Radiative Decay Width Measurements of Neutral Kaon Excitations Using the Primakoff Effect

合集下载

放射生态学辐射防护专业词汇分析

放射生态学辐射防护专业词汇分析

radiac instruments 辐射仪表radial diffusion coefficient 径向扩散系数radiant energy density 辐射能密度radiant flux density 辐射通量密度radiant heat 辐射热radiating facility 辐射设施radiating power 辐射能力radiation 辐射radiation absorbed dose 辐射吸收剂量radiation absorption 辐射吸收radiation alarm system 辐射报警系统radiation analyzer 辐射分析器radiation analyzing assembly 辐射分析装置radiation and contamination control 辐射与污染管理radiation appliance 辐射装置radiation background 本底辐射radiation band 辐射带radiation beacon 辐射报警器radiation beam 辐射束radiation beam therapy 辐射束治疗radiation belt 辐射带radiation biochemistry 辐射生物化学radiation biological effect 放射生物学酌radiation biological effectiveness 辐射生物效应radiation biology 放射生物学radiation botany 辐射植物学radiation breakdown 辐射损伤radiation breeding 辐射育种radiation burden 辐射积存量radiation burn 辐射烧伤radiation calorimeter 辐射量热计radiation camera 辐射照相机radiation cancer 辐射癌radiation capacity 辐射能力radiation capture reaction 辐射俘获反应radiation cataract 辐射白内障radiation center 辐射中心radiation channel 辐射测量孔道radiation chemical reaction 辐射化学反应radiation chemical synthesis 辐射化学合成radiation chemical yield 辐射化学产额radiation chemistry 辐射化学radiation cold polymerization 辐射冷聚合radiation cone 辐射锥radiation constant 辐射常数radiation control 辐射管理radiation controlled area 辐射管制区域radiation cooling 辐射冷却radiation copolymerization 辐射共聚合radiation counter 辐射计数管radiation counter efficiency 辐射计数管效率radiation cross linking 辐射交联radiation curing 辐射熟化radiation damage 辐射损伤radiation damage product 辐射损伤产物radiation damping 辐射阻尼radiation danger zone 辐射危险区radiation death 辐射死亡radiation decomposition 辐解radiation decrement factor 辐射衰减因数radiation density 辐射密度radiation dermatitis 辐射性皮炎radiation detection 辐射探测radiation detection instrument 辐射探测仪器radiation detector 辐射探测器radiation detector assembly 辐射探测装置radiation dewpoint meter 辐射露点计radiation disease 射线病radiation dosage 辐射剂量radiation dose 辐射剂量radiation dose rate 辐射剂量率radiation dosimeter 辐射剂量计radiation dosimetry 辐射剂量测定法radiation ecology 放射生态学radiation effect 辐射效应radiation effect on biological objects 生物体辐射效应radiation effect on liquids 液体辐射效应radiation effect on solids 固体辐射效应radiation embrittlement 辐照脆化radiation emitter 发射体radiation energy 辐射能radiation equilibrium 放射性平衡radiation excitation 辐射激发radiation exposed 被辐照的radiation exposure 射线照射radiation field 辐射场radiation fins 散热片radiation flux 辐射通量radiation fog 辐射雾radiation generator 辐射发生器radiation genetics 辐射遗传学radiation graft copolymer 辐射接枝共聚物radiation graft copolymerization 辐射接枝共聚radiation grafting 辐射接技radiation growth 辐射生长radiation hardness 辐射硬度radiation hazard 辐射危险radiation hazard effects 辐射危害效应radiation high polymer chemistry 辐射高分子化学radiation hygiene 辐射卫生学radiation illness 射线病radiation indicator 放射性示踪剂radiation induced carcinogenesis 辐射致癌radiation induced genetic effect 辐射诱发遗传效应radiation injury of skin 皮肤辐射损伤radiation insult 辐射伤害radiation intensity 辐射强度radiation interference 辐射干扰radiation ion polymerization 辐射离子聚合radiation ionization 辐射电离radiation laboratory 辐射实验室radiation length 辐射长度radiation lethality 辐射死亡率radiation level 辐射能级radiation loss 辐射损失radiation luminescence 辐射发光radiation mass polymerization 辐射大块聚合radiation maze 辐射防护曲径入口radiation measurement 辐射测量radiation measuring instrument 辐射测量仪器radiation medicine 辐射医学radiation meter 辐射测量仪器radiation monitor 辐射监测器radiation monitoring 辐射监测radiation monitoring instrument 辐射监测器radiation multi parameter analyzing assembly 辐射多参数分析装置radiation myelipathy 辐射骨髓病变radiation oxidation 辐射氧化radiation passage monitor 辐射通过监测器radiation pasteurization 巴氏辐射灭菌法radiation physics 辐射物理学radiation physics laboratory 辐射物理实验所radiation poison 放射性毒物radiation polymerization 辐射引发聚合radiation polymerization of radicals 辐射自由基聚合radiation polymerization of the homogeneous system 均匀系辐射聚合radiation potential 辐射电势radiation preservation 食品的辐射保藏radiation pressure 辐射压radiation processing 辐照处理radiation proof 辐射防护的radiation protection 辐射防护radiation source assembly 辐射源装置radiation protection dosimetry 辐射防护剂量学radiation protection guide 辐射防护指导限值radiation protection technique 辐射防护技术radiation purification of waste water 废水辐射净化radiation quantity 辐射量radiation recombination 辐射复合radiation resistance 抗辐射性radiation resistant 耐辐照的radiation risk 辐射危险radiation seed 镭管radiation spectrum 辐射谱radiation self decomposition 辐射自分解radiation sensitive 对辐射敏感的radiation sensitivity 放射敏感度radiation sensitizing 辐射敏化radiation shadow 辐射阴影radiation shield 辐射屏蔽层radiation shielding 辐射屏蔽radiation source 辐射源radiation shielding concrete block 防护辐射混凝土块radiation shielding material 辐射屏蔽材料radiation spectrum analyzer 辐射谱分析器radiation stability 辐照稳定度radiation sterilization 辐照杀菌radiation survey 辐射监测;辐射检查radiation survey meter 辐射监测器radiation syndrome 辐射综合症radiation technology 辐射工艺学radiation temperature 辐射温度radiation test facility 辐射试验设备radiation therapy 放射治疗radiation tolerance 容许剂量radiation toxicology 放射毒物学radiation transparent material 辐射透蔑质radiation transport equation 辐射输运方程radiation trap 辐射阱radiation ulcer 辐射溃疡radiation unit 辐射单位radiation vulcanization 辐射硫化酌radiation warning assembly 辐射报警装置radiation warning symbol 放射性警告标志radiation width 辐射宽度radiation window 辐射窗radiation work 放射性工作radiation work permit 放射性工醉可证radiation zone 辐射区radiationless 非辐射的radiationless decay process 无辐射衰变过程radiationless resonance 无辐射共振radiationless transition 无辐射跃迁radiative capture 辐射俘获radiative capture cross section 辐射捕获截面radiative collision 非弹性碰撞radiative correction 辐射校正radiative inelastic scattering cross section 辐射非弹性散射截面radiative recombination 辐射复合radiative stopping power 辐射阻止本领radiative transition 辐射跃迁radiator 发射体radiator tube 辐射管radio frequency ion source 高频离子源radio frequency mass spectrometer 射频质谱仪radio frequency spectroscopy 射频谱学radioactivate 激活radioactivation 放射活化radioactivation analysis 放射化分析radioactive 放射性的radioactive aerosol 放射性气溶胶radioactive age 放射性年龄radioactive air sampler 放射性空气取样器radioactive anomaly 放射性异常radioactive ash 放射性灰radioactive assay 放射性检定radioactive atom 放射性原子radioactive attachment 放射性附着radioactive background 本底放射性radioactive battery 原子电池radioactive by product 放射性副产物radioactive carbon 放射性碳radioactive cloud 放射性烟云radioactive cobalt 放射性钴radioactive concentration 放射性浓度radioactive contaminant 放射性污染物radioactive contaminants 捉用放射性物质radioactive contamination 放射性污染radioactive dating 放射性测定年龄radioactive debris 放射性碎片radioactive decay 放射性衰变radioactive decay equation 放射性衰变方程radioactive decay law 放射性衰变律radioactive decay product 放射性衰变产物radioactive decay series 放射性衰变系radioactive decay with emission of carbon nuclei 碳核发射放射性衰变radioactive decontamination 去放射性污染radioactive decontamination method 放射性去污法radioactive density gage 放射性密度计radioactive deposit 放射性沉降物radioactive disintegration 放射性衰变radioactive displacement 放射性位移radioactive displacement law 放射性位移定律radioactive drug 放射性药物radioactive dry fall out 放射性干沉降物radioactive dust 放射性灰尘radioactive effluent 放射性排出物radioactive effluent disposal 放射性排出物处置radioactive effluent drain pipe 放射性废液排放管道radioactive effluent plant area 放射性排出物处理厂区radioactive element 放射性元素radioactive emanation 放射性气体radioactive end product 放射性最终产物radioactive equilibrium 放射性平衡radioactive exploration 放射性勘探radioactive fall out 放射性沉降radioactive fission product 放射性裂变产物radioactive fuel waste 放射性燃料废物radioactive gas 放射性气体radioactive gas recovery system 放射性气体处理系统radioactive gas separation process 放射性气体分离过程radioactive gaseous waste 放射性气体废物radioactive grain 放射性颗粒radioactive hairpin 发夹状放射源radioactive half life 放射性物质的半衰期radioactive heat 放射性蜕变热radioactive heat source 放射性热源radioactive inclusion 放射性夹杂物radioactive intensity 放射性强度radioactive iodine 放射性碘radioactive ionization gage 放射性电离真空计radioactive iron 放射性铁radioactive isotope 放射性同位素radioactive isotope battery 放射性同位素电池radioactive isotope power supply 放射性同位素电源radioactive isotope powered pulsed light equipment 放射性同位素动力脉冲发光设备radioactive labelling 示踪标记radioactive leak 放射性漏泄radioactive level gage 放射性液面计radioactive liquid waste 放射性废液radioactive logger 放射性测井仪radioactive logging 放射性测井radioactive luminous compound 放射性发光化合物radioactive material 放射性物质radioactive mineral 放射性矿物radioactive nucleus 放射性核radioactive nuclide 放射性核素radioactive nuclide intake 放射性核素吸入radioactive ore detector 放射性矿石探测器radioactive paint 放射性涂料radioactive parent 母质radioactive poison 放射性毒物radioactive poisoning 放射性中毒radioactive pollution 放射性污染radioactive precursor 母质radioactive processing plant 放射性物质处理装置radioactive product 放射性产物radioactive purity 放射性纯度radioactive radiation 放射性辐射radioactive radiation counter 辐射计数管radioactive rain 放射性雨radioactive rare metal 放射性稀有金属radioactive recoil 放射性衰变引起的反冲radioactive reference source 放射性参考源radioactive relationship 放射性关系radioactive residue 放射性残渣radioactive sample 放射性样品radioactive sampling equipment 放射性取样设备radioactive sediment density probe 放射性沉积物密度探针radioactive self luminous paint 放射性自发光涂料radioactive series 放射系radioactive shipment 放射性货物radioactive snow gage 放射性量雪计radioactive solid waste 放射性固体废物radioactive sonde 放射性探空仪radioactive sorting 放射性选矿radioactive source 放射源radioactive standard 放射性标准radioactive substance 放射性物质radioactive surface contamination 放射性表面污染radioactive tachometer 放射性旋速计radioactive thickness gage 放射性测厚计radioactive tracer 放射性示踪剂radioactive tracer method 放射性示踪法radioactive transformation 放射性转化radioactive unit 放射性单位radioactive waste 放射性废物radioactive waste discharge 放射性废物排放radioactive waste disposal 放射性废物处置radioactive waste handling bay 放射性废物处理室radioactive waste incinerator 放射性废物焚烧炉radioactive waste management 放射性废物管理radioactive waste repository 放射性废物库radioactive waste storage 放射性废物储存radioactive waste water disposal system 放射性废水处置系统radioactive water 放射性水radioactive well logging 放射性测井radioactive wire 放射性丝源radioactivity 放射性radioactivity concentration guide 放射性浓度指导限值radioactivity cooling time 放射性冷却时间radioactivity discharge 放射性物质排放radioactivity heat 放射性蜕变热radioactivity meter 放射性测量计radioactivity simulator 放射性模拟装置radioautography 自动射线照相术radiobaryte 放射性重晶石radiobiological action 放射生物学酌radiobiological effectiveness factor 放射生物学有效因数radiobiological research unit 放射生物学研究装置radiobiological sensitive volume 放射生物学灵敏区radiobiology 放射生物学radiocarbon 放射性碳radiocarbon age 放射性碳年龄radiocarbon dating 放射性碳测定年代radiocardiography 心动放射图法radiocesium 放射性铯radiochemical 放射化学的radiochemical analysis 放射化学分析radiochemical purification 放射化学提纯radiochemical purity 放射化学纯radiochemical separation 放射化学分离radiochemically pure 放射化学钝的radiochemistry 放射化学radiochromatogram 放射色谱图radiochromatography 放射色谱法radiocolloid 放射性胶质radiocontamination 放射性污染radiocrystallography 放射性结晶学radiode 镭源盒radiodiagnosis 放射诊断radiodiagnostic agent 放射性诊断试剂radiodosimeter 放射剂量计radiodosimetry 放射剂量学radioecological concentration 放射生态学浓集radioecology 放射生态学radioelement 放射性元素radioencephalography 脑放射照相法radiofluorescent analysis 辐射荧光分析radiogaschromatography 放射性气相色谱法radiogenetics 辐射遗传学radiogenic 放射性衰变产生的radiogenic heat 放射性热radiogenic nuclide 放射成因核素radiogram 放射照片radiograph 放射照相radiograph examination 放射照相检验radiographic putty 散射屏蔽剂radiographic stereometry 射线立体照相法radiography 射线照相法radiography techniques 射线照相技术radioimmunoassay 放射免疫检定radioimmunology 放射免疫学radioiodine 放射性碘radioiron 放射性铁radioisotope 放射性同位素radioisotope concentration 放射性同位素浓度radioisotope container 放射性同位素容器radioisotope generator 放射性同位素发生器radioisotope heater unit 放射性同位素加热装置radioisotope indicator 放射性同位素指示剂radioisotope induced x ray fluorescence 放射性核素激发x射线荧光法radioisotope package monitor 放射性同位素包装物监测器radioisotope power device 放射性同位素能量装置radioisotope power supply 放射性同位素电源radioisotope production 放射性同位素生产radioisotope smoke alarm 放射性同位素烟雾报警器radioisotope suit 操着射性同位素用工radioisotope therapy 放射性同位素疗radioisotope thermal generator 放射性同位素热电源radioisotope thermoelectric generator 放射性同位素热电源radioisotope tracer technique 放射性同位素示踪原子技术radioisotope transport loop 放射性同位素传输回路radioisotopic generator 原子电池radioisotopic purity 放射线同位素的纯度radioisotopics 放射同位素学radiolesion 辐照伤害radiological apparatus x 光机radiological contamination situation map 放射性污染形势图radiological defence 辐射防御radiological emergency 放射性紧急情况radiological exclusion area 放射性禁区radiological filter 放射过滤器radiological installation 放射设备radiological latent period 放射潜伏期radiological safety 放射安全radiological safety analysis computer 放射安全性分析计算机radiological survey instrument 放射测量仪器radiological warfare 辐射战净radiological warfare agents 捉用放射性物质radiological warhead 有放射性战剂的弹头radiologist 放射学家radiology 放射线学radiolucent 透媚radioluminescence 辐射发光radioluminous timepiece 放射发光钟表radiolysis 辐解radiolytic attack 辐射分解浸蚀radiolytic oxidation 辐射分解氧化radiolytic weight loss 辐解重量损失radiomateriology 射线探伤学radiometallography 放射金相学radiometer 辐射计radiometer gauge 辐射测压计radiometric 辐射测量的radiometric analysis 放射分析法radiometric map 辐射测量平面图radiometric polarography 放射极谱法radiometric prospecting 放射性勘探radiometry 放射性测量radiomicrometer 辐射微热计radiomutation 放射性突变radionuclide 放射性核素radionuclide beam therapy equipment 放射性核素束治疗装置radionuclide contact therapy 放射性核素接触治疗radionuclide laboratory 放射性核素实验室radionuclide metabolism 放射性核素新陈代谢radionuclide phase analysis 放射性核素相位分析radionuclidic purity 放射性核素纯度radioopacity 辐射不透萌radiopaque 不透射线的radiopasteurization 辐射杀菌radiopharmaceuticals 放射性药物radiophosphorus 放射性磷radiophotoluminescence 辐射光致发光radiophotoluminescence detector 辐射光致发光探测器radiophotoluminescence dosimeter 辐射光致发光剂量计radioprecipitate 放射性沉淀物radioprospecting assembly 辐射勘探装置radioprotective substance 放射防护物质radioresistance 抗辐射性radioresistant 耐辐照的radioresistive glass 耐辐射玻璃radioscopy 射线检查radiosensitive 对辐射敏感的radiosensitivity 放射敏感度radiosensitization 辐射敏化radiosterilization 辐射杀菌radiostrontium 放射性锶radiosynthesis 辐射合成radiotherapeutic 放射线疗法的;放射治疗的radiotherapeutics 放射治疗学radiotherapist 放射性治疗工走radiotherapy 放射治疗radiothermoluminescence 辐射热释光radiothorium 放射性钍radiotolerant 耐辐照的radiotoxicity 放射毒性radiotoxicology 放射毒理学radiotracer 放射性示踪剂radiovision 电视radium 镭radium age 镭龄radium appliance 镭装置radium beryllium source 镭铍中子源radium beryllium source of neutron 镭铍中子源radium capsule 镭源盒radium cell 镭源盒radium container 镭罐radium content 镭含量radium emanation 镭射气radium equivalent 镭当量radium mold 镭模radium needle 镭针radium pack 镭源radium plaque 小镭板radium seed 镭管radium source 镭源radium therapy 镭疗radium tube 镭管radius 半径radius parameter 半径参数radius vector 矢径radon 镭射气radon container 氡罐radon content 氡含量radon content meter for prospecting purposes 勘探用氡成分计radon effect 氡效应radon effect seismic predictor 氡效应地震预报装置radon seed 氡源radwaste system 放射性废物系统raffinate 提余液raffinate layer 提余液层rain out 凝雨散落物rainbow scattering 霓虹散射raman effect 喇曼效应raman spectrum 喇曼光谱ramification 分支ramp insertion of reactivity 反应性线性引入randite 萎铀钙石random events 偶然事件random orientation 随机取向random phase approximation 随机相位近似random sampling 随机取样random velocity 无规速度random walk 随机游动range 射程;范围range energy relation 射程能量关系range method 射程法range of nuclear forces 核力范围range of sensitivity 灵敏区range selector 波段转换开关range spectrum 射程谱range straggling 射程歧离range switch 波段转换开关rapid analysis 快速分析rapid hardening cement 快干水泥rapid thorium uranium system 快速钍铀系rapid tool steel 高速钢rare earth elements 稀土元素rare elements 稀有元素rare gas 惰性气体rare gas element 惰性气体rare gas plasma 稀薄气体等离子体rarefaction 稀化rarita schwinger equation 拉里塔施温格尔方程ratchetting 棘轮效应rate 率rate of diffusion 扩散速度rate of exchange 交换速率rate of reaction 反应遣度rated power density 额定功率密度rated watt consumption 额定功率消耗ratemeter 计数率计ratemeter discriminator 率表甄别器rating 额定值ratio 比ratio control 比例第ratio of activity densities 放射性密度比rauvite 多水钒钙铀矿raw data 原始数据raw material 原料ray 辐射ray divergence 射线发散rayleigh distillation 瑞利蒸馏rayleigh scattering 瑞利散射rayleigh's radiation formula 瑞利辐射公式re enrichment 再浓缩re enrichment plant 再浓缩设备re entrant gas cooling 再入式气体冷却reaction 反应reaction apparatus 化学反应器reaction chamber 反应室reaction channel 反应道reaction control system 反应控制系统reaction cross section 反应截面reaction energy 反应能reaction formula 反应式reaction gas chromatography 反应气相色谱法reaction inhibition 反应抑制reaction particle 反应粒子reaction product 反应产物reaction rate 反应遣度reaction threshold 反应阀reaction time 反应时间reaction velocity 反应遣度reactivation 再激化reactive 无功的reactive coil 电抗线圈reactivity 反应度reactivity addition 反应性添加reactivity benefit 反应性增益reactivity calibration 反应性刻度reactivity coefficient 反应性系数reactivity control 反应性控制reactivity disturbance 反应性扰动reactivity eigenvalue 反应性本盏reactivity excess 剩余反应性reactivity excursion 反应性急速上升reactivity feedback 反应度反馈reactivity gain 反应性增益reactivity increment 反应性增量reactivity induced accident 反应性引发事故reactivity initiated accident 反应性引发事故reactivity insertion 反应性引入reactivity insertion accident 反应性引入事故reactivity insertion rate 反应性引入率reactivity interval 反应性范围reactivity lifetime 反应性寿期reactivity loss 反应性损失reactivity margin 过剩反应性reactivity measurement facility 反应性测量装置reactivity meter 反应性测量计reactivity mismatch 反应性失配reactivity noise 反应性噪声reactivity perturbation 反应性微扰reactivity power coefficient 反应性功率系数reactivity pressure coefficient 反应性压力系数reactivity rate 反应性变化率reactivity shimming 反应性补偿reactivity sinusoidal variation 反应性正弦变化reactivity spectral density 反应性谱密度reactivity spectrum 反应性谱reactivity step change 反应性阶跃变化reactivity swing 反应性摆幅reactivity temperature coefficient 反应性温度系数reactivity to power transfer function 反应性对功率传递函数reactivity transient 反应性瞬变reactivity unit 反应性单位reactor 板应堆reactor abnormality diagnostics 反应堆异常诊断法reactor alarm system 反应堆报警系统reactor analysis and safety 反应堆分析与安全性reactor and vessel instrumentation system 反应堆和容柒试设备系统reactor appurtenance 反应堆辅助设备reactor arrangement 反应堆装置reactor auxiliary systems 反应堆辅助系统reactor availability 反应堆时间可利用率reactor based activation analysis 反应堆活化分析reactor beam 反应堆射束reactor blanket 反应堆再生区reactor boundary 反应堆边界reactor breakdown 反应堆运行事故reactor bridge 反应堆顶桥式起重机reactor building cooling unit 反应堆建筑物冷却装置reactor building cooling water system 反应堆建筑物冷却水系统reactor building hydrogen purge fan 反应堆建筑物氢吹洗风机reactor by product 反应堆副产品reactor calculation 反应堆计算reactor cavity 反应堆腔reactor cell 反应堆栅元reactor channel 反应堆孔道;反应堆通道reactor charge 反应堆装料reactor code 反应堆计算程序reactor commissioning 反应堆试运行reactor compartment 反应堆室reactor constants 反应堆常数reactor containment building 反应堆安全壳建筑物reactor control 反应堆控制reactor control board 反应堆控制台reactor control rod 反应堆控制棒reactor control system 反应堆控制系统reactor coolant circuit integrity 反应堆冷却剂回路完整性reactor coolant leakage calculation 反应堆冷却剂泄漏计算reactor coolant pipe 反应堆冷却剂管reactor coolant pressure boundary 反应堆冷却剂压力界reactor coolant pump 反应堆冷却剂泵reactor coolant system 反应堆冷却剂系统reactor coolant system dose equivalent 反应堆冷却剂系统剂量当量reactor cooling 反应堆冷却reactor core 堆芯reactor core fan cooling 堆芯风机冷却reactor core isolation cooling 堆芯隔离冷却reactor core isolation cooling system 反应堆堆芯隔离冷却系统reactor core pressure drop 堆芯压降reactor core spray 堆芯喷淋reactor cross section 反应堆截面reactor dead time 反应堆死时间reactor debris 反应堆的裂变产物reactor design 反应堆设计reactor design criteria 反应堆设计标准reactor development program 反应堆开发计划reactor diagnostic system 反应堆诊断系统reactor disaster 反应堆严重事故reactor dome 球形安全壳reactor doubling time 反应堆倍增时间reactor dynamics 反应堆动力学reactor equation 反应堆方程reactor evolution 反应堆演化reactor fluid mechanics 反应堆铃力学reactor for space heating 取暖用反应堆reactor geometry 反应堆几何条件reactor grade graphite 反应堆用石墨reactor heat removal 反应堆排热reactor heat transport system 反应堆热传输系统reactor housing 安全壳reactor industy 反应堆工业reactor inherent protection 反应堆固有保护reactor instrumentation 反应堆检查控制仪表reactor instrumentation and control 反应堆仪表监测和控制reactor internal feedback 反应堆内反馈reactor internal pump 反应堆内泵reactor internals 反应堆内部件reactor irradiator 反应堆辐照器reactor isolation pressure valve 反应堆隔离压力阀reactor kinetics 反应堆动力学reactor licensing 反应堆许可证reactor lid 反应堆顶盖reactor liner 反应堆衬里reactor loading 反应堆装料reactor loop 反应堆回路reactor low water level 反应堆低水位reactor make up water system 反应堆补给水系统reactor manual control system 反应堆手动控制系统reactor materials 反应堆材料reactor meltdown 反应堆燃料熔化reactor monitor system 反应堆监测系统reactor monitoring and control 反应堆监测与控制reactor noise 反应堆噪声reactor noise analysis 反应堆噪声分析reactor operator 反应堆操妆reactor oscillation 反应堆振荡reactor oscillator 反应堆振荡器reactor performance 反应堆性能reactor period 反应堆周期reactor personnel 反应堆工姿员reactor plant control system 反应堆装置控制系统reactor plant designer 反应堆装置设计者reactor plant river water pump 反应堆装置冷却用河水提升泵reactor poisoning 反应堆中毒reactor poisons 反应堆毒物reactor pot 反应堆容器reactor power 反应堆功率reactor power monitor 反应堆功率监测器reactor power noise 反应堆功率噪声reactor pressure vessel 反应堆压力容器reactor process 反应堆运转reactor protection control rod system 反应堆保护控制棒系统reactor protection logic system 反应堆保护逻辑系统reactor protective system 反应堆保护系统reactor protective system motor generator 反应堆保护系统电动发电机reactor prototype 反应堆原型reactor radiation zone 反应堆活性区reactor recirculating pump 反应堆再循环泵reactor recirculation flow control system 反应堆再循环量控制系统reactor recirculation motor generator 反应堆再循环电动发电机reactor recirculation system 反应堆再循环系统reactor refueling plug 反应堆换料插头reactor refueling system 反应堆换料系统reactor regulation system 反应堆第系统reactor reserve shutdown system 备用停堆系统reactor roof 反应堆顶部reactor runaway 反应堆失控reactor safety control system 反应堆安全控制系统reactor safety fuse 反应堆安全保险器reactor safety study 反应堆安全性研究reactor service bridge 反应堆维修桥式起重机reactor service building 反应堆维修厂房reactor shielding 反应堆防护reactor shimming 补偿reactor shut down 停堆reactor shutdown system 停堆系统reactor simulator 模拟反应堆reactor site criteria 反应堆选址准则reactor siting index 反应堆选址指数reactor slag 反应堆堆渣reactor source 反应堆起动源reactor spectrum 堆中子能谱reactor sphere 球形安全壳reactor start up 反应堆起动reactor start up rate 反应堆起动速率reactor statics 反应堆静力学reactor structural material 反应堆结构材料reactor support 反应堆支承结构reactor system 反应堆系统reactor tank 反应堆槽reactor theory 反应堆理论reactor thermal power 反应堆热功率reactor thermal technology 反应堆热工艺学reactor time constant 反应堆周期reactor transfer function 反应堆传递函数reactor trip 事故保护停堆reactor up 反应堆功率增长reactor variables 反应堆变量reactor vault 反应堆坑室reactor vessel 反应堆槽reactor vessel support system 反应堆容僻承系统reactor vessel water level indication system 反应堆容飘位指示系统reactor waste 反应堆废料reactor water clean up unit 反应堆水净化装置reactor water cleanup system 反应堆一回路水净化系统reactor water storage tank 反应堆储水箱reactor work permit 反应堆工醉可证readjustment 重调reagent 试剂real absorption coefficient 有效吸收系数real gas 真实气体real time operating system 实时操椎统realistic nuclear force 真实的核力rearrangement collision 重排碰撞rearrangement of fuel 倒换燃料rearrangement scattering 重排散射reasctive coil 电抗线圈reboiler 再沸腾器receiver 接收器receptor 受主receptor atoms 受主reciprocal 逆的reciprocal lattice 倒易点阵reciprocal velocity region 速度倒数区reciprocating column 往复式塔reciprocity 互易性recirculation 再循环recoil 反冲recoil atom 反冲原子recoil chemistry 反冲化学recoil counter 反冲粒子计数器recoil depletion 反冲消耗recoil detector 反冲核探测器recoil electron 反冲电子recoil energy 反冲能recoil mean free path 反冲平均自由程recoil neutron 反冲中子recoil nucleon 反冲核子recoil nucleus 反冲核recoil on] proton 反冲质子recoil particle 反冲粒子recoil particle counter tube 反冲粒子计数管recoil proton counter 反冲质子计数管recoil proton detector 反冲质子探测器recoil proton ionization chamber 反冲质子电离室recoil proton scintillation counter 反冲质子闪烁计数器recoil radiation 反冲辐射recoil track 反冲粒子径迹recoilless plasma 无反冲等离子体recoilless radiation 无反冲辐射recoilless transition 无反冲跃迁recombination 再结合recombination coefficient 复合系数recombination velocity 复合速度recombiner 复合器复合剂recording 记录recording gamma ray spectrometer 记录射线谱仪recording thermometer 记录式温度计recovery time 恢复时间recrystallization 再结晶rectangular coordinates 直角座标rectangular well 矩形势阱rectification 精馏rectilinear manipulator 直线式机械手rectilinear motion of a particle 粒子的直线运动recuperative heat exchanger 间壁式换热器recycling 再循环red blood cell 红细胞red corpuscle 红细胞redflecting galvanometer 反射电疗redistillation 再蒸馏redistribution 再分配redox 氧化还原酌redox processes 氧化还原过程redox resin 氧化还原尸reduced coolant flow 减低冷却剂流reduced mass 折合质量reduced pressure distillation 减压蒸馏reduced transition probability 约化跃迁几率reducible 可还原的reducing roasting 还原焙烧reductant 还原剂reduction coefficient 衰减系数reduction in bulk 体积减少reduction reextraction 还原反萃取reductive agent 还原剂refabricated fuel 再制备燃料refabrication 再加工reference data 参考数据reference dose 参考剂量reference frame 参考系reference gauge 标准规reference input variable 基准输入变量reference level 基准水准面reference man 参考人reference material 参考材料reference point 基准点reference pressure 基准压力reference source 参考源reference system 参考系reflectance of a nuclear barrier 核势垒反射系数reflected pressure 反射压力reflected reactor 有反射层反应堆reflected shock wave 反射冲花reflecting power 反射性reflection angle 反射角reflection coefficient 反射系数reflection effect 反射效应reflection method 反射法reflection probability 核势垒反射系数reflection target 反射靶reflection type fluorometer 反射式荧光计reflectivity 反射性reflector 反射体reflector control 反射层控制reflector economy 反射层节省reflector graphite 反射层石墨reflector saving 反射层节省reflector tank 反射层箱reflooding 再淹没reflux 回流reflux condenser 回龄凝器reflux ratio 回寥refracting angle 折射角refracting interface 折射界面refraction 折射refractive index 折射率refractory uranium mineral 难熔铀矿石refrigerant 冷冻剂refrigerator 冷冻机refueling 换装燃料refueling machine 换料机refueling shutdown 换料停堆refueling water storage tank 换料用水贮存箱regenerated fuel 再生燃料regeneration 再生regeneration loss 再生损失regenerative process 再生过程regenerative reactor 再生反应堆region of limited proportionality 有限正比区region of partial shadow 半影regional control 区域控制registration 记录regulated stay area 限制停留区regulated work area 限制工坐regulating element 第元件regulating rod 第棒regulating rod drive 第棒驱动装置regulating system 第系统regulation 第regulator 第器reheat cycle 再热循环reheater 再热器reignition 再次点火reinforced concrete 钢筋混凝土reirradiation technique 再照射技术relative abundance 丰度比relative aperture 相对孔径relative atomic mass 相对原子质量relative biological effectiveness 相对生物效应relative biological effectiveness dose 相对生物效应剂量relative conversion ratio 相对转换比relative importance 相对价值relative ionospheric opacity meter 相对电离层不透萌计relative isotopic abundance 同位素相对丰度relative mass defect 相对质量筐relative mass excess 相对单位质量过剩relative plateau slope 相对坪斜率relative poisoning 相对中毒relative radiological hazard 相对放射危害relative specific activity 相对比放射性relative specific ionization 相对比电离relative standard deviation 相对标准偏差relative stopping power 相对阻止本领relativistic approximation 相对论性近似relativistic electron beam 相对论性电子束。

