Rt △CDM 中,DM=CM ·sin 60°=√3,所以BM=BD+DM=√3+1.评析 解决本题的关键是证出BM ⊥AC,再利用含有特殊角的直角三角形分别求得BD 、DM 的长,从而求出BM,综合性较强,属于难题.三、解答题17.解析 原式=-1+12+(4-3)=12. 18.解析 原式=(a+b)2-2ab a 2+b 2=a 2+b 2+2ab -2ab a 2+b 2=a 2+b 2a 2+b 2=1.19.证明 ∵∠3=∠4,∴∠ABC=∠ABD. 在△ABC 和△ABD 中,{∠1=∠2,AB =AB,∠ABC =∠ABD.∴△ABC ≌△ABD(ASA). ∴AC=AD.20.解析 ∵关于x 的方程x 2+(2m-1)x+4=0有两个相等的实数根,∴Δ=(2m -1)2-4×1×4=0. ∴2m -1=±4. ∴m=52或m=-32.21.解析 解法一:设有x 支篮球队和y 支排球队参赛, 依题意得{x +y =48,10x +12y =520.解得{x =28,y =20.答:篮球、排球队各有28支与20支.解法二:设有x 支篮球队,则排球队有(48-x)支, 依题意得10x+12(48-x)=520. 解得x=28. 48-x=48-28=20.答:篮球、排球队各有28支与20支. 22.解析 (1)相同. (2)2.(3)由树状图可知:共有12种结果,且每种结果出现的可能性相同.其中两次摸出的球颜色不同(记为事件A)的结果共有10种,∴P(A)=1012=56. 23.解析 (1)过点C 作CF ⊥AB 于点F, 在Rt △ABC 中,tan B=AC BC =12, ∴BC=2AC=2√5.∴AB=√AC 2+BC 2=√(√5)2+(2√5)2=5. ∴CF=AC ·BC AB=√5×2√55=2. ∴AB 为☉C 的切线.(2)S 阴影=S △ABC -S 扇形CDE =12AC ·BC-nπr 2360 =12×√5×2√5-90π×22360=5-π. 24.解析 (1)GH,DG;√2-1.(2)证明:∵BF=√22,BC=1,∴BE=√BF 2+BC 2=√62.由折叠性质可知BP=BC=1,∠FNM=∠BNM=90°,则四边形BCMN 为矩形,∴∠BNM=∠F. ∴MN ∥EF.∴BP BE =BN BF ,即BP ·BF=BE ·BN. ∴√62BN=√22.∴BN=√3. ∴BC∶BN=1∶√3=√3∶1. ∴四边形BCMN 是√3矩形.(3)6.25.解析图① (1)证明:∵DM ∥EF,∴∠AMD=∠AFE.∵∠AFE=∠A,∴∠AMD=∠A.∴DM=DA.(2)证明:∵D,E 分别为AB,BC 的中点,∴DE ∥AC.图② ∴∠DEB=∠C,∠BDE=∠A.又∠AFE=∠A,∴∠BDE=∠AFE.∴∠BDG+∠GDE=∠C+∠FEC.∵∠BDG=∠C,∴∠EDG=∠FEC.∴△DEG ∽△ECF.(3)解法一:如图③所示,∵∠BDG=∠C=∠DEB,∠B=∠B,图③ ∴△BDG ∽△BED.∴BD BE =BG BD ,即BD 2=BE ·BG.∵∠A=∠AFE,∠B=∠CFH,∴∠C=180°-∠AFE-∠CFH=∠EFH.又∵∠FEH=∠CEF,∴△EFH ∽△ECF.∴EH EF =EF EC ,即EF 2=EH ·EC. ∵DE ∥AC,DM ∥EF,∴四边形DEFM 是平行四边形.∴EF=DM=AD=BD.∵BE=EC,∴EH=BG=1.解法二:如图④,在DG 上取一点N,使DN=FH.图④ ∵∠A=∠AFE,∠ABC=∠CFH,∠C=∠BDG,∴∠EFH=180°-∠AFE-∠CFH=∠C=∠BDG.∵DE ∥AC,DM ∥EF,∴四边形DEFM 是平行四边形.∴EF=DM=AD=BD.∴△BDN ≌△EFH.∴BN=EH,∠BND=∠EHF.∴∠BNG=∠FHC.∵∠BDG=∠C,∠DBG=∠CFH,∴∠BGD=∠FHC.∴∠BNG=∠BGD.∴BN=BG.∴EH=BG=1.解法三:如图⑤,取AC 中点P,连结PD,PE,PH,则PE ∥AB.图⑤∴∠PEC=∠B.又∠CFH=∠B,∴∠PEC=∠CFH.又∠C=∠C,∴△CEP ∽△CFH.∴CE CF =CP CH .∴△CEF ∽△CPH.∴∠CFE=∠CHP.由(2)可得∠CFE=∠DGE,∴∠CHP=∠DGE.∴PH ∥DG.∵D,P 分别为AB,AC 的中点,∴DP ∥GH,DP=12BC=BE.∴四边形DGHP 是平行四边形.∴DP=GH=BE.∴EH=BG=1.解法四:如图⑥,作△EHF 的外接圆交AC 于另一点P,连结PE,PH.图⑥ 则∠HPC=∠HEF,∠FHC=∠CPE.∵∠B=∠CFH,∠C=∠C,∴∠A=∠CHF.∴∠A=∠CPE.∴PE ∥AB.∵DE ∥AC,∴四边形ADEP 是平行四边形.∴DE=AP=12AC.∴DE=CP.由(2)可得∠GDE=∠CEF,∠DEB=∠C,∴∠GDE=∠CPH.∴△DEG ≌△PCH.∴GE=HC.∴EH=BG=1.解法五:如图⑦,取AC 中点P,连结PE,PH,则PE ∥AB.图⑦∴∠PEC=∠B.又∠CFH=∠B,∴∠PEC=∠CFH.又∠C=∠C,∴△CEP ∽△CFH.∴CE CF =CP CH .∴△CEF ∽△CPH.∴∠CEF=∠CPH.由(2)可得∠CEF=∠EDG,∠C=∠DEG.∵D,E 分别是AB,BC 的中点,∴DE=12AC=PC.∴△DEG ≌△PCH.∴CH=EG.∴EH=BG=1.26.解析 (1)x=2;45°.(2)设直线PQ 交x 轴于点B,分别过点O,A 作PQ 的垂线,垂足分别是E,F.显然当点B 在OA 的延长线上时,S △POQ =13S △PAQ 不成立.①当点B 落在线段OA 上时,如图1,图1S △POQ S △PAQ =OE AF =13. 由△OBE ∽△ABF 得OB AB =OE AF =13. ∴AB=3OB.∴OB=1OA.由y=x 2-4x 得点A(4,0), ∴OB=1.∴B(1,0).∴1+m=0.∴m=-1.②当点B 落在AO 的延长线上时,同理可得OB=12OA=2.图2∴B(-2,0).∴-2+m=0.∴m=2.综上所述,当m=-1或2时,S△POQ=1S△PAQ.3(3)①解法一:过点C作CH∥x轴交直线PQ于点H,如图3,可得△CHQ是等腰三角形.∵∠CDQ=45°+45°=90°,∴AD⊥PH.∴DQ=DH.∴PD+DQ=PH.过点P作PM⊥直线CH于点M,则△PMH是等腰直角三角形.∴PH=√2PM.∴当PM最大时,PH最大.当点P在抛物线顶点处时,PM取最大值,此时PM=6.∴PH的最大值为6√2,即PD+DQ的最大值为6√2.图3解法二:如图4,过点P作PE⊥x轴,交AC于点E,作PF⊥CQ于点F,图4 则△PDE,△CDQ,△PFQ 是等腰直角三角形.设点P(x,x 2-4x),则E(x,-x+4),F(2,x 2-4x). ∴PE=-x 2+3x+4,FQ=PF=|2-x|.∴点Q(2,x 2-5x+2).∴CQ=-x 2+5x.∴PD+DQ=√22(PE+CQ) =√22(-2x 2+8x+4) =-√2(x-2)2+6√2(0<x<4).∴当x=2时,PD+DQ 的最大值为6√2.②由①可知:PD+DQ ≤6√2.设PD=a,则DQ ≤6√2-a.∴PD ·DQ ≤a(6√2-a)=-a 2+6√2a=-(a-3√2)2+18.∵当点P 在抛物线的顶点时,a=3√2,∴PD ·DQ ≤18.∴PD ·DQ 的最大值为18.附加说明:(对a 的取值范围的说明)设P 点坐标为(n,n 2-4n),延长PM 交AC 于N. PD=a=√22PN=√22[4-n-(n 2-4n)] =-√2(n 2-3n-4)=-√2(n -3)2+25√2. ∵-√22<0,0<n<4,∴当n=32时,有最大值,为258√2.∴0<a ≤258√2. 评析 在第(2)问中,因为△PQA 和△PQO 共用底边PQ,可以作高,把面积的比转换为高的比,再利用相似三角形求得OA 和OB 的关系,构造方程,求出m 的值;第(3)问构造等腰直角三角形是解题的突破口,综合性较强,属于难题.。
陕西省2015年中考数学试题(附答案)
2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( ) A.1 B.23- C.0 D.32 2.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =∙B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-46.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>x x x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF 为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
2015年河北省中考数学试题及答案word版
2015年河北省中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333...D. 22/7答案:B2. 一个等腰三角形的底边长为6cm,腰长为8cm,其周长是多少?A. 22cmB. 26cmC. 30cmD. 40cm答案:B3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个数的平方是25,这个数是多少?A. 5B. -5C. 5或-5D. 以上都不对答案:C5. 下列哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 菱形答案:D6. 下列哪个选项是方程2x-3=7的解?A. x=-1B. x=5C. x=3D. x=10答案:B7. 一个圆的直径是10cm,其半径是多少?A. 5cmB. 10cmC. 15cmD. 20cm答案:A8. 一个扇形的圆心角是60°,半径是5cm,其面积是多少?A. 5π cm²B. 10π cm²C. 15π cm²D. 25π cm²答案:B9. 一个长方体的长、宽、高分别是2cm、3cm、4cm,其体积是多少?A. 24cm³B. 26cm³C. 28cm³D. 30cm³答案:A10. 一个正数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 9答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。
答案:212. 一个数的绝对值是5,这个数可能是______或______。
答案:5或-513. 一个数的相反数是-7,这个数是______。
答案:714. 一个数除以-2等于3,这个数是______。
答案:-615. 一个数的平方根是4,这个数是______。
2015河北中考数学试卷及答案
一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【考点】有理数的混合运算.【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.【点评】此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数【考点】立方根;相反数;倒数;无理数.【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.【点评】本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a5【考点】幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.【分析】A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学记数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A. B.C.D.【考点】由三视图判断几何体.【分析】对所给四个几何体,分别从主视图和俯视图进行判断.【解答】解:从主视图可判断A,C、D错误.故选B.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE【考点】三角形的外接圆与外心.【分析】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.【点评】此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【考点】平行线的性质;垂线.【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.【解答】解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.【点评】此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.【考点】概率公式.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【考点】两条直线相交或平行问题.【专题】计算题.【分析】先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P 到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【考点】图形的剪拼.【专题】压轴题.【分析】根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.【解答】解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选:A.【点评】本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a= ±1 .【考点】绝对值;零指数幂.【分析】先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.【解答】解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.【点评】本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015•河北)若a=2b≠0,则的值为.【考点】分式的化简求值.【专题】计算题.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= 24°.【考点】多边形内角与外角.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= 9 .【考点】等腰三角形的性质.【专题】压轴题.【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A 2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.