全国卷全国卷导数合集(试题)(2020年整理).pptx
理科数学全国卷1(2020年整理).pptx
2
4
4
y=f(x)图像的对称轴,且 f(x)在 1π8,356π单调,则 ω 的最大值为
(A)11
(B)9
(C)7
(D)5
【参考答案】B【解析】因为
x=
π 4
为
f(x)的零点,所以
πω 4
φ
k
1π
,因为
x
π 4
为
y=f(x)图像的对称轴,所以
π 4
ω
φ
2k21
π ,两式作差,可得ω 2
2k
2 k
11
(13)设向量 a (m,1) , b (1,2) ,且,则 m
学海无 涯
2
2
2
【参考答案】﹣2【解析】 a b 1 m2 9 , a b m2 11 4
所以可解得 m=﹣2
(14) (2x x )5 的展开式中, x3 的系数是
(用数字填写答案)
【参考答案】10【解析】二项展开式Tk 1
线 m∥直线 BD ,直线 n∥直线 A1B,做辅助线 A1D,可构成正方体 ABCD﹣
A1B1C1D1 中的一个等边 ΔA1BD,所以 m,n 成角为 600,所以sin 600
3 2
(12)已知函数 f(x)=sin(ωx+φ) (ω﹥0,|φ|≤ π ),x= π 为 f(x)的零点, x π 为
2
2
2
1
执行第二步:x2=0,y2=1,n2=2, x3 x2
n2 1 1 , 22
y3 n2y2 2
判断 x2 y2 36?(否),n n 1 3
3
3
3
2
执行第三步:x3= 1 2
,y3=2,n3=3, x4
(2020年整理)全国卷全国卷导数合集(试题).doc
(一) 导数的极最值问题1.(XXXX 新课标Ⅱ)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意1x ,2x [1,1]∈-,都有12|()()|f x f x -1e -≤,求m 的取值范围.2.(XXXX 新课标Ⅰ)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()y f x =在点 (1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01a f x a <-,求a 的取值范围.3.(XXXX 新课标Ⅰ)已知函数,曲线()y f x =在点处切线方程为.(Ⅰ)求的值;(Ⅱ)讨论的单调性,并求的极大值.2()()4x f x e ax b x x =+--(0,(0))f 44y x =+,a b ()f x ()f x4.(XXXX 新课标Ⅱ)已知函数.(Ⅰ)求的极小值和极大值; (Ⅱ)当曲线()y f x =的切线的斜率为负数时,求在轴上截距的取值范围.5.(XXXX 新课标2)已知函数()ln (1)f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.(二) 导数的恒成立问题1.(XXXX 全国卷Ⅲ)已知函数2()(2)ln(1)2f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; 2()x f x x e-=()f x l l x(2)若0x =是()f x 的极大值点,求a .2. (XXXX 新课标)设函数()2x f x e ax =--.(Ⅰ)求()f x 的单调区间;(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值.3.(XXXX 新课标)已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1x f x x >-.4. (XXXX 新课标)设函数2()(1)x f x x e ax =--.(Ⅰ)若12a =,求()f x 的单调区间; (Ⅱ)若当0x ≥时()0f x ≥,求a 的取值范围.。
2020年高考数学(理)真题与模拟题分类训练 专题03 导数及其应用(学生版)
专题03 导数及其应用1.【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+2.【2020年高考全国III 卷理数】若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为 A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +123.【2020年高考北京】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论: ①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强; ③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强. 其中所有正确结论的序号是____________________.4.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 5.【2020年高考全国Ⅰ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤; (3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.6.【2020年高考全国Ⅰ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.7.【2020年高考天津】已知函数3()ln ()f x x k x k =+∈R ,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i)求曲线()y f x =在点(1,(1))f 处的切线方程; (ii)求函数9()()()g x f x f x x'=-+的单调区间和极值; (Ⅰ)当3k ≥-时,求证:对任意的12,[1,)x x ∈+∞,且12x x >,有()()()()1212122f x f x f x f x x x ''+->-. 8.【2020年高考北京】已知函数2()12f x x =-.(Ⅰ)求曲线()y f x =的斜率等于2-的切线方程;(Ⅰ)设曲线()y f x =在点(,())t f t 处的切线与坐标轴围成的三角形的面积为()S t ,求()S t 的最小值.9.【2020年高考浙江】已知12a <≤,函数()e x f x x a =--,其中e=2.71828…是自然对数的底数.(Ⅰ)证明:函数()y f x =在(0,)+∞上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0,)+∞上的零点,证明:(Ⅰ)0x ≤≤;(Ⅰ)00(e )(e 1)(1)x x f a a ≥--.10.【2020年高考江苏】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米. (1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点)..桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0),问O E '为多少米时,桥墩CD 与EF 的总造价最低?11.【2020年高考江苏】已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式; (2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422342() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<≤,,[] , D m n =⊆⎡⎣,求证:n m -≤.12.【2020年新高考全国Ⅰ卷】已知函数1()e ln ln x f x a x a -=-+.(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.1.【2020·湖北省高三其他(理)】已知函数()2sin()ln (0,1)6xf x a x x a a a π=+->≠,对任意1x ,2[0x ∈,1],不等式21|()()|2f x f x a --恒成立,则实数a 的取值范围是 A .2[e ,)+∞ B .[e ,)+∞ C .(e ,2e ]D .2(e,e )2.【2020·四川省南充高级中学高三月考(理)】已知P 是曲线1C :e x y =上任意一点,点Q 是曲线2C :ln xy x=上任意一点,则PQ 的最小值是 A .ln 212- B .ln 212+C .2D .3.【2020·河南省高三月考(理)】设函数()f x '是函数()()f x x ∈R 的导函数,当0x ≠时,()()30f x f x x'+<,则函数()()31g x f x x =-的零点个数为A .3B .2C .1D .04.【2019·河北省高三月考(理)】若函数()212ln 2f x x x a x =-+有两个不同的极值点,则实数a 的取值范围是 A .1a > B .10a -<<C .1a <D .01a <<5.【黑龙江省2020届高三理科5月数学模拟试卷】已知定义域为R 的函数f (x )满足()11'4022f f x x ⎛⎫=+> ⎪⎝⎭,,其中f ′(x )为f (x )的导函数,则不等式f (sin x )﹣cos2x ≥0的解集为 A .2233k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z ,,B .2266k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z ,,C .22233k k k ππ⎡⎤+π+π∈⎢⎥⎣⎦Z ,,D .52266k k k ππ⎡⎤+π+π∈⎢⎥⎣⎦Z ,,6.