Er3+,Yb3+

Er3+,Yb3+
体的生长和光谱性能研究,并对其 1. 5 μm 波段连续激光性能进行了测试分析。
1 晶体生长
生长 Er,Yb∶BGP 晶体所用原料为 Er2 O3 ( 纯度 99. 99% ,赣州顺源稀土公司) 、Yb2 O3 ( 纯度 99. 99% ,赣州
顺源稀土公司) 、Gd2 O3 ( 纯度 99. 99% ,赣州顺源稀土公司) 、BaCO3 ( 纯度 99. 0% ,国药集团) 和 NH4 H2 PO4
通信作者:黄艺东,博士,研究员。 E-mail:huyd@ fjirsm. ac. cn
陈雨金,博士,研究员。 E-mail:cyj@ fjirsm. ac. cn
Copyright©博看网. All Rights Reserved.
第7 期
黄建华等:Er3 + ,Yb3 + ∶Ba3 Gd( PO4 ) 3 晶体的生长、光谱和 1. 5 μm 激光性能
Er、Yb 浓度为原子数分数) 。 测量并分析了晶体在室温下的吸收系数谱、上转换荧光谱、发射截面谱、增益截面谱和荧
光衰减曲线。 1. 85% Er,23. 95% Yb∶Ba3 Gd( PO4 ) 3 晶体在峰值荧光波长 1 537 nm 处的发射截面、Er3 + 的4 I13 / 2 多重态荧
光寿命和 Yb3 + →Er3 + 的能量传递效率分别为 0. 54 × 10 - 20 cm2 、9. 9 ms 和 90% ;1. 95% Er,55. 73% Yb∶Ba3 Gd( PO4 ) 3 晶
laser diode, 1 567 nm continuous-wave laser with maximum output power of 97 mW and slope efficiency of 27. 1% is obtained in

物理专业 词汇R

物理专业 词汇R
radio frequency spectroscopy 射频谱学
radio galaxy 射电星系
radio interferometer 射电干涉仪
radio noise 无线电噪声
radio observation 射电观测
radio observatory 射电天文台
radiometric force 辐射力
radiomicrometer 微量辐射计
radiomicrometry 微量辐射法
radionuclide 放射性核素
radiophotoluminescence 辐射光致发光
radiophysics 无线电物理学
radioresistance 抗辐射性
radiation cooling 辐射冷却
radiation damage 辐射损伤
radiation damping 辐射衰减
radiation density 辐射密度
radiation detector 辐射探测器
radiation dominated universe 辐射为诸宙
radiation 辐射
radiation balance 辐射平衡
radiation belt 范艾伦辐射带
radiation camera 辐射照相机
radiation chemical reaction 辐射化学反应
radiation chemistry 辐射化学
radiation control 辐射管理
radium 镭
radium standard 镭标准源
radius 半径
radius of gyration 回转半径

有机电子判断题

有机电子判断题

3、Compared to Debye force, London force is more polarisabilitydependent. T
4、Organic solids are all in amorphous state. 5、All organic molecules have permanent dipole. F F
6、Compared to photoluminescence from dilute solution of a pure organic material, the photoluminescence from the solid state of this pure material decreases dramatically with very large redshift. This is due to exciplex formation. F
1、HOMO and LUMO concept can be used for all isolated organic or inorganic molecules. T
2、Ionization potential determines the ability of hole injection to a molecule. T
有机电子判断题
1、Organic molecule can contain metal atom. T 2、There are some differences in opto-electronics processes between organic and inorganic materials. T 3、There is only one kind of exciton. F

Effective Chiral Theory for Radiative Decays of Mesons

Effective Chiral Theory for Radiative Decays of Mesons

∗ †
gedal@bgumail.bgu.ac.il moalem@bgumail.bgu.ac.il ‡ ljuba@bgumail.bgu.ac.il
1
II. THE EFFECTIVE LAGRANGIAN
ቤተ መጻሕፍቲ ባይዱ
In order to include the η ′ meson into chiral effective Lagrangian one has to extend the SU (3)L SU (3)R local symmetry of the QCD Lagrangian into U (3)L U (3)R local symmetry. This can be achieved by adding to the QCD Lagrangian (herein denoted LQCD ) a term proportional to the topological charge operator, i.e., L = LQCD − Θ(x) g2 ˜ µν T rc Gµν G 16π 2 , (1)
where Nf represents the number of flavors and α the axial U (1) transformation parameter. Indeed, the term generated by the anomaly in the fermion determinant is compensated by the shift in Θ(x), so that the overall change in the Lagrangian amounts to a total derivative, giving rise to the well known anomaly Wess-Zumino term. An effective field theory Lagrangian which involves an integrated form of this anomaly term would also have this same feature. For more details see Ref. [6]. We now turn to construct a general chiral effective Lagrangian with U (3)L U (3)R local symmetry for pseudoscalar and vector meson nonets interacting with external electroweak fields. As a non-linear representation of a Goldstone nonet we take [8,9], √ 2 U (P, η0 + F0 Θ) = ξ (P, η0 + F0 Θ) = exp i P +i F8

中国海洋大学教师系列副高级、中级岗位晋级评聘申报一览表

中国海洋大学教师系列副高级、中级岗位晋级评聘申报一览表

在学科建设、实验室(基地)建设、梯队建设等方面的贡献
在学科建设方面,本人参与了16年教学培养方案的修订工作,并主笔了16年版的本科教学培养方案。培养方案的制定是课程体系的纲要,对于物理学科课程体系建设起到 重要作用。另外本人还 进行了一些课程教学大纲的制定。
其他业绩
所申报岗位工作思路及预期工作目标
新的工作岗位上,本人将继续在教学和科研方面提高自己,为同学服务,为学科建设服务。 在本科教学方面,继续提高数学物理方法等课程的教学水平,让大部分学生能 有切实的收获。在研究生教学方面,认真建设高等数学物理方法和量子场论两门课程,为物理专业研究生课程建设贡献自己的力量。在科学研究方面,力争未来的几年内每 年发表不少于三篇SCI论文,争取到国家自然科学基金面上项目,培养出合格的理论物理专业研究生。另外为了配合学校的海洋特色,将在海洋声学和水声物理等方面进行 一些科学研究。
B -> D form factors in QCD
PHYSICS
Subleading power
corrections to the pion- JOURNAL OF HIGH ENERGY
photon transition form
PHYSICS
factor in QCD
Perturbative corrections to
2007.07/2010.12 中国海洋大学
讲师
博士/博士研究生毕 2010.12/2018.12 中国海洋大学 业
副教授
任现专业技术岗位以来研究生培养情况
教学科研 教学科研
年度
2017年
2016年
2015年
已毕业博士生
0
在读博士生
0
考核结果

等离子体传感器

等离子体传感器

表面等离子体共振传感器摘要光纤SPR传感器是一种将光纤纤芯作为激发SPR效应基体的新型传感器。

这种传感器不仅具有SP R高灵敏度的特点,而且发挥了光纤本身的诸多优点,如体积小及可远程遥测等,可推广应用于诸如基因突变检测、生物分子反应动力学测定、结构与活性研究和核酸研究以及工业废水废气监控等众多领域。

本文对光纤SP R传感器的研究背景及研究现状进行了介绍,同时简单的阐述了S PR传感器的结构和工作原理。

关键词:表面等离子体共振,光纤传感器,生化检测一.研究背景1900年,Woo d发现光波通过光栅后,光谱发生了小区域损失,这是关于表面等离子体共振(sur fac e Pl asm on res ona nce,SP R)这一电磁场效应的最早记载[1]。

1941年,Fa no[2]根据金属和空气界面上表面电磁波的激发解释了这一现象。

随后有人提出体积等离子体子的概念,认为这是金属中体积电子密度的一种纵向波动。

Ri tch ie[3]注意到,当高能电子通过金属薄片时,不仅在体积等离子体子频率处有能量损失峰,并认为这与金属薄膜的界面有关[4]。

1958年,Tu rba der首先对金属薄膜采用光的全反射激励的方法,观察S PR 现象[5]。

1960年,Se rn和Fa rre ll[6]首次提出了表面等离子体波(s urf ace Plas mon wa ve,SPW)的概念。

1968年,德国物理学者O tto研究认为表面等离子体波共振效应实际上是光学全反射的一种现象既衰减全反射(At ten uat e Tot al Ref lec tio n,A TR),据此给出SP R激发条件并设计了以棱镜为基体的O tto模型[7]。

1971年,另一位德国物理学者Kr ets chm ann采用将几十纳米厚的金属薄膜直接覆盖在棱镜底部的设计即K ret sch man n模型,实现了SP R效应激发[8]。