【点评】考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.【考点】平行四边形的判定;命题与定理.【分析】(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?【考点】一次函数的应用.【分析】(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.+210;【解答】解:(1)根据题意得:y=4x大=6时,y=4×6+210=234,(2)①当x大∴y=3x+234;小+234≤260,②依题意,得3x小解得:,为自然数,∵x小∴x最大为8,即最多能放入8个小球.小【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,sA(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25 %(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】方差;统计表;折线统计图;算术平均数;中位数.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.【点评】本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为yc ,求yc的最大值,此时l上有两点(x1,y1),(x2,y 2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:yC=﹣h2+1,则由二次函数的最值的求法易得yc的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.【解答】解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则yC=﹣h2+1.当h=0时,yC=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A (﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.【点评】本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答(3)题时,注意对h的值根据实际意义进行取舍.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P 在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.【考点】圆的综合题.【专题】压轴题.【分析】(1)在,当OQ过点B时,在Rt△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间的距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x的取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在Rt△OSK中,求出OS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣在Rt △KGO′中,∠O′=30°,求得KG=KO′=﹣,在Rt△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα的值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.【解答】解:发现:(1)在,当OQ过点B时,在Rt△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间的距离最小,∴PA的最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,∴S扇形KRQ==,在Rt△RKE中,RE=RK•sin60°=,∴S△PRK =•RE=,∴S阴影=+;拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x的取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,则∠KSO=∠KTB=90°,△OSK中,作KG⊥OO′于G,在RtOS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在Rt△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在Rt△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα的值为:或或.【点评】本题考查了矩形的性质,直线与圆的位置关系,勾股定理,锐角三角函数,根据题意正确的画出图形是解题的关键.。
2015年全国中考数学试卷分类汇编专题1 有理数
2015年全国中考数学试卷解析分类汇编专题1 有理数一.选择题1.(2015•安徽, 第1题4分)在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B. 2 C.﹣1D. 3 2.(2015•安徽, 第3题4分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B. 1.62×106C. 1.62×108D.0.162×109 3.(2015•海南, 第1题3分)﹣2015的倒数是()A.﹣ B. C.﹣2015 D. 20154.(2015•海南,第6题3分)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是() A. 4 B. 5 C. 6 D. 75.(2015•鄂州, 第1题3分)﹣的倒数是()A. B. 3 C.﹣3 D.﹣6.(2015•鄂州, 第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A. 3.9×104 B. 3.94×104 C.39.4×103 D. 4.0×1047.(2015•大连, 第1题3分)﹣2的绝对值是()A. 2 B.﹣2 C. D.8.(2015•湖北, 第2题3分)中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为()A. 3.7×106 B. 3.7×105 C.37×104 D. 3.7×1049.(2015•宜昌,第3题3分)陆地上最高处是珠穆朗玛峰顶,高出海平面8848m,记为+8848m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为4m记作+4m,那么向左运动4m记作()14. (2015江苏常州第1题2分)-3的绝对值是A .3B .-3C .31D .-31 15. (2015江苏淮安第1题)2的相反数是( )A 、21B 、21- C 、2 D 、-2 16. (2015江苏连云港第1题3分)-3的相反数是( )A .3B .-3C .13D .-1317. (2015江苏连云港第3题3分)2014年连云港高票当选全国“十大幸福城市”,在江苏十三个省辖市中居第一位,居民人均可支配收入约18 000元.其中“18 000”用科学记数法表示为( )A .0.18×105B .1.8×103C .1.8×104D .18×10318. (2015江苏扬州第2题3分)2015年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为( )A 、71049.7⨯B 、61049.7⨯C 、6109.74⨯D 、710749.0⨯ 020、(2015年浙江省义乌市中考,1,4分)计算3)1(⨯-的结果是A. -3B. -2C. 2D. 321、(2015年浙江省义乌市中考,2,4分)据报道,2015年第一季度,义乌电商实现交易额约为26 000 000 000元,同比增长22%,将26 000 000 000用科学计数法表示为A. 2.6×1010B. 2.6×1011C. 26×1010D. 0.26×101122、(2015年浙江舟山1,3分) 计算23-的结果是【 】A. -1B. 2-C. 1D. 223、(2015年浙江舟山3,3分) 截至今年4月10日,舟山全市蓄水量为84 327000m 3,数据84 327 000用科学计数法表示为【 】A. 0.8437×108B. 8.437×107C. 8.437×108D. 8437×10324.(2015•东营,第1题3分)|﹣|的相反数是()A. B.﹣C. 3 D.﹣3A.﹣2 B. 2 C.﹣ D.27.(2015•云南,第4题3分) 2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C. 1.758×105D.1.758×10428.(2015•山东德州,第1题3分) ||的值是()A.B.1/2 C.﹣2 D. 229.(2015•山东德州,第3题3分)2014年德州市农村中小学校含标准化工程开工学校项目356个,开工面积56.2万平方米,开式面积量创历年最高,56.2万平方米用科学记数法表示正确的是()A.5.62×104m2 B. 56.2×104m2C. 5.62×105m2D.0.562×104m2 30.(2015•山东德州,第4题3分)下列运算正确的是()A.﹣=B.b2•b3=b6C.4a﹣9a=﹣5 D.(ab2)2=a2b4 31.(2015•山东莱芜,第1题3分)﹣3的相反数是()A. 3 B.﹣3 C. D.﹣32.(2015•山东莱芜,第2题3分)将数字2.03×10﹣3化为小数是()A. 0.203 B. 0.0203 C. 0.00203 D. 0.00020333.(2015•山东莱芜,第3题3分)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.(a3)2=a634.(2015•山东泰安,第1题3分)若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B. 1 C. 5 D.﹣535.(2015•山东泰安,第2题3分)下列计算正确的是()A.a4+a4=a8B.(a3)4=a7C.12a6b4÷3a2b﹣2=4a4b2D.(﹣a3b)2=a6b236.(2015•山东泰安,第4题3分)地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B. 5.1×109C. 5.1×108D.0.51×10737.(2015•四川巴中,第1题3分)﹣2的倒数是()A. 2 B. 1/2 C.-1/2 D.﹣238.(2015•四川巴中,第2题3分)下列计算正确的是()A.(a3)3=a6B. a6÷a3=a2C. 2a+3b=5ab D.a2•a3=a5 39.(2015•四川巴中,第4题3分)若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A. a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 40.(2015•四川成都,第1题3分)﹣3的倒数是()A.﹣1/3 B 1/3 C.﹣3 D.341.(2015•四川成都,第3题3分)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相,新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将建的4个航站楼的总面积约为126万平方米,用科学记数法表示为()A.126×104B. 1.26×105C. 1.26×106D.1.26×10742.(2015•四川成都,第4题3分)下列计算正确的是()A.a2+a2=a4B. a2•a3=a6C.(﹣a2)2=a4D.(a+1)2=a2+1 43.(2015•四川成都,第7题3分)实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+b B. a﹣b C. b﹣a D.﹣a﹣b44.(2015•怀化,第1题4分)某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B. 10℃ C. 14℃ D.﹣14℃45.(2015•娄底,第1题3分)2015的倒数为()A.﹣2015 B. 2015 C.﹣ D.46.(2015•娄底,第2题3分)若|a﹣1|=a﹣1,则a的取值范围是() A.a≥1 B.a≤1 C. a<1 D. a>147.(2015•长沙,第3题3分)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承动力约为185000人次,则数据185000用科学记数法表示为()A. 1.85×105 B. 1.85×104 C. 1.8×105 D.18.5×104 48.(2015•本溪,第1题3分)实数﹣的相反数是()A.1/2 B.-1/2 ﹣C. 2 D.﹣249.(2015•昆明第1题,3分)﹣5的绝对值是()A.5 B.﹣5 C.1/5 D.±550.(2015•曲靖第1题,3分)﹣2的倒数是()A.﹣1/2 B.﹣2 C.1/2 D.251。
2015中考数学模拟试题含答案
2015年中考数学模拟试卷一、选择题(本大题满分36分,每小题3分.) 1. 2 sin 60°的值等于 A. 1B. 23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2 B. 1∶4 C. 1∶3 D. 2∶310. 下列各因式分解正确的是A. x 2+ 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2) D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°,则图中阴影部分的面积之和为A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第12题图)(第17题图)(第18题图)(第7题图)° (第11题图)22-1n m mn m n -÷+)(20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)(第26题图)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°,∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分。
2015年数学中考复习-----第二篇 中考基础题型综合训练(含答案)