【2020届四川省宜宾市高三高考适应性考试(三诊)数学(理科)试题】已知函数()()2e 31xf x x x =-+,则关于x 的方程()()25e 0f x mf x +-=⎡⎤⎣⎦(m ∈R )的实根个数为 A .3 B .3 或4C .4或 5D .3或 57.【湖北省武汉市部分学校2020届高三上学期起点质量监测(理)】已知π4ln3a =,π3ln 4b =,34ln πc =,则a ,b ,c 的大小关系是 A .c b a << B .b c a << C .b a c <<D .a b c <<8.【甘肃省天水市一中2020届高三第一次模拟考试(理)】设定义在R 上的函数()f x 的导函数为()f x ',若()()2f x f x '+>,()02020f =,则不等式()e 2e 2018xxf x >+(其中e 为自然对数的底数)的解集为A .()0,+∞B .()2018,+∞C .()2020,+∞D .()(),02018,-∞+∞9.【2020届山西省高三高考考前适应性测试数学(理)试题】已知函数()log xa x x f a-=+(其中0a >且1a ≠)有零点,则实数a 的最小值是______.10.【2020·湖北省高三其他(理)】函数()e x f x x =(其中e 2.71828=)的图象在(0,0)处的切线方程是_____.11.【2020·广西壮族自治区高三其他(理)】函数ln y x =在1,1e ⎛⎫- ⎪⎝⎭处的切线在y 轴上的截距为____________.12.【2019·天津市静海区大邱庄中学高三月考】已知11,1()4ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩,则方程()f x ax =恰有2个不同的实根,实数a 取值范围__________________.13.【2020·天津市武清区杨村第一中学高三开学考试】已知函数21()sin cos 2f x x x x ax =++,[,]x ∈-ππ (1)当0a =时,求()f x 的单调区间; (2)当0a >,讨论()f x 的零点个数;14.【2020·福建省福州第一中学高三其他(理)】已知函数()eln f x x ax =-,()22x g x x =-.(1)讨论函数()f x 的单调性;(2)若存在直线()y h x =,使得对任意的()0,x ∈+∞,()()h x f x ≥,对任意的x ∈R ,()()g x h x ≥,求a 的取值范围.15.【2020·广西壮族自治区高三其他(理)】设函数2()ln ,f x a x x ax a =++∈R .(1)讨论()f x 的单调性;(2)若()f x 存在极值,对于任意(0,)x ∈+∞,都有()0f x ≥恒成立,求a 的取值范围. 16.【2020·南昌市八一中学高三三模(理)】已知函数()(1)ln(1)f x x x =++,2()cos 2x g x ax x x =+-.(1)当0x ≥时,总有2()2x f x mx +,求m 的最小值;(2)对于[]0,1中任意x 恒有()()f x g x ≤,求a 的取值范围.17.【2020·河北省衡水中学高三其他(理)】已知函数()2ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且()2202ef x --<<.18.【2019·山东省实验中学高三月考】已知函数:()()21ln ,e 12x f x x a x a g x x =--=-- (I)当[]1,e x ∈时,求()f x 的最小值;(II)对于任意的[]10,1x ∈都存在唯一的[]21,e x ∈使得()()12g x f x =,求实数a 的取值范围. 19.【2020·河北新乐市第一中学高三其他】设函数()2e e xf x ax x b =--+,其中e 为自然对数的底数.(1)若曲线()f x 在y 轴上的截距为1-,且在点1x =处的切线垂直于直线12y x =,求实数a ,b 的值; (2)记()f x 的导函数为()g x ,求()g x 在区间[]0,1上的最小值()h a .20.【2020·山东省高三其他】已知函数()()ln f x a x b =+.(1)若1a =,0b =,求()f x 的最大值; (2)当0b >时,讨论()f x 极值点的个数.21.【2020·宜宾市叙州区第一中学校高三一模(理)】设函数()ln e xf x x x a =-,()p x kx =,其中a ∈R ,e 是自然对数的底数.(1)若()f x 在()0,∞+上存在两个极值点,求a 的取值范围;(2)若()1()x lnx f x ϕ=+-′,(1)e ϕ=,函数()x ϕ与函数()p x 的图象交于()11,A x y ,()22,B x y ,且AB 线段的中点为()00,P x y ,证明:()()001x p y ϕ<<.22.【山东师范大学附属中学2020届高三年级学习质量评估考试数学试题】已知函数21()e ln (,ax f x x b x ax a b +=⋅--∈R ).(1 )若b =0,曲线f (x )在点(1, f (1)) 处的切线与直线y = 2x 平行,求a 的值; (2)若b =2,且函数f (x )的值域为[2,),+∞求a 的最小值.23.【2020届河南省开封市第五中学高三第四次教学质量检测数学(理)试卷】已知函数()()211ln 2f x x ax a x =-+-,()ln g x b x x =-的最大值为1e. (1)求实数b 的值;(2)当1a >时,讨论函数()f x 的单调性;(3)当0a =时,令()()()22ln 2F x f x g x x =+++,是否存在区间[],(1m n ⊆,)+∞,使得函数()F x 在区间[],m n 上的值域为()()2,2k m k n ⎡⎤++⎣⎦?若存在,求实数k 的取值范围;若不存在,请说明理由.。
2020年全国卷1函数与导数压轴题一题多解,深度解析
全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
3. 2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
解析:(1) 单调性,常规题,a 已知,求一个特定函数f(x)的单调性。
若一次求导不见底,则可二次或多次清仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2) 恒成立,提高题,在恒成立情况下,求参数的取值范围。
常常是把恒成立化成最值问题。
由于这里的a 只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1) 当a=1时, 2()e xf x x x =+-,定义域为R ,'()e 21x f x x =+-,易知f ’(x)是单调递增函数。
而f ’(0)=0,∴ 当x ∈(-∞,0),f ’(x)<0 当x ∈(0,+∞),f ’(x)>0∴当x ∈(-∞,0),f(x)单调递减;当x ∈(0,+∞),f(x)单调递增。
(2)解法一 ,分离参数法 当x ≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 当x=0时,上式恒成立,此时a ∈R 。
2020年全国卷1函数与导数压轴题一题多解,深度解析
全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数f(x) = e x +ax2-x.(1)当时,讨论/(x)的单调性:(2)当.总0时,.f(X)>yA J+l,求“的取值范囤.。
2. 2020年全国卷1文科数学第20题的解析已知函数f(x) = e x-a(x + 2)・(1)当“ =1时,讨论/(x)的单调性:(2)若/(x)有两个零点,求"的取值范围・。
3. 2020年新高考1卷(山东考卷)第21题已知函数f (%) = - In x + In a(1).当a=e时,求曲线y=f(x)在点(l,f(l))处的切线与两坐标轴围城的三角形的面积;(2)若f(x) > 1,求a的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数f(x) = e x +ax2-x.(1)当时,讨论/(x)的单调性:(2 )当XR时,./'(X)>y A J+1 ,求"的取值范围・。
解析:(1)单调性,常规题,a已知,求一个特左函数f(x)的单调性。
若一次求导不见底,则可二次或多次淸仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2)怛成立,提髙题,在恒成立情况下,求参数的取值范囤。
常常是把恒成立化成最值问题。
由于这里的a只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1)当a=l 时,/(x) = c'+F_x,定义域为R,/'(x) = 7+2%-1,易知f,(x)是单调递增函数。
而f' (0)=0,.・.当xG (-8, 0), f,(x)V0当xW (O,+8), f (x)>0•当xW (-8, 0), f(x)单调递减:当xW (0,+8), f(x)单调递增。
2—.V+ JV +1 — K (A* — 2)(—x" + x +1 — 0*)令g(x)= --------- ;---- ,则gd)=—丄「 --------------------X X再令//(x) = -x2+x + l-,2到了这里发现,由(1)可得的e x+x2-x>\(x>0),不能引用。
全国五年高考真题导数及其应用 解析版