该模型的加工和使用较Ott o模型均更为方便实用,因而也为表面等离子体波传感器的深入研究与应用奠定了基础。

常用“矿井通风与空气调节”英汉专业词汇

常用“矿井通风与空气调节”英汉专业词汇

为了便于一些同学阅读矿井通风与空调方面的英文参考资料和为以后撰写英文论文发表,下面给出了一些常见的矿井通风与空调中英文专业词汇。

Abandoned workings 废弃坑道Absolute pressure 绝对压力Acceptable accuracy 允许精度Active regulation 主动调节(增压调节)Actual characteristic curves实际特征曲线Adiabatic and isentropic processes等熵线绝热的过程Adiabatic saturation process 绝热饱和过程Aerofoils风板Aerosol particles 气溶胶粒子Air crossings 风桥Air mover 鼓风机Air power空气动力Air pressure management 风压管理Air quantity survey空气质量调查Air regulators 风窗Airborne pollutants空气污染物Airflow measurements 风流测定Airflow reversal反向风流Airlock 气闸Airlocks 风门Airway resistance curve风路阻力曲线Alpha, beta and gamma radiation阿尔法、贝塔和伽玛辐射Altimeters 高度计Angular velocity角速度Asbestos 石棉Atkinson equation阿特金森方程式Atmospheric conditions 大气状态Atmospheric pressure 大气压力Auxiliary ventilation 辅助通风Axial fan轴流风机Axial impeller轴向式叶轮Backfill material 充填材料Barometers 气压计Barometric pressure at inlet 入口气压Becquerel (Bq) 贝克勒尔Bernoulli's equation for ideal fluids 理想流体伯努力方程Biot number 比奥数Blackdamp 窒息气体Blast fume炮烟Booster fans 局扇Boreholes 钻孔Branch resistance分支阻力Branch tree分支树Brattice curtain 风帘Brattices 风帘Bronchioles 细支气管Brownian motion 布朗运动Buoyancy (natural draft) effect浮力作用Burying the fire掩埋火源Cage and skip 罐笼和箕斗Carbon dioxide produced生成二氧化碳Carbon dioxide 二氧化碳Carbon monoxide 一氧化碳Carcinogenic (cancer causing) dusts 致癌粉尘Carnot cycle 卡诺循环Centrifugal fan离心风机Centrifugal impeller离心叶轮Chemical absorption化学吸收Chézy-Darcy equation谢兹-达西方程Chilled water spray chamber 冷却液体喷雾室Choke effect瓶颈效应Circular airway 循环风路Closed loop闭环Closed path回路Coal workers' pneumoconiosis (CWP) 煤工尘肺病Coefficient of drag阻力系数Coefficient of dynamic viscosity动力粘度系数Coefficient of friction摩擦系数Compressed air-assisted sprays 压气助喷雾Compressible flow可压缩流Computational fluid dynamics计算流体力学Condenser cooling tower 凝气器降热塔Condenser 冷凝器Consolidation 固结Contaminants 污染物Continuity equation 连续方程Controlled partial recirculation 受控开路循环通风Controlled recirculation in headings 掘进面受控循环通风Convected energy 扩散能Convective heat transfer 对流换热Conveyance运输工具Copper orebody 铜矿体Cross section of a duct or airway 管道或风路断面Curie, Ci 居里Cylindrical cyclone重力旋流器Dealing with a spontaneous heating 处理自热Degrees Celsius 摄氏度Degrees Kelvin绝对温度Density of gases 气体密度Desorption kinetics解吸动力学Dew point hygrometers 露点毛发湿度计Diaphragm gauge 隔膜片仪表Diesel emissions柴油机排放物Diesel exhaust fume柴油机尾气Diesel particulate matter柴油机颗粒物质Differential pressure instruments 微压差计Dimensionless无量刚Disaster management 灾害管理District systems 分区通风系统Dose rates 剂量率Downcast shaft入风井Droplet diameter雾滴直径Duct system风管系统Dust suppression 降尘Dynamic behavior of molecules 分子运动特征Electrochemical methods电化学方法Electrostatic precipitators 电除尘器Emanation of radon 氡的辐射Empirical method 经验方法Energy recovery device 能量回收装置Enthalpy of moist air潮湿空气的焓Enthalpy 焓Entry and exit losses 入口和出口阻力损失Environmental engineering 环境工程Equivalent length当量长度Equivalent resistance等效风阻Equivalent resistance等效阻力Equivalent sand grain roughness相当砂粒粗糙度Escape way 逃生通道;安全通道Euler's equation欧拉方程Evaporator蒸发器Excavating the fire挖掘火源Exhausting air 抽出空气Exhausting system 抽出式通风系统Explosive dusts 爆炸粉尘Explosives炸药Fan characteristic curve风机特征曲线Fan maintenance 风机维护Fan performance 风机性能Fan static pressure风机静压Fan total pressure风机全压Fan velocity pressure风机速度压Fibrogenic dusts 矿渣粉尘Filament and catalytic oxidation (pellistor) detectors丝状催化氧化探测器Fire triangle 火三角Firedamp 甲烷Firefighting with water 以水灭火First law of thermodynamics 热力学第一定律Fixed point measurement固定点测量Fixed quantity branch固定风量分支Flame safety lamps灯具安全火焰Flexible tubing 柔性风筒Flooded orifice scrubber 水淹孔洗涤器Flooding and sealing off 溢出和密封作用Flow work 流动功Fluid mechanics 流体力学Fluid pressure 流体压力Fog 雾Fogged air 雾气Forcing air压入空气Forcing or blowing system 压入式通风系统Fourier number傅里叶数Fragmented rock 破碎岩石Free crystalline silica (quartz, sand stones, flint)游离硅晶体Friction factor摩擦系数Frictional flow 摩擦流动Frictional losses摩擦损失Frictional pressure drop摩擦压降Frictional resistance 摩擦阻力Frictionless manner 无摩擦状态Gas adsorbents 气体吸收剂Gas chromatography气相色谱Gas constants 气体常数Gas drainage 瓦斯抽放Gas laws 气体定律Geothermic gradient 地热梯度Gob drainage采空区抽放气体Grab samples 样品收集Gravitational field 重力场Gravitational settlement of particles 引力沉降颗粒Gravitational settlement 重力沉降Hair hygrometers 毛发湿度计Hardy-Cross technique哈代克劳斯技术Haulage airways 运输风路Haulage level 运输平巷Heat capacity 热容Heat cramps 中暑痉挛Heat diffusivity 热扩散系数Heat exchanger 换热器Heat exchange换热Heat exhaustion 热量消耗Heat fainting 热昏厥Heat flux 热通量Heat illness 中暑Heat rash 热疹Heat stroke 中暑Heat tolerance 耐热性Heat transfer coefficient 传热系数High expansion foam高倍数泡沫High pressure tapping高压测压孔Hoisting shaft提升竖井Hot wire anemometer热线风速仪Hydraulic radius水力半径Hydrogen sulfide硫化氢气Hydrolift system 水力提升系统Hydropower 水电Ice system 冷却系统Ideal gas 理想空气Ideal isothermal compression理想恒温压缩Immediate response 应急反应Induction 感应Industrial Hygienists 工业卫生学家Inhalation rate吸入速度Initiation of explosions引发爆炸Injection of inert gases注射惰性气体Inlet and outlet ducts入口和出口管In-situ measurement 现场测量Intake airway 进风风路Interception and electrostatic precipitation 截留和静电沉淀Interference factor干扰因素Interferometers干涉计Internal Energy 内能Ionization smoke detectors离子感烟探测器Iron pyrites黄铁矿Jet fan 射流风机Junction节点Kata thermometer 卡它计Kinetic energy 动能Kirchhoff's Laws 基尔霍夫定律Laminar and turbulent flow层流和紊流Laminar resistance 层流阻力Laminar sublayer层流次边界层Laser spectroscopy激光光谱学Latent (or hidden) heat of the air空气的潜热Layout of mine 矿井布置Leakage control漏风控制Legislation 法规Level workings阶段工作面Loading station装运站Longitudinal fittings纵向装备Longwall长壁开采法Machine mounted gas monitors悬挂式气体检测器Main fans 主扇Main haulage route主运输道Main return 主(总)回风道Manometers 压差计Mass flow 质量流量Mass spectrometers质谱仪Mean free path 平均自由程Mean velocity of air 平均风速Mesh selection网孔选择Mesh网Metabolic heat balance 代谢热量平衡Metabolic heat代谢热Metal mine fires金属矿井火灾Meteorology 气象Methane drainage瓦斯排放Methane 甲烷Method of mining 采矿方法Mine climate 矿井气候Mine resistance 矿井阻力Mine ventilation 矿井通风Mist eliminator 除雾器Mist 雾Moisture content (specific humidity) of air空气的含湿量Momentum 动量Monitoring systems 监测系统Moving traverses运动线路Natural ventilating effect自然通风影响Natural ventilation 自然通风Neutral skin temperature 中性表皮温度Nikuradse's curves 尼库拉则曲线Nondispersive infra-red gas analyzer非分散红外线气体分析仪Nuisance dusts 粉尘污染Numerical method数值方法Nusselt number努塞尔数Old workings老工作面One standard atmosphere 一个标准大气压Open and concealed fires 明火和隐蔽火灾Ore pass 放矿溜井Ore production矿石生产Orebody deposit 矿体Outbursts from roof and floor 顶板和底板瓦斯突出Overlap systems of auxiliary ventilation 混合式局部通风Oxides of nitrogen氧化氮Oxygen Consumption耗氧量Parallel network or circuit并联网络或回路Paramagnetic analyzer 顺磁分析仪Passive regulator 可调风窗Pellistor methanometers瓦斯检定器Peripheral velocity圆周速度Permanent environmental monitors 持久环境监控Permeability 渗透率Personal dosemeters 个人剂量计Personal respirators 个体呼吸器Phases of oxidation氧化反应阶段Photometric (light-scattering) methods 分光光度Physical adsorption物理吸附Physical thermodynamics 物理热力学Pick face flushing and jet-assisted cutting 锯齿面冲洗与喷气助推器切割Piezoelectric instruments 压电仪器Pitot-static tube皮托静压管Polyvinyl chloride (PVC)聚氯乙烯Potential energy 势能Prandtl number 普兰特尔数Precautions against spontaneous combustion自燃预防Pressure energy 压能Pressure head 压头Pressure surveys压力调查Pressure transducers 压力传感器Pressure-volume surveys压力容积测量Profilometer轮廓仪Psychrometric chart 温湿图Psychrometric measurements 干湿度测量Push-pull system 压-抽混合式通风系统Radial velocity径向速度Radiation 辐射Radiative heat transfer 辐射传热Radioactive decay and half-life放射衰变和半衰期Radon daughters氡子体Radon decay constant 氡的衰变常数Radon, Rn氡气Ramp 斜坡道Rates of heat production 生产率Rates of oxygen consumption 氧气消耗率Refrigerant fluid 制冷液Refrigeration cycle制冷循环Refrigeration systems 制冷系统Refuge chambers避难洞室Regulator 调节器Relative humidity and percentage humidity相对湿度和湿度率Removal of dust from air 气体除尘Re-opening a sealed area重开封闭区Respirable dust呼吸性粉尘Respiratory system 呼吸系统Return airway 回风巷Reynolds Number雷诺数Room and pillar房柱式Rotating vane anemometer旋转叶片风速表Rough pipes 粗管Roughness粗糙度Safety and Health 安全卫生Saturation vapor pressure 饱和蒸汽压Sealants密封剂Seals 密闭Second law of thermodynamics 热力学第二定律Self-heating temperature (SHT) 自热温度Self-rescuers 自救器Sensible heat of the air 空气的显热Series network or circuit串连网络或回路Shaft fittings 井筒装备Shaft wall井壁Shear stress 剪切应力Shock loss factor冲击损耗系数Shock losses 冲击损失Short-Term Exposure Limit (STEL) 短时间接触阈限值SI system of units 国际标准单位体系Sigma heat 西格玛热Smoke tube烟筒Smoking and flame safety lamps 烟火安全灯Smooth concrete lined光滑混凝土内衬Specific heat (thermal capacity)比热容Specific heats 比热Spontaneous combustion of sulfide ores硫化矿自燃Spontaneous combustion自燃Spontaneous heating 自热Spot cooler 现场冷却器Spray fan 喷雾风机Steady flow energy equation稳流能量方程Steady flow physical thermodynamics稳流物理热力学Steady-flow thermodynamics 稳定流热力学Stokes' diameter斯托克斯粒径Stoping areas 回采区Stoppings 密闭Subsurface openings 地下空间Subsurface ventilation 地下通风Sulfide dust explosions 硫化矿粉尘爆炸Sulfur dioxide二氧化硫Sulfuric acid vapor硫酸雾Swinging vane anemometer摆动叶片风速表Tangential velocity at outlet出口切向速度Temperature-entropy diagram温熵图Temporary stopping暂时停止Terminal velocities 自由沉降速度The square law平方定律Thermal conductivity of insulation 绝缘导电温度Thermal conductivity导热系数Thermal equilibrium 热平衡Thermodynamic state 热力学状态Thermoluminescent dosemeters (TLD) 热释光剂量计Thermoregulation 体温调节Threshold limit values (TLV) 阈限值Through-flow ventilation 贯穿通风Time-Weighted Average (TWA)时间加权平均Total energy balance 总能量守恒Total shaft resistance 井筒总阻力Tube bundle systems 管束系统Turbulent resistance紊流阻力U tube manometers U型压差计U tube U型管Uncontrolled recirculation 无控循环通风Underground ventilation system 地下通风系统Unloading station卸载站Upcast shaft出风井Uranium mines 铀矿Vasodilation 血管舒张Velocity contour等流速线Velocity limit速度限值Velocity pressures 动压Velometer速度计Ventilation circuit 通风回路Ventilation door 风门Ventilation engineers 通风工程师Ventilation network analysis通风网络分析Ventilation planning 通风设计Ventilation raise 通风天井Ventilation survey team 通风测量术语Ventilation survey通风测量Venturi scrubber文丘里洗涤器Vertex顶点Viscosity 粘度Viscous drag粘性阻力Volume flow 体积流量Volumetric efficiency 容积效率Vortex-shedding anemometer漩涡式风速表Water gauge pressure 水柱压力Water infusion 注水(水封孔)Water mass flowrate 水质量流量Water vapor content 水蒸气含量Wet and dry bulb hygrometers (psychrometers)干湿球温度表Wet bulb thermometer 湿球温度计Wet Kata thermometer湿球卡他温度表Wet scrubbers湿式除尘器Wetting agents 润湿剂Worked-out area采空区Working face工作面Working level month, WLM 工作水平月Working Level 开采水平Zinc blende闪锌矿——上述词汇摘录自:吴超主编。

Measurements of High Density Matter at RHIC

Measurements of High Density Matter at RHIC


pmjacobs@
1

1 Introduction
At high temperature or baryon density, hadronic matter dissolves into a soup of its constituent quarks and gluons. For an asymptotically free field theory such as QCD, the state of matter at high energy density is simple1: long range (low momentum) interactions are screened, and short range (high momentum) interactions are weak, leading to an ideal gas equation of state in the high energy density limit. At temperature T ≫ ΛQCD matter is a gas of deconfined, weakly interacting quarks and gluons (the fined and matter consists of strongly interacting hadrons. “Quark-Gluon Plasma”, or QGP), whereas at T ≪ ΛQCD quarks and gluons are con-
temperature QCD can only be carried out numerically on the lattice.3 Fig. 2 shows a recent lattice calculation of the energy density ǫ as function of temperature for twoand three-flavor QCD. ǫ exhibits a sharp rise in the vicinity of the critical temperature TC , indicating a rapid change in the density of underlying degrees of freedom. The ideal gas Stefan-Boltzmann limit ǫSB has not yet been achieved at T ∼ 4TC . Putting in physGeV/fm3 . This value should be kept in mind for comparison to conditions achieved in laboratory experiments. The order of the deconfinement phase transition can be determined in some limiting cases.3 It is first order for pure gauge and for three light quarks, second order for two light and one heavy quark. For physical quark masses the order of the transition, or 2 ical values, TC ∼ 175 MeV, resulting in critical energy density ǫC = (6 ± 2)TC 4 ∼ 1

微电子专业英语词汇

微电子专业英语词汇

Chapter One 第一章Semiconductor fundamental 半导体基础1.1 Semiconductor Materials 半导体材料1 Solid stare 固态2 insulator 绝缘体3 electrical conductivity电导率4 conductor 导体5 semicoductor 半导体6 Fused quartz熔融石英7 order 有序8 impurity 杂质9 element semiconductor元素半导体10 illumination 阐明11 silicon 硅12 Periodic table周期表13 germanium 锗14 gallium 嫁15two-terminal 两端16 Arsenic 砷17 silica 石英18bipolar transistor 双极晶体管19 rectifier 整流器20 optical 光21photodiodes 光电二极管22silicates 硅酸盐23dimension 维度24 Gallium arsenide 砷化镓25 microwave 微波26compound semicondutor 化合物半导体1.2 Crystal Structure 晶体结构1 Crystal 晶体2 amorphous 非晶的3 formlessness 无定形的4 solar cell 太阳能电池5 polycrystalline 多晶的6 silicon dioxide 二氧化硅7 gate 门栅8 lattice 晶格9 single crystal 单晶10 Fashion 方式11 vibration 振动12 unit cell 原胞13 cubic-crystal 立方晶体14 fcc 面心立方15 lattice constant 晶格常数16 Polonium 钋17 bcc 体心立方18 Miller indices 密勒指数19 sodium 钠20 tungsten 钨21 gallium phosphide 磷化镓22 Aluminum 铝23 copper 铜24 diamondlattice 金刚石点阵25 platinum 铂26 Sublattice 子格27 interpenetrate 互相贯通28 diagonal 对角式29 terahedron 四面体30 zincblende lattice 闪锌矿晶格31 zincsulfide 硫化锌32 anisotropic 各向异性33 crystal orientation 晶向34 interceot 截距35 reciprocal 倒数36 perpendicular垂直37 integer 完整38 Cartesian coordinate 笛卡尔坐标系1.3 Bohrˊs Atom Model 波尔原子模型1 nucleus 原子核2 discrete 分立3 engery level 能级4 electronvolt 电子伏5 wavelength 波长6 binding engery 结合能7 shell 壳8 force 力9 angular momentum 角动量10 photon 光子11 joule 焦耳12 excited state 激发态13 potential 电势14 MKS system米千克秒制15 kinetic energy 动能16 ground state 基态17 valence electron 价电子18 principal quantum number 主量子数1.4 V alence Bonds Model of Solid 固体材料价键模型1 current 电流2 resistivity 电阻率3 electric field 电场4 covalent bond 共价键5 nuclei 核6 metallic conductor 金属导体7 electrostatic 静电的8 deficiency 缺陷9 ionic bond 离子键10 hole 空穴11 vacancy 空位1.5 Energy Bonds Model of Solid 固体材料的能带模型1 gaseous 气态2 mass 质量3 plank constant 普朗克常量4 permittivity 介电常数5 bandgap频带间隙6 energy band 能带7 valence band 价带8 conduction band 导带9 band diagram 能带图10 at rest 静态11 discrete energy level 不连续能级离散能级12 quantum mechanics 量子力学13 doubly degenerate energy lever1.6 Free-Carrier Density in Semicondutor 半导体中的自由载流子的密度1 standing-wave 驻波2 wavelength 波长3 momentum 动量4 sphere 球面5 volume 体积6 electron spin 电子自旋7 agitation 振荡8 intrinsic 本征的9 allowed state 允态10 product 乘积11 integrate 集成12 Fermi level 费米能级13 function 函数14 concentration 浓度15 forbidden-gap 禁带16 unity 单元17 exponential 指数函数18 infinity 无穷大19 excitation 激发20 recombination 复合21 deviation 误差22 extrinsic 非本征的23 term 项24 mass-action law 质量守恒定律1.7Donors and Acceptors1 donor 施主2 accepter 受主3 dope 掺杂4 negative 负的5 positive 正的6 boron 硼7 ionization 电离第二章mobility [məu'biliti]迁移率drift [drift] 漂移diffusion [di'fju:ʒən] 扩散gradient ['greidiənt] 梯度generation [,dʒenə'reiʃən]Injection [in'dʒekʃən] 注入None-equilibrium 非平衡Excess carrier 过剩载流子Recombination 符合Lifetime 寿命Thermal equilibrium 热平衡particle ['pɑ:tikl] 粒子质点motion 运动Equipartition 均分Degree of freedom 自由度Three-dimensional ['θri:di'menʃənəl] 三维的kinetic energy 动能collision [kə'liʒən] 碰撞deflect [di'flekt] 偏转挠曲phonon ['fəunɔn] 声子mechanism ['mekənizəm] 机制,机理,操作机构coulomb force 库仑力displacement 位移,迁移mean free path 平均自由行程component [kəm'pəunənt] 子件,组件vacuum ['vækjuəm] 真空,负压proportionality [prəu,pɔ:ʃə'næliti] 比例性factor因素、因数subscript ['sʌbskript] 下标valley 谷最小值cross-sectional area 截面积conductivity [,kɔndʌk'tiviti] 电导率linearity [lini'ærəti] 线性度convection [kən'vekʃən] 对流stationary ['steiʃənəri] 固定的molecule ['mɔlikju:l] 分子spatial ['speiʃəl] 空间的half-width 半角Fick's first law:菲克(扩散)第一定理;菲克第一定律carrier injection 载子注入forward bias 正向偏压;前向偏移optical excitation 光激励electron hole pair 电子空穴对majority carrier 多数载流子injection level 注入水平order of magnitude 数量级low level injection 低水平注入low level injection 高水平注入dissipate 使消散,驱散;驱散;浪费;耗散radiative ['reidieitiv] 辐射的band to band带间direct-bandgap 直接带隙transient trænʃənt] 瞬态response 响应decay 衰减photoconductivity fəutəu,kɔndʌk'tiviti] 光电导性setup 装置pulse 脉冲propagation 传播传导generation 产生世代carrier scattering 载流子散射Chapter Three3.1Device 器件diode 二极管wafer 晶片Alloying 合金epitaxy 外延implantation 注入Substrate 沉底vacuum chamber 真空室furnace 熔炉Eutectic 共晶体dopant 掺杂剂VPE气象外延LPE 液相外延MBE 分子束外延slice 切片Solubility 溶解度range 范围incident ion 入射离子Anneal 退火oven 恒温炉metallurgical 冶金Clectrostatic 静电的dashed line 虚线homojunction 同质结Huterojunction 异质结3.2Electron affinity 电子亲和势work function 功函数reference 基准点Built-in 内建depletion region 耗尽区polarity 极性Quasi-neutral 准中性reverse bias 反偏tunneling current 漏电流3.3Numenclature 命名,命名法sterdy-state 稳态counterintuitive 违反直觉地Avalanche 雪崩interband 带间extrapolate 外推Quality factot 品质因子zener tunneling 齐纳隧道multiplication factor 倍增因子Impedance 阻抗differential 差分dimension 量纲维数Trap 陷阱rectangle 长方的,矩形Chapter FourBJT---双极结式晶体管Collector---集电极Saturation mode---饱和状态Cut off mode---截止状态Minority carrier---少数载流子Qualitatively---质量上Diode---二极管Injection efficiency---注入系数Tunneling---隧道(穿)Ionized acceptor---离子化受主Approximation---近似Barrier---势垒Simulation---仿真Lateral---横向Sheet resistance---表面电阻MOS---金属氧化半导体Gate---栅极Buried layer---势垒层Forward biased---正向偏压Nondegenerate---非简并Injection---注入Milliampere---毫安培Lifetime---寿命Terminal---终端Capacitance---电容Width---宽度Substitute---代替Uniform doping---均匀掺杂Horizontal axis---水平轴Intrinsic---本征的Slope---斜面,坡度,跨导Terminal---电极Transistor---晶体管Active mode---有源状态Reverse biased---反向偏压Assumption---假想,假设Recombination---复合Leakage current---漏电电流Diffusion length---扩散长度Quantitatively---数量上Breakdown---击穿Flux---通量Simplify---简化Doping profile---掺杂分布Normalization---正规化,标准化Extrinsic---非本征的Avalanche---电子雪崩Emitter---发射极Junction---结Common base configuration---共基极组态Common emitter configuration-共射极组态Degenerate---简并的Extract---提取Base contact---基极接点Micrometer---千分尺Principle---原理Steady-state---平衡状态Concentration---集中,浓度Denominator---分母Semilog---半对数的Extrapolation---外推法Lumped resistance---集中电阻Interdigitated structure---交互式结构Base---基极Well---井Boundary condition---边界条件Generation---产生,代Order of magnitude---数量级Current gain---电流增益Collection efficiency---收集效率Neutrality---中性Hyperbolic function---双曲函数Multiplication---乘Gradient---坡度,斜率Depletion layer---耗尽层Polarity---极性,偏极Chapt 5frequency 频率analog模拟digital数字transient瞬态的/过渡的uppercase大写字母lowercase小写字母load resistance负载电容supply voltage供给电压load line 负载电路equivalent circuit 等效电路differential 微分measure 测量reciprocal 交互的/倒数Transconductance跨导series resistance串联电阻Infinite无穷的shaded area 阴影区operating speed工作速度Response反应figure of merit品质因数Delay延时Parasitic寄生的Oscillation振动self-aligned自动对准ion implantation离子注入heat treatment热处理Polysilicon多晶硅Discontinuity中断Switch开关Pulse脉冲Waveform 波形charging time充电时间Parallel并联State状态Chapt 6dielectric constant电介质常数channel 沟道Macroscopic宏观的work function自由能Equilibrium平衡Substrate衬底Interface接触面Permittivity介电常数Thickness 厚度Electrode电极Accumulation积聚Dc直流电Ac交流电space charge空间电荷inversion layer反型层Source源Length长度Conductance 电导率Drain漏Subthreshold次于最低限度的Perpendiculat垂直的Threshold阈值Bulk体积surfacepotential表面势flat-band voltage平能带电压Symbol符号Longitudinal 纵向的Transverse横向的Expression表达式NFET n沟道场效应晶体管Derivation推论/起源Mobility迁移率Constant 常数Bias偏压enhancement-type增强型parallel plate并联板ground 地V ariable变量Modulation调制Scattering散射Collision碰撞kinetic energy动能mean free path 平均自由能mean free time 平均自由时间Parameter参数Integral积分Minimum最小的Maximum 最大的Evaluate赋值dangling bond悬空键electrostatic potential静电势。