第12题图学校:_________ 班级:_________ 姓名:_________ 得分:_________第二篇 2015中考基础题型综合训练(共8组训练题)题组训练一一、选择题1.-5的倒数是( )A .51-B .51C .-5D .52.下列计算错误的是( )A .-(-2)=2B .822=C .2x 2+3x 2=5x 2D .(a 2)3=a 53.(2011·广东湛江)第六次全国人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科 学记数法表示为( ) A .569.910⨯ B .60.69910⨯ C .66.9910⨯ D .76.9910⨯4.下列图形中,不是..轴对称图形的是( )5.如图,直线y kx b =+交坐标轴于A ,B 两点,则不等式kx +b >的解集是() A .x >-2 B .x >3 C .x <-2D .x <36.下列命题中,错误的是( )A .矩形的对角线互相平分且相等B .对角线互相垂直的四边形是菱形C .等腰梯形的两条对角线相等D .等腰三角形底边上的中点到两腰的距离相等7.如图,菱形ABCD 的周长为40cm ,DE ⊥AB ,垂足为E ,3sin 5A =,则下列结论正确的有( )①DE =6cm ②BE =2cm ③菱形面积为60cm 2④410cm BD =A .1个B .2个C .3个D .4个8.如图,在ABC ∆中,AD 是BC 边上的高,︒=∠30C ,32+=BC ,21tan =B ,那么AD 的长是( ) A .1B .21C .2321+D .331+9.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A .12B .13C .18D .1610.(2011·云南玉溪)如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,若∠ABC =50°,则∠BDC =( ) A .50°B .45°C .40°D .30°11.(2011·贵州毕节)一次函数)0(≠+=k k kx y 和反比例函数)0(≠=k xky 在同一直角坐标系中的图象大 致是( )12.(2010·湖北孝感)如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题13.因式分解:24x -=____________14.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表:如果你是电视台负责人,在现场直播时,将优先考虑转播____________比赛.15.△ABC 的边BC 的垂直平分线MN 交AC 于D ,若=6cm ,AB =4cm ,则AC最喜欢观看的项目游 泳 体 操 球 类 田 径 人 数307520095ABCD第7题图DCBEAA .B .C .D .xxxxyyyyOOOOD C B A第8题图A B D C ADCBO第10题图Oxy(20)A -, (03)B ,第5题图△ADB 的周长=________cm . 16.如图,王虎使一长为4cm ,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A 位置变化为21A A A →→,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°,点A 翻滚到A 2位置时共走过的路径长是____________厘米...三、解答题:17.计算:201()(32)2sin 3032---+︒+-18.(2011·四川雅安)先化简下列式子,再从2,-2,1,0,-1中选择一个合适的数进行计算.x x x x x 22)242(2+÷-+-19.(2011·湖北孝感)近几年孝感市加大中职教育投入力度,取得了良好的社会效果.某校随机调查了九年级m 名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计图.请你根据图中信息解答下列问题:(1)m =____________; (2)扇形统计图中“职高”对应的扇形的圆心角α=____________;(3)请补全条形统计图; (4)若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?20.今年以来,某地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图所示),根据图象解下列问题:(1)某用户四月份的用电量是150度,他应交电费多少元?(2)某用户六月份的用电量是五月份的用电量的2倍,且两个月的电费共165元.求五、六月份的用电量各是多少度?学校:_________班级:_________姓名:_________得分:_________DABN C M第15题图其他10%职高 a 普高60%48 12 16 20 24 28普高职高其他选项学生数(名)第16题图CBA 2A 1A╮30°第19题图第20题图y (元)x (度)89 65100 130第二篇 2015中考基础题型综合训练题组训练二一、选择题1.-3的相反数是( )A .3B .-3C .13D .13-2.(2011·广西桂林)下列运算正确的是( )A .3x 2-2x 2=x 2B .(-2a )2= -2a 2C .(a +b )2=a 2+b 2D .-2(a -1)= -2a -13.(2011·四川重庆)下列图形中,是中心对称图形的是( )A .B .C .D .4.(2011·贵州毕节)函数12-+=x x y 中自变量x 的取值范围是( ) A .x ≥-2B .x ≥-2且x ≠1C .x ≠1D .x ≥-2或x ≠15.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲 票比乙票贵2元,则甲票、乙票的票价分别是( ) A .甲票10元∕张,乙票8元∕张 B .甲票8元∕张,乙票10元∕张 C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张6.如图,已知点A (-1,0)和点B (1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,则满足这样条件的点P 共有( ). A .2个 B .4个C .6个D .7个7.(2011·广西玉林)如图,是反比例函数1k y x =和2k y x =(12k k <)在第一象限的图象,直线AB //x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则21k k -的值是( )A .1B .2C .4D .88.初三·十班五个劳动竞赛小组一天植树的棵数是:10,10,12,x ,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是( ) A .12B .10C .9D .89.如图,在正方形ABCD 的外侧,作等边△ADE ,BE 、CE 分别交AD 于G 、H ,设△CDH 、△GHE 的面积分别为S 1、S 2,则( ) A .3S 1 = 2S 2 B .2S 1 = 3S 2 C .2S 1 =3S 2 D .3S 1 = 2S 210.将一块弧长为π 的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为( )A .3B .32C .5D .5211.(2011·福建莆田)如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD边上的点F 处,若AB =4,BC =5,则tan ∠AFE 的值为( )A .43B .35C .34D .4512.如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A 6在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( ) A .4236a π+ B .8433a π+C .433a π+ D .4233a π+ 二、填空题13.因式分解:2m 2-8n 2 =____________.14.如图,梯形ABCD 中,AB ∥CD ,AD =CD ,E 、F 分别是AB 、BC 的中点,若∠1=35︒,则∠D =_______. 15.已知abc ≠0,且k bca a cbc b a =+=+=+,则k =______________.第6题图ABO 2 11yx第9题图ABCDEF第11题图第14题图BACDF E 1 第16题图·PCBOA图1图2A 1A 2A 3 A 4A 5A 6 A 1A 2 A 3A 4 A 5A 6l第7题图OxA By16.(2011·内蒙古赤峰)如图,直线P A 过半圆的圆心O ,交半圆于A 、B 两点,PC 切半圆于点C ,已知PC =3, PB =1,则该半圆的半径为____________. 三、解答题(每小题6分,共18分)17.计算:|345tan |32)31()21(10-︒-⨯+--.18.化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围.19.小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了下面的统计图1和图2.请你根据图中提供的信息,解答下列问题:图1 图2(1)计算本班骑自行车上学的人数,补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).20.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?学校:_________ 班级:_________ 姓名:_________得分:_________第二篇 2015中考基础题型综合训练题组训练三一、选择题1.2012-的相反数是( )A .2012B .2012-C .20121D .20121-其他交通方式乘公共汽车 骑自行车 步行人数ACβD B 第20题图A C DBβ αB C A 第10题图 2.以“和谐之旅”为主题北京奥运会火炬接力,传递总里程约为137000千米,这个数据用科学记数法可表示为( ) A .313.710⨯千米B .413.710⨯千米C .51.3710⨯千米D .613.710⨯千米3.(2011·湖北宜昌)要调查城区九年级8 000名学生了解禁毒知识的情况,下列调查方式最合适的是( )A .在某校九年级选取50名女生B .在某校九年级选取50名男生C .在某校九年级选取50名学生D .在城区8 000名九年级学生中随机选取50名学生4.一几何体的三视图如图,这个几何体是( )A .圆锥B .圆柱C .三棱锥D .三棱柱 5.我市5月份某一周每天的最高气温统计如下: 最高气温(℃)28 29 30 31 天 数1 1 32 则这组数据(最高气温)的众数与中位数分别是( )A .29,30B .30,29C .30,30D .30,316.如图a ∥b ,M ,N 分别在a ,b 上,P 为两平行线间一点,那么123∠+∠+∠=( ) A .180° B .270° C .360°D .540° 7.下列曲线中,表示y 不是x 的函数是( )8.如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动 两个转盘各一次(指针落在等分线上重转),当转盘停止后, 则指针指向的数字和为偶数的概率是( ) A .12 B .29 C .49D .139.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ) A .2(1)3y x =--- B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++10.(2011·贵州毕节)如图,在△ABC 中,AB =AC =10,CB =16,分别以AB 、AC 为直径作半圆,则图中阴影部分面积是( )A .4850-πB .4825-πC .2450-πD .24225-π 11.方程xx x 2142=-+-正根的个数( ) A .1 B .2 C .3 D .412.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( ) A .(4,0)B .(5,0)C .(0,5)D .(5,5)二、填空题13.反比例函数k y x=的图象过点(2,3)-,则k =____________. 14.如图,AB =AC ,∠BAC =120°,AB 的垂直平分线交BC 于点D ,那么∠ADC=______.15.在实数范围内定义运算“☆”,其规则为:22a b a b =-☆,则方程(43)13x =☆☆的解为x =____________.16.(2011·广东深圳)如图,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2), 直线AC 的解析式为:112y x =-,则tanA 的值是_________.三、解答题17.计算:-22+27+(π-1)0-3×︒+-60tan 1A . x yOB . xyOC . xyOD .xyO0 1 2 3 x y 1 23 …第12题图 a bMP N1 2 3 第6题图俯视图 左 视 图 主 视 图 第4题图 第9题图123678A B CxyO第16题图 第14题图 A B CD18.请你先将式子)111(1220122-+÷+-a a a a 化简,然后从1,2,3中选择一个数...作为a 的值代入其中求值.19.某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下) (1)求出D 级学生的人数占全班总人数的百分比; (2)求出扇形统计图中C 级所在的扇形圆心角的度数; (3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?20.(2011·广东株洲)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交B C 于Q .(1)求证:OP=OQ ;(2)若AD =8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.学校:_________ 班级:_________ 姓名:_________ 得分:_________第二篇 2015中考基础题型综合训练题组训练四一、选择题1.-2的绝对值是( )A .-2B .2C .12D .12-2.已知点P (-2,3)关于y 轴的对称点为Q(a ,b ),则a +b 的值是( )A .1B .-1C .5D .-53.