专题03 导数及其应用【2020年】1.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 2.(2020·新课标Ⅲ)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12 C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 【2019年】1.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .2.(2019·天津卷)已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.3.(2019浙江卷)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b x 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .4.(2019·全国Ⅰ卷)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 5.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得02x =02x =-∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.6.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1.7.(2019·北京卷)设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞. 【2018年】1.(2018·全国Ⅰ卷)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以, 所以曲线在点处的切线方程为,化简可得.故选D.2.(2018·全国Ⅱ卷)函数()2 e e xxf xx--=的图像大致为【答案】B【解析】()()()2e e0,,x xx f x f x f xx--≠-==-∴为奇函数,舍去A;()11e e0f-=->,∴舍去D;()()()()()243e e e e22e2e,x x x x x xx x x xf xx x---+---++=='2x∴>时,()0f x'>,()f x单调递增,舍去C.因此选B.3.(2018·全国Ⅲ卷)函数422y x x=-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得22x <-或202x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C.故选D.4.(2018·全国Ⅱ卷)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】【解析】则所求的切线方程为.5.(2018·全国Ⅲ卷)曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________. 【答案】-3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以.6.(2018·全国Ⅰ卷)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】【解析】,所以当时函数单调递减,当时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数取得最小值,此时,所以,故答案是.7.(2018·江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =.从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0,f x f =()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=- 故答案为-3. 【2017年】1.(2017·全国Ⅲ卷)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 2.(2017·全国Ⅱ卷)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-, 因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-, 令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .3.(2017·浙江卷)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .11.(2017·江苏卷)已知函数31()2e e x xf x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 . 【答案】1[1,]2- 【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅,所以函数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.12.(2017·山东卷)若函数e ()x f x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -= ②()3x f x -= ③3()f x x = ④2()2f x x =+ 【答案】①④ 【解析】①ee ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②ee ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3e ()e x x f x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)x x xg x x x x x '=⋅+⋅=+,∴当3x >-时,()0g x '>,当3x <-时,()0g x '<,∴3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3()f x x =不具有M 性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,则2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有M 性质.【2016年】1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A 。
导数及其应用选择题、填空题 高考真题
B. y x
C. y 2x
D. y x
【答案】D 【解析】因为函数 ( )是奇函数,所以 − 1 = 0,解得 = 1,所以 ( ) = 3 + , '( ) = 3 2 +1, 所以 '(0) = 1, (0) = 0 , 所以曲线 = ( )在点(0,0)处的切线方程为 − (0) = '(0) ,化简可得 = . 故选 D. 【名师点睛】该题考查的是有关曲线 = ( )在某个点( 0, ( 0))处的切线方程的问题, 在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不 存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得 '( ), 借助于导数的几何意义,结合直线方程的点斜式求得结果.
【答案】4
【解析】由
y
x
4 (x x
0) ,得 y 1
4 x2
,
设斜率为 1的直线与曲线
y
x
4 x
(x
0)
切于 (x0 ,
x0
4 x0
)
,
由1
4 x02
1 得 x0
2 ( x0 2 舍去),
∴曲线 y x 4 (x 0) 上,点 P( 2, 3 2) 到直线 x y 0 的距离最小,最小值为 x
y=f(x)﹣ax﹣b
在(﹣∞,0)
y f (x) ax b 恰有 3 个零点,则
A.a<–1,b<0
B.a<–1,b>0
上有一个零点,在[0,+∞)上有 2 个零点, 如图:
C.a>–1,b<0
D.a>–1,b>0
【答案】C
2020年高考数学导数题(含答案)
2020年高考数学导数题卷一理科 21.(12分)已知函数f (x )=e x +ax 2-x.(1)当a=1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.21.解 (1)当a=1时,f (x )=e x +x 2-x ,f'(x )=e x +2x -1. 故当x ∈(-∞,0)时,f'(x )<0;当x ∈(0,+∞)时,f'(x )>0. 所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f (x )≥12x 3+1等价于(12x 3-ax 2+x +1)e -x ≤1. 设函数g (x )=(12x 3-ax 2+x +1)e -x (x ≥0), 则g'(x )=- 12x 3-ax 2+x+1-32x 2+2ax -1e -x =-12x [x 2-(2a+3)x+4a+2]e -x =-12x (x -2a -1)(x -2)e -x .①若2a+1≤0,即a ≤-12,则当x ∈(0,2)时,g'(x )>0.所以g (x )在(0,2)单调递增,而g (0)=1, 故当x ∈(0,2)时,g (x )>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)单调递减,在(2a+1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1. ③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1. 