Measurement of the radiation field surrounding the Collider Detector at Fermilab

Measurement of the radiation field surrounding the Collider Detector at Fermilab

FERMILAB-Conf-04/010-EIEEE/NSS-MIC2003ConferencePortland,Oregon,October19-25,2003 Measurement of the radiationfield surrounding the Collider Detector at FermilabKostas Kordas,Saverio D’Auria,Andy Hocker,Susan McGimpsey,Ludovic Nicolas,Richard J.Tesarek,and Steven Worm(CDF radiation monitoring group)Abstract—We present here thefirst direct and detailed mea-surements of the spatial distribution of the ionizing radiationsurrounding a hadron collider ing data from twodifferent exposures we measure the effect of additional shieldingon the radiationfield around the Collider Detector at Fermilab(CDF).Employing a simple model we parameterize the ionizingradiationfield surrounding the detector.Index Terms—Radiation measurement,ionizing radiation,ra-diationfield,radiation damage.I.I NTRODUCTIONI N modern collider experiments,the supporting infrastructurelies external to the detector,but inside the radiation environ-ment surrounding the detector.The apparatus and its infrastruc-ture may be sensitive to both chronic and acute radiation doses.These doses induce additional detector occupancy,single-eventeffects in the supporting electronics,or even irreversible fail-ure.This sensitivity can lead to additional contamination ofphysics signals,corruption of the data,reduced reliability ofthe detector,or reduced detector lifetime[1].Knowledge ofthe spatial distribution,dose rate and sources of radiation are,therefore,critical components in the design and operation of anexperiment at a hadron collider.Most experiment designs haverelied on a combination of radiation damage measurements andcomputer simulations of the radiation environment[2],[3],[4].However,no substantial measurements of the radiationfieldsurrounding a collider detector exist in the literature.In this article,we present thefirst detailed measurement ofthe radiationfield surrounding the Collider Detector at FermilabEE EE 0123Fig.2.The principle of thermal luminescence.Photon radiation brings the material in a meta-stable state,,with a long lifetime (left).Heating the material leads to emission of visible photons (right).with an energy of TeV .Protons travel along thedirection and collide with oncoming antiprotons at the center of the CDF detector at (see Fig.1).In the CDF cylindrical geometry we denote the distance from the beam line by ,and the azimuthal angle around the -axis by .A series of semiconductor and gaseous detectors,immersed in a T solenoidal magnetic field within m of the beam line,measure charged particles produced at collisions.Out-side the tracking volume,calorimeters measure the total energy of neutral and charged particles from the proton-antiproton collisions.The calorimeters are surrounded by muon detectors.The number of collisions at the center of CDF is recorded by the Cherenkov Luminosity Counter (CLC)[5].On either side of the detector,scintillator counters surrounding the beam pipe record losses from protons and antiprotons ejected from the beam.Proton (antiproton)losses are defined as the coin-cidence of a counter signal with a proton (antiproton)bunch crossing the plane of the scintillator on its way into the CDF detector.B.Thermal Luminescent DosimetersTwo types of Harshaw TLD chips are used for the radiation measurements.One type (TLD-700)is based on LiF and is sensitive to ionizing radiation.Ionizing radiation passing through the dosimeter brings the material in a meta-stable state with very long lifetime.Heating the TLD chip leads to a transition back to ground state accompanied by the emission of a photon (see Fig.2).The number of photons produced is proportional to the population in these meta-stable states,which is in turn proportional to the amount of ionizing radiation that has traversed the TLD chip.The other dosimeter type (TLD-600)is based on LiF and is sensitive to both ionizing radiation and low-energy neutrons (keV).The reaction Li H results in a transition to the meta-stable state discussed above,by means of the recoiling tritium (H)and helium ()nuclei.Dosimeters are grouped in two triplets,one of each TLD type,and put in cm cm holders made of mm thick FR-4(see Fig.3).The TLD’s are held in place bym thick kapton tape,and are subsequently placed in 160locations around the collision hall to accumulate radiation,on both the proton ()and the antiproton ()sidesFig.3.A mm thick FR-4TLD holder.TLD-700(round)and TLD-600(square)dosimeters are kept in place bym thick kapton tape.(see Fig.1):i)around the entrance points of the beams to the collision hall,at locations on each side,at cm,cm,,ii)on the horizontal and verticalbars supporting the Tevatron quadrupoles,at locations on each side,at cm,cm,,iii)on the face of the steel wheels hosting the forward muondetectors,atlocations on each side,at cm,cm,,iv)on the collision hallwalls running parallel to the beam line,at locations,atcm,cm,,v)on the racks hosting readout electronics for thesilicon tracking detectors,at locations,at cm,cm,,and vi)on the racks hostingpower supplies for the drift chamber tracker,at locations,at cm,cm,.C.Calibration and DosimetryWe calibrate the TLD response to ionizing radiation with a rad photon exposure from a Cs source [6].A calibration factor (in rad/nC)for each TLD chip is then determined by heating up the chip and measuring the light yield using a Harshaw model 2000TLD reader [7].A reproducibility of 1and a chip-to-chip variation of 3is observed.The response of the TLD-600chips to neutrons is calibrated with a rad exposure to a Cf source.We obtain a 10reproducability and a 15chip-to-chip variation.LiF TLD’s are known to exhibit non-linearity for doses above rad.In order to account for this behavior,we expose a small sample of TLD’s to doses up to krad and we measure a correction factor,defined as the ratio of the received dose over the dose estimated from the linear-response assumption (see Fig.4).The dosimeters exposed around the CDF collision hall have measured doses in the range of 0.1rad to 1.2krad.We extract the ionizing radiation,(rad),each TLD-700chip has received due to its exposure in the collision hall,by using the expression:(1)where is the reading (nC)from this TLD chip,is thecalibration factor (rad/nC)for its response to ionizing radiation,1101010101010110101010Dose (rad)R e s p o n c e (n C )0.30.40.50.60.70.80.911.1110101010Predicted Dose (rad)C o r r e c t i o n F a c t o rFig.4.a)Response of TLD-700dosimeters to ionizing radiation as a function of received dose;note the super-linear behavior for doses above rad.b)The non-linearity correction factor as a function of the dose estimated from the linear-response assumption.TABLE IB EAM CONDITIONS AT CDF FOR THETHREETLD EXPOSURE PERIODS .Beam ()Period1)May -Jun.20028.16 1.4131.71.9256.43)Jan.-May 200361.57.5is the non-linearity correction factor,and is the background ionizing radiation dose measured by a number of control TLD-700chips which were not placed in the collision hall.Averaging the doses measured by the three TLD chips ina given holder,we obtain the ionizing radiation dose,,at the location of the TLD holder in study.D.Radiation measurements and effectiveness of shielding TLD measurements are taken during three different periods of the Tevatron operations.Table I shows the integrated beam conditions during the three exposure periods:the number of protons and antiprotons in the Tevatron,the number of lost beam particles recorded,and the number of collisions in terms of time-integrated luminosity,(corresponds to about interactions).The first exposure period was a test period;only a partial set of TLDs was installed around the collision hall.We,therefore,focus our discussion to period 2(June to October 2002)and period 3(January to May 2003).During a break in the Tevatron operations in January 2003(just before period 3commenced),shielding was installed around the focusing quadrupoles on the proton side (see Fig.5).No shielding was installed on the antiproton side because the beam losses are much smaller (see Table I).In Figure 6we show the ratio of the dose rate,(dose per of collisions),in period 3over that of period 2at various locations.Each point on the plot is the weighted average of the ratios of the measurements in and for the given location.On the antiproton side,where no shielding was installed,the dose rates in period 3are not consistently highershieldingpmovable for tracker accesscollision pointFig.5.Elevation view of a quadrant of CDF,with the shielding installed around the focusing quadrupoles on the proton side,just before data-taking resumed at the end of January 2003(beginning of exposure period 3).Z (cm)R d o s e 3 / R d o s e 20.40.50.60.70.80.911.11.21.31.4Fig.6.Ratio (period 3over period 2)of ionizing radiation dose rates,(dose per of collisions),at various locations.or lower compared to period 2;the dose rates range from 20higher (at cm),to 22lower (at cm).On the proton side,where shielding was installed,the dose rates in period 3are systematically lower than in period 2;from 6(at cm)to 48(at cm),for an average reduction of 25.Assuming that the radiation at a given point is the linear super-position of contributions from beam losses and collisions,we can write the dose rate,,asZ (cm)R d o s e p / R d o s e p -0.60.811.21.41.61.82Fig.7.Ratio of dose rates on the proton side over the antiproton side,at variouslocations in exposure periods 2(circles)and 3(stars).If we assume that the collision contribution to the dose ()scales with the number of collisions,we expect thatis the same in periods 2and 3at the points where we perform our measurements.The fact that the dose rates are different in period 3than in period 2means that the rate of the loss contributions ()is different in the two periods (see Eqn.2).Therefore,we conclude that the 25reduction in dose rates on the proton side,quoted in the previous paragraph,is solely due to a reduction in the beam loss rates.Figure 7shows the ratio of the dose rates on the proton and antiproton sides,at several locations in periods 2(circles)and 3(stars).In both exposure periods,the dose rates on the proton side are usually higher than those on the antiproton side.In period 2asymmetries as high as are observed,whereas in period 3,when the shielding on the proton side was installed,this asymmetry is no more than .Given the symmetry of the CDF detector,we can assume that the dose contribution due to collisions does not exhibit a preference for positive values over negative values.Thus,we expect the dose rate asymmetry between the proton and antiproton sides to arise from an asymmetry in the rate of loss contributions (see Eqn.2).III.M ODELINGTHE RADIATION FIELDThe ionizing radiation measurements are parameterized using a model based on previous CDF measurements of the silicon radiation damage profile [8]and direct radiation measurements in the CDF tracking volume [9].This model assumes cylindrical symmetry of the radiation around the beam line,with a radialdependence which follows a power law in,where is the distance from the beam line.For any point on a plane perpendicular to the beam axis at ,we write for the dose rateRadius (cm)D o s e /L u m i n o s i t y (r a d /p b -1)0.030.040.050.060.070.080.090.10.20.30.4200300400500600Fig.8.Dose rate (dose per of collisions)as a function of the distance from the beam line,for measurements at cm in exposure period 2.The data are fitted to the radiation filed model in Equation 3.(dose perof collisions),:(3)where is the absolute normalization,is the power lawexponent,andZ (cm)A (r a d /p b -1)Z (cm)10100.60.811.21.41.61.82Fig.9.Fit parameters of the radiation field model in Equation 3(),for measurements in period 2;normalization (left)and power law exponent (right)as a function of .Z (cm)A (r a d /p b -1)Z (cm)10100.60.811.21.41.61.82Fig.10.Fit parameters of the radiation field model in Equation 3(),for measurements in period 3;normalization (left)and power law exponent (right)as a function of .is used,fits to the data yield exponents with a strong -dependence;in the collision hall hosting the CDF detector.We believe that our data can serve as a calibration point for simulations of the radiation environment in future hadron colliders.A CKNOWLEDGMENTThe authors would like to thank the people at Fermilab’s Radiation Physics Calibration Facility,the Silicon Detector Lab and CDF for their help in calibrating the TLD’s,placing them to the holders and installing them in CDF.Special thanks to Minjeong Kim and Fabio Happacher for the invaluable help in placing/harvesting the dosimeters,and to the radiation monitoring group at Argonne labs for letting us use their TLD reader when needed.R EFERENCES[1]R.J.Tesarek et al.,“Radiation effects in CDF switching power supplies”,CDF internal note 5903,May 2002,unpublished.[2]R.Blair et al.,“The CDF II detector Technical Design Report”,preprintFERMILAB-Pub-96/390-E ,October 1996,unpublished.[3]ATLAS Collaboration,“ATLAS Detector and Physics Performance Tech-nical Design Report,V ol.I”,CERN publication CERN/LHCC 99-14,European Center for Particle Physics,Geneva,Switzerland (1999);ATLAS Collaboration,“ATLAS First Level Trigger Technical Design Report”,CERN publication CERN-LHCC-98-14,European Center for Particle Physics,Geneva,Switzerland (1998).[4]CMS Collaboration,“CMS:The TRIDAS Project.Technical Design Re-port,V ol.1:The trigger systems”,CERN publication CERN-LHCC-2000-038,European Center for Particle Physics,Geneva,Switzerland (2000).[5] D.Acosta et al.,“The CDF Cherenkov luminosity monitor”,Nucl.Instr.and Meth.,vol.A461,pp.540-544,2001.[6] F.Krueger and S.Hawke,“Calibration and On-Axis Characterization ofthe Source Projector Facility at the Radiation Physics Calibration Facility”,Fermilab Radiation Physics internal note 121,January 1996,unpublished.[7]Harshaw Chemical Company,Harshaw model 2000TLD reader:ThermoRMP ,6801,Cochran Road,Solon,OH 44139,USA,2000.The model 2000TLD reader used for these measurements at Fermilab was modified to extend the reading cycle to 10second.[8] D.Amidei et al.,“The silicon vertex detector of the Collider Detector atFermilab”,Nucl.Instr.and Meth.,vol.A350,pp.73-130,1994.[9]R.J.Tesarek et al.,“Measurement of the radiation environment in theCDF tracking volume”,accepted for publication in Nucl.Instr.and Meth.A ,2003.。

Parity Violation in eP Scattering at JLab - Experimental Hall A宇称在JLab实验大厅散射EP-精品文档60页

Parity Violation in eP Scattering at JLab - Experimental Hall A宇称在JLab实验大厅散射EP-精品文档60页
-New results from HAPPEX -Photocathodes -Polarimetry -Targets -Diagnostics -Counting Electronics
P. A. Souder
The Standard Model
June 24, 2005
DIS Parity
Ebeam = 1.165 GeV Ibeam = 180 μA Polarization ~85% Target = 2.5 KW
P. A. Souder
(it just wont break!)
The Annoying Standard Model
Nuclear Physics Long Range Plan: What is the new standard model?
Low Q2 offers unique and complementary probes of new physics
Most experts see the precision data as
remarkably consistent
Are Leptonic and hadronic Z couplings seem inconsistent?
Perhaps there are bigger deviations lurking elsewhere???
New Contact Interactions
LEP200
Lee ~ 15 TeV
Does Supersymmetry (SUSY) provide a candidate for dark matter?
•Lightest SUSY particle (neutralino) is stable if baryon (B) and lepton (L) numbers are conserved