今年1月10日以来的低温雨雪冰冻,造成全国19个省(市、自治区)发生不同程度的灾害,直接经济损失已达到了537.9亿元,537.9亿元用科学记数法表示为( ) A .5.379×10亿元B .5.379×102亿元C .5.379×109亿元D .5.379×104亿元第19题图CDA 26%B 50%第20题图4.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.(2011·广东湛江)下列计算正确的是( )A .532a a a =⋅B .2a a a +=C .235()a a =D .22(1)1a a a +=+ 6.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:金额(元) 20 30 35 50 100 学生数(人)3751510则在这次活动中,该班同学捐款金额的众数及中位数是( ) A .30元,50元 B .50元,35元, C .50元,50元D .100元,50元7.如图,在三角形ABC 中,AB >AC ,D 、E 分别是AB 、AC 上的点,△ADE 沿线段DE 翻折,使点A 落在边BC 上,记为A ′.若四边形ADA ′E 是菱形,则下列说法正确的是( ) A .DE 是△ABC 的中位线 B .AA ′是BC 边上的中线 C .AA ′是BC 边上的高D .AA ′是△A BC 的角平分线8.如图,矩形ABCD中,AB =6,AD =8,P 是AD 边上的动点,PE ⊥AC ,PF ⊥BD ,则PE +PF 的值为( ) A .245 B .4 C .54 D .2659.(2011·重庆江津)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <-210.已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点(-1,2),(1,0).下列结论正确的是( )A .当x >0时,函数值y 随x 的增大而增大B .当x >0时,函数值y 随x 的增大而减小C .存在一个负数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x > x 0时,函数值y 随x 的增大而增大D .存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x >x 0时,函数值y 随x 的增大而增大11.(2011·四川雅安)已知一次函数b kx y +=,k 从2,-3中随机取一个值,b 从1,-1,-2中随机取一个值,则该一次函数的图象经过二、三、四象限的概率为( )A .31B .32C .61D .65 12.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB =45°,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点,设OP =x ,则x 的取值范围是( ) A .O ≤x ≤2 B .2-≤x ≤2 C .-1≤x ≤1D .x >2二、填空题13.因式分解:32a ab -=____________.14.图1是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(图2),那么在Rt △ABC中,sin ∠B 的值是____________.15.如图所示的圆柱体中底面圆的半径是2π,高为2,若一只小虫从A 点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是____________.(结果保留根号) 16.如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1, 平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,……,依次类推,则平行四边形ABC n O n 的面积为____________.三、解答题 17.(2011·四川广元)计算:(-12)-1+sin 60°-|-3|+(π-2)0第14题图图1图2 ABCP AOB第12题图D CAB第15题图第8题图AB C DE A′第7题图 APDC D O D F DE D B D 第16题图ABCDC 1O 2 C 2……O 1O 318.解方程113162=---x x19.(2011·四川雅安)如图,过y 轴上点A 的一次函数与反比例函数相交于B 、D 两点,)3,2(-B ,轴x BC ⊥于C ,四边形OABC 面积为4.(1)求反比例函数和一次函数的解析式; (2)求点D 的坐标; (3)当x 在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)20.(2010·重庆潼南县)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作__________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?学校:_________ 班级:_________ 姓名:_________ 得分:_________第二篇 2015中考基础题型综合训练题组训练五一、选择题1.15-的相反数是( )A .5B .5-C .15-D .152.(2011·广东深圳)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .5.6×103 B .5.6×104 C .5.6×105 D .0.56×105 3.下列运算中,正确的是( )A .4a -3a =1B .a ·a 2=a 3C .3a 6÷a 3=3a 2D .(ab 2)2=a 2b 24.下列四张扑克牌的牌面,不是..中心对称图形的是( )A .B .C .D .5.如图,在□ABCD 中,E 是BC 的中点,且∠AEC =∠DCE ,则下列结论不正确...的是( ) A .S △AFD =2S △EFB B .12BF DF =C .四边形AECD 是等腰梯形D .∠AEB =∠ADC6.(2011·山东烟台)如果2(21)12a a -=-,则( )ADCB第5题图E FyB D A D x DD D O DC O第19题图DCBAE H第10题图A .a <12B .a ≤12C .a >12D .a ≥127.下列四个三角形,与右图中的三角形相似的是( )8.(2011·黑龙江黑河)若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是反比例函数y =x3图象上的点,且x 1<x 2<0<x 3, 则y 1、y 2、y 3的大小关系正确的是( ) A .y 1>y 2>y 3 B .y 3>y 1>y 2 C .y 2>y 1>y 3 D .y 3>y 2>y 1 9.(2011·四川眉山)如图,P A 、PB 是⊙O 的切线,AC 是OO 的直径,∠P =500,则∠BOC 的度数为( ) A .50°B .25°C .40°D .60° 10.如图,已知ABC △中,45ABC ∠=︒,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( ) A .6B .4C .23D .511.(2011·甘肃兰州)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 12.小明从图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( ) A .2个 B .3个 C .4个 D .5个二、填空题13.分解因式:34x x -=____________.14.方程x (x -1)=x 的解是____________. 15.(2011·辽宁本溪)根据图中数字的规律,在最后一个空格中填上适当的数字.16.(2011·甘肃兰州)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m , 半圆的直径为4m ,则圆心O 所经过的路线长是____________m .三、解答题 17.(2011·湖北黄石)计算:(-2011)0+(22)-1-22--2cos60018.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指 区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一 个数字为止.(1)请你通过画树状图的方法求小颖获胜的概率.(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.第6题图A .B .C .D .1甲乙238976ABCPO第9题图第12题图2- 1-1 2y x13x =OOO Ol1 1 23 9 305 25 1307 49 350981第18题图19.(2011·辽宁沈阳)小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面的高度OO′=2米.当吊臂顶端由A 点抬升至A′点(吊臂长度不变)时,地面B 处的重物(大小忽略不计)被吊到B′处,紧绷着的吊绳A′B ′=AB .AB 垂直地面O ′B 于点B ,A′B ′垂直地面OB ′于点C ,吊臂长度OA ′=OA =10米,且3cos 5A ∠=,sin ∠A ′=12.(1)求此重物在水平方向移动的距离BC .(2)求此重物在竖直方向移动的距离B′C .(结果保留要号) 20.(2011·山东滨州)如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN ∥BC .设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.学校:_________ 班级:_________ 姓名:_________ 得分:_________第二篇 2015中考基础题型综合训练题组训练六一、选择题 1.-5的相反数是( )A .-5B .5C .15-D .152.下列计算正确的是( )A .623a a a =⋅B .1055a a a =+C .2236)3(a a =-D .723)(a a a =⋅3.2011年第一季度,我省固定资产投资完成475.6亿元,这个数据用科学记数法可表示为( )A .947.5610⨯元B .110.475610⨯元C .104.75610⨯元D .94.75610⨯元4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.若二次根式12x +有意义,则x 的取值范围为( )A .x ≥12B .x ≤12C .x ≥12-D .x ≤12-6.某校篮球班21名同学的身高如下表:身高(cm ) 180 186 188 192 208 人数(个)46542 则该校篮球班21名同学身高的众数和中位数分别是(单位:cm )( )A .186,186B .186,187C .186,188D .208,1887.(2011 ·福建三明)用半径为12cm ,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为( ) A .1.5cmB .3cmC .6D .12cmF E NM OCBAABA′CO′B′O第20题图8.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数;取出的数是3的倍数的概率是( ) A .15B .310C .13D .129.(2011·重庆市潼南)如图,在平行四边形ABCD 中(AB ≠BC ),直线EF 经过其对角线的交点O ,且分别交AD 、BC 于点M 、N ,交BA 、DC 的延长线 于点E 、F ,下列结论:①AO =BO ;②OE =OF ; ③△EAM ∽△EBN ; ④△EAO ≌△CNO ,其中正确的是( ) A .①②B .②③C .②④D .③④10.(2011·青海)如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADB +∠EDC =120°,BD =3,CE =2,则△ABC 的边长为( )A .9B .12C .16D .1811.已知二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论:①abc >0,②b 2-4ac<0,③a -b +c >0,④4a -2b +c <0,其中正确结论的个数是( ) A .1 B .2 C .3 D .412.直线333y x =+与x 轴、y 分别相交于A 、B 两点,圆心P 的坐标为(1,0),圆P 与y 轴相切于点O .若将圆P 沿x 轴向左移动,当圆P 与该直线相交时,横坐标为整数的点P′的个数是( ) A .2B .3C .4D .5二、填空题13.因式分解:a 2b+2ab+b =________________.14.若一次函数m x m y 23)12(-+-=的图象经过一、二、四象限,则m 的取值范围是____________.15.如图,在已建立直角坐标系的4×4正方形方格纸中,△ABC 是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P 、A 、B 为顶点的三角形与△ABC 相似(全等除外),则格点P 的坐标是_______________.16.如图,点A 1、A 2、A 3、……A n 在2y x =上,点B 1、B 2、B 3、……B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、 △A n B n -1B n 都为等腰直角三角形(点B 0是坐标原点),则△A 2012B 2011B 2012的腰长=________.三、解答题17.计算:023)14.3(45sin 48)31(8)19(--︒-+-⨯----π18.(2011·广东肇庆)化简,再求值:)211(342--⋅--a a a ,其中3-=a .19.某市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:等级 成绩(分) 频数(人数) 频率 A 90~100 19 0.38 B 75~89 m x C 60~74 n y D 60以下3 0.06 合计501.00B 40%ACDA BCO xy11 2 3 2 3 4 4 第15题图ABCDEFMNO第9题图ABCDE 第10题图第12题图BAOPxyOyx-1 第11题图第19题图请你根据以上图表提供的信息,解答下列问题:(1)m =________,n =_________,x =_________,y =_________; (2)在扇形图中,C 等级所对应的圆心角是____________度; (3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?20.