综上,a的取值范围是[7-e 24,+∞).卷一文科15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为 .15.y=2x 设切点坐标为(x 0,y 0).对y=ln x+x+1求导可得y'=1x +1. 由题意得,1x 0+1=2,解得x 0=1,故y 0=ln 1+1+1=2,切线方程为y -2=2(x -1),即y=2x.20.(12分)已知函数f (x )=e x -a (x+2).(1)当a=1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.20.解 (1)当a=1时,f (x )=e x -x -2,则f'(x )=e x -1. 当x<0时,f'(x )<0;当x>0时,f'(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f'(x )=e x -a.当a ≤0时,f'(x )>0,所以f (x )在(-∞,+∞)单调递增,故f (x )至多存在1个零点,不合题意. 当a>0时,由f'(x )=0可得x=ln a.当x ∈(-∞,ln a )时,f'(x )<0;当x ∈(ln a ,+∞)时f'(x )>0.所以f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增,故当x=ln a 时,f (x )取得最小值,最小值为f (ln a )=-a (1+ln a ).①若0<a ≤1e ,则f (ln a )≥0,f (x )在(-∞,+∞)至多存在1个零点,不合题意. ②若a>1e ,则f (ln a )<0.由于f (-2)=e -2>0,所以f (x )在(-∞,ln a )存在唯一零点. 由(1)知,当x>2时,e x -x -2>0, 所以当x>4且x>2ln(2a )时,f (x )=e x2·e x2-a (x+2)>e ln(2a )·(x2+2)-a (x+2)=2a>0. 故f (x )在(ln a ,+∞)存在唯一零点. 从而f (x )在(-∞,+∞)有两个零点. 综上,a 的取值范围是(1e ,+∞).卷二理科 21.(12分)已知函数f (x )=sin 2x sin 2x.(1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤3√38; (3)设n ∈N*,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n.21.(1)解 f'(x )=cos x (sin x sin 2x )+sin x (sin x sin 2x )' =2sin x cos x sin 2x+2sin 2x cos 2x =2sin x sin 3x.当x ∈(0,π3)∪(2π3,π)时,f'(x )>0;当x ∈(π3,2π3)时,f'(x )<0. 所以f (x )在区间(0,π3),(2π3,π)单调递增,在区间π3,2π3单调递减.(2)证明 因为f (0)=f (π)=0,由(1)知,f (x )在区间[0,π]的最大值为f (π3)=3√38,最小值为f (2π3)=-3√38. 而f (x )是周期为π的周期函数,故|f (x )|≤3√38. (3)证明 由于(sin 2x sin 22x …sin 22nx )32=|sin 3x sin 32x …sin 32n x|=|sin x||sin 2x sin 32x …sin 32n -1x sin 2n x||sin 22n x| =|sin x||f (x )f (2x )…f (2n -1x )||sin 22n x| ≤|f (x )f (2x )…f (2n -1x )|, 所以sin 2x sin 22x …sin 22n x ≤(3√38)2n 3=3n4n .卷二文科 21.(12分)已知函数f (x )=2ln x+1.(1)若f (x )≤2x+c ,求c 的取值范围; (2)设a>0,讨论函数g (x )=f (x )-f (a )x -a的单调性. 21.解 设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x+1-c , 其定义域为(0,+∞),h'(x )=2x-2.(1)当0<x<1时,h'(x )>0;当x>1时,h'(x )<0.所以h (x )在区间(0,1)单调递增,在区间(1,+∞)单调递减.从而当x=1时,h (x )取得最大值,最大值为h (1)=-1-c.故当且仅当-1-c ≤0,即c ≥-1时,f (x )≤2x+c. 所以c 的取值范围为[-1,+∞).(2)g (x )=f (x )-f (a )x -a=2(lnx -lna )x -a,x ∈(0,a )∪(a ,+∞). g'(x )=2(x -ax +lna -lnx )(x -a )2=2(1-a x +ln ax )(x -a )2.取c=-1得h (x )=2ln x -2x+2,h (1)=0,则由(1)知,当x ≠1时,h (x )<0,即1-x+ln x<0.故当x ∈(0,a )∪(a ,+∞)时,1-ax +ln ax <0,从而g'(x )<0.所以g (x )在区间(0,a ),(a ,+∞)单调递减. 卷三理科 21.(12分)设函数f (x )=x 3+bx+c ,曲线y=f (x )在点12,f (12)处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.21.(1)解 f'(x )=3x 2+b ,依题意得f'(12)=0,即34+b=0. 故b=-34.(2)证明 由(1)知f (x )=x 3-34x+c ,f'(x )=3x 2-34. 令f'(x )=0,解得x=-12或x=12. f'(x )与f (x )-∞,-12-12,1212,+∞ 因为f (1)=f (-12)=c+14,所以当c<-14时,f (x )只有大于1的零点.因为f (-1)=f (12)=c -14,所以当c>14时,f (x )只有小于-1的零点. 由题设可知-14≤c ≤14.当c=-14时,f (x )只有两个零点-12和1. 当c=14时,f (x )只有两个零点-1和12.当-14<c<14时,f (x )有三个零点x 1,x 2,x 3,且x 1∈-1,-12,x 2∈-12,12,x 3∈12,1.综上,若f (x )有一个绝对值不大于1的零点,则f (x )所有零点的绝对值都不大于1. 卷三文科 20.(12分)已知函数f (x )=x 3-kx+k 2. (1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.20.解 (1)f'(x )=3x 2-k.当k=0时,f (x )=x 3,故f (x )在(-∞,+∞)单调递增;当k<0时,f'(x )=3x 2-k>0,故f (x )在(-∞,+∞)单调递增.当k>0时,令f'(x )=0,得x=±√3k3.当x ∈-∞,-√3k3时,f'(x )>0; 当x ∈-√3k 3,√3k3时,f'(x )<0;当x ∈√3k3,+∞时,f'(x )>0.故f (x )在-∞,-√3k3,√3k3,+∞单调递增,在-√3k 3,√3k3单调递减.(2)由(1)知,当k ≤0时,f (x )在(-∞,+∞)单调递增,f (x )不可能有三个零点. 当k>0时,x=-√3k3为f (x )的极大值点,x=√3k3为f (x )的极小值点.此时,-k -1<-√3k3<√3k3<k+1且f (-k -1)<0,f (k+1)>0,f (-√3k3)>0.根据f (x )的单调性,当且仅当f (√3k3)<0,即k 2-2k √3k9<0时,f (x )有三个零点,解得k<427.因此k 的取值范围为0,427.山东卷 21.(12分)已知函数f (x )=a e x -1-ln x+ln a.(1)当a=e 时,求曲线y=f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.21.解f (x )的定义域为(0,+∞),f'(x )=a e x -1-1x .(1)当a=e 时,f (x )=e x -ln x+1,f'(1)=e -1,曲线y=f (x )在点(1,f (1))处的切线方程为y -(e +1)=(e -1)(x -1),即y=(e -1)x+2.直线y=(e -1)x+2在x 轴,y 轴上的截距分别为-2e -1,2.因此所求三角形的面积为2e -1. (2)由题意a>0,当0<a<1时,f (1)=a+ln a<1. 当a=1时,f (x )=e x -1-ln x ,f'(x )=e x -1-1x .当x ∈(0,1)时,f'(x )<0;当x ∈(1,+∞)时,f'(x )>0.所以当x=1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1. 当a>1时,f (x )=a e x -1-ln x+ln a ≥e x -1-ln x ≥1. 综上,a 的取值范围是[1,+∞). 天津卷 20.(16分)已知函数f (x )=x 3+k ln x (k ∈R ),f'(x )为f (x )的导函数. (1)当k=6时,①求曲线y=f (x )在点(1,f (1))处的切线方程;②求函数g (x )=f (x )-f'(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2. 20.(1)解①当k=6时,f (x )=x 3+6ln x ,故f'(x )=3x 2+6x.