地质专业英文翻译精选4

地质专业英文翻译精选4

quadrant 象限quadrate 方骨quadrate bone 方骨quadratic 二次的quadrijugous 四对的quadrupeds 四肢动物quagmire 沼泽qualitative analysis 定性分析qualitative spectral analysis 定性光谱分析quality class 地位级quality of ground water 地下水水质quantitative spectral analysis 定量光谱分析quantometer 光量计quarry 采石场quarrying 露天开采quartation 四分法quartering 四分法quarternary 第四纪quartz 石英quartz andesite 石英安山岩quartz basalt 石英玄武岩quartz crystal 水晶quartz diorite 石英闪长岩quartz diorite line 石英闪长岩线quartz dolerite 石英粗玄岩quartz glass 石英玻璃quartz keratophyre 石英角斑岩quartz porphyry 石英斑岩quartz sand 石英砂quartz schist 石英片岩quartz spectrograph 石英摄谱仪quartz trachyte 石英粗面岩quartz wedge 石英楔quartzine 正玉髓quartzite 石英岩quartzy 石英质的quasi equilibrium 准平衡quasi viscous flow 半粘性流quaternary 第四期quaternary diagram 四元系状态图quaternary geology 第四纪地质学quaternary ice age 第四纪冰期quaternary period 第四纪quaternary research 第四纪学quaternary screw axis 四元螺旋轴quaternary studies 第四纪学quaternary system 第四系quaternary volcanic rocks 第四纪火山岩quenching method 淬火法quenselite 基性锰铅矿quenstedtite 紫铁矾quick clay 过敏性粘土quick lime 生石灰quicksand 脸quiet reach 静河段quinaldinic acid 喹啉酸quinalizarin 醌茜素quinoline carboxylic acid 喹啉酸quisqueite 硫沥青r factor r 因子r tectonite r 构造岩rabbitite 针钙镁铀矿racewinite 变色柱石rachis 叶轴racial character 人种的特征racial characteristics 人种的特征rad 拉德radar 雷达radar observation 雷达观测radar sonde 无线电测风仪radiaion excitation 辐射激发radial 放射状的radial bundle 辐射维管束radial dikes 放射状岩脉群radial fault 放射状断层radial flow 径向流radial rift 放射断裂radial symmetry 径向对称radial vascular bundle 辐射维管束radiant energy 辐射能radiation balance 辐射平衡radiation balance of earth 地球辐射平衡radiation chemical process 辐射化学过程radiation chemical reaction 辐射化学反应radiation chemistry 放射线化学radiation counter 辐射计数管radiation damage 放射线破坏radiation decomposition 辐射分解radiation density 辐射密度radiation detector 辐射探测器radiation dose 辐射剂量radiation effect 辐射作用radiation intensity 辐射强度radiation inversion 辐射逆温radiation length 辐射长度radiation shielding 辐射防护radiative collision 非弹性碰撞radio luminescence 射线发光radio wave method 无线电波法radioactivation analysis 放射化分析radioactive anomaly 放射性异常radioactive balance 放射平衡radioactive chain 放射性衰变链radioactive cobalt 放射性钴radioactive constant 放射常数radioactive contamination 放射性沾染radioactive decay 放射性衰变radioactive decontamination 消除放射性radioactive deposit 放射性沉淀物radioactive element 放射元素radioactive equilibrium 放射平衡radioactive etalon 放射能标准源radioactive fallout 放射性沉降radioactive family 放射系radioactive fission product 放射性裂变产物radioactive half life 放射性物质的半衰期radioactive iron 放射性铁radioactive isotope 放射性同位素radioactive logging 放射能测井radioactive material 放射性物质radioactive mineral 放射矿物radioactive mineral spring 放射性矿泉radioactive prospecting 放射性勘探radioactive radiation 放射性辐射线radioactive rare metal 放射性稀有金属radioactive sample 放射性样品radioactive series 放射系radioactive source 放射源radioactive substance 放射性物质radioactive tracer 放射性示踪radioactive tracer logging 放射性示踪测井radioactive tracer method 放射性示踪剂法radioactive transformation 放射性转化radioactive unit 放射性单位radioactivity 放射性radioactivity logging 放射能测井radioactivity survey 放射性勘探radiobaryte 镭重晶石radiobiologic action 放射性生物作用radiobiology 放射生物学radiocarbon 射碳radiocarbon age 放射性碳年令radiocarbon dating 放射性碳测定年代radiochemical analysis 放射化学分析radiochemistry 放射化学radiochronology 放射年代学radiocobalt 放射性钴radiocolloid 放射性胶质radioelement 放射元素radiogeochemistry 放射地球化学radiogoniometer 无线电测角器radiographic contrast 射线照像对照radiography 射线照相术radiohydrogeology 放射水文地质学radioisotope 放射性同位素radioisotope indicator 放射性指示剂radiolaria 放射虫radiolarian ooze 放射虫软泥radiolarian rock 放射虫岩radiolarian slate 放射虫片岩radiolarite 放射虫岩radiolite 钠沸石radiolitic 放射状的radiology 放射学radiolysis 放射性分解radiometer 放射量计radiometric analysis 放射测量分析radiometric sampling 放射取样法radiometry 辐射测量术radionuclide 放射性核素radiophyllite 水硅灰石radiosonde observation 无线电探空radiotracer 放射性指示剂radiotracer method 放射性示踪剂法radium 镭radium age 镭龄radium emanation 镭射气radium series 镭系radium source 镭源radium spring 镭泉radium standard 镭标准源radius of action 作用半径radius of influence 影响半径radius ratio 半径比radon 氡radon survey 氡气测量rafaelite 斜羟氯铅矿raglanite 奥霞正长岩raimondite 片铁矾rain print 雨痕rain rill 雨沟rain wash 雨剧raindrop impressions 雨痕rainfall depth 雨量rainwater 雨水raise 隆起rake classifier 耙式分级机ralstonite 氟钠镁铝石ramdohrite 辉锑银铅矿rammelsbergite 斜方砷镍矿ramming 捣固ramsayite 褐硅钠钛矿ramsdellite 斜方锰矿rancieite 钙硬锰矿rand 边缘randanite 硅藻土randite 黄菱铀矿random 随机的random distribution 偶然分布random error 随机误差random event 随机事件random sample 随机样品random sampling 随机采样range 射程;山脉;作用距离range finder 测距仪ranging pole 标尺测杆rank 等级ransomite 铜铁矾rapakiwi granite 环斑花岗岩raphe 缝rapid 急流急滩rapid flow 快速迳流rare earth elements 稀土元素rare elements 稀有元素rare gas 稀有气体rare gas elements 惰性气体元素rare metal 稀有金属rarefaction 稀疏作用raspite 斜钨铅矿ratchel 卵石rate 比率rate of crystalline growth 晶体生长速度rate of decay 风化程度rate of drying 干燥速度rate of infiltration 渗透速度rate of penetration 机械钻速rate of production 生产率rate of recovery 回采率rate of runoff 迳潦rate of sedimentation 沉淀速度rate of subsidence 沉陷速度ratemeter 计数率计rathite 斜方砷铅矿rating curve 量特性曲线ratio of ionic radii 离子半径比rational formula 示构式ratofkite 土状萤石rattle stone 钤石rauracian 罗拉克阶rauvite 水钙钒铀矿ravine 沟壑raw coal 原煤raw humus 粗腐殖质raw material 原料raw ore 未选的矿石raw soil 生土raw water 未加工水rayfungi 放线菌类rayleigh distribution 瑞利分布reaction current 逆流reaction principle 反应原理reaction product 反应产物reaction rate 反应速度reaction rim 反应边reaction series 反应系列reactivation 再活化readjustment 校正reagent 试剂real crystal 真实晶体real image 实象realgar 鸡冠石reamer 扩孔器reamer bit 扩孔钻头reaming 扩眼reaming bit 扩眼钻头rearrangement 重新配置recapitulation 再现receiving surface 接收面recent crust horizontal movement 现代地壳水平运动recent exogenetic movement 现代外生运动recent geological period 现代地质时期recent vertical crust movement 现代地壳垂直运动recess 褶皱带内凹部;凹穴recession constant 衰退常数recession curve 递减曲线recessional moraine 后退冰碛recharge 补给recharge line 补给线recharge pit 补给坑recharge water 补给水recharge well 补给井recipient 容器reciprocal lattice 倒易格子reciprocating pump 往复泵recoil electron 反冲电子recombination 再化合reconnaissance 踏勘reconstruction 复原recorder 记录器recorder strip 记录带recording chart 记录纸recording device 记录装置recording drum 记录圆筒recording gage 自动记录测定计recording oscillograph 记录示波器recording paper 记录纸recording tape 记录带recoverable oil reserves 可采石油储量recovery 回收;采取recovery factor 岩心采取率recovery hook 打捞钩recovery ratio 回采率recovery time 恢复时间recrement 矸石recrystallization 重结晶作用recrystallization texture 再结晶织构rectangular wave 矩形波rectilinear scanning 直线扫描rectorite 累托石recumbent anticline 伏背斜recumbent fold 伏卧褶皱recurrence 循环red algae 红藻类red brass 红色黄铜red brown mediterranean soil 地中海褐色土red clay 红土red copper ore 赤铜矿red earth 红壤red iron ore 赤铁矿red iron stone 赤铁矿red mud 红泥red phosphorus 红磷red soil 红壤reddingite 磷锰矿redeposition 再沉积redge 暗礁redingtonite 水铬镁矾redissolving 再溶解redox equilibrium 氧化还原平衡redox potential 氧化还原势redox process 氧化还原过程redox system 氧化还原系reduced cell 简化格子reduced pressure 折算压力reducer 还原剂reducing capacity 还原能力reducing joint 异径连接reduction 减少reduction division 减数分裂reduction of gravity 重力归算reduzate 还原沉积物reef 礁reef bin 矿仓reef building corals 造礁珊瑚reef cap 礁帽reemission 重发射reference data 参考资料reference ellipsoid 参考椭球体reference point 基准点reference pressure 基准压力reference spheroid 参考椭球体reference table 换算表reference temperature 基准温度refined oil 精制油refinement 精制refining 精制reflectance 反射比reflected light 反射光reflected wave 反射波reflecting galvanometer 反射电疗reflecting microscope 反射显微镜reflection 反射reflection anisotrophism 反射蛤异性reflection coefficient 反射系数reflection electron microscope 反射电子显微镜reflection factor 反射系数reflection method 反射法reflection of light 光反射reflection pleochroism 反射多色性reflection seismograph 反射地震仪reflection survey 反射波法勘查reflective power 反射能力reflectivity 反射比reflectometer 反射计reflector 反射镜refracted wave 折射波refracting medium 折射介质refraction 折射refraction correlation method 折射波对比法refraction method 折射法refraction of cleavage 劈理折射refraction survey 折射波法勘探refractive index 折射率refractivity 折射性refractometer 折光计refractoriness 耐火度refractory 耐火材料refractory brick 耐火砖refractory clay 耐火粘土refractory material 耐火材料refractory sand 耐火砂refrigeration 冷却refuse 废料refusion 再溶regelation 重凝regenerated deposit 再生矿床regenerated glacier 再生冰川regeneration 再生regeneration theory 再生学说regenerative amplification 再生放大regime of river 河灵况region 地域regional 地方的regional geochemistry 区域地球化学regional geological reconnaissance 区域地质甸regional geology 区域地质学regional geomorphology 区域地貌学regional gravity anomaly 区域重力异常regional isostatic anomaly 区域均衡异常regional metamorphism 区域变质regional remote sensing 区域遥感regional unconformity 区域不整合registration 记录registration paper 记录纸regma 破裂regolith 表皮土regression 海退regression analysis 回归分析regression line 海退线regressive metamorphism 退化变质regressive sequence 海退层序regular hexahedron 正六面体regular polygon 正多边形regular polyhedron 正多面体regular reflection 规则反射regular system 等轴晶系regulation reservoir 蝶蓄水池regur 黑棉土reinerite 砷锌矿reinite 方钨铁矿rejects 尾矿rejuvenated geosyncline 新生式地槽rejuvenated landform 地形侵蚀回春rejuvenated relief 地形侵蚀回春rejuvenated river 回春河rejuvenated water 再生水rejuvenation 回春作用relationship 关系relative age 相对时代relative aperture 相对孔径relative biological effectiveness 相对生物效率relative height 相对高度relative humidity of atomsphere 大气相对湿度relative isotopic abundance 同位素相对丰度relative permeability 相对渗透性relative relief 地势起伏量relative valency effect 相对原子价效果relative viscosity 相对粘度relaxation 松弛relaxation effect 张弛效应relaxation time 松弛时间relay 继电器relay interrupter 继电平断续器release 释放release joint 解压节理release magnet 释放电磁铁relic 残余relic area 残遗分布区relic mineral 残余矿物relic soil 残遗土壤relic species 残遗种relic structure 残余构造relict 残余物relief 地势relief energy 地势起伏量relief intensity 地势起伏强度relief inversion 地形转换relief map 起伏量图relief ratio 硫高宽比relief volume 起伏量reluctance 磁阻remanence 剩余磁性remanent magnetization 剩磁remining 再次开采remnant arc 古岛弧remobilization 再活化remolding 破碎remote control 遥控remote hybrid 远缘杂种remote sensing 遥感remote sensing application 遥感应用remote sensing technology 遥感技术removal 消去renardite 多水磷铅铀矿rendzina 黑色石灰土renewed fault 复活断层reniform 肾状的reniform structure 肾状构造rensselaerite 假晶滑石rent 裂口repair part 备件repeller 反射极reperforator 复凿孔机replacement 交代replenishment 补充replica 复制replica method 复型法reprecipitation 二次沉下representative species 典型种reproducer 复制穿孔机reproducibility 再现性reptiles 爬虫类rescue borehole 救护钻孔research 甸resedimentation 再沉积resequent river 再顺河reserves 矿石埋臧量reservoir 贮水池reservoir evaporation 储水蒸发reservoir lake 储水湖reservoir rock 储油岩石reservoir structure 储热构造reshuffle 重新配置residual affinity 残留亲和力residual anomaly 剩余异常residual bouguer anomaly 布格剩余异常residual clay 残余粘土residual deposit 残留矿床residual drawdown 残余水位下降residual electric charge 剩余电荷residual geosyncline 残余地槽residual gravity 剩余重力residual gravity anomaly 剩余重力异常residual heat 残热residual magma 残余岩浆residual magnetism 剩余磁性residual mass 剩余质量residual mobility period 余动期residual mountain 残余山residual sediment 残余沉积物residual soil 残余土壤residual stability period 余定期residual standard deviation 剩余标准差residual stress in rocks 岩石残余应力residual valence 剩余价residuary water 废水residuum 残留物resilience 弹性resin 尸resinite 尸体resinitic liptobiolite 尸残殖煤resinous lustre 尸光泽resistance thermometer 电阻温度计resistant rock 稳固岩石resistate 残留产物resistivity 电阻率resistivity logging 电阻率测井resistivity survey 电阻率甸resolution 分解能力resolver 解算器分解器resolving power 分解能力resonance absorption of neutron 中子共振吸收resonance energy level 共振能级resonance of chemical bonds 化学键间的共振resources 资源resources remote sensing 资源遥感response time 响应时间restite 残余体restoration 复原restriction arc 限制弧resultant 合量resurgent water 复活水retained water 薄膜水retardation 减速;行路差retarded creep 延迟蠕变retarded potential 推迟电势retarding electrode 制动电极retarding field 减速场retarding torque 制动转矩retention of water 水分保持retgersite 镍矾reticle 十字线reticular cell 网状细胞reticular structure 网状构造reticulate venation 网状脉reticulated mottle 网状斑点reticulated veine 网状脉reticulation 网状reticulum cell 网状细胞retinite 尸石retort 蒸馏器retort carbon 甑碳retreat 后退retreatment cell 再选浮选机retroaction 反作用retrogradation 海蚀后退retrograde metamorphism 退化变质retrogressive accumulation 向源堆积retrogressive metamorphism 退化变质retrogressive succession 逆行演替return flow 回流revdinskite 镍铁绿泥石reverberation 混响reverberatory furnace 反射炉reversal 倒转reversal of geomagnetic field 地磁场倒转reversal of magnetization 磁化逆转reversal of the earth's field 地磁极逆转reverse circulation 反循环reverse circulation flushing 反循环冲洗reverse fault 逆断层reverse feedback 负回授reverse grading 逆粒级reverse mutation 回复突变reverse position 倒转层位reverse rotary boring 反向旋转钻井reverse thermoremanent magnetization 反向热剩余磁化reverse zoning 逆带现象reversed fault 逆冲断层reversed fold 倒转褶皱reversed river 反向河reversibility 可逆性reversible cell 可逆电池reversible chemical reaction 可逆化学反应reversible colloid 可逆胶体reversible magnetization 可逆磁化reversible motor 可逆电动机reversible pendulum 可倒摆reversing thermometer 回动温度计reversion 返祖revived fault 复活断层revived structure 再生结构revolution 变革revoredite 硫砷铅石reyerite 铝白钙沸石rezbanyite 铜辉铅铋矿rhabdolith 棒状晶体rhabdophanite 磷铈钇矿rhaegmageny 断裂运动rhaetian 瑞提阶rhaetic stage 瑞提阶rhagite 砷酸铋矿rhegmagenesis 断裂运动rheidity 流变rhenium 铼rhenium osmium dating 铼锇法测年rheological behavior 龄性行为rheology 龄学rheomorphism 龄rhizoid 假根rhizome 根茎rhizopodium 根足rhizosphere 根圈rhodesite 纤硅碱钙石rhodite 铑金矿rhodium 铑rhodizite 硼锂铍矿rhodochrome 暗绿石rhodochrosite 菱锰岩rhodonite 蔷薇辉石rhoenite 褐斜闪石rhombenporphyry 菱长斑岩rhombic 斜方的rhombic dipyramidal class 斜方双锥体类rhombic dodecahedron 斜方十二面体rhombic hemimorphic hemihedral class 菱形异极半面象晶族rhombic prism 斜方柱rhombic pyramid 斜方锥rhombic system 斜方晶系rhombic tetrahedral class 斜方四面体类rhombohedral class 菱面体类rhombohedral hemimorphic hemihedral class 菱形极半面象晶族rhombohedral system 菱形晶系rhombohedral tetrahedry 斜方正多面像rhombohedral tetratohedral class 菱形四分面体类rhombohedron 菱形六面体rhyodacite 疗英安岩rhyolite 疗岩rhythm 韵律ria 溺河rias coast 里亚斯式海岸ribonucleic acid 核糖核酸rich ore 富矿richetite 板铅铀矿richmondite 四水磷铝石richterite 锰闪石rickardite 铜碲矿riddle 粗筛ridge 海岭riebeckite 钠闪石riedenite 方黑云霓辉岩riemannite 水铝英石rift 裂谷rift belt 裂谷带rift valley 中央裂谷rift zone 裂谷带rig 钻探设备right angle 直角right bank 右岸right handed crystal 右晶rigid body 刚体rigid dynamics 刚体动力学rigidity 刚性rill 小溪rill erosion 细沟侵蚀rill marks 鳞rille 月面谷rim 岬rime 雾淞rind 外皮ring compound 环状化合物ring counter 环形计数器ring dike 环状岩墙ring fault 环状断层ring like ore body 环状矿体ring ore 环状矿石ring silicate 环状硅酸盐ring structure 环状构造rinkite 层硅铈钛矿rinkolite 绿层硅铈钛矿rinneite 钾铁盐ripidolite 铁绿泥石ripple 脉动ripple current 波纹电流ripple marks 波痕ripple noises 电源交岭声ripples 皱纹rise 海隆rish 急冲rising velocity 上升速度risorite 钛褐钇铌矿riss glacial stage 里斯冰期rivage 河岸river 河river bank 河岸river basin 硫river bed 河床river bed placer 河床砂矿river bend 河曲river bottom 河底river capture 河霖夺river erosion 河林蚀river gravel 河砾石river mouth 河口river profile 河凛剖面river profile of equilibrium 河两衡剖面river swamp 河沼泽river system 河系river terrace 河成阶地river width 河幅riverside 河岸riverside soil 泛滥地土壤rivotite 里播岩rivulet 小河rizzonite 玻基辉橄岩road 巷道roadway support 巷道支架roast ore 焙烧矿石rock 岩石rock breaking 岩石破坏rock breaking tool 碎石工具rock burst 岩石突出rock cementation 岩石胶结作用rock creep 岩石蠕动rock crusher 碎石机rock crystal 水晶rock desert 石质沙漠rock drillability 岩石的可钻性rock dust 岩石尘土rock facies 岩相rock fields 岩海rock formation 岩系rock forming element 造岩元素rock forming minerals 造岩矿物rock gas 天然气rock grouting 岩石胶结作用rock hardness 岩硬rock hardness ratio 岩石硬度比rock magnetism 岩石磁性rock mass 岩石层;岩块rock meal 岩粉rock mechanics 岩石力学rock movement 岩层移动rock pillar 岩柱rock pressure 岩石压力rock salt 岩盐rock strata 岩层rock stream 石流rock system 岩石系统rock terrace 岩石阶地rock texture 岩石结构rock toughness 岩石的粘性rock vegetation 石生植被rock wall 石墙rock weathering 岩石风化rock's abrasivity 岩石的研磨性rockallite 钠辉细岗岩rockbasin 岩盆rocket sounding 火箭探空rockfacies 岩相rockfall 岩崩rockfill 填石rockslide 岩滑rocky 多岩石的rocky coast 岩石海岸rod 钻杆rod boring 钻杆钻进rod holder 钻杆夹钎器rod mill 棒磨机rodding structure 杆状构造rodingite 异剥钙榴辉长岩rodless drilling 无钻杆钻进roeblingite 铅蓝方石roemerite 粒铁矾roentgen 伦琴roentgen equivalent 伦琴当量roentgen equivalent man 雷姆roentgen rays x 射线roepperite 锌锰橄集rogersite 六水铁矾roll crusher 辊式破碎机roller bit 牙轮钻头rolling 滚romanechite 钡硬锰矿romanzovite 钙铝榴石romeite 锑钙石ron magnesium metasomatism 铁镁交代作用roof 顶板roof bolting 顶板锚栓支架roof of coal seam 煤层顶板roof rock 顶盖岩roof timbering 顶板支架roofing slate 盖板岩room 室rooseveltite 砷铋矿root nodule 根瘤root zone 根带rootless fumarole 无根喷气孔rope boring 绳私打钻rope socket 绳帽ropy lava 波纹熔岩rosasite 斜方绿铜锌矿roscoelite 钒云母rose diagram 玫瑰图rose quartz 蔷薇石英rosenbuschite 橙针钠钙石rosieresite 磷铝铅铜矿ross 岬rossite 水钒钙石rotary bit 旋转式钻头rotary boring 回转钻探rotary drill 旋转钻机rotary drilling machine 旋转钻机rotary filter 旋转滤器rotary percussive drilling 回转冲魂进rotary polarization of petroleum 石油旋光性rotary system of drilling 回转钻井方法rotary table 转盘rotating crystal method 旋转晶体法rotating meter 旋转临计rotating table 转盘rotation tectonite r 构造岩rotation twin 旋转双晶rotational deformation 旋转变形rotational fault 旋转断层rotational grain 旋转晶粒rotational speed 转速rotatory fault 旋转断层rotten spot 锅穴rougemontite 橄钛辉长岩rougher flotation 粗选roughing 粗选roughness 粗糙度roughness coefficient 粗糙度系数round trip 回次round worms 线形动物类roundness 圆度roundstone 圆石route 航线routivarite 褶英二长岩rouvillite 淡霞斜岩row 煤层roweit 基性硼锰钙石rowlandite 硅氟铁钇矿royalty 矿藏开采权rubbish 碎屑;废石rubbish dump 碎石堆rubble 碎石rubellite 红电气石rubicelle 橙尖晶石rubidium 铷rubidium strontium dating 铷锶测年rubidium strontium method 铷锶测年法rubrozem 腐殖质红色土ruby 红宝石rudaceous 砾状的rudimentary organ 退化瀑rudimentogeosyncline 雏地槽rudyte 砾质岩rugged 凹凸不平的ruin 毁灭rules of nomenclature 命名法规rumpfite 淡斜绿泥石run 走向run of bank gravel 采石坑砾石run of mine coal 原煤run of mine ore 原矿run off 瘤running sand 松砂running water level 廉位runoff coefficient 经恋数rupelian 鲁培勒阶rupture 破裂rupture stress 破裂应力ruptured zone 碎裂带russellite 钨铋矿rust coloured forest soil 潜育灰化土ruthenium 钌rutherfordine 纤碳铀矿rutile 金红石。