如图,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90º,D 在AB 上.(1)求证:△AOC ≌△BOD ;(2)若AD =1,BD =2,求CD 的长.学校:_________ 班级:_________ 姓名:_________得分:_________第二篇 2015中考基础题型综合训练题组训练七一、选择题1.-5的绝对值( )A .5B .-5C .15D .15-2.(2011·海南省)计算32)(a ,正确的结果是( )A .a 5B .a 6C .a 8D .a 93.(2011·湖北十堰)据统计,十堰市2011年报名参加九年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)( ) A .2.6×104B .2.7×104C .2.6×105D .2.7×1054.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.(2011·山东济宁)若21(3)0x y y +-++=,则x y -的值为( )A .1B .-1C .7D .-76.(2011·江苏泰州)为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是( )A .某市八年级学生的肺活量B .从中抽去的500名学生的肺活量C .从中抽取的500名学生D .5007.(2011·山东枣庄)已知反比例函数1y x=,下列结论中不正确的是( ) A .图象经过点(-1,-1)B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大8.如果不等式213(1),.x x x m ->-⎧⎨<⎩的解集是2x <,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m ≥29.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗10.(2011·四川眉山)已知三角形的两边长是方程x 2 -5x +6 =0的两个根,则该三角形的周长L 的取值范围是( ) A .1<L <5B .2<L <6C .5<L <9D .6<L <1011.(2011·四川雅安)已知二次函数c bx ax y ++=2的图象如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ,③02=+b a ,④0>++c b a ,⑤0<+-c b a ,则正确的结论是( ) A .①②③④B .②④⑤C .②③④D .①④⑤12.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上ADEPBC第12题图ABCDOA .B .C .D .第11题图yx有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23 B .26 C .3D .6二、填空题13.因式分解3222x x y xy -+=____________.14.(2011·江苏扬州)如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,MN =6,则BC =________. 15.如图,已知AD 是△ABC 的外接圆的直径,sin ∠C =54,则=∠BAD tan ________.16.(2011·贵州黔南)如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按照顺时针方向在l 上转动两次,使它转到△A ′′B ′′C ′′的位置,设BC =1,AC =3,则点A 运动到点A ′′的位置时,点A 两次运动所经过的路程____________.(计算结果不取近似值)三、解答题17.计算:201121(1)4cos60(31)()2---︒+-︒+18.(2011·四川南充市)先化简,再求值:21x x -(x x 1--2),其中x =2.19.(2011·福建福州市)在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下 列问题:(1)图1中“统计与概率”所在扇形的圆心角为____________度; (2)图2、3中的a =____________,b =____________;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?20.如图,在梯形ABCD 中,AB ∥CD ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2.(1)求证:DC =BC ;(2)E 是梯形内一点,F 是梯形外一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结论;(3)在(2)的条件下,当BE :CE =1:2,∠BEC =135°时,求sin ∠BFE 的值.图1 45%5%实践与综合应用统计与概率数与代数空间与图形 40%67a44数与式函数数与代数(内容)图2课时数方程(组)与不等式(组)A 一次方程B 一次方程组C 不等式与不等式组D 二次方程E 分式方程图318b 12A BC D369121518方程(组)与不等式(组)课时数133EABCD E M N 第14题图 ●ABCDO第15题图EBFCDA AB E FCD 第16题图 ABCA ′A ′′C ′B ′′学校:_________ 班级:_________ 姓名:_________ 得分:_________ 第二篇 2015中考基础题型综合训练题组训练八一、选择题1.2012的倒数是( )A .20121B .2012C .-2012D .20121-2.下列各式计算正确的是( )A .011(1)()32---=- B .235+=C .22422=-a aD .236()a a =3.(2011·海南省)海南省2010年第六次人口普查数据显示,2010年11月1日零时,全省总人口8671518 人.数据8671518用科学记数法(保留三个有效数字)表示应是( ) A .8.7×106 B .8.7×107 C .8.67×106 D .8.67×1074.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF =( )A .1:2B .1:3C .2:3D .2:55.(2011·广东湛江)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁,则射箭成绩最稳定的是( )A .甲B .乙C .丙D .丁6.一副三角板,如图所示叠放在一起,则图中∠α的度数是( ) A .75 B .60C .65D .557.(2011·山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( ) A .2289(1)256x -=B .2256(1)289x -=C .289(1-2x )=256D .256(1-2x )=289 8.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD =( ) A .116°B .32°C .58°D .64°9.(2011·黑龙江绥化)分式方程()()2111+-=--x x mx x 有增根,则m 的值为( ) A .0和1B .1C .1和-2D .310.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( ) A .3B .4C .5D .611.(2011·湖北随州)已知函数22(1)1(3)(5)1(3)x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .3 12.(2011·深圳市)如图,△AB C 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为( ) A .3:1B .2:1C .5:3D .不确定二、填空题 13.因式分解:2a 2-4a +2=______________.14.(2011·湖北随州)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为__________.第10题图 AB CD F EO第12题图ABCDEF第4题图a第6题图第8题图 DBOAC第20题图15.(2011·辽宁大连)如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y =______0(填“>”、“=”或“<”号).16.正△ABC 的边长为3cm ,边长为1cm 的正△RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将△RPQ 沿着边AB ,B C ,CA 顺时针连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P运动路径的长为____________cm . 三、解答题17.计算:9+(-12)-1-2sin45º+(3-2)018.(2011·四川重庆)先化简,再求值:(1x x --21x x -+)÷22221x x x x -++,其中x 满足x 2-x -1=0.19.如图,小明在大楼30米高(即PH =30米)得窗口P 处进行观测,测得山坡上A 处的俯角为15°,山脚B 处得俯角为60°,已知该山坡的坡度i (即tan ∠ABC )为1:3,点P 、H 、B 、C 、A 在同一个平面 上.点H 、B 、C 在同一条直线上,且PH ⊥HC . (1)山坡坡角(即∠ABC )的度数等于________度;(2)求A 、B 两点间的距离.20.(2011·福建三明)如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,过点A 作AE ∥DB 交CB 的延长线于点E .(1)求证:∠ABD =∠CBD ; (2)若∠C =2∠E ,求证:AB =DC ;(3)在(2)的条件下,sin ∠C =45,AD =2,求四边形AEBD 的面积.CPBQ()A R第16题图第15题图 yxBAOEDCBAA D CB E 第20题图第19题图其他 选项职高普高 答案:第二篇 2015中考基础题型综合训练题组训练一一、选择题1.A 2.D 3.C 4.A 5.A 6.B 7.C 8.A 9.D 10.C 11.C 12.C 二、填空题13.(x +2)(x -2) 14.球类 15.10 16.27π三、解答题17.解:原式=4-1+1+3=7 18.解:x x x x x 22)242(2+÷-+-242()222x x x x x =-⨯--+=2)2)(2(--+x x x ×22+x x=2x 因为x ≠2,-2,0;当x =1时,原式=2×1=2 19.解:(1)40;(2)108°;(3)如图:(4)900×(100%-10%-60%)=270人.20.解:(1)90元(可用待定系数法求函数关系式再代入求函数值,或观察图象得出收费标准再代入求均可);(2)设五月份用电量为m 度,六月份用电量为n 度,则可得 n =2m 分析可知m ≤100,n>100,由求得的收费标准可得:0.65m+(0.8n-15)=165 解得m =80,n =160,所以五月份的用电量为80度,六月份的用电量为160度题组训练二一、选择题1.A 2.A 3.B 4.B 5.A 6.C7.C 8.B 9.A 10.B 11.C 12.D 二、填空题13.2(m + 2n )(m -2n ) 14.110︒ 15.12-或 16.4 三、解答题17.解:原式23=+18.解:12x +,x 的取值范围是x ≠-2且x ≠1的实数.19.解:(1)∵小明所在的全班学生人数为14÷28% = 50人,∴骑自行车上学的人数为50-14-12-8 = 16人;其统计图略. (2)乘公共汽车、骑自行车、步行、其它所占全班的比分别 为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%, 它们所对应的圆心角分别是100.8︒,115.2︒,86.4︒,57.6︒, 其统计图略.(3)小明所在的班的同学上学情况是:骑自行车的学生最多;乘公共汽车的学生次之;其他占少数. 20.甲栋楼高390米,乙栋楼高3120米.题组训练三一、选择题1.A 2.C 3.D 4.D 5.C 6.C 7.B 8.C 9.D 10.B 11.B 12.B 二、填空题 13.-614.60° 15.6±16.31三、解答题17.解:-22+27+(π-1)0-3×︒+-60tan 1=-4+33+1-3(3-1)= 0 18.解:原式)111(1220122-+-÷+-a a a a a )1()1(20122a a a a -⨯-=12012-=a 因a ≠1 故取a =2,原式=2012.(取a=3,原式=1006) 19.解:(1)4%(2)72°(3)B 级(4)380人 20.(1)证明:四边形ABCD 是矩形,∴AD ∥BC , ∴∠PDO =∠QBO ,又OB =OD ,∠POD =∠QOB ,。
深圳2015中考数学试题(含答案)
深圳市2015年中考数学真题一、选择题:1、15-的相反数是( ) A 、15 B 、15- C 、151 D 、151- 【答案】A.【解析】由相反数的定义可得,选A 。
2、用科学计数法表示316000000为( )A 、71016.3⨯ B 、81016.3⨯ C 、7106.31⨯ D 、6106.31⨯ 【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.316000000=81016.3⨯3、下列说法错误的是( )A 、2a a a =∙B 、a a a 32=+C 、523)(a a =D 、413a a a =÷-【答案】C【解析】根据幂的乘方运算方法,可得:326()a a =,故C 错误。
4、下列图形既是中心对称又是轴对称图形的是( )【答案】D【解析】A 、B 、C 都只是轴对称图形,只有D 既是中心对称又是轴对称图形。
5、下列主视图正确的是( )【答案】A.【解析】由前面往后面看,主视图为A 。
6、在一下数据90,85,80,80,75中,众数、中位数分别是( )A 、8075,B 、80,80C 、85,80D 、90,80【答案】B.【解析】80出现两次,其它数字只出现一次,故众数为80, 数据90,85,80,80,75的中位数为80,故选B 。
7、解不等式12-≥x x ,并把解集在数轴上表示( )【答案】B【解析】解不等式,得:1x ≥-,故选B 。
8、二次函数)0(2≠++=a c bx ax y 的图像如下图所示,下列说法正确的个数是( )○10>a ;○20>b ;○30<c ;○4042>-ac b 。