可得f (1)=1,f'(1)=9,所以曲线y=f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y=9x -8.②依题意,g (x )=x 3-3x 2+6lnx+3x ,x ∈(0,+∞).从而可得g'(x )=3x2-6x+6x −3x 2,整理可得g'(x )=3(x -1)3(x+1)x 2.令g'(x )=0,解得x=1.当x 变化时,g'(x ),g (x )所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);g (x )的极小值为g (1)=1,无极大值.(2)证明由f (x )=x 3+k ln x ,得f'(x )=3x 2+kx . 对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x1x 2=t (t>1),则(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)3x 12+k x 1+3x 22+kx2-2x 13−x 23+k ln x1x 2=x 13−x 23-3x 12x 2+3x 1x 22+kx 1x 2−x 2x 1-2k ln x1x 2=x 23(t 3-3t 2+3t -1)+k t -1t -2ln t .①令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x>1时,h'(x )=1+1x 2−2x=(1-1x )2>0,由此可得h (x )在[1,+∞)单调递增,所以当t>1时,h (t )>h (1),即t -1t-2ln t>0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3,所以,x 23(t 3-3t 2+3t -1)+k t -1t -2ln t ≥(t 3-3t 2+3t -1)-3t -1t -2ln t =t 3-3t 2+6ln t+3t -1.② 由(1)②可知,当t>1时,g (t )>g (1),即t 3-3t 2+6ln t+3t >1,故t 3-3t 2+6ln t+3t -1>0. ③由①②③可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]>0. 所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2.。
2020年全国各地高考题分类汇编【函数导数部分】(北京,上海,江苏,浙江,天津卷)
【2020年江苏高考真题第7题】已知y=f(x)是奇函数,当x≥0时,f(x)=x23,则f(−8)的值是______.【答案】−4【解析】【分析】本题考查函数的奇偶性的定义和运用:求函数值,考查转化思想和运算能力,属于基础题.由奇函数的定义可得f(−x)=−f(x),由已知可得f(8),进而得到f(−8).【解答】解:y=f(x)是奇函数,可得f(−x)=−f(x),当x≥0时,f(x)=x 23,可得f(8)=823=4,则f(−8)=−f(8)=−4,故答案为:−4.【2020年江苏高考真题第15题】1.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离ℎ1(米)与D到OO′的距离a(米)之间满足关系式ℎ1=140a2;右侧曲线BO上任一点F到MN的距离ℎ2(米)与F到OO′的距离b(米)之间满足关系式ℎ2=−1800b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?【答案】解:(1)ℎ2=−1800b3+6b,点B到OO′的距离为40米,可令b=40,可得ℎ2=−1800×403+6×40=160,即为|O′O|=160,由题意可设ℎ1=160,由140a2=160,解得a=80,则|AB|=80+40=120米;(2)可设O′E=x,则CO′=80−x,由{0<x<400<80−x<80,可得0<x<40,总造价为y=32k[160−140(80−x)2]+k[160−(6x−1800x3)]=k800(x3−30x2+160×800),y′=k800(3x2−60x)=3k800x(x−20),由k>0,当0<x<20时,y′<0,函数y递减;当20<x<40时,y′>0,函数y递增,所以当x=20时,y取得最小值,即总造价最低.答:(1)桥|AB|长为120米;(2)O′E为20米时,桥墩CD与EF的总造价最低.【解析】(1)由题意可令b=40,求得ℎ2,即O′O的长,再令ℎ1=|OO′|,求得a,可得|AB|=a+b;(2)可设O′E=x,则CO′=80−x,0<x<40,求得总造价y=32k[160−140(80−x)2]+k[160−(6x−1800x3)],化简整理,应用导数,求得单调区间,可得最小值.本题考查函数在实际问题中的应用,考查导数的应用:求最值,考查运算能力和分析问题与解决问题的能力,属于中档题.【2020年江苏高考真题第19题】已知关于x的函数y=f(x),y=g(x)与ℎ(x)=kx+b(k,b∈R)在区间D上恒有f(x)≥ℎ(x)≥g(x).(1)若f(x)=x2+2x,g(x)=−x2+2x,D=(−∞,+∞),求ℎ(x)的表达式;(2)若f(x)=x2−x+1,g(x)=klnx,ℎ(x)=kx−k,D=(0,+∞),求k的取值范围;(3)若f(x)=x4−2x2,g(x)=4x2−8,ℎ(x)=4(t3−t)x−3t4+2t2(0<|t|≤√2),D=[m,n]⊂[−√2,√2],求证:n−m≤√7.【答案】解:(1)由f(x)=g(x)得x=0,又f′(x)=2x+2,g′(x)=−2x+2,所以f′(0)=g′(0)=2,所以,函数ℎ(x)的图象为过原点,斜率为2的直线,所以ℎ(x)=2x,经检验:ℎ(x)=2x,符合任意,(2)ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,设φ′(x)=1−1x =x−1x,在(1,+∞)上,φ′(x)>0,φ(x)单调递增,在(0,1)上,φ′(x)<0,φ(x)单调递减,所以φ(x)≥φ(1)=0,所以当ℎ(x)−g(x)≥0时,k≥0,令p(x)=f(x)−ℎ(x)所以p(x)=x2−x+1−(kx−k)=x2−(k+1)x+(1+k)≥0,得,当x=k+1≤0时,即k≤−1时,f(x)在(0,+∞)上单调递增,所以p(x)>p(0)=1+k≥0,k≥−1,所以k=−1,当k+1>0时,即k>−1时,△≤0,即(k+1)2−4(k+1)≤0,解得−1<k≤3,综上,k∈[0,3].42,所以f′(x)=4x3所以函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)(x−x0)+(x04−2x03)=(4x03−4x0)x−3x04+2x02,可见直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.由函数y=f(x)的图象可知,当f(x)≥ℎ(x)在区间D上恒成立时,|t|∈[1,√2],又由g(x)−ℎ(x)=0,得4x2−4(t3−t)x+3t4−2t2−8=0,,设方程g(x)−ℎ(x)=0的两根为x1,x2,则x1+x2=t3−t,x1x2=3t4−2t2−84所以|x1−x2|=√(x1+x2)2−4x1x2=√(t3−t)2−(3t4−2t2−8)=√t6−5t4+3t2+8,t2=λ,则λ∈[1,2],由图象可知,n−m=|x1−x2|=√λ3−5λ2+3λ+8,设φ(λ)=λ3−5λ2+3λ+8,则φ′(λ)=3λ2−10λ+3=(λ−3)(3λ−1),所以当λ∈[1,2]时,φ′(λ)<0,φ(λ)单调递减,所以φ(λ)max=φ(1)=7,故(n−m)max=|x1−x2|max=√7,即n−m≤√7.【解析】(1)由f(x)=g(x)得x=0,求导可得f′(0)=g′(0)=2,能推出函数ℎ(x)的图象为过原点,斜率为2的直线,进而可得ℎ(x)=2x,再进行检验即可.(2)由题可知ℎ(x)−g(x)=k(x−1−lnx),设φ(x)=x−1−lnx,求导分析单调性可得,φ(x)≥φ(1)=0,那么要使的ℎ(x)−g(x)≥0,则k≥0;令p(x)=f(x)−ℎ(x)为二次函数,则要使得p(x)≥0,分两种情况,当x=k+1≤0时,当k+1>0时进行讨论,进而得出答案.(3)因为f(x)=x4−2x2,求导,分析f(x)单调性及图象得函数y=f(x)的图象在x=x0处的切线为:y=(4x03−4x0)x−3x04+2x02,可推出直线y=ℎ(x)为函数y=f(x)的图象在x=t(0<|t|≤√2)处的切线.进而f(x)≥ℎ(x)在区间D上恒成立;在分析g(x)−ℎ(x)= 0,设4x2−4(t3−t)x+3t4−2t2−8=0,两根为x1,x2,由韦达定理可得x1+x2,x1x2,所以n−m=|x1−x2|=√t6−5t4+3t2+8,再求最值即可得出结论.本题考查恒成立问题,参数的取值范围,导数的综合应用,解题过程中注意数形结合思想的应用,属于中档题.【2020年上海高考真题第4题】命题p:存在a∈R且a≠0,对于任意的x∈R,使得f(x+a)<f(x)+f(a);命题q1:f(x)单调递减且f(x)>0恒成立;命题q2:f(x)单调递增,存在x0<0使得f(x0)=0,则下列说法正确的是()A. 只有q1是p的充分条件B. 只有q2是p的充分条件C. q1,q2都是p的充分条件D. q1,q2都不是p的充分条件【答案】C【解析】【分析】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.对于命题q1:当a>0时,结合f(x)单调递减,可推出f(x+a)<f(x)<f(x)+f(a),命题q1是命题p的充分条件.