无损检测专业词汇中英对照

无损检测专业词汇中英对照

该表节选自《中英文无损检测名词术语查询系统(NDTGP)》A.C magnetic saturation 交流磁饱和Absorbed dose 吸收剂量Absorbed dose rate 吸收剂量率Acceptance limits 验收范围Acceptance level 验收水平Acceptance standard 验收标准Accumulation test 累积检测Acoustic emission count(emission count)声发射计数(发射计数)Acoustic emission transducer 声发射换能器(声发射传感器)Acoustic emission(AE) 声发射Acoustic holography 声全息术Acoustic impedance 声阻抗Acoustic impedance matching 声阻抗匹配Acoustic impedance method 声阻法Acoustic wave 声波Acoustical lens 声透镜Acoustic—ultrasonic 声-超声(AU)Activation 活化Activity 活度Adequate shielding 安全屏蔽Ampere turns 安匝数Amplitude 幅度Angle beam method 斜射法Angle of incidence 入射角Angle of reflection 反射角Angle of spread 指向角Angle of squint 偏向角Angle probe 斜探头Angstrom unit 埃(A)Area amplitude response curve 面积幅度曲线Area of interest 评定区Artificial discontinuity 人工不连续性Artifact 假缺陷Artificial defect 人工缺陷Artificial discontinuity 标准人工缺陷A-scan A型扫描A-scope; A-scan A型显示Attenuation coefficient 衰减系数Attenuator 衰减器Audible leak indicator 音响泄漏指示器Automatic testing 自动检测Autoradiography 自射线照片Evaluation 评定Barium concrete 钡混凝土Barn 靶Base fog 片基灰雾Bath 槽液Bayard- Alpert ionization gage B- A型电离计Beam 声束Beam ratio 光束比Beam angle 束张角Beam axis 声束轴线Beam index 声束入射点Beam path location 声程定位Beam path; path length 声程Beam spread 声束扩散Betatron 电子感应加速器Bimetallic strip gage 双金属片计Bipolar field 双极磁场Black light filter 黑光滤波器Black light; ultraviolet radiation 黑光Blackbody 黑体Blackbody equivalent temperature 黑体等效温度Bleakney mass spectrometer 波利克尼质谱仪Bleedout 渗出Bottom echo 底面回波Bottom surface 底面Boundary echo(first) 边界一次回波Bremsstrahlung 轫致辐射Broad-beam condition 宽射束Brush application 刷涂B-scan presentation B型扫描显示B-scope; B-scan B型显示C- scan C型扫描Calibration, instrument 设备校准Capillary action 毛细管作用Carrier fluid 载液Carry over of penetrate 渗透剂移转Cassette 暗合Cathode 阴极Central conductor 中心导体Central conductor method 中心导体法Characteristic curve 特性曲线Characteristic curve of film 胶片特性曲线Characteristic radiation 特征辐射Chemical fog 化学灰雾Cine-radiography 射线(活动)电影摄影术Contact pads 接触垫Circumferential coils 圆环线圈Circumferential field 周向磁场Circumferential magnetization method 周向磁化法Clean 清理Clean- up 清除Clearing time 定透时间Coercive force 矫顽力Coherence 相干性Coherence length 相干长度(谐波列长度)Coi1,test 测试线圈Coil size 线圈大小Coil spacing 线圈间距Coil technique 线圈技术Coil method 线圈法Coil reference 线圈参考Coincidence discrimination 符合鉴别Cold-cathode ionization gage 冷阴极电离计Collimator 准直器Collimation 准直Collimator 准直器Combined color contrast and fluorescent penetrant 着色荧光渗透剂Compressed air drying 压缩空气干燥Compressional wave 压缩波Compton scatter 康普顿散射Continuous emission 连续发射Continuous linear array 连续线阵Continuous method 连续法Continuous spectrum 连续谱Continuous wave 连续波Contract stretch 对比度宽限Contrast 对比度Contrast agent 对比剂Contrast aid 反差剂Contrast sensitivity 对比灵敏度Control echo 监视回波Control echo 参考回波Couplant 耦合剂Coupling 耦合Coupling losses 耦合损失Cracking 裂解Creeping wave 爬波Critical angle 临界角Cross section 横截面Cross talk 串音Cross-drilled hole 横孔Crystal 晶片C-scope; C-scan C型显示Curie point 居里点Curie temperature 居里温度Curie(Ci) 居里Current flow method 通电法Current induction method 电流感应法Current magnetization method 电流磁化法Cut-off level 截止电平Dead zone 盲区Decay curve 衰变曲线Decibel(dB) 分贝Defect 缺陷Defect resolution 缺陷分辨力Defect detection sensitivity 缺陷检出灵敏度Defect resolution 缺陷分辨力Definition 清晰度Definition,image definition 清晰度,图像清晰度Demagnetization 退磁Demagnetization factor 退磁因子Demagnetizer 退磁装置Densitometer 黑度计Density 黑度(底片)Density comparison strip 黑度比较片Detecting medium 检验介质Detergent remover 洗净液Developer 显像剂Developer station 显像工位Developer,agueons 水性显象剂Developer,dry 干显象剂Developer,liquid film 液膜显象剂Developer,nonaqueous (sus- pendible)非水(可悬浮)显象剂Developing time 显像时间Development 显影Diffraction mottle 衍射斑Diffuse indications 松散指示Diffusion 扩散Digital image acquisition system 数字图像识别系统Dilatational wave 膨胀波Dip and drain station 浸渍和流滴工位Direct contact magnetization 直接接触磁化Direct exposure imaging 直接曝光成像Direct contact method 直接接触法Directivity 指向性Discontinuity 不连续性Distance- gain- size-German A VG 距离- 增益- 尺寸(DGS德文为A VG)Distance marker; time marker 距离刻度Dose equivalent 剂量当量Dose rate meter 剂量率计Dosemeter 剂量计Double crystal probe 双晶片探头Double probe technique 双探头法Double transceiver technique 双发双收法Double traverse technique 二次波法Dragout 带出Drain time 滴落时间Drain time 流滴时间Drift 漂移Dry method 干法Dry powder 干粉Dry technique 干粉技术Dry developer 干显像剂Dry developing cabinet 干显像柜Dry method 干粉法Drying oven 干燥箱Drying station 干燥工位Drying time 干燥时间D-scope; D-scan D型显示Dual search unit 双探头Dual-focus tube 双焦点管Duplex-wire image quality indicator 双丝像质指示器Duration 持续时间Dwell time 停留时间Dye penetrant 着色渗透剂Dynamic leak test 动态泄漏检测Dynamic leakage measurement 动态泄漏测量Dynamic range 动态范围Dynamic radiography 动态射线透照术Echo 回波Echo frequency 回波频率Echo height 回波高度Echo indication 回波指示Echo transmittance of sound pressure 往复透过率Echo width 回波宽度Eddy current 涡流Eddy current flaw detector 涡流探伤仪Eddy current testing 涡流检测Edge 端面Edge effect 边缘效应Edge echo 棱边回波Edge effect 边缘效应Effective depth penetration (EDP)有效穿透深度Effective focus size 有效焦点尺寸Effective magnetic permeability 有效磁导率Effective permeability 有效磁导率Effective reflection surface of flaw 缺陷有效反射面Effective resistance 有效电阻Elastic medium 弹性介质Electric displacement 电位移Electrical center 电中心Electrode 电极Electromagnet 电磁铁Electro-magnetic acoustic transducer 电磁声换能器Electromagnetic induction 电磁感应Electromagnetic radiation 电磁辐射Electromagnetic testing 电磁检测Electro-mechanical coupling factor 机电耦合系数Electron radiography 电子辐射照相术Electron volt 电子伏恃Electronic noise 电子噪声Electrostatic spraying 静电喷涂Emulsification 乳化Emulsification time 乳化时间Emulsifier 乳化剂Encircling coils 环绕式线圈End effect 端部效应Energizing cycle 激励周期Equalizing filter 均衡滤波器Equivalent 当量Equivalent I.Q. I. Sensitivity 象质指示器当量灵敏度Equivalent nitrogen pressure 等效氮压Equivalent penetrameter sensitivity 透度计当量灵敏度Equivalent method 当量法Erasable optical medium 可探光学介质Etching 浸蚀Evaluation 评定Evaluation threshold 评价阈值Event count 事件计数Event count rate 事件计数率Examination area 检测范围Examination region 检验区域Exhaust pressure/discharge pressure 排气压力Exhaust tubulation 排气管道Expanded time-base sweep 时基线展宽Exposure 曝光Exposure table 曝光表格Exposure chart 曝光曲线Exposure fog 曝光灰雾Exposure,radiographic exposure 曝光,射线照相曝光Extended source 扩展源Facility scattered neutrons 条件散射中子False indication 假指示Family 族Far field 远场Feed-through coil 穿过式线圈Field,resultant magnetic 复合磁场Fill factor 填充系数Film speed 胶片速度Film badge 胶片襟章剂量计Film base 片基Film contrast 胶片对比度Film gamma 胶片γ值Film processing 胶片冲洗加工Film speed 胶片感光度Film unsharpness 胶片不清晰度Film viewing screen 观察屏Filter 滤波器/滤光板Final test 复探Flat-bottomed hole 平底孔Flat-bottomed hole equivalent 平底孔当量Flaw 伤Flaw characterization 伤特性Flaw echo 缺陷回波Flexural wave 弯曲波Floating threshold 浮动阀值Fluorescence 荧光Fluorescent examination method 荧光检验法Fluorescent magnetic particle inspection 荧光磁粉检验Fluorescent dry deposit penetrant 干沉积荧光渗透剂Fluorescent light 荧光Fluorescent magnetic powder 荧光磁粉Fluorescent penetrant 荧光渗透剂Fluorescent screen 荧光屏Fluoroscopy 荧光检查法Flux leakage field 磁通泄漏场Flux lines 磁通线Focal spot 焦点Focal distance 焦距Focus length 焦点长度Focus size 焦点尺寸Focus width 焦点宽度Focus(electron) 电子焦点Focused beam 聚焦声束Focusing probe 聚焦探头Focus-to-film distance(f.f.d) 焦点-胶片距离(焦距)Fog 底片灰雾Fog density 灰雾密度Footcandle 英尺烛光Freguency 频率Frequency constant 频率常数Fringe 干涉带Front distance 前沿距离Front distance of flaw 缺陷前沿距离Full- wave direct current(FWDC)全波直流Fundamental frequency 基频Furring 毛状迹痕Gage pressure 表压Gain 增益Gamma radiography γ射线透照术Gamma ray source γ射线源Gamma ray source container γ射线源容器Gamma rays γ射线Gamma-ray radiographic equipment γ射线透照装置Gap scanning 间隙扫查Gas 气体Gate 闸门Gating technique 选通技术Gauss 高斯Geiger-Muller counter 盖革.弥勒计数器Geometric unsharpness 几何不清晰度Gray(Gy) 戈瑞Grazing incidence 掠入射Grazing angle 掠射角Group velocity 群速度Half life 半衰期Half- wave current (HW)半波电流Half-value layer(HVL) 半值层Half-value method 半波高度法Halogen 卤素Halogen leak detector 卤素检漏仪Hard X-rays 硬X射线Hard-faced probe 硬膜探头Harmonic analysis 谐波分析Harmonic distortion 谐波畸变Harmonics 谐频Head wave 头波Helium bombing 氦轰击法Helium drift 氦漂移Helium leak detector 氦检漏仪Hermetically tight seal 气密密封High vacuum 高真空High energy X-rays 高能X射线Holography (optical) 光全息照相Holography,acoustic 声全息Hydrophilic emulsifier 亲水性乳化剂Hydrophilic remover 亲水性洗净剂Hydrostatic text 流体静力检测Hysteresis 磁滞Hysteresis 磁滞IACS IACSID coil ID线圈Image definition 图像清晰度Image contrast 图像对比度Image enhancement 图像增强Image magnification 图像放大Image quality 图像质量Image quality indicator sensitivity 像质指示器灵敏度Image quality indicator(IQI)/image quality indication 像质指示器Imaging line scanner 图像线扫描器Immersion probe 液浸探头Immersion rinse 浸没清洗Immersion testing 液浸法Immersion time 浸没时间Impedance 阻抗Impedance plane diagram 阻抗平面图Imperfection 不完整性Impulse eddy current testing 脉冲涡流检测Incremental permeability 增量磁导率Indicated defect area 缺陷指示面积Indicated defect length 缺陷指示长度Indication 指示Indirect exposure 间接曝光Indirect magnetization 间接磁化Indirect magnetization method 间接磁化法Indirect scan 间接扫查Induced field 感应磁场Induced current method 感应电流法Infrared imaging system 红外成象系统Infrared sensing device 红外扫描器Inherent fluorescence 固有荧光Inherent filtration 固有滤波Initial permeability 起始磁导率Initial pulse 始脉冲Initial pulse width 始波宽度Inserted coil 插入式线圈Inside coil 内部线圈Inside- out testing 外泄检测Inspection 检查Inspection medium 检查介质Inspection frequency/ test frequency 检测频率Intensifying factor 增感系数Intensifying screen 增感屏Interal,arrival time (Δtij)/arrival time interval(Δtij)到达时间差(Δtij) Interface boundary 界面Interface echo 界面回波Interface trigger 界面触发Interference 干涉Interpretation 解释Ion pump 离子泵Ion source 离子源Ionization chamber 电离室Ionization potential 电离电位Ionization vacuum gage 电离真空计Ionization radiography 电离射线透照术Irradiance,E 辐射通量密度,EIsolation 隔离检测Isotope 同位素K value K值Kaiser effect 凯塞(Kaiser)效应Kilo volt kv 千伏特Kilo electron volt keV千电子伏特Krypton 85 氪85L/D ratio L/D比Lamb wave 兰姆波Latent image 潜象Lateral scan 左右扫查Lateral scan with oblique angle 斜平行扫查Latitude (of an emulsion) 胶片宽容度Lead screen 铅屏Leak 泄漏孔Leak artifact 泄漏器Leak detector 检漏仪Leak test 泄漏检测Leakage field 泄漏磁场Leakage rate 泄漏率Leechs 磁吸盘Lift-off effect 提离效应Light intensity 光强度Limiting resolution 极限分辨率Line scanner 线扫描器Line focus 线焦点Line pair pattern 线对检测图Line pairs per millimetre 每毫米线对数Linear (electron) accelerator(LINAC) 电子直线加速器Linear attenuation coefficient 线衰减系数Linear scan 线扫查Linearity (time or distance)线性(时间或距离)Linearity,amplitude 幅度线性Lines of force 磁力线Lipophilic emulsifier 亲油性乳化剂Lipophilic remover 亲油性洗净剂Liquid penetrant examination 液体渗透检验Liquid film developer 液膜显像剂Local magnetization 局部磁化Local magnetization method 局部磁化法Local scan 局部扫查Localizing cone 定域喇叭筒Location 定位Location accuracy 定位精度Location computed 定位,计算Location marker 定位标记Location upon delta-T 时差定位Location,cluster 定位,群集Location,continuous AE signal 定位,连续AE信号Longitudinal field 纵向磁场Longitudinal magnetization method 纵向磁化法Longitudinal resolution 纵向分辨率Longitudinal wave 纵波Longitudinal wave probe 纵波探头Longitudinal wave technique 纵波法Loss of back reflection 背面反射损失Loss of back reflection 底面反射损失Love wave 乐甫波Low energy gamma radiation 低能γ辐射Low-energy photon radiation 低能光子辐射Luminance 亮度Luminosity 流明Lusec 流西克Maga or million electron volts MeV兆电子伏特Magnetic history 磁化史Magnetic hysteresis 磁性滞后Magnetic particle field indication 磁粉磁场指示器Magnetic particle inspection flaw indications 磁粉检验的伤显示Magnetic circuit 磁路Magnetic domain 磁畴Magnetic field distribution 磁场分布Magnetic field indicator 磁场指示器Magnetic field meter 磁场计Magnetic field strength 磁场强度(H)Magnetic field/field,magnetic 磁场Magnetic flux 磁通Magnetic flux density 磁通密度Magnetic force 磁化力Magnetic leakage field 漏磁场Magnetic leakage flux 漏磁通Magnetic moment 磁矩Magnetic particle 磁粉Magnetic particle indication 磁痕Magnetic particle testing/magnetic particle examination 磁粉检测Magnetic permeability 磁导率Magnetic permeability 磁导率Magnetic pole 磁极Magnetic saturataion 磁饱和Magnetic saturation 磁饱和Magnetic storage meclium 磁储介质Magnetic writing 磁写Magnetizing 磁化Magnetizing current 磁化电流Magnetizing coil 磁化线圈Magnetostrictive effect 磁致伸缩效应Magnetostrictive transducer 磁致伸缩换能器Main beam 主声束Manual testing 手动检测Markers 时标MA-scope; MA-scan MA型显示Masking 遮蔽Mass attenuation coefficient 质量吸收系数Mass number 质量数Mass spectrometer (M.S.)质谱仪Mass spectrometer leak detector 质谱检漏仪Mass spectrum 质谱Master/slave discrimination 主从鉴别MDTD 最小可测温度差Mean free path 平均自由程Medium vacuum 中真空Mega or million volt MV兆伏特Micro focus X - ray tube 微焦点X 光管Micro-focus radiography 微焦点射线透照术Micrometer 微米Micron of mercury 微米汞柱Microtron 电子回旋加速器Milliampere 毫安(mA)Millimeter of mercury 毫米汞柱Minifocus x- ray tube 小焦点调射线管Minimum detectable leakage rate 最小可探泄漏率Minimum resolvable temperature difference (MRTD)最小可分辨温度差(MRDT)Mode 波型Mode conversion 波型转换Mode transformation 波型转换Moderator 慢化器Modulation transfer function (MTF)调制转换功能(MTF)Modulation analysis 调制分析Molecular flow 分子流Molecular leak 分子泄漏Monitor 监控器Monochromatic 单色波Movement unsharpness 移动不清晰度Moving beam radiography 可动射束射线透照术Multiaspect magnetization method 多向磁化法Multidirectional magnetization 多向磁化Multifrequency eddy current testing 多频涡流检测Multiple back reflections 多次背面反射Multiple reflections 多次反射Multiple back reflections 多次底面反射Multiple echo method 多次反射法Multiple probe technique 多探头法Multiple triangular array 多三角形阵列Narrow beam condition 窄射束。

CSRe上激光冷却实验准备测量^(3)C子的寿命和比例

CSRe上激光冷却实验准备测量^(3)C子的寿命和比例

·58·2017 3-2Measurement of the Lifetime and the Proportion of C3+Ions asa Preparation for Laser Cooling Experiments at the CSRe∗Wang Hanbing,Wen Weiqiang,Huang Zhongkui,Zhang Dacheng,Hai Bang,Zhu Xiaolong,Zhao Dongmei,Li Jie, Li Xiaoni,Mao lijun,Mao Ruishi,Yang Jiancheng,Yuan Youjin,Ma Xinwen and Laser Cooling Collaboration Laser cooling is the most promising method to achieve high phase-space densities,even crystalline beams for relativistic heavy ion at storage rings[1].While a pure ion beam is usually desirable for laser cooling experiments to avoid spurious heating effects by any non-cooled ion species,we have found the C3+ion beams produced by an Electron Cyclotron Resonance(ECR)ion source to be mixed with a significant fraction of O4+,because these two ions have almost the same mass-to-charge ratio and could not be separated by the analyzing magnets.Therefore, both ion species were injected into the CSRe and present during all experiments.An experiment was conducted in preparation of laser cooling experiments at the heavy-ion storage ring CSRe. The individual lifetimes of C3+and O4+ion beams were determined by a Schottky ing electron-cooling, the signals of the C3+and O4+ions could be separated and clearly observed in the Schottky spectrum as shown in Fig.1(a).Fig.1(b)shows the extracted lifetimes from the recorded Schottky spectrum of Fig.1(a)and the obtained individual lifetimes of the C3+and O4+components were23.6and17.8,respectively.The proportion of C3+ions in the stored ion beam was measured to be more than70%at the beginning of the injection and increasing as a function of time.These measurements will be great helpful for further laser cooling and precision laser spectroscopy of C3+ions at the heavy-ion cooler storage ring CSRe.Fig.1(color online)(a)Schottky spectrum of coasting C3+and O4+ion beams under electron cooling.The ions were successfully separated in the momentum phase space.The relative momentum difference between these species was calculated to be7×10−5.(b)The individual lifetimes of C3+and O4+ion beams as determined fromfigure(a).The intensities of the Schottky spectrum have been converted into number of ions.(c)The proportion of C3+ions in the stored ion beams extracted fromfigure(a).The proportion at the beginning of the injection is more than70%,and it increases as a function of time.∗Foundation item:National Natural Science Foundation of China(11221064)and External Cooperation Program of CAS(GJHZ1305)2017·59·Reference[1]U.Schramm,Crystalline ion beams,Progress in Particle and Nuclear Physics,53(2004)583.3-3Fully Differential Study of Few-body Dynamics inMulti-electron Atomic Fragmentation ProcessesGao Yong,Ma Xinwen,Zhang Shaofeng,Zhu Xiaolong,Guo Dalong,Feng Wentian,Zhang Ruitian,Hai Bang,Zhang Min and ZhaoDongmeiFig.1(color online)Fully differential cross sections for two electrons,each with an energy of(10±5)eV, ejected into the scattering plane as a function of the polar ejection angles of both electrons.The transverse momentum transfer wasfixed at(5±1)a.u.The ar-rows show the direction and the opposite one of the momentum transfer vector.Employing the reaction microscope,the experiment of He2+collisions on Ar was performed[1].We have mea-sured fully momentum analyzed Ar3+recoil ions and two ejected electrons as well as He+projectiles in coin-cidence with each other.Fully differential cross sections (seeing Fig.1)for electron transfer from the target to the projectile accompanied by the ejection of two ad-ditional target electrons were extracted.This is the first measuring fully differential cross section on thefive-body process which supplies the most rigorous test for the relative theories[2].To a large extent the data can be reproduced by an independent electron model.How-ever,we also observed a surprisingly strong correlation between the electron momenta and the projectile mo-mentum transfer.Up to now,it is not clear why the ejected electron momenta follow the momentum trans-fer so closely,and afinal explanation of the strong cor-relation probably also has to await the full quantum-mechanical treatment.References[1]X.Ma,Phys.Rev.A,83(2011)052707.[2]Y.Gao,J.Phys.B:At.Mol.Opt.Phys.,50(2017)10LT01.3-4Direct Observation of Interatomic Relaxation Processes inneon Dimers by Electron-impactYan Shuncheng,Zhang Pengju,Shen Lili and Ma XinwenWe carry out an experimental investigation of Ne dimer fragmentation following a380eV electron impact.By detecting the Ne+−Ne+cation pair and one of the emitted electrons in coincidence,thefingerprint of the interatomic Coulomb Decay(ICD)[1,2]process initiated by the innervalence ionization of Ne is obtained.It is also observed that most of the low-energy electrons resulting from reactions leading to the fragmentation of the neon dimers in two Ne+ions are produced by the ICD[3]Fig. 1.Because the collision between an ionizing particle and the molecules comprising biological medium produce intermediate-energy secondary electrons[4],and these electrons further collide with and ionize the molecules in the environment;our results suggest that the ICD evoked by such a secondary electron is an efficient source for low-energy electrons responsible for radiation damage.We also clarified that the radiative charge transfer(RCT)caused by the double ionization of Ne are the important relaxation mechanisms leading to the dimer fragmentation into Ne++Ne+in the intermediate-energy electron-impact processes.。

荧光淬灭效率 反义词 英文

荧光淬灭效率 反义词 英文

荧光淬灭效率反义词英文Fluorescence Quenching Efficiency: Definition and Factors Affecting It.Fluorescence quenching efficiency is a crucial parameter in various fluorescence-based assays and applications. It quantifies the extent to which the fluorescence emission of a fluorophore is diminished due to interactions with other molecules or environmental factors. Understanding the factors that influence quenching efficiency is essential for optimizing fluorescence assays and interpreting experimental data accurately.Definition of Fluorescence Quenching.Fluorescence quenching refers to the decrease in fluorescence intensity of a fluorophore due to interactions with external factors or molecules known as quenchers. Quenchers can be classified into two main types:Dynamic Quenchers: These quenchers interact with the fluorophore in a transient manner, usually throughdiffusion-controlled collisions. The quenching effect is reversible and depends on factors such as temperature, viscosity, and molecular mobility.Static Quenchers: These quenchers form stable complexes with the fluorophore, resulting in a non-reversible reduction in fluorescence intensity. The quenching effect is permanent and depends on the binding affinity between the fluorophore and the quencher.Factors Affecting Fluorescence Quenching Efficiency.Several factors influence the efficiency of fluorescence quenching, including:1. Nature of the Quencher:The quenching efficiency depends on the type of quencher and its quenching mechanism. Some common quenchers include:Acceptor Molecules: Molecules that can accept energy from the excited fluorophore, leading to Förster resonance energy transfer (FRET) quenching.Heavy Atoms: Atoms with high atomic numbers, which can promote intersystem crossing and non-radiative decay processes.Collisional Quenchers: Molecules that collide with the fluorophore, disrupting its excited state and dissipating energy as heat.Chemical Reactants: Molecules that react with the fluorophore, leading to the formation of non-fluorescent products.2. Concentration of the Quencher:The quenching efficiency is directly proportional to the concentration of the quencher. Higher concentrations of quencher result in more frequent interactions with thefluorophore, leading to increased quenching.3. Distance between Fluorophore and Quencher:For dynamic quenching, the efficiency is inversely proportional to the distance between the fluorophore and the quencher. The Förster distance, which represents the distance at which 50% quenching occurs, is a critical parameter in FRET quenching.4. Diffusion Rate:The quenching efficiency is influenced by the diffusion rate of the quencher and the fluorophore. Higher diffusion rates increase the frequency of collisions, leading to enhanced quenching.5. Temperature:Temperature can affect both the diffusion rate and the quenching mechanism. In general, higher temperatures favor dynamic quenching processes.6. Viscosity:Viscosity affects the mobility of the fluorophore and the quencher, influencing the frequency of collisions and the quenching efficiency.7. pH:pH can alter the ionization state and binding properties of both the fluorophore and the quencher, affecting the quenching efficiency.8. Ionic Strength:Ionic strength influences the electrostaticinteractions between the fluorophore and the quencher, which can impact the quenching efficiency.Applications of Fluorescence Quenching.Fluorescence quenching has wide-ranging applications invarious fields, including:Biosensing: Quenching-based assays are used to detect and quantify analytes by monitoring changes in fluorescence intensity due to interactions with specific binding partners.Molecular Interactions: Quenching studies provide insights into molecular interactions, such as protein-protein binding, DNA-protein interactions, and enzyme-substrate reactions.FRET Analysis: Fluorescence resonance energy transfer (FRET) relies on quenching to quantify distances and conformational changes in biological systems.Drug Discovery: Fluorescence quenching assays are employed in drug screening and optimization processes.Materials Science: Quenching studies are used to investigate the properties and interactions of materials, such as polymers and nanoparticles.Conclusion.Fluorescence quenching efficiency is a fundamental parameter in fluorescence-based assays and applications. Understanding the factors that influence quenching efficiency is crucial for optimizing experimental conditions, interpreting data accurately, and harnessing the full potential of fluorescence spectroscopy in various fields of research and technology.。

Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers

Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers

Effect of metalfilms on the photoluminescence and electroluminescence of conjugated polymersH.Becker,S.E.Burns,and R.H.FriendCavendish Laboratory,Madingley Road,Cambridge CB30HE,United Kingdom͑Received12February1997;revised manuscript received15April1997͒We report the modification of photoluminescence͑PL͒and electroluminescence͑EL͒from conjugatedpolymers due to the proximity of metalfilms.The presence of a metalfilm alters the radiative decay rate of anemitter via interference effects,and also opens up an efficient nonradiative decay channel via energy transferto the metalfilm.We show that these effects lead to substantial changes in the PL and EL quantum efficienciesand the emission spectra of the polymers studied here͓cyano derivatives of poly͑p-phenylenevinylene͒,PPV͔as a function of the distance of the emitting dipoles from the metalfilm.We have measured the PL quantumefficiency directly using an integrating sphere,and found its distance dependence to be in good agreement withearlier theoretical ing the spectral dependence of the emission,we have been able to investigatethe effect of interference on the radiative rate as a function of the wavelength and the distance between theemitter and the mirror.We compare our results with simulations of the radiative power of an oscillating dipolein a similar system.From our results we can determine the orientation of the dipoles in the polymerfilm,andthe branching ratio that gives the fraction of absorbed photons leading to singlet excitons.We propose designrules for light-emitting diodes͑LED’s͒and photovoltaic cells that optimize the effects of the metalfilm.Bymaking optimum use of above effects we have substantially increased the EL quantum efficiencies of PPV/cyano-PPV double-layer LED’s.͓S0163-1829͑97͒09228-X͔I.INTRODUCTIONConjugated polymers have attracted much attention since the discovery that these materials can be used as emissive layers in light emitting diodes͑LED’s͒.1,2Research has been particularly focused on poly͑p-phenylenevinylene͒͑PPV͒and its derivatives because of their high efficiencies.With these materials a wide range of emission colors and elec-troluminescence efficiencies up to4%have been reported.3 The competition between radiative and nonradiative decay processes in conjugated polymers is currently of great inter-est since it governs the efficiency of light emission in conju-gated polymer devices such as LED’s and lasers as well as the quantum yield of photovoltaic devices.1,4–7Most of these devices contain metalsfilms either as electrodes for charge injection in electroluminescent devices or as mirrors in order to manipulate the radiative properties of the emissive species in the polymer.The presence of a metalfilm will always influence the properties of the emitting material.Microcavi-ties have been used to narrow the linewidth and tune the color of emission from conjugated polymers.8–10It has re-cently been shown that the spontaneous emission rate can be greatly enhanced or suppressed in metal mirror microcavity structures containing conjugated polymers,depending on the overlap of the electric-field distribution within the microcav-ity with the emissive layer.11,12It has also been demonstrated that enhancement of the stimulated emission rate leading to lasing can be achieved with conjugated polymers using simi-lar microcavity structures.7More generally,the radiative and nonradiative rates of an excited dipolefluorescing in front of a metalfilm or between two metalfilms have been extensively investigated,both theoretically and experimentally.13–20The luminescence life-time␶is related to the rate constants for radiative(k R)and nonradiative(k NR)decay by1␶ϭk Rϩk NR,͑1͒where the radiative lifetime is1/k R,and the nonradiative lifetime is1/k NR.The quantum efficiency for luminescence q is given byqϭbͩk R k Rϩk NRͪ,͑2͒where the branching ratio b is the fraction of absorbed pho-tons leading to singlet excitons.The balance between the radiative and the nonradiative decay rates therefore deter-mines the luminescence efficiency.Different methods have been used to predict the lifetime and luminescence quantum efficiency for an excited molecule in front of a mirror.The interference method successfully predicts the effects of a re-flective surface on the radiative properties of the dipole.15 However,at short distances nonradiative energy transfer to the metal becomes an effective decay channel for an excited molecule near a metal,thus increasing the nonradiative de-cay rate close to the metal.In the‘‘mechanical model’’14the excited molecule is considered as a harmonic oscillator with thefield reflected by the metalfilm acting as a driving force on the oscillator.By introducing a reflection coefficient smaller than unity and a phase factor into the perfect mirror equations,some of the aspects of nonradiative energy trans-fer could be reproduced.14However,the best agreement be-tween theory and experiment has been achieved with the energyflux method where the total energyflux through infi-nite planes above and below the dipole is calculated.19It gives separate expressions for the effects of interference on the radiative lifetime and of nonradiative energy transfer on the nonradiative lifetime.The nature of the nonradiative en-ergy transfer depends on the distance of the oscillating dipolePHYSICAL REVIEW B15JULY1997-IIVOLUME56,NUMBER4560163-1829/97/56͑4͒/1893͑13͒/$10.001893©1997The American Physical Societyto the metal.The interaction of the dipole with the electron gas of the metal is dominated by scattering by the metal surface at short (Ͻ20nm)distances and scattering in the bulk,e.g.,by phonons or impurities,for longer distances.21,22The decay time of an emitting molecule in front of a metal film has previously been reported.15,19,23In order to deduce the quantum efficiency from those measurements it was nec-essary to make assumptions about the orientation of the di-poles and the free-space efficiency of the emitting molecule.In this paper we present direct measurements of the photo-luminescence ͑PL ͒and electroluminescence ͑EL ͒quantum efficiencies of two cyanoderivatives of poly ͑p -phenylenevinylene ͒,MEH-CN-PPV and DHeO-CN-PPV,the structures of which are shown in Fig.1,and compare our results with the theoretical predictions for the quantum effi-ciency of a dipole in front of a mirror.Measurements of the PL quantum efficiency rather than the luminescence lifetime are of particular relevance for electroluminescent devices.The effect of interference on the radiative properties of an excited molecule is dependent on the emission wavelength.This wavelength dependence is again a function of the dis-tance between the emitting molecule and the mirror.For broad bandwidth emitters such as conjugated polymers,this leads to substantial changes in the shape of the emission spectrum depending on the separation between the emitter and the mirror.We have investigated the changes in the PL emission spectrum of a 15–20-nm-thick MEH-CN-PPV film separated by a SiO 2layer from a 35-nm-thick aluminium fiing a simple model that describes the effects of in-terference on the radiative rates,we have been able to relate the spectral shape of the emission to the radiative power of an oscillating dipole in front of a mirror as a function ofwavelength and distance between the polymer and the metal.We compare our results with earlier 24and recent simulations of the radiative power of an emitting dipole in front of a metal mirror.The internal electroluminescence efficiency of a LED is defined as the number of emitted photons per charge carrier flowing through the circuit.Because the light-emitting spe-cies is thought to be the same in EL and PL,we expect the effects of a metal film on the EL to be the same as measured for the PL.The maximum EL efficiency of a device is ex-pected to be one-fourth of the PL efficiency of the emitting polymer where the factor 4derives from the spin degeneracy of the singlet and triplet excitons,with only the singlet exci-tons decaying radiatively.25So far,the highest EL efficien-cies for polymer LED’s have been achieved with PPV/MEH-CN-PPV and PPV/DHeO-CN-PPV double-layer devices.3,26This has been attributed to various reasons,but it has been unclear what role interference effects and nonradiative en-ergy transfer to the metal electrode play.In these devices it has been proposed that emission occurs from a thin layer at the interface between the polymer layers,although there has been little direct evidence that this is the case.We have systematically changed the position of the interface between the two polymer layers relative to the metal film.We mea-sured the dependence of the EL efficiency of PPV/MEH-CN-PPV double-layer devices on the distance between the polymer-polymer interface and the Al electrode.This allows us to comment on the effect of the Al film on the radiative and nonradiative properties of the emitting species and the increased EL efficiencies in double-layer devices.We com-pare the EL efficiencies with the PL efficiencies measured on thin polymer films separated from a 35-nm Al film by a SiO 2layer.The interface between conjugated polymers and metals has recently been studied in order to obtain information about the chemistry that occurs at the interface and about diffusion of metal atoms into the near-surface region of the polymer.27The effects of these processes on PL and EL are important for device operation.It has also been reported that thin calcium films efficiently quench the PL of thin conju-gated polymer films if deposited on top of them.28In this context it is important to understand the origin and conse-quences of nonradiative energy transfer from the polymer to the metal and of interference effects on the quantum effi-ciency and the emission spectrum.II.METHODA.Experimental proceduresWe have built three device structures as shown schemati-cally in Fig.2.Thin metal films of Al or Au were thermally evaporated onto one-half of a quartz substrate.We used semitransparent Al and Au films of thicknesses around 2–3nm with a transmittance of more than 70%in the visible,and 35-nm-thick nontransparent Al films.Films of MEH-CN-PPV and DHeO-CN-PPV ͑Fig.1͒were prepared by spin coating onto the metal-coated substrates.A series of thick-nesses between 15and 200nm was prepared.On a second set of samples,transparent SiO 2spacer layers ͑Schott glass 8329͒of differing thicknesses were evaporated on top of the metal-film coated substrates using an electron-beamevapo-FIG. 1.Chemical structures of PPV,MEH-CN-PPV,and DHeO-CN-PPV.189456H.BECKER,S.E.BURNS,AND R.H.FRIENDration technique.The refractive index of the glass was taken to be 1.47.A thin polymer layer of 15–20-nm thickness was then spin coated onto the SiO 2layer.In order to investigate the effect of indium-tin oxide ͑ITO ͒on the PL quantum ef-ficiency MEH-CN-PPV films of different thicknesses were spin coated onto commercially-available ITO-coated glass substrates ͑Balzers ITO-coated glass substrates type 257;ITO layer thickness ϳ100nm ͒.The PL efficiency ͑number of photons emitted per number of photons absorbed ͒and the emission spectra of the PL samples ͑structures 1and 2,Fig.1͒were measured using an integrating sphere and a charge-coupled device ͑CCD ͒array spectrometer ͑Oriel Instaspec IV ͒.29,30A 458-nm laser served as the excitation source.The samples were illuminated from the polymer side.The PL efficiency and the PL spectrum were measured on the metal-coated half,and as a reference on the noncoated half of the sample as a function of the thickness of both the polymer film and the SiO 2layer.A series of PPV/MEH-CN-PPV double-layer LED de-vices was built by spin-coating the PPV precursor onto ITO coated substrates.After thermal conversion of the PPV pre-cursor,MEH-CN-PPV was spin coated onto the PPV film.Finally,Al electrodes were thermally evaporated on top of the structure.The PPV layer was 120nm thick.The thick-ness of the MEH-CN-PPV layer varied between 24and 110nm.A schematic diagram of the devices is shown in Fig.1.The electroluminescence in the forward direction was mea-sured using a calibrated photodiode.The batches of MEH-CN-PPV and DHeO-CN-PPV used showed PL quantum efficiencies between 33%and 39%when spin coated onto glass substrates.These are similar to those reported previously.29The samples were kept in a nitrogen-filled atmosphere or in vacuum at all times,and the experiments were performed within a few hours after the preparation of the samples in order to avoid oxidation of the polymer or the metal.B.ModelingSimulations of the radiative power of oscillating dipoles embedded in the top layer of a three-layer structure similar to structure 2shown in Fig.2were carried out using the transfer-matrix method and multilayer stack theory.The model is based entirely on classical electromagnetic theory,and is described in more detail in Ref.24.We simulated the radiative power of dipoles distributed uniformly throughout a 20-nm-thick layer separated from a 35-nm Al film by a trans-parent layer with the same refractive index as the SiO 2that was used to build structure 2.The radiative power of the dipoles was normalized to be 1in free space.By integrating the emitted power over all angles,the changes in radiative rate due to the metal film were calculated as a function of the distance between the emission layer and the metal,the wave-length and the orientation of the dipoles.The refractive index data for the aluminum was taken from Ref.31.The refractive index of MEH-CN-PPV was taken to be 1.7,where any bi-refringence and the dispersion of the refractive index was neglected.The refractive index of MEH-CN-PPV at 633nm has been measured to be 1.695for TM and 1.77for TE modes.32III.RESULTSA.PL spectra and PL efficiencyThe PL emission and absorption spectra of MEH-CN-PPV are shown in Fig.3.Due to the large Stokes’shift typical of this class of materials,the overlap between absorp-tion and emission is very small.For wavelengths above 550nm this allows us to use the spectra measured in the integrat-ing sphere,since reabsorption of the emitted light is low and the shape of the emission spectrum is therefore the same as for the free-space emission.1.Polymer on metal (structure 1)Figure 4shows the PL efficiency of MEH-CN-PPV and DHeO-CN-PPV films in front of different metal films as a function of the film thickness.2-and 3-nm-thick gold and aluminum films were used as well as 35-nm-thick aluminium films.The data were corrected for the absorption of laser light by the metal mirror,which was calculated from the transmission spectra of the metal films,simulations of the absorption of light by the metal,33the transmission spectra of the polymer films,and the absorption by the whole structure measured in the integrating sphere.The 2–3-nm-thick metal films are highly transparent for light in the visible range ͑Ͼ70%transmittance ͒.Hence we expect interferenceeffectsFIG.2.Schematic diagram of the PL ͑1,2͒and EL ͑3͒devicestructures.FIG.3.Normalized emission spectrum ͑solid line ͒and absorp-tion spectrum ͑dotted line ͒of MEH-CN-PPV.561895EFFECT OF METAL FILMS ON THE ...to play a minor role.Figure 5shows the spectra measured in the integrating sphere for MEH-CN-PPV films of different thicknesses on 3nm of Al.We measured the absorption coefficient for the MEH-CN-PPV at 458nm to be ␣ϭ1.24ϫ105cm Ϫ1,so that approxi-mately half of the excitation light is absorbed in the first 56nm.Since the diffusion range for the excitons in these ma-terials is of the order of a few nanometers,we take the spatial distribution of the emission to be identical to the absorption profile.For thick polymer films,where most of the light is emitted in regions far away from the metal,the shape of the emission spectrum is the same as for thin films,where the light is emitted close to the metal.This confirms that inter-ference effects are negligible for 2–3-nm-thick metal films.We see from our measurements that the PL is efficiently quenched for polymer films up to a thickness of 90nm for thin metal films,and up to 60nm for a thick Al film.Within a critical distance of 20nm almost all luminescence is quenched.Figure 4also shows the dependence on the polymer film thickness of the PL quantum efficiency of MEH-CN-PPVfilms deposited on 35nm of Al.The reflectance of the metal film was around 90%.As shown in Fig.6,the shape of the emission spectrum changes with the polymer film thickness due to interference effects.Surprisingly,the PL quantum ef-ficiency rises faster with polymer film thickness than for thin metal films.The difference in the distance dependence of the energy transfer rate to the metal cannot explain this.How-ever,interference effects not only affect the emission prop-erties of a material but also change the absorption in the same fashion.As we will see in Sec.III A 2,the radiative power of dipoles parallel to the mirror plane increases with the distance between the mirror and the dipole for distances comparable to the maximum MEH-CN-PPV film thickness.We therefore expect the absorption of light to increase with distance from the metal.The majority of light is therefore absorbed and emitted further away from the metal than in the case of thin metal films with a low reflectivity.As a conse-quence,the maximum PL efficiency is reached for thinner polymer films.The same experiment was performed with polymer films of differing thicknesses spin-coated on ITO-coated glass sub-strates.ITO,which is commonly used as a hole injector in electroluminescent devices,was not found to quench the PL for polymer films thicker than 20nm.Only for a 20-nm-thick film was a reduction of the PL efficiency of 12%observed.This might be explained in terms of exciton diffusion toward the polymer-ITO interface where the excitons are quenched.Our results are in agreement with reports in the literature.28,34,35Discussion .The suppression of light emission near the polymer metal interface cannot be explained by absorption of emitted light by the metal.Although this effect reduces the measured quantum efficiency,it is independent of the distance between the metal and the emitter,and can therefore not explain the increase in quantum efficiency with polymer film thickness.At long distances the PL efficiency ap-proaches a constant value below the free-space quantum ef-ficiency of our samples.As we will see below this is consis-tent with our assumption that interference effects can be neglected for very thin metal films.Our data agree qualita-tively with a calculation of the quantum yield of an oscillat-ing dipole with a quantum efficiency of unity in front ofaFIG.4.PL quantum efficiency as a function of the polymer film thickness of MEH-CN-PPV on 2nm of gold ͑triangles ͒,MEH-CN-PPV on 3nm of aluminium ͑circles ͒,DHeO-CN-PPV on 2nm of gold ͑filled squares ͒and of MEH-CN-PPV on 35nm of aluminum ͑open squares ͒.The solid lines are guides to theeye.FIG.5.Normalized PL emission spectra of 15–90-nm-thick MEH-CN-PPV films on 3nm of aluminum measured in the inte-gratingsphere.FIG.6.Normalized PL emission spectra of three selected thick-nesses of MEH-CN-PPV films on 35nm of aluminum measured in the integrating sphere.189656H.BECKER,S.E.BURNS,AND R.H.FRIENDmirror.19We conclude that nonradiative energy transfer from the excited state of the polymer to the metal efficiently quenches luminescence in the proximity of a metalfilm,as predicted by the simulations by Chance,Prock,and Silbey.19 However,for three reasons our results are not directly comparable with the calculation of Chance,Prock,and Sil-bey.First,in their model,the quantum efficiency of a single dipole at a given distance is calculated.In our experiments the light is emitted over a broad region in the polymerfilm depending on where it is absorbed.Even for thick polymer films light penetrates far into thefilm,where it is absorbed and subsequently emitted in regions close to the metal where it can be quenched.Because of the penetration of light into the polymerfilm we expect a reduction in the quantum effi-ciency for relatively thick polymerfilms.Second,Chance, Prock,and Silbey,used a model in which the emitter had a quantum yield of unity in free space.It follows that in free space no nonradiative energy decay occurs.Energy transfer to the metal is therefore the only nonradiative decay channel. This means that interference effects do not change the quan-tum efficiency for distances where nonradiative energy trans-fer to the metal is negligible.They do,however,alter the quantum efficiency at short distances where nonradiative en-ergy transfer to the metal is present.In our structures,shown in Figs.4–6,interference effects alter the PL efficiency at all distances when the reflectivity of the metalfilms is high, since our materials have a free-space quantum efficiency around36%,and therefore intrinsic nonradiative decay chan-nels not associated with the metalfilm are present.However, interference is negligible for all distances when the reflectiv-ity of the metalfilms is low.Third,highly transparent metal films show a slightly different distance dependence of the nonradiative energy-transfer rate than thick metalfilms.At short distances very thinfilms quench luminescence more efficiently than thick metalfilms,whereas for longer dis-tances the opposite is true.182.Polymer on spacer on metal(structure2)We also investigated the PL efficiency and the emission spectra of structures where a20-nm-thick polymer layer is separated from the Alfilm by a SiO2space ing spacer layers avoids several problems.The emission zone is confined to a thin layer at a given distance to the metal, which gives better spatial resolution and allows better com-parison with simulations for dipoles in front of metal films.15,19,24It avoids chemical reactions between the poly-mer and the metal that can alter the emission characteristics of the polymer,e.g.,covalent bonding of Al atoms to the polymer.27It also rules out diffusion of the exciton to the metal as a necessary precondition for quenching.Further-more,no diffusion of metal atoms into the polymer layer͓of the order or3–4nm for Al͑Ref.27͔͒occurs.In addition,a comparison of the EL results with the PL quantum efficiency of a polymerfilm at various distances to the metal allows us to draw conclusions about the nature of the recombination zone.The measured quantum efficiencies were corrected for the absorption of laser light by the Alfilm.In Fig.7the PL quantum efficiency of a15–20-nm-thick polymerfilm separated from2–3-nm-thick Au and Alfilms by a transparent SiO2spacer layer is shown as a function of the spacer layer thickness.For a polymerfilm spin coated directly onto the metalfilm or a5-nm-thick spacer layer,the efficiency is reduced from36%in free space to a value be-tween0.06%and3%.We note that contact between the polymerfilm and the metal is not necessary for efficient quenching of the PL.The PL quantum efficiency increases with increasing SiO2layer thickness.For a separation of ap-proximately60nm,the PL quantum efficiency approaches a constant value which is less than the free-space quantum efficiency of36%.The excitation density throughout such a thinfilm is taken to be approximately constant.For our samples we therefore consider60nm as the distance above which nonradiative energy transfer to the metal becomes negligible.The PL spectra obtained from the polymerfilms are shown in Fig.8.As expected,for highly transparent metalfilms the shape of the emission spectrum is almost independent of the distance between the polymer layer and the metalfilm.Figure9shows the results of the same measurement on samples with a35-nm-thick highly reflective Alfilm.The FIG.7.PL quantum efficiency of a15–20-nm-thick MEH-CN-PPVfilm on a SiO2spacer layer on2nm of gold or3nm of aluminum as a function of the SiO2thickness.The solid lines are guides to theeye.FIG.8.Normalized PL emission spectra of15–20-nm-thick MEH-CN-PPVfilms separated by SiO2spacer layers of different thicknesses from2nm of gold and3nm of aluminum measured in the integrating sphere.561897EFFECT OF METAL FILMS ON THE...reflective and quenching properties of such an Al film are identical to that of the bulk.The PL quantum efficiency os-cillates as a function of the SiO 2layer thickness.With no spacer layer present,the PL quantum efficiency is again re-duced to around 3%.With increasing SiO 2layer thickness the quantum efficiency rises to a maximum of 35.5%for a separation of about 75nm between the polymer layer and the metal film.For larger distances,the PL is significantly re-duced,with the quantum efficiency dropping to 5.3%for a SiO 2layer of 210-nm thickness.The PL quantum efficiency peaks again,with the quantum efficiency reaching 32%,a value slightly lower than that for the first peak.We note that the PL quantum efficiencies shown in Fig.9have been cal-culated neglecting the absorption of emitted light by the Al.Correction for absorption of PL by the Al would give a maximum PL quantum efficiency of 37%,and a minimum PL quantum efficiency of 5.6%,as discussed below.The PL spectra from these samples are shown in Fig.10.Interference effects shift the emission peak of a thin MEH-CN-PPV layer on top of a SiO 2spacer and a 35-nm-thick Al film over therange of 580–640nm.The emission from a MEH-CN-PPV film spin coated onto a glass substrate peaks at 595nm.Discussion .In our experiments we can distinguish be-tween two cases.For very thin metal films with low reflec-tivities,interference effects are negligible.This is supported by the lack of any dependence of the shape of the emission spectrum on the thickness of the polymer film or the SiO 2spacer layer.Nonradiative energy transfer to the metal has,however,been identified as an efficient decay channel for an emitter in the proximity of a thin metal film.19,22The samples with thin metal films thus allow us to measure the effect of the metal film on the nonradiative energy transfer only and to neglect the effect of interference on the radiative rate.For thick metal films we expect both interference effects and energy transfer to the metal to influence the radiative as well as the nonradiative properties of the light emitter.14,15,19We can identify two different regimes.For short distances ͑below 60nm ͒we see efficient quenching of the lumines-cence for both highly transparent and highly reflective metal films.We conclude that nonradiative energy transfer to the metal plays an important role in this region.For longer dis-tances the PL efficiency remains constant for polymer films on thin metal layers but oscillates as a function of distance for highly reflective metal films.For thicker metal films we also observe a significant dependence of the shape of the emission spectrum from the distance between the emitter and the metal.We assign these effects to interference between directly emitted waves and waves reflected from the metal layer.The effect of interference on the radiative lifetime of an emitting dipole in front of a metal mirror as a function of wavelength and dipole metal separation has been investi-gated in great depth,15,23and,as we discuss below,can ac-count for our observations here.In order to interpret our results,we have analyzed them in terms of the competition between radiative and nonradiative decay processes.The radiative lifetime of an excited mol-ecule oscillates with increasing distance of the molecule from a reflective surface.However,when the nonradiative energy transfer to the metal is negligible,the radiative decay channels in a material with a quantum efficiency of unity do not compete with any nonradiative decay channels.Changes in the radiative lifetime therefore have no effect on the quan-tum efficiency.We note that this is the case for the simula-tions carried out in Ref.19.If,however,nonradiative decay channels are present,as in our materials,an oscillation in the radiative lifetime due to interference effects will allow the nonradiative decay channels to compete more or less favor-ably,depending on whether the radiative lifetime is in-creased or decreased.This leads to an oscillation in quantum efficiency.For materials where radiative and intrinsic and extrinsic ͑i.e.,due to the metal ͒nonradiative decay channels compete with each other,we therefore expect a combination of both the effects of interference on the radiative lifetime and of energy transfer to the metal on the nonradiative life-time.At long distances we expect the PL efficiency to oscil-late in the same fashion as the radiative lifetime ͑see Fig.9͒.At short distances nonradiative energy transfer will reduce the efficiency ͑see Figs.9and 4͒.This effect will be en-hanced by an increase in the radiative lifetime ͑decrease in the radiative rate ͒due to destructiveinterference.FIG.9.Solid circles:PL quantum efficiency of a 15–20-nm-thick MEH-CN-PPV film on a SiO 2spacer layer on a 35nm of aluminum as a function of the SiO 2thickness.The solid line is a guide to theeye.FIG.10.Normalized PL emission spectra of 15–20-nm-thick MEH-CN-PPV films separated by SiO 2spacer layers of four se-lected thicknesses from 35nm of aluminum measured in the inte-grating sphere.189856H.BECKER,S.E.BURNS,AND R.H.FRIEND。