A 、1 B 、2 C 、3 D 、4【答案】B【解析】开口向下,所以,a <0,○1错误; 对称轴在y 轴右侧,与y 轴交点在y 轴正半轴上,所以,c >0,○3错误; 与x 轴有两个不同的交点,所以,042>-ac b 。
2015年数学中考复习-----第三篇 中考重点题型与思想方法专项训练(含答案)
第三篇2015中考重点题型与思想方法专项训练目录专项一规律探究题型题组训练一题组训练二专项二方案设计与决策型题型题组训练一题组训练二专项三阅读理解题型题组训练一题组训练二专项四图形的折叠与旋转题型题组训练一题组训练二专项五点与图形的运动问题题型题组训练一题组训练二题组训练三题组训练四专项六分类讨论思想的运用题组训练一题组训练二专项七数形结合思想的运用题组训练一题组训练二专项八整体思想的运用题组训练一题组训练二学校:_________ 班级:_________ 姓名:_________ 得分:_________- 1 -- 2 -第三篇 中考重点题型与思想方法专项训练专项一 规律探究题型题组训练一一、选择题1.如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比 图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )A .28B .56C .60D .1242.如图,小陈从O 点出发,前进5米后向右转20°,再前进5米后又向右转20°,……,这样一直走下去,他第一次回到出发点O 时一共走了( ) A .60米 B .100米 C .90米D .120米3.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组 应该有种子数( )粒 A .2n +1 B .2n -1 C .2n D .n +24.(2009·重庆)观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n 二、填空题5.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0 的整数)个图形需要黑色棋子的个数是____________.6.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第n 个图形有______________个小圆.(用含n 的代数式表示)7.如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第一个正方形;然后延长C 1B 1与直线y =x +1 相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第二个正 方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第三个正方形;……依此类推,则第 n 个正方形的边长为________________.三、解答题8.观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;……解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n =____________;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+120092010⨯ .9.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则: 两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()na b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1, 恰好对应222()2ab a ab b +=++展开式中 的系数;第四行的四个数1,3,3,1,恰好 对应着33222()33a b a a b ab b +=+++展 开式中的系数等等.(1)根据上面的规律,写出5()a b +的展开式.(2)利用上面的规律计算:5432252102102521-⨯+⨯-⨯+⨯-学校:_________班级:_________姓名:_________得分:_________……第1个第2个第3个O20o20o第2题图A 1A 2A 3A 4第1题图第7题图yxO A 1 A 2A 3A 4y =x +1B 1 B2 B 3B 4C 4C 3 C 2 C 1 (a +b )1 (a +b )2 (a +b )3第1个图形第 2 个图形第3个图形第 4 个图形第 6题图- 3 -第三篇 中考重点题型与思想方法专项训练专项一 规律探究题型题组训练二一、选择题1.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角 形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三 角形个数是( ) A .90个B .100个C .102个D .114个2.有一长条型链子,其外型由边长为1公分的正六边形排列而成.图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形?( ) A .140B .142C .210D .2123.某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图,第2次把第1次铺的完全围起来,如图,第3次把第2次铺的完全围起来,如图;….依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块数( C ) A .4n+4B .4n+6C .8n-6D .8n+64.32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( ) A .41B .39C .31D .29 二、填空题5.如图,菱形ABCD 的对角线长分别为a 、b ,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2, ……,如此下去,得到四边形A 2009B 2009C 2009D 2009 的面积用含 b a 、的代数式表示为____________.6.如图,已知Rt △ABC 中,AC =3,BC =4,过直角顶点C 作CA 1⊥AB,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2, 再过A 2作A 2C 2⊥BC ,垂足为C 2,……,这样一直做下去,得到 了一组线段CA 1,A 1C 1,12C A ,……,则CA 1=___________, =5554C A A C ____________. 7.已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,……,观察前面的计算过程,寻找计算规律计算27A =____________;(直接写出计算结果)8.如图,在直角坐标系中,一直线l 经过点(31)M ,与x 轴、y 轴分别交于A 、B 两点,且MA MB =,则ABO △的内切圆1O 的半径1r =__________;若2O 与1O 、l 、y 轴分别相切,3O 与2O 、l 、y轴分别相切,……,按此规律,则⊙2012O 的半径2012r ____________.三、解答题 9.●探究(1)在图1中,已知线段AB ,CD ,其中点分别为E ,F .①若A (-1,0), B (3,0),则E 点坐标为__________; ②若C (-2,2), D (-2,-1),则F 点坐标为__________; (2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ),求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的代数式表 示),并给出求解过程.●归纳 无论线段AB 处于直角坐标系中的哪个位置, 当其端点坐标为A (a ,b ),B (c ,d ),AB 中点为D (x ,y ) 时, x =_________,y =___________.(不必证明) ●运用 在图3中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B .①求出交点A ,B 的坐标; ②若以A ,O ,B ,P 为顶点的四边形是平行四边形,请利用 上面的结论求出顶点P 的坐标.学校:_________ 班级:_________ 姓名:_________ 得分:_________第三篇 中考重点题型与思想方法专项训练xyy =x3 y =x -2A BO 第9题图3O xyD B 第9题图2A 第9题图1OxyDB A C第1题图 第2题图7 323 533911第4题图34131517 19第5题图AB C D A 1B 1C 1D 1 D 2C 2 B 2 A 2 A 3B 3C 3D 3 AA 1A 2A 3A 4A 5lxy MO 1 O 2BO第8题图A- 4 -专项二 方案设计与决策型题型题组训练一一、选择题1.用若干根相同的火柴棒首尾顺次相接围成一个梯形(提供的火柴棒全部用完),下列根数的火柴棒不能围成梯形的是( ) A .5B .6C .7D .82.现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性 到达赛场的租车方案有( ) A .3种B .4种C .5种D .6种 3.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( )A .1种B .2种C .4种D .无数种4.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(1)a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a +C .2(69)cm a +D .2(615)cm a +二、填空题5.做如下操作:在等腰三角形ABC 中,AB =AC ,AD 平分∠BAC ,交BC 于点D .将△ABD 作关于直线AD的轴对称变换,所得的像与△ACD 重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形 中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相 重合.由上述操作可得出的是____________(将正确结论的序号都填上).6.将一块正五边形纸片(图①)做成一个底面仍为正五边形且高相等的无盖纸盒(侧面均垂直于底面,见图②),需在每一个顶点处剪去一个四 边形,例如图①中的四边形ABCD ,则∠BAD 的大小是_______度.三、解答题7.(2011·湖北黄冈)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.(1)设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x14 B14 总计151328(2)请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)8.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A 种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B 种造型需甲种花卉 5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?9.某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T 恤或一本影集作为纪念品.已知每件T 恤比每本影 集贵9元,用200元恰好可以买到2件T 恤和5本影集. (1)求每件T 恤和每本影集的价格分别为多少元?(2)有几种购买T 恤和影集的方案?学校:_________ 班级:_________ 姓名:_________ 得分:_________第三篇 中考重点题型与思想方法专项训练专项二 方案设计与决策型题型题组训练二1.(1)计算:如图1,直径为a 的三等圆⊙O 1、⊙O 2、⊙O 3两两外切,切点分别为A 、B 、C ,求O 1A 的长调入地水量/万吨 调出地BCA D ①②第6题图C第5题图- 5 -(用含a 的代数式表示).(2)探索:若干个直径为a 的圆圈分别按如图2所示的方案一和如图3所示的方案二的方式排放,探索并求出这两种方案中n 层圆圈的高度h n 和h ′n (用含n 、a 的代数式表示).(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集 装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(3≈1.73)2.如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>”,“<”或“=”).②如图4,当∠CDF =30°时,AM +CK ___MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论. (3)如果222AM CK MK =+,则∠CDF 的度数是____________;MK AM ____________3.(1)探究新知:①如图,已知AD ∥BC ,AD =BC ,点M ,N 是直线CD 上任意两点. 求证:△ABM 与△ABN 的面积相等.②如图,已知AD ∥BE ,AD =BE ,AB ∥CD ∥EF ,点M 是直线CD 上任一点,点G 是直线EF 上任一点.试判断△ABM 与△ABG 的面积是否相等,并说明理由.(2)结论应用:如图③,抛物线y =ax 2+bx +c 的顶点为C (1,4),交x 轴于点A (3,),交y 轴于点D .试探究在抛物线 y =ax 2+bx +c 上是否存在除点C 以外的点E ,使得△ADE 与△ACD 的面积相等?若存在,请求出此时点 E 的坐标,若不存在,请说明理由.﹙友情提示:解答本问题过程中,可以直接使用“探究新知”中的结论.﹚学校:_________ 班级:_________ 姓名:_________得分:_________ 第三篇 中考重点题型与思想方法专项训练专项三 阅读理解题型题组训练一一、选择题1.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格), 当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s 对应密文c字母 a b c d e f g h i j k l m 序号 0 1 2 3 4 5 6 7 8 9 10 11 12 字母 n o p q r s t u v w x y z 序号 13 14151617 1819202122232425按上述规定,将明文“maths”译成密文后是( )A .wkdrcB .wkhtcC .eqdjcD .eqhjc2.