对于命题q2:当a=x0<0时,f(a)=f(x0)=0,结合f(x)单调递增,推出f(x+a)<f(x),进而f(x+a)<f(x)+f(a),命题q2都是p的充分条件.【解答】解:对于命题q1:当f(x)单调递减且f(x)>0恒成立时,当a>0时,此时x+a>x,又因为f(x)单调递减,所以f(x+a)<f(x)又因为f(x)>0恒成立时,所以f(x)<f(x)+f(a),所以f(x+a)<f(x)+f(a),所以命题q1⇒命题p,对于命题q2:当f(x)单调递增,存在x0<0使得f(x0)=0,当a=x0<0时,此时x+a<x,f(a)=f(x0)=0,又因为f(x)单调递增,所以f(x+a)<f(x),所以f(x+a)<f(x)+f(a),所以命题p 2⇒命题p , 所以q 1,q 2都是p 的充分条件, 故选:C .【2020年上海高考真题第15题】设a ∈R ,若存在定义域为R 的函数f(x)同时满足下列两个条件:(1)对任意的x 0∈R ,f(x 0)的值为x 0或x 02;(2)关于x 的方程f(x)=a 无实数解, 则a 的取值范围是 .【答案】(−∞,0)∪(0,1)∪(1,+∞)【解析】【分析】本题考查函数零点与方程根的关系,属于中档题.根据条件(1)可知x 0=0或1,进而结合条件(2)可得a 的范围. 【解答】解:根据条件(1)可得x 0=0或1,又因为关于x 的方程f(x)=a 无实数解,所以a ≠0或1, 故a ∈(−∞,0)∪(0,1)∪(1,+∞), 故答案为:(−∞,0)∪(0,1)∪(1,+∞).【2020年上海高考真题第19题】在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为v =qx ,x 为道路密度,q 为车辆密度.v =f(x)={100−135⋅(13)x ,0<x <40−k(x −40)+85,40≤x ≤80.(1)若交通流量v >95,求道路密度x 的取值范围;(2)已知道路密度x =80,交通流量v =50,求车辆密度q 的最大值.【答案】解:(1)∵v =qx ,∴v 越大,x 越小, ∴v =f(x)是单调递减函数,k >0, 当40≤x ≤80时,v 最大为85,于是只需令100−135⋅(13)x >95,解得x >3, 故道路密度x 的取值范围为(3,40).(2)把x =80,v =50代入v =f(x)=−k(x −40)+85中, 得50=−k ⋅40+85,解得k =78.∴q =vx ={100x −135⋅(13)x ⋅x,0<x <40−78(x −40)x +85x,40≤x ≤80, 当0<x <40时,q 单调递增,q <100×40−135×(13)40×40≈4000;当40≤x ≤80时,q 是关于x 的二次函数,开口向下,对称轴为x =4807,此时q 有最大值,为−78×(4807)2+120×4807=288007>4000.故车辆密度q 的最大值为288007.【解析】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.(1)易知v 越大,x 越小,所以v =f(x)是单调递减函数,k >0,于是只需令100−135⋅(13)x >95,解不等式即可;(2)把x =80,v =50代入v =f(x)的解析式中,求出k 的值,利用q =vx 可得到q 关于x 的函数关系式,分段判断函数的单调性,并求出各自区间上q 的最大值,取较大者即可.函数y =4xx 2+1的图象大致为( )A.B.C.D.【答案】A【解析】【分析】本题考查了函数图象的识别,属于基础题. 根据函数的奇偶性和函数值的正负即可判断. 【解答】解:函数y =f(x)=4x x 2+1,则f(−x)=−4x x 2+1=−f(x),则函数y =f(x)为奇函数,故排除C ,D , 当x >0是,y =f(x)>0,故排除B , 故选:A .【2020年天津高考试卷真题第6题】设a =30.7,b =(13)−0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A. a <b <cB. b <a <cC. b <c <aD. c <a <b【答案】D【解析】【分析】本题考查了指数函数和对数函数的性质,属于基础题. 根据指数函数和对数函数的性质即可求出. 【解答】解:a =30.7,b =(13)−0.8=30.8,则b >a >1,log 0.70.8<log 0.70.7=1, ∴c <a <b , 故选:D .已知函数f(x)={x 3,x ≥0,−x,x <0.若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点,则k 的取值范围是( )A. (−∞,−12)∪(2√2,+∞) B. (−∞,−12)∪(0,2√2) C. (−∞,0)∪(0,2√2)D. (−∞,0)∪(2√2,+∞)【答案】D【解析】解:若函数g(x)=f(x)−|kx 2−2x|(k ∈R)恰有4个零点, 则f(x)=|kx 2−2x|有四个根,即y =f(x)与y =ℎ(x)=|kx 2−2x|有四个交点, 当k =0时,y =f(x)与y =|−2x|=2|x|图象如下:两图象只有一个交点,不符合题意,当k <0时,y =|kx 2−2x|与x 轴交于两点x 1=0,x 2=2k (x 2<x 1)图象如图所示,两图象有4个交点,符合题意, 当k >0时,y =|kx 2−2x|与x 轴交于两点x 1=0,x 2=2k (x 2>x 1) 在[0,2k )内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2−2x在(2k,+∞)还有两个交点,即可,即x3=kx2−2x在(2k,+∞)还有两个根,即k=x+2x 在(2k,+∞)还有两个根,函数y=x+2x≥2√2,(当且仅当x=√2时,取等号),所以0<2k<√2,且k>2√2,所以k>2√2,综上所述,k的取值范围为(−∞,0)∪(2√2,+∞).故选:D.问题转化为f(x)=|kx2−2x|有四个根,⇒y=f(x)与y=ℎ(x)=|kx2−2x|有四个交点,再分三种情况当k=0时,当k<0时,当k>0时,讨论两个函数四否能有4个交点,进而得出k的取值范围.本题考查函数的零点,参数的取值范围,关键利用分类讨论思想,分析函数的交点,属于中档题.【2020年天津高考试卷真题第20题】已知函数f(x)=x3+klnx(k∈R),f′(x)为f(x)的导函数.(Ⅰ)当k=6时,(ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(ⅰ)求函数g(x)=f(x)−f′(x)+9x的单调区间和极值;(Ⅱ)当k≥−3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)−f(x2)x1−x2.【答案】解:(I)(i)当k=6时,f(x)=x3+6lnx,故f′(x)=3x2+6x,∴f′(1)=9,∵f(1)=1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y−1=9(x−1),即9x−y−8=0.(ii)g(x)=f(x)−f′(x)+9x =x3+6lnx−3x2+3x,x>0,∴g′(x)=3x2−6x+6x −3x2=3(x−1)3(x+1)x2,令g′(x)=0,解得x=1,当0<x<1,g′(x)<0,当x>1,g′(x)>0,∴函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,x=1是极小值点,极小值为g(1)=1,无极大值证明:(Ⅱ)由f(x)=x3+klnx,则f′(x)=3x2+kx,对任意的x1,x2∈[1,+∞),且x1>x2,令x1x2=t,t>1,则(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]=(x1−x2)(3x12+kx1+3x22+kx2)−2(x13−x23+kln x1x2),=x13−x23−3x12x2+3x1x22+k(x1x2−x2x1)−2kln x1x2,=x23(t3−3t2+3t−1)+k(t−1t−2lnt),①令ℎ(x)=x−1x−2lnx,x>1,当x>1时,ℎ′(x)=1+1x2−2x=(1−1x)2>0,∴ℎ(x)在(1,+∞)单调递增,∴当t>1,ℎ(t)>ℎ(1)=0,即t−1t−2lnt>0,∵x2≥1,t3−3t2+3t−1=(t−1)3>0,k≥−3,∴x23(t3−3t2+3t−1)+k(t−1t −2lnt)>t3−3t2+3t−1−3(t−1t−2lnt)=t3−3t2+6lnt+3t−1,②,由(Ⅰ)(ii)可知当t≥1时,g(t)>g(1)即t3−3t2+6lnt+3t>1,③,由①②③可得(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,∴当k≥−3时,对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)−f(x2)x1−x2.【解析】(Ⅰ)(i)根据导数的几何意义即可求出切线方程;(ii)根据导数和函数单调性极值的关系,即可求出;(Ⅱ)要证不等式成立,只要证明(x1−x2)[f′(x1)+f′(x2)]−2[f(x1)+f(x2)]>0,根据导数和函数最值的关系,以及放缩法即可证明.本题是利用导数研究函数的单调性、求函数的极值的基本题型,不等式的证明,属于难题.【2020年浙江省高考数学试卷真题第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.