光通信系统中的重要有源光器件和无源光器件有源器件光

光通信系统中的重要有源光器件和无源光器件有源器件光

谐振型和传输型半导体光放大器的光谱特性
半导体光放大器的串音特性
光放大器增益的偏振特性
光放大器增益的偏振特性的消除
2。掺铒光纤光放大器的结构
Signal in λ = 1550 nm
Optical isolator
Er 3+ -doped fiber (10 - 20 m)
Wavelength-selective
couplerຫໍສະໝຸດ SpliceSplice
Optical isolator
Signal out λ = 1550 nm
Pump laser diode λ = 980 nm
Termination
掺铒光纤光放大器的特性
掺铒光纤光放大器的原理
Energy of the Er in the glass fiber
3 + ion
1.54 eV 1.27 eV
E 3
E3
Non-radiative decay
980 nm
Pump
0.80 eV 1550 nm
In
0
E2
1550 nm
Out E1
掺铒光纤光放大器增益谱特性
掺铒光纤结构
两种实际掺铒光纤光放大器结构
光通信系统中的重要 有源光器件和无源光器件
有源器件: 光放大器等
无源器件: 耦合器,波分复用器,滤波器, 隔离器,环行器等
光有源器件:光放大器
光通信系统中的几种光放大器
1。半导体光放大器
谐振型和传输型半导体光放大器
谐振型半导体光放大器
传输型半导体光放大器I
传输型半导体光放大器II
光放大器的增益饱和特性

材料与水化学第讲核电厂一回路水化学

材料与水化学第讲核电厂一回路水化学
d dX E 4 m z0 2 c l4N[Z lo 2 (1 m g 0c b2 2)b2]
式中 z 为荷电粒子电荷数;Z为物质的原子序数。 可以看出,荷电粒子电荷越多,速度越慢,LET值越大。如20MeV的a粒子在
水中LET值为3.3eV/Å,而5MeV的a粒子在水中的LET值为9.5eV/Å,对同样能量 的氚荷而言,其相应的值分别为0.48eV/Å和1.42eV/Å。它们都比电子的LET大得 多,所以重荷电粒子的穿透能力比起同样能量的电子要小得多。
辐射化学的时间量级
Most of the chemical reactions are finished. However in certain systems reaction can continue for several days. 几乎所有反应结束
Radiative decay of triplet states. 三重态放射性衰变
El=12400;
E = hf 。
0 1n6 3Li 3 1H +2 4H e
0 1n14 18 3C d 14 18 4C d+γ
各种粒子的核特性
The nuclear properties of particles
射线种类
a射线 b射线 g射线 质子(P) 中子(n) 氘(d) 氚(T) 裂变碎片(轻) 裂变碎片(重)
反应物在冷却剂 中的存在
天 然 2H pH 控 制 剂 可溶性中子吸收剂 溶 解 空 气 ,联 氨 分 解 物 溶解空气或腐蚀产物 溶解空气或腐蚀产物 杂质 溶解空气 溶解空气 pH 控 制 剂 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物 腐蚀产物

用刀片锐边测量激光波长的试题

用刀片锐边测量激光波长的试题
THEORETICAL CONSIDERATIONS
Refer to Figure 1.2 and 1.3 above. There are five basic lengths:
L0 : distance from the focus to the screen. Lb : distance from the razor blade to the screen, Case I. La : distance from the razor blade to the screen, Case II. LR (n) : position of the n-th dark fringe for Case I. LL (n): position of the n-th dark fringe for Case II.
Figure 1.1 Typical interference fringe pattern.
Once the laser beam (A) is reflected on the mirror (B), it must be made to pass through a lens (C), which has a focal length of a few centimeters. It can now be assumed that the focus is a light point source from which a spherical wave is emitted. After the lens, and along its path, the laser beam hits a sharp razor blade edge as an obstacle. This can be considered to be a light source from which a cylindrical wave is emitted. These two waves interfere with each other, in the forward direction, creating a diffractive pattern that can be observed on a screen. See Figure 1.1 with a photograph of a typical pattern.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -e x /0110016v 1 9 O c t 2001RUTGERS-01-88Radiative Decay Width Measurements ofNeutral Kaon Excitations Using thePrimakoffEffectA.Alavi-Harati 12,T.Alexopoulos 12,M.Arenton 11,K.Arisaka 2,S.Averitte 10,R.F.Barbosa 7,∗∗,A.R.Barker 5,M.Barrio 4,L.Bellantoni 7,A.Bellavance 9,J.Belz 10,D.R.Bergman 10,E.Blucher 4,G.J.Bock 7,C.Bown 4,S.Bright 4,E.Cheu 1,S.Childress 7,R.Coleman 7,M.D.Corcoran 9,G.Corti 11,B.Cox 11,A.Cunha 10,A.R.Erwin 12,R.Ford 7,A.Glazov 4,A.Golossanov 11,G.Graham 4,J.Graham 4,E.Halkiadakis 10,J.Hamm 1,K.Hanagaki 8,S.Hidaka 8,Y.B.Hsiung 7,V.Jejer 11,D.A.Jensen 7,R.Kessler 4,H.G.E.Kobrak 3,Due 5,th 10,A.Ledovskoy 11,P.L.McBride 7,D.Medvigy 10,P.Mikelsons 5,E.Monnier 4,∗,T.Nakaya 7,K.S.Nelson 11,H.Nguyen 7,V.O’Dell 7,R.Pordes 7,V.Prasad 4,X.R.Qi 7,B.Quinn 4,E.J.Ramberg 7,R.E.Ray 7,A.Roodman 4,S.Schnetzer 10,K.Senyo 8,P.Shanahan 7,P.S.Shawhan 4,J.Shields 11,W.Slater 2,N.Solomey 4,S.V.Somalwar 10,†,R.L.Stone 10,E.C.Swallow 4,6,S.A.Taegar 1,R.J.Tesarek 10,G.B.Thomson 10,P.A.Toale 5,A.Tripathi 2,R.Tschirhart 7,S.E.Turner 2,Y.W.Wah 4,J.Wang 1,H.B.White 7,J.Whitmore 7,B.Winstein 4,R.Winston 4,T.Yamanaka 8,E.D.Zimmerman 41University of Arizona,Tucson,Arizona 857212University of California at Los Angeles,Los Angeles,California 900953University of California at San Diego,La Jolla,California 920934The Enrico Fermi Institute,The University of Chicago,Chicago,Illinois 606375University of Colorado,Boulder,Colorado 803096Elmhurst College,Elmhurst,Illinois 601267Fermi National Accelerator Laboratory,Batavia,Illinois 605108Osaka University,Toyonaka,Osaka 560-0043Japan9Rice University,Houston,Texas 7700510Rutgers University,Piscataway,New Jersey 0885411The Department of Physics and Institute of Nuclear and Particle Physics,University of Virginia,Charlottesville,Virginia 2290112University of Wisconsin,Madison,Wisconsin 53706∗Permanent address C.P.P.Marseille/C.N.R.S.,France∗∗Permanent address University of S˜a o Paulo,S˜a o Paulo,Brazil†To whom correspondence should be addressed.Electronic address:somalwar@The KTeV CollaborationAbstractWe produce a sample consisting of147candidate events,with minimal backgrounds,of the mixed axial vector pair(K1(1270)-K1(1400))by excitingK L’s in the Coulombfield of lead and report thefirst measurements of theradiative widthsΓr(K1(1400))=280.8±23.2(stat)±40.4(syst)keV andΓr(K1(1270))=73.2±6.1(stat)±28.3(syst)keV.We also place90%CL upperlimitsΓr(K∗(1410))≤52.9keV for the vector state andΓr(K∗2(1430))≤5.4keV for the tensor state.These measurements allow for significant tests ofquark-model predictions of radiative widths for the low-lying vector mesons.Several resonant excitations of the neutral kaon are known to exist[1],most having been observed indirectly using partial wave analysis[2].Figure1is a schematic repre-sentation of the neutral kaon excitations with central masses less than1.5GeV/c2.The axial vector pair(K1(1270)-K1(1400))is interesting because it is a(coherent)mixtureof the singlet1P1and the triplet3P1states[3],parameterized by the mixing angleΘ:K1(1270)=−3P1·sinΘ+1P1·cosΘand K1(1400)=3P1·cosΘ+1P1·sinΘ.The ra-diative decay widths of the kaon excitations,Γr(K∗)=Γ(K∗→K+γ),are sensitive to the magnetic moments of the constituent quarks[4].Radiative widths have been calculated forlow-lying mesons using both a dynamic quark model[5]and a relativistic quark model[6,7]. Experimentally,onlyΓr(K∗(892))has been measured[8]so far.The Primakoffeffect[9],i.e.excitation by the Coulombfield,can be used to measure radiative widths since it is the inverse of radiative decay.In this Letter,we use the full dataset collected during the1996-97run of the KTeV experiment at Fermilab to study Primakoffproduction in two channels:the six-body K∗(892)π0channel,exemplified by K∗(1410)or K1(1400)→K∗(892)π0→[K Sπ0]π0→[(π+π−)(γγ)](γγ),which has twoπ0’s,and the four-body K Sπ0channel,exemplified by K∗(892)or K∗(1410)→K Sπ0→(π+π−)(γγ), which has a singleπ0.In the K∗(892)π0channel,we observe147candidate events which are predominantly the axial vector K1(1400)with a small admixture of K1(1270).Using a large sample of K∗(892)’s from the K Sπ0channel for normalization,we report thefirst measurements of the radiative widths for the axial vector pair.We also use the K Sπ0channel to place thefirst upper limit onΓr(K∗(1410))and a stringent upper limit onΓr(K∗2(1430)).For high particle energies and small production angles,the rate of exciting a K L to a K∗in the Coulombfield of a nucleus A is given by[10]dσ2S K+1 Γ(K∗→K+γ)t2|f EM|2,(1)whereαis thefine structure constant,Z is the atomic number of the nucleus,S K and S K∗are the spins of K L and the resonance,respectively,k=(m2K∗−m2K)/2m K∗,t is the magnitude of the square of the momentum transfer and t′=t−t min,√passed through a regenerator which was located∼124m from the target.The regenerator consisted of84modules of2cm-thick plastic scintillator followed by a module composed of a lead-scintillator sandwich.Since the Primakoffeffect is proportional to Z2of the target material,more than98%of the observed Primakoffexcitations(equation1)were produced in thefinal lead pieces.The regenerator was instrumented with photomultiplier tubes which enabled us to tag and reject backgrounds from inelastic interactions.We detectπ+π−tracks from K S decays using a drift chamber spectrometer system and photons fromπ0decays using a pure CsI electromagnetic calorimeter.The event trigger was initiated by signals from two scintillator hodoscopes located downstream of the spectrometer and required hits in the drift chambers consistent with two oppositely charged tracks.The decay volume was surrounded by a near-hermetic set of devices to veto photons.In the offline analysis,thefiducial region for the decay vertex of K S→π+π−is restricted to15m downstream of the regenerator.We reconstructπ0’s using pairs of energy clusters in the calorimeter.The clusters are required to have energies greater than1GeV and photon-like spatial distributions.To reject electrons,we require that the ratio of energy deposited in the calorimeter to the particle momentum as measured by the spectrometer be<0.8.To reconstruct the K∗(892)→K Sπ0decays used for normalization,in the four-body channel we require the invariant masses of theγγand theπ+π−to be within10MeV/c2of theπ0and K S invariant masses,respectively.We isolate Primakoff(forward)production by demanding that the square of the transverse momentum(p2t)of theπ+π−γγwith respect to a line connecting the target and the decay vertex of K∗(892)be less than0.001(GeV/c)2. We further requireπ+π−p2t>0.01(GeV/c)2because the daughter K S recoils against the π0.The resulting sample of29,399K∗(892)→K Sπ0decays with K S energy between30 and210GeV,and the K∗(892)energy between55and225GeV is shown infigure2(top).The requirements for the K∗(892)π0six-body channel are similar,except for changes to account for the extraπ0and differences in kinematics.The photon pairings for the twoπ0’sto the known masses are determined using aχ2formed by comparing Mγγand Mπ+π−γγofπ0and K∗(892),respectively.The K Sπ0mass for the daughter K∗(892)is required to be within101MeV/c2(two mass-widths)of the K∗(892)mass and its p2t to be>0.03(GeV/c)2. The p2t cut also serves to eliminate background from Primakoff-produced K∗(892)’s when accompanied by an accidentalπ0.To eliminate events in which two kaons decay to a charged and a neutral pion pair,we remove events for which the four-photon invariant mass is within 20MeV of the K L mass.The resulting sample of(K Sπ0)π0events with total energy greater than90GeV is depicted infigure3and shows a clustering near1.4GeV/c2.The mass projection shows the resonant signature exhibited by events with p2t<0.001(GeV/c)2and the p2t projection shows the sharp fall-offconfirming Primakoffproduction.There are147 events within the massfiducial region(1.1-1.64GeV/c2).Figure4shows the invariant mass and p2t of the daughter K∗(892)where the p2t displays a Jacobian distribution expected of a daughter particle in a two-body decay.The possible candidates for the observed K∗(892)π0resonance are K∗0(1430),K(1460), K∗(1410),K∗2(1430),K1(1270),and K1(1400)(figure1).The selectivity of the Primakoffef-fect rules out K∗0(1430)and K(1460)because of spin-parity conservation and the J=0→J=0 selection rule,respectively.Contributions from the vector K∗(1410)and tensor K∗2(1430)can be eliminated because both have significant branching fractions to K Sπ0[1],yet we see no ev-idence for their presence in this(K Sπ0)channel;note the lack of resonance near1.4GeV/c2infigure2(bottom).Wefit a combination of K∗(892)and K∗(1410)(K∗2(1430))simula-tions to the data and confirm that the signal from K∗(1410)(K∗2(1430))in the K Sπ0channel is consistent with zero:4.0±6.0(0.1±3.8)K∗(1410)(K∗2(1430))ing the known branching fractions[1]of K∗(1410)and K∗2(1430)to K Sπ0and K∗(892)π0,we translate these results into a negligible2.4±3.6(0.0±0.7)event contribution of K∗(1410)(K∗2(1430))in the K∗(892)π0channel.Thus we are left with only the axial vector pair(K1(1270)-K1(1400)) as a possible candidate for the observed resonance in the K∗(892)π0channel.We cross-checked the axial vector nature of the observerd signal using the distributions of Gottfried-Jackson(GJ)angles†θandφ.These distributions generally confirm our axial vector assignment.However,due to the relatively strong angular dependence of the detector acceptance,they do not have strong discrimination power between the axial vector pair and K∗(1410)and K∗2(1430).We now compute the radiative widths for the axial vector pair.It is difficult to decompose the mass spectrum of the observed signal into K1(1270)and K1(1400)because their mass separation is comparable to their widths.Nonetheless,mass information alone tells us that the contribution from K1(1270)is slight:only8.8±8.6events are due to K1(1270).However, a significantly better resolution is possible because the Primakoffeffect can produce only the singlet(1P1)component of the axial vector pair[13]and the singlet-triplet mixing angleΘhas been ingΘ=56±3◦[2]together with the known branching ratios of K1(1270) and K1(1400),we resolve the observed signal into11.4±1.0(stat)±4.1(ext syst)K1(1270) events and134.4±11.1(stat)∓4.1(ext syst)K1(1400)events,where the(external)system-atic error is due to the measurement uncertainties in the mixing parameterΘand in the K1(1270)and K1(1400)branching fractions to the K∗(892)π0channel.This decomposition, depicted infigure3,leads toΓr(K1(1270))=73.2±6.1(stat)±8.2(int syst)±27.0(ext syst) keV andΓr(K1(1400))=280.8±23.2(stat)±31.4(int syst)±25.4(ext syst)keV,where we have used our K∗(892)sample(figure2)for normalization purposes sinceΓr(K∗(892)) is known experimentally[8].Our measurements share internal systematic errors of8.7% due to uncertainties in the strong production(discussed below),6.6%due to detector accep-tance effects,and2.4%due to the3.6event uncertainty in the possible contributions from K∗(1410)and K∗2(1430),as discussed earlier.The uncertainty in the K∗(892)radiative width measurement[8]causes an additional8.5%(external)systematic error.Primakoffproduction is characterized by a sharp(∼t−1)forward production(equation1) allowing a strict p2t<0.001(GeV/c)2cut which virtually eliminates all potential back-grounds;seefigure3.Based on an extrapolation from the large p2t(>0.1(GeV/c)2)region, we estimate1.2events out of147signal candidate events to be due to incoherent production and other possible backgrounds such as those from the decay products of theΛ’s andφ’s produced when neutrons in the beam interact with the regenerator.Coherent strong production and its interference(with unknown strength)with Primakoffproduction are expected to be small at our energies[8].Indeed,a maximum likelihoodfit in the p2t variable for the strong production and the strength of the strong-Coulomb interference using the prescription given in[8,14]indicates that the strength of interference preferred byour data is consistent with zero.A constructive(destructive)interference would mean that the actual number of Primakoffevents is less(more)than what we observe.The mean change in our estimate of Primakoffproduction corresponding to one standard deviation variation in the interference strength is8.7%,which we have taken to be the systematic error due to the uncertainties in strong production.Earlier,we used the absence of a resonance in the K Sπ0channel at∼1.4GeV/c2(figure2) to limit the K∗(1410)and K∗2(1430)contributions to the observed(K1(1270)-K1(1400)) axial vector pair signal.A further benefit of thisfinding is that we are able to limit the radiative widthsΓr(K∗(1410))andΓr(K∗2(1430))to52.9and5.4keV,respectively,at90% CL.Γr(K∗(1410))has not been examined experimentally before,whereasΓr(K∗2(1430))was previously limited to84keV at90%CL[8].TheΓr(K∗2(1430))limit is far stricter than theΓr(K∗(1410))limit principally because the branching fraction for K∗2(1430)→K Sπ0is substantially larger[1]than the same for K∗(1410)→K Sπ0.The predicted radiative widths for the axial vector mesons[15],are538keV for K1(1400) and175keV for K1(1270);compare to our results,280.8±46.6keV and73.2±28.9keV, respectively.We note that the theoretical model in[15]is very sensitive to the quark masses (m u,s)and rms momenta(βuu,us,ss)of the quarks within the mesons.The predictions are based on certain choices for m andβ,but other choices with up to30%variation in m are possible.Our90%CL upper limit on the vector K∗(1410)radiative width is52.9keV.In the naive quark model,this state is thefirst radial excitation of K∗(892)and its radiative width calculation should be similar to that for K∗(892),for whichΓr(K∗(892))=116.5±9.9 keV[8].The smaller value for K∗(1410)may be due to a reduced overlap of the quark wavefunction for this higher radial excitation,but further guidance from theory is needed.Finally,we have substantially improved the upper limit on the radiative width of the tensor K∗2(1430)from84keV[8]to5.4keV(at90%CL).Babcock and Rosner[13]used SU(3)invariance to predict that excitations with J P C=1++or2++would have vanishing radiative widths.In the limit of SU(3),K∗2(1430)has C=+1;thus,our limit lends support to Babcock and Rosner’s prediction[13]and serves as a direct test of the naive quark model and SU(3)-breaking.We thank J.Bronzan for theoretical guidance and gratefully acknowledge the support and effort of the Fermilab staffand the technical staffs of the participating institutions for their vital contributions.This work was supported in part by the U.S.Department of Energy,The National Science Foundation and The Ministry of Education and Science of Japan.In addition,A.R.B.,E.B.and S.V.S.acknowledge support from the NYI program of the NSF;A.R.B.and E.B.from the Alfred P.Sloan Foundation;E.B.from the OJI program of the DOE;K.H.,T.N.and M.S.from the Japan Society for the Promotion of Science; and R.F.B.from the Funda¸c˜a o de Amparo`a Pesquisa do Estado de S˜a o Paulo.P.S.S. acknowledges receipt of a Grainger Fellowship.FIGURESP 1.5J 0.520.751.001.25K (1400)1 3 111 P + 1 P 0112+ + - 3 12 S K*(1410)10GeV/c - + 21 P K* (1430) 32 S K(1460)0 1 0 0 31 P K* (1430) 20 11 S K 0 131 S K*(892)1K (1270)FIG.1.Mass vs.angular momentum and parity (J P )for neutral kaon resonances.Arrows indicate resonances accessible by Primakoffexcitation.2FIG.2.Top:K S π0invariant mass in the four-body channel showing K ∗(892)→K S π0decays.Bottom:The same K S π0invariant mass in the 1.4GeV/c 2region.K ∗2(1430)and K ∗(1410)simulations are also shown to arbitrary scale.No K ∗2(1430)or K ∗(1410)resonance is apparent.(K0)π0 Invariant Mass (GeV/c 2)p t 2 ((G e V /c )2)(K S π0)π0 Invariant Mass (GeV/c 2)E v e n t s / 77 (M e V /c 2)02040608010012000.0050.01(K S π0)π0 P t 2(GeV/c)2FIG.3.Top:(K ∗(892)π0)p 2t vs.invariant mass after all other cuts.Bottom Left:Projection onto the abscissa after the p 2t cut.Decomposition of the observed signal into K 1(1270)and K 1(1400)is also shown.Bottom Right:Projection onto the ordinate after the mass cut.Note the sharply forward nature of Primakoffproduction.((GeV/c)2)Mass (GeV/c2)p2tFIG.4.Data/MC comparisons for the K Sπ0invariant mass(left)and the p2t for the observed (K1(1270)-K1(1400))→K∗(892)π0signal(right).A Jacobian distribution in p2t indicates therecoil of the daughter K∗(892)against theπ0.We discard events to the left of the arrow.REFERENCES[1]R.M.Barnett et al.,Phys.Rev.D54,1(1996).[2]C.Daum et al.,Nuc Phys B187(1981)1.[3]M.G.Bowler et al.,Nucl.Phys.B74(1974)493.[4]C.Becchi and G.Morpurgo,Phys.Rev.140,B687(1965).[5]N.Barik and P.C.Dash,Phys.Rev.D49,299(1993).[6]R.K.Das,A.R.Panda,and R.K.Sahoo,Int.J.Mod.Phys.,A14,1759(1998).[7]N.Godfrey and N.Isgur,Phys.Rev.D32,189(1985).[8]D.Carlsmith,Ph.D.thesis,University of Chicago,1984(unpublished);D.Carlsmith etal,Phys.Rev.Lett.56,18(1986).[9]H.Primakoff,Phys.Rev.Lett.81,899(1951);A.Halperin,C.M.Anderson,and H.Primakoff,Phys.Rev.Lett.152,1295(1966).[10]G.Berlad et al.,Annals of Physics75,461(1973).[11]A.Alavi-Harati et al.,Phys.Rev.Lett.83(1999)22.[12]K.Gotfried and J.D.Jackson,Nuovo Cimento341655(1964).[13]J.Babcock and J.L.Rosner,Phys.Rev.D14,1286(1976).[14]G.Faldt et al.,Nucl.Phys.B41,125(1972);G.Faldt,Nucl.Phys.B43591(1972);C.Bemporad et al.,Nucl.Phys.B51,1(1973).[15]I.G.Aznauryan and K.A.Oganesyan Sov.J.Nucl.Phys.47(6),1097(1988).。

相关文档
最新文档