若把函数y =x 的图象用E (x ,x 2)记,函数y =2x +1的图象用E (x ,2x +1)记,……则E (x ,x 2-2x +1)ABCD AB CD E B CDDBCAEEEF F F (F ﹐K )M M A (M ) KK K第2题图M图3图4图2 图1ABDCMN第3题图 ①第1题图1O 1O 2O 3A CB 第1题图2第1题图3C第3题图②A BD M F EGA第3题图③③CDBOxy- 6 -可以由E (x ,2x )怎样平移得到?( ) A .向上平移1个单位 B .向下平移1个单位 C .向左平移1个单位D .向右平移1个单位二、填空题3.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接受方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文2,2,23,4a b b c c d d +++.例如,明文1,2,3,4对应密文5,7,18,16. 当接收方收到密文14,9,23,28时,则解密得到的明文为_______________.4.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:5104212021)101(0122=++=⨯+⨯+⨯= 1121212021)1011(01232=⨯+⨯+⨯+⨯=按此方式,将二进制(1001)2换算成十进制数的结果是_______________.5.已知等边三角形纸片ABC 的边长为8,D 为AB 边上的点,过点D 作DG BC ∥交AC 于点G .DE BC ⊥ 于点E ,过点G 作GF BC ⊥于点F ,把三角形纸片ABC 分别沿D G D E G F ,,按图1所示方式折叠,点A B C ,,分别落在点A ',B ',C '处.若点A ',B ',C '在矩形DEFG 内或其边上,且互不重合,此时我们称A B C '''△(即图中阴影部分)为“重叠三角形”.(1)若把三角形纸片ABC 放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点A B C D ,,,恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形A B C '''的面积; (2)实验探究:设AD 的长为m ,若重叠三角形A B C '''存在.试用含m 的代数式表示重叠三角形A B C '''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用).解:(1)重叠三角形A B C '''的面积为____________;(2)用含m 的代数式表示重叠三角形A B C '''的面积为________;m 的取值范围为________.三、解答题6.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则2y x =.所以2yx =.把2y x =代入已知方程,得21022y y ⎛⎫+-= ⎪⎝⎭.化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程220x x +-=,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:____________;(2)已知关于x 的一元二次方程()200ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.学校:_________班级:_________姓名:_________得分:_________第三篇 中考重点题型与思想方法专项训练专项三 阅读理解题型题组训练二一、选择题1.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(b ,a )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6现将实数对(-2,-3) 放入其中,得到实数是( ) A .-1B .0C .1D .2 2.定义运算“@”的运算法则为:x @y =xy -1,则(2@3)@4=( )A .17B .18C .19D .203.因为cos30°=32,cos210°=-32,所以cos210°=cos(180°+30°)=-cos30°=-32,因为cos45°=22,cos225°=-22,所以cos225°=cos(180°+45°)=-22,猜想:一般地,当α为锐角时,有cos(180°+α)ACB备用图ACB备用图ADGBE CC′ B ′ F ·· · · · ·· · ·A DB E C′ B ′ FCG 图2图1A ′A ′- 7 -ABCDEGF第1题图F =-cosα,由此可知cos240°的值等于( ) A .-32B .-12C .-22D .22二、填空题 4.阅读材料:若一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2= -b a ,x 1x 2= ca根据上述材料填空:已知x 1、x 2是方程x 2+4x +2=0的两个实数根,则 1x 1 +1x 2=_________.5.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么 小于200的“可连数”的个数为____________.三、解答题6.如图1,过△ABC 顶点A 分别作对边BC 上的高AD 和中线AE ,点D 是垂足,点E 是BC 中点,规定λA DEBE=.特别地,当点 D ,E 重合时,规定λ0A =.另外,对B C λλ,作类似的规定.(1)如图2,已知在Rt △ABC 中,∠A =30°,求λλA C ,;(2)在每个小正方形边长均为1的4×4方格纸上,画一个△ABC ,使其顶点在格点(格点即每个小正方形的顶点)上,且λA =2,面积也为2;(3)判断下列三个命题的真假.(真命题打√,假命题打×)①若△ABC 中λA1<,则△ABC 为锐角三角形;( ) ②若△ABC 中λA 1=,则△ABC 为直角三角形;( ) ③△ABC 中λA 1>,则△ABC 为钝角三角形.( ) 7.定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =2x 2-2x +2是黄金抛物线.(1)请再写出一个与上例不同的黄金抛物线的解析式:____________;(2)若抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)是黄金抛物线,请探究该黄金抛物线与x 轴的公共点个数的情况(要求说明理由);(3)将黄金抛物线y =2x 2-2x +2沿对称轴向下平移3个单位. ①直接写出....平移后的新抛物线的解析式; ②设①中的新抛物线与y 轴交于点A ,对称轴与x 轴交于点B ,动点Q 在对称轴上,问新抛物线上 是否存在点P ,使以点P 、Q 、B 为顶点的三角形与△AOB 全等?若存在,直接写出....所有符合条件的 点P 的坐标;若不存在,请说明理由.[注:第②小题可根据解题需要在备用图中画出新抛物线的示 意图(画图不计分)]提示:抛物线y =ax 2+bx +c (a ≠0)的对称轴是x =-b 2a ,顶点坐标是 (-b 2a ,4ac -b 24a)学校:_________ 班级:_________姓名:_________得分:_________第三篇 中考重点题型与思想方法专项训练专项四 图形的折叠与旋转题型题组训练一一、选择题1.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图),则着色部分的面积为( )A . 8B .112C . 4D .522.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确..的是( ) A .主视图相同B .左视图相同C .俯视图相同D .三种视图都不相同3.在平面直角坐标系中,已知直线y =-43x +3与x 轴、y 轴分别交于A 、B 两点,点C (0,n )是y 轴上一 第2题图第7题图图1图2ABCD E ABC第6题图图3 xy1Oy 2 3 4 5 -1-2-3-4 1 2 3 4 5 -1-2 -3 -4 -5- 8 -A .B .C .D .点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A .(0,43)B .(0,34) C .(0,3) D .(0,4)4.如图,把一张长方形纸片ABCD 沿对角线BD 折叠,使C 点落在E 处,BE 与AD 相交于点F ,下列结论:①22BD AD AB =+;②ABF EDF △≌△;③DE EFAB AF=; ④cos 45AD BD=·°,其中正确的一组是( ) A .①②B .②③C .①④D .③④二、填空题5.将一个半径为6㎝,母线长为15㎝的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是____________度.6.如图,在小正方形的边长都为1的方格纸中,ABO ∆的顶点都在小正方形的顶点上,将ABO ∆绕点O 顺时针方向旋转90°得到11A B O ∆,则点A 运动 的路径长为______________.7.长为1,宽为a 的矩形纸片(12<a <1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图 那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次 操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形, 则操作终止.当n =3时,a 的值为_______. 三、解答题8.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B ′的位置,AB ′与CD 交于点E .(1)试找出一个与△AED 全等的三角形,并加以证明.(2)若AB =8,DE =3,P 为线段AC 上的任意一点,PG ⊥AE 于G ,PH ⊥EC 于H ,试求PG +PH 的值,并说明理由.9.如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F处,以CF 为边作正方形CFGH ,延长 BC 至M ,使CM =|CF —EO |,再以CM 、CO 为边作矩形CMNO . (1)试比较EO 、EC 的大小,并说明理由(2)令;四边形四边形CNMN CFGH S S m =,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由.(3))在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF=32,抛物线y =mx 2+bx +c 经过C 、Q 两点,请求出此抛物线的解析式. (4)在(6)的条件下,若抛物线y =mx 2+bx +c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在, 请求直线KP 与y 轴的交点T 的坐标? 若不存在,请说明理由.学校:_________班级:_________姓名:_________得分:_________第三篇 中考重点题型与思想方法专项训练专项四 图形的折叠与旋转题型题组训练二一、选择题1.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )2.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然 后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )3.如图所示,将一个正方形纸片按下列顺序..折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形 如“1”的图形,将纸片展开,得到的图形是( )yxAQ MN OEFGC H B第9题图A .B .C .D . A . B . C . D . A B第4题图CD EF第8题图 A BCDE PB′GH第6题图第7题图- 9 -第4题图第5题图DCBAE B ′ABCDEF 第6题图二、填空题4.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若BF = 4 cm ,FC = 2cm ,则∠DEF 的度数是____________.5.如图,矩形纸片ABCD 中,AB =2 cm ,点E 在BC 上,且AE =EC .若将纸片沿AE 折叠,点B 恰好与AC 上的点B ′ 重合,则AC =________cm .三、解答题6.如图,将矩形纸片ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,连结AE .证明:(1)BF DF =.(2)AE BD ∥.7.如图1,一张矩形纸片ABCD ,其中8cm AD =,6cm AB =,先沿对角线BD 对折,点C 落在点C '的位置,BC '交AD 于点G . (1)求证:AG C G '=;(2)如图2,再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M ,求EM 的长.8.已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相 交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ;(2)如图,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形? 若存在,求出P 点的坐标;若不存在,试说明理由.学校:_________班级:_________姓名:_________得分:_________第三篇 中考重点题型与思想方法专项训练专项五 点与图形的运动问题题型题组训练一一、选择题1.如图,在矩形ABCD 中,AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是( )2.如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE =BF =CG =DH ,设小正方形EFGH的面积为S ,AE 为x ,则S 关于x 的函数图象大致是( )A .B .C .D .二、填空题3.如图,AB 是⊙O 的直径,弦BC =2cm ,F 是弦BC 的中点,∠ABC =60°.