【答案】A【解析】解:y=f(x)=xcosx+sinx,则f(−x)=−xcosx−sinx=−f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除B,D,当x=π时,y=f(π)=πcosπ+sinπ=−π<0,故排除B,故选:A.先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题.【2020年浙江省高考数学试卷真题第9题】已知a,b∈R且a,b≠0,若(x−a)(x−b)(x−2a−b)≥0在x≥0上恒成立,则()A. a<0B. a>0C. b<0D. b>0【答案】C【解析】解:由题意知,x=0时,不等式ab(−2a−b)⩾0恒成立,即ab(2a+b)⩽0,∵ab≠0,∴可得1a +2b⩽0,则a,b至少有一个是小于0的,(1)若a<0,b<0,(x−a)(x−b)(x−2a−b)⩾0在x⩾0时恒成立,符合题意;(2)若a<0,b>0,则2a+b<b,当x∈[0,a]时,(x−a)(x−b)(x−2a−b)⩽0,不符合题意;(3)若a>0,b<0,则2a+b>b,当2a+b=a时,(x−a)(x−b)(x−2a−b)⩾0在x⩾0时恒成立,符合题意.综合,b<0成立.故选:C.本题考查不等式恒成立问题,注意三次函数的图象,考查分类讨论思想和转化思想,属于中档题.【2020年浙江省高考数学试卷真题第22题】已知1<a≤2,函数f(x)=e x−x−a.其中e=2.718281828459…为自然对数的底数.(1)证明:函数y=f(x)在(0,+∞)上有唯一零点;(2)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a−1≤x0≤√2(a−1);(ⅰ)x0f(e x0)≥(e−1)(a−1)a.【答案】证明:(1)在上单调递增,,所以由零点存在定理得f(x)在上有唯一零点;(2)(i),,令一方面:,在单调递增,∴ℎ(x)>ℎ(0)=0,,另一方面:,所以当时,成立,因此只需证明当时,因为当时,,当时,,所以,在单调递减,,,综上,.(ii),,,,因为,所以,,只需证明,即只需证明,令,则,,即成立,因此.【解析】本题考查利用导数研究函数零点、利用导数证明不等式,考查综合分析论证与求解能力.(1)先利用导数研究函数单调性,再结合零点存在定理证明结论;(2)(i)先根据零点化简不等式,转化求两个不等式恒成立,构造差函数,利用导数求其单调性,根据单调性确定最值,即可证得不等式;(ii)先根据零点条件转化:,再根据放缩,转化为证明不等式,最后构造差函数,利用导数进行证明.【2020年北京市高考数学试卷真题第6题】已知函数f(x)=2x−x−1,则不等式f(x)>0的解集是()A. (−1,1)B. (−∞,−1)∪(1,+∞)C. (0,1)D. (−∞,0)∪(1,+∞)【解析】【分析】本题主要考查其它不等式的解法,函数的图象和性质,属于中档题.不等式即2x>x+1.由于函数y=2x和直线y=x+1的图象都经过点(0,1)、(1,2),数形结合可得结论.【解答】解:不等式f(x)>0,即2x>x+1.由于函数y=2x和直线y=x+1的图象都经过点(0,1)、(1,2),如图所示:不等式f(x)>0的解集是(−∞,0)∪(1,+∞),故选:D.【2020年北京市高考数学试卷真题第11题】函数f(x)=1x+1+lnx 的定义域是______.【答案】{x|x >0} 【解析】【分析】本题主要考查函数定义域的求解,根据函数成立的条件建立不等式是解决本题的关键,属于基础题.根据函数成立的条件建立不等式组,解不等式即可. 【解答】解:要使函数有意义,则{ x +1≠0x >0,得{ x ≠−1x >0, 即x >0,即函数的定义域为{x|x >0}, 故答案为:{x|x >0}.【2020年北京市高考数学试卷真题第15题】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲,乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2,t 3]这三段时间中,在[0,t 1]的污水治理能力最强. 其中所有正确结论的序号是______. 【答案】①②③【解析】解:设甲企业的污水排放量W 与时间t 的关系为W =f(t),乙企业的污水排放量W 与时间t 的关系为W =g(t).对于①,在[t 1,t 2]这段时间内,甲企业的污水治理能力为−f(t 2)−f(t 1)t 2−t 1,乙企业的污水治理能力为−g(t2)−g(t1)t2−t1.由图可知,f(t1)−f(t2)>g(t1)−g(t2),∴−f(t2)−f(t1)t2−t1>−g(t2)−g(t1)t2−t1,即甲企业的污水治理能力比乙企业强,故①正确;对于②,由图可知,f(t)在t2时刻的切线的斜率小于g(t)在t2时刻的切线的斜率,但两切线斜率均为负值,∴在t2时刻,甲企业的污水治理能力比乙企业强,故②正确;对于③,在t3时刻,甲,乙两企业的污水排放都小于污水达标排放量,∴在t3时刻,甲,乙两企业的污水排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污水治理能力最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.由两个企业污水排放量W与时间t的关系图象结合平均变化率与瞬时变化率逐一分析四个命题得答案.本题考查利用数学解决实际生活问题,考查学生的读图视图能力,是中档题.【2020年北京市高考数学试卷真题第19题】已知函数f(x)=12−x2.(1)求曲线y=f(x)的斜率等于−2的切线方程;(2)设曲线y=f(x)在点(t,f(t))处的切线与坐标轴围成的三角形的面积为S(t),求S(t)的最小值.【答案】解:(1)f(x)=12−x2的导数f′(x)=−2x,令切点为(m,n),可得切线的斜率为−2m=−2,∴m=1,∴n=12−1=11,∴切线的方程为y=−2x+13;(2)曲线y=f(x)在点(t,f(t))处的切线的斜率为k=−2t,切线方程为y−(12−t2)=−2t(x−t),令x=0,可得y=12+t2,令y=0,可得x=12t+6t,∴S(t)=12⋅|12t+6t|⋅(12+t2),由S(−t)=S(t),可知S(t)为偶函数,不妨设t>0,则S(t)=14(t+12t)(12+t2),∴S′(t)=14(3t2+24−144t2)=34⋅(t2−4)(t2+12)t2,由S′(t)=0,得t=2,当t>2时,S′(t)>0,S(t)单调递增;当0<t<2时,S′(t)<0,S(t)单调递减,则S(t)在t=2处取得极小值,且为最小值32,所以S(t)的最小值为32.【解析】本题考查导数的运用:求切线的方程和利用导数研究函数的单调性、极值和最值,考查方程思想和运算能力,属于较难题.(1)求得f(x)=12−x2的导数,设切点为(m,n),可得切线的斜率,解方程可得m,n,进而得到切线的方程;(2)求得切线的斜率和方程,分别令x=0,y=0,求得切线的横截距和纵截距,可得三角形的面积,考虑t>0的情况,求得导数和单调区间、极值,然后求出S(t)的最小值.。
2008-2020高考理学全国1卷分类汇编--导数
2008-2020高考理学全国1卷分类汇编--导数一 选择填空题1(2008).设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-2(2009) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(A)1 (B)2 (C) -1 (D)-23(2011)(9)由曲线y =直线2y x =-及y 轴所围成的图形的面积为 ( ) (A )103 (B )4 (C )163 (D )64(2017)5.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =5(2018)16.已知函数()2sin sin 2=+f x x x ,则()f x 的最小值是 .6(2019)13.曲线23()e x y x x =+在点(0)0,处的切线方程为____________.二 解答题1(2008).(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间; (Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围2(2008).(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数;(Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>3(2009)22.(本小题满分12分)设函数32()33f x x bx cx =++有两个极值点[][]12211,2.x x x ∈-∈,,0,且 (Ⅰ)求b 、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b ,c )和区域;(Ⅱ)证明:1102-2≤f(x )≤-4(2011)(21)(本小题满分12分)已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
导数高考题(大题)(2020年8月整理).pdf