若动点E 以2cm/s 的速度从Ax yO46 3A xyO2.256 3Dx yO364C . 2.25x yO63B .AABBC ′ C ′ E GGM NDCC 第7题图 图1图2DA BCDM NQ P 第1题图第2题图第8题图Oy xABCDN N′ M- 10 -FE OAC B第3题图第4题图点出发沿着A →B →A 方向运动,设运动时间为t (s )(0≤t <3),连结EF ,当t 值为____________s 时,△BEF 是直角三角形.4.如下图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为____________cm . 5.在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时:①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在, 试求出所有满足条件的M 点的坐标,若不存在,试说明理由.学校:_________ 班级:_________ 姓名:_________ 得分:_________第三篇 中考重点题型与思想方法专项训练专项五 点与图形的运动问题题型题组训练二一、填空题1.如图所示,半圆AB 平移到半圆CD 的位置时所扫过的为_________.2.如图,在梯形ABCD 中,AB ∥CD ,∠90BAD =°,6AB =,对角线AC 平分∠BAD ,点E 在AB 上,且2()AE AE AD =<,点P 是AC 上的动点,则PE PB +的最小值是__________.3.已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为____________.二、选择题4.如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( ). A .433MN =B .若MN 与⊙O 相切,则3AM =C .若∠MON =90°,则MN 与⊙O 相切D .l 1和l 2的距离为2三、解答题5.在平面直角坐标系中,已知O 为坐标原点,点()()3004A B ,,,.以点A 为旋转中心,把△ABO 顺时针旋 l 1l 2AB M NO 第4题图1图2y xPABOC23y x=·· · y x-121 0 CD B A 第1题图ABCDE P第2题图第3题图yxBCDOPABCDy BCDy 图1AP 23y x =xyK O- 11 -第1题图第3题图A PB DC转,得△ACD .记旋转角为ABO α∠,为β.(1)如图①,当旋转后点D 恰好落在AB 边上时,求点D 的坐标;(2)如图②,当旋转后满足BC x ∥轴时,求α与β之间的数量关系;(3)当旋转后满足AOD β∠=时,求直线CD 的解析式(直接写出结果即可).6.如图,矩形OABC 中,点O 为原点,点A 的坐标为(08),,点C 的坐标为(60),.抛物线249y x bx c =-++ 经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC上一个动点,AQ CP =,连接PQ ,设CP m =,△CPQ 的面积 为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值;②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接..写出所有符合条件的点F 的坐标;若不存在,请说明理由.学校:_________ 班级:_________ 姓名:_________ 得分:_________第三篇 中考重点题型与思想方法专项训练专项五 点与图形的运动问题题型题组训练三一、选择题1.如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N两点,设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是( )A .B .C .D .2.已知O ⊙的半径10cm OA =,弦16cm AB =,P 为弦AB 上的一动点,则OP 的最短距离为( )A .5cmB .6cmC .8cmD .10cm3.如图,1O ⊙的半径为1,正方形ABCD 的边长为6,点2O 为正方形ABCD 的中心,12O O 垂直AB 于P 点,128.O O =若将1O ⊙绕点P 按顺时针方向旋转360°,在旋转过程中, 1O ⊙与正方形ABCD 的边只有一个公共点的情况一共出现( ) A .3次B .5次C .6次D .7次 二、填空题4.如图,⊙O 的半径为12cm ,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA ,动点P 从点A 出发,以2πcm/s的速度沿圆周逆时针运动,当点P 回到点A 就停止运动.当点P 运动的时间为____________s 时,BP 与⊙O 相切.ABD QPCOx yA BDCO xy备用图lOyx12 Oyx12 Oyx12 Oyx12第4题图。
2015年中考数学试题及答案(解析版)
中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。
)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015中考数学专题专练---选择题(1)做题时间:_____至____ 得分:_____________ 共___ ___分钟 日 期:_____月_____日1.[A] [B] [C] [D] 3.[A] [B] [C] [D] 5.[A] [B] [C] [D] 7.[A] [B] [C] [D] 9.[A] [B] [C] [D] 2.[A] [B] [C] [D] 4.[A] [B] [C] [D] 6.[A] [B] [C] [D] 8.[A] [B] [C] [D] 10.[A] [B] [C] [D] 一、选择题(每题3分,共30分) 1. 8的平方根是( ) A .4;B .±4;C .2;D .2.下列各运算中,错误的个数是( )①01333-+=- =③235(2)8a a = ④844a a a -÷=- A .1;B .2;C .3; D .43.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( )A .P 为定值,I 与R 成反比例 ;B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例;D .P 为定值,2I 与R 成正比例 4.下列图案中是中心对称图形的是( )5.如图是一个正六棱柱的主视图和左视图,则图中的a=( ) A .32;B .3;C .2;D .16.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,7.下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有( )A .1个;B .2个;C .3个;D .4个8.如图,矩形OABC 的顶点A 、C 在坐标轴上,顶点B 的坐标是(4,2),若直线y=mx -1恰好将矩形分成面积相等的两部分,则m 的值为( )A.1;B.0.5;C.0.75;D.29.一项“过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于n 2,则算过关;否则不算过关,则能过第二关的概率是( )A .1318;B .518;C .14; D .1910.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1;B .2;C .3;D .42015中考数学专题专练---选择题(1)答案 1.D 2.C3.B4.B5.A6.A7.C 8.D 9. 10.B2015中考数学专题专练---选择题(2)做题时间:_____至____ 得分:_____________ 共______分钟 日 期:_____月_____日1.[A] [B] [C] [D] 3.[A] [B] [C] [D] 5.[A] [B] [C] [D] 7.[A] [B] [C] [D] 9.[A] [B] [C] [D] 2.[A] [B] [C] [D] 4.[A] [B] [C] [D] 6.[A] [B] [C] [D] 8.[A] [B] [C] [D] 10.[A] [B] [C] [D] 一、选择题(每题3分,共30分) 1.计算:-1-(-1)0=( ) A .0; B .1;C .2;D .-22.如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A .1 ; B .2 ; C .3 ; D .43.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是( )A .众数;B .方差;C .中位数;D .平均数4.为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是( ) A .甲秧苗出苗更整齐;B .乙秧苗出苗更整齐;C .甲、乙出苗一样整齐;D .无法确定 5.在平面直角坐标系中,已知点O (0,0),A (0,2),B (1,0),点P图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为Q .若以点O ,P ,Q 为顶点的三角形与△OAB 相似,则相应的点P 共有( ) A .1个;B .2个;C .3个; D .4个6.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若|ax 2+bx +c |=k (k ≠0)有两个不相等的实数根,则k 的取值范围是( )A .k <-3;B .k >-3;C .k <3;D .k >37.如图,⊙O 是△ABC 的外接圆,其中点D 在弧AC 上,且OD ⊥AC.已知∠A =36°,∠C =60°,则∠BOD 的度数为( ) A .132°;B .144°;C .156°;D .168°8.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积之比为1:4,) A .2;B .4;CD9.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间(小时)之间的函数图象是( )10. 如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)△AOB ∽△FOE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A. 4个;B. 3个; C. 2个 ;D. 1个2015中考数学专题专练---选择题(2)1D 2B 3C 4C 5D 6D 7C 8D 9C10B2015中考数学专题专练---选择题(3)做题时间:_____至____ 得分:_____________ 共______分钟 日 期:_____月_____日1.[A] [B] [C] [D] 3.[A] [B] [C] [D] 5.[A] [B] [C] [D] 7.[A] [B] [C] [D] 9.[A] [B] [C] [D] 2.[A] [B] [C] [D] 4.[A] [B] [C] [D] 6.[A] [B] [C] [D] 8.[A] [B] [C] [D] 10.[A] [B] [C] [D] 一、选择题(每小题3分,共24分)1. 在-1,3,0)A .-1B .3C .0 D2. 下列几何体各自的三视图中,只有两个视图相同的是( )A .①③;B .②③;C .③④;D .②④3. 学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:A .甲品牌;B .乙品牌;C .丙品牌;D .丁品牌4. 如图,点A 是y 轴正半轴上的一个定点,点B (x >0)图象上的一个动点,当点B 的纵坐标逐渐减小时,△OAB 的面积将( )A .逐渐增大;B .逐渐减小;C .不变;D .先增大后减小5. 如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB =BF .添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A .AD =BCB .CD =BFC .∠A =∠CD .∠F =∠CDE6.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4;B.k ≤4;C .k <4且k ≠3;D.k ≤4且k ≠37. 将矩形纸片ABCD 按如图所示的方式折叠,AE ,EF 为折痕,∠BAE =30°,AB折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )A; B .2; C .3; D8. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF ,点P 沿直线AB 从右向左移动,当出现点P 与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB 上会发出警报的点P 有( )A .3个;B .4个;C .5个;D .6个9、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1);④(a +c )2<b 2;⑤a >1.其中正确的是( )A .①⑤;B .①②⑤;C .②⑤;D .①③④10、如图,在△ABC 中∠A=60°,BM ⊥AC 于点M,CN ⊥AB 于点N,P 为BC 边的中点,连接PM ,PN ,则下列结论: ①PM=PN ; ②ACAN ABAM ; ③△PMN 为等边三角形; ④当∠ABC=45°时,BN=2PC.其中正确的个数是( )A .1个B .2 个C .3个D .4个 解:①∵BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,∴PM=21BC ,PN=21BC 。
∴PM=PN 。
正确。
②在△ABM 与△ACN 中,∵∠A=∠A ,∠AMB=∠ANC=90°, ∴△ABM ∽△ACN ,∴。
正确。
③∵∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,∴∠ABM=∠ACN=30°。
在△ABC 中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°, ∵点P 是BC 的中点,BM ⊥AC ,CN ⊥AB ,∴PM=PN=PB=PC 。
∴∠BPN=2∠BCN ,∠CPM=2∠CBM 。
∴∠BPN+∠CPM=2(∠BCN+∠CBM )=2×60°=120°。