导数高考题(非常实用)一、导数的基本应用(一)研究含参数的函数的单调性、极值和最值基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法特殊方法:(1)二次函数分析法;(2)单调性定义法本组题旨在强化对函数定义域的关注,以及求导运算和分类讨论的能力与技巧【例题】(2009江西理17/22)设函数()xe f x x=. 求(1)函数()f x 的单调区间;(2)略.解: 函数定义域为),0()0,(+∞⋃−∞,'22111()x x xx f x e e e x x x−=−+=, 由'()0f x =,得 1x =.因为当0x <时或01x <<时,'()0f x <;当1x >时,'()0f x >;所以()f x 的单调增区间是:[1,)+∞; 单调减区间是: (,0)(0,1]−∞,.【例题】(2008北京理18/22)已知函数22()(1)x bf x x −=−,求导函数()f x ',并确定()f x 的单调区间.解:242(1)(2)2(1)()(1)x x b x f x x −−−−'=−3222(1)x b x −+−=−32[(1)](1)x b x −−=−−. 令()0f x '=,得1x b =−.当11b −=,即2b =时,2()1f x x =−,所以函数()f x 在(1)−∞,和(1)+∞,上单调递减.当11b −<,即2b <时,()f x '的变化情况如下表:当11b −>,即b所以,2b <11)−,上单调递增,2b =时,函数()f x 在(1)−∞,和(1)+∞,上单调递减. 2b >时,函数()f x 在(1)−∞,和(1)b −+∞,上单调递减,在(11)b −,上单调递增.本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧 【例题】(2009北京文18/22)设函数3()3(0)f x x ax b a =−+≠. (Ⅱ)求函数()f x 的单调区间与极值点. 解:∵()()()'230fx x a a =−≠,当0a <时,()'0fx >,函数()f x 在(),−∞+∞上单调递增,此时函数()f x 没有极值点.当0a >时,由()'0fx x =⇒=当(,x ∈−∞时,()'0fx >,函数()f x 单调递增,当(x ∈时,()'0f x <,函数()f x 单调递减,当)x ∈+∞时,()'0f x >,函数()f x 单调递增,∴此时x =()f x 的极大值点,x =()f x 的极小值点.点评:此题是2010届文科考试说明的样题,题目考查了对导函数零点进行分类的能力,旨在帮助学生巩固研究函数单调性的基本方法.【例题】(2009天津理20/22)已知函数22()(23)(),xf x x ax a a e x R =+−+∈其中a R ∈. (II )当23a ≠时,求函数()f x 的单调区间与极值. [].42)2()('22x e a a x a x x f +−++=解:.2232.220)('−≠−≠−=−==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论. (1)a 若>32,则a 2−<2−a .当x 变化时,)()('x f x f ,的变化情况如下表: x()a 2−∞−,a 2−()22−−a a ,2−a()∞+−,2af'(x) + 0 — 0 + f(x )↗极大值↘极小值↗.)22()2()2()(内是减函数,内是增函数,在,,,在所以−−∞+−−−∞a a a a x f.3)2()2(2)(2a ae a f a f a x x f −=−−−=,且处取得极大值在函数 .)34()2()2(2)(2−−=−−−=a e a a f a f a x x f ,且处取得极小值在函数(2)a 若<32,则a 2−>2−a ,当x 变化时,)()('x f x f ,的变化情况如下表: x()2−∞−a ,2−a()a a 22−−,a 2−()∞+−,a 2f'(x) + 0 — 0 + f(x )↗极大值↘极小值↗内是减函数。
专题03 导数(原卷)2020年高考物理十年真题精解(全国Ⅰ卷)
三观一统2020年高考数学十年高考真题精解(全国卷I)专题3 导数十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一:导数之求切线的方程(2019新课标I卷文科T13)曲线y=3(x2+x)e x在点(0,0)处的切线方程为.(2018新课标I卷理科T5) 设函数f(x)=x3+(a−1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为A. y=−2xB. y=−xC. y=2xD. y=x(2017•新课标Ⅰ文科T14)曲线y=x2+在点(1,2)处的切线方程为.(2015新课标I卷文科T14)已知函数3()1f x ax x=++的图象在点(1,f(1))处的切线过点(2,7),则a=.(2012高考新课标I卷理科T12)设点P在曲线1e2xy=上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为()A.1-ln2 B(1-ln2) C.1+ln2 D(1+ln2)1.过曲线上一点求切线方程的三个步骤2.求过曲线y=f(x)外一点P(x1,y1)的切线方程的六个步骤(1)设切点(x0,f(x0)).(2)利用所设切点求斜率k=f′(x0)=li mΔx→0f x0+Δx-f x0Δx.(3)用(x0,f(x0)),P(x1,y1)表示斜率.(4)根据斜率相等求得x0,然后求得斜率k.(5)根据点斜式写出切线方程.(6)将切线方程化为一般式.二、考向题型研究二:导函数之利用单调性求最值、极值问题(2013年高考新课标I 卷文科T20)已知函数x x b ax e x f x 4)()(2--+=,曲线)(x f y =在点))0(,0(f 处的切线方程为44+=x y . (1)求b a ,的值;(2)讨论)(x f 的单调性,并求)(x f 的极大值(2018新课标I 卷理科T16.) 已知函数f (x )=2sinx +sin2x ,则f (x )的最小值是_____________.(2018新课标I 卷文科T21).已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥.(2017新课标I 卷理科T21.)(12分) 已知函数2()(2)xx f x aea e x =+--(1)讨论的单调性;(2)若()f x有两个零点,求a的取值范围.(2016新课标I卷文科T21)已知函数.(I)讨论的单调性;(II)若有两个零点,求的取值范围.(2018新课标I卷理科T21). 已知函数f(x)=1x−x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:f(x1)−f(x2)x1−x2<a−2.()f xa1.求导函数的单调性注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性.2.利用导数研究函数的极值和最值 函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值.(4)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为:(1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.(3)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(4)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(5)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 4.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.三、考向题型研究三:导函数之求零点问题(2019新课标I 卷理科T20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.(2019新课标I 卷文科T20).(12分)已知函数f (x )=2sin x ﹣x cos x ﹣x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.(2015新课标I 卷文科T21)(12分)设函数2()x f x e alnx =-. (Ⅰ)讨论()f x 的导函数()f x '零点的个数; (Ⅱ)证明:当0a >时,.aa a x 2ln2)(f +≥(2015新课标I 卷理科T21).(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数.(2011高考新课标I 卷文科T10)在下列区间中,函数f (x )=e x +4x ﹣3的零点所在的区间为( ) A .(,) B .(﹣,0)C .(0,)D .(,)利用导数确定函数零点或方程根个数的常用方法(1)研究方程根的问题可以转化为研究相应函数的图象问题,一般地,方程f (x )=0的根就是函数f (x )的图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )的图象的交点的横坐标.(2)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.(3)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.根据函数零点个数确定参数取值范围的核心思想是“数形结合”,即通过函数图象与x 轴的交点个数,或者两个相关函数图象的交点个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是“先形后数”.(4)当函数为三次含参函数时,利用导数的性质求出函数的单调性以及极大值和极小值,极大值和极小值的积小于0,则原函数有三个零点,极大值和极小值的积等于0,则原函数有两个零点,极大值和极小值的积大于0,则原函数最多有一个零点(也可以转化为函数零点个数和切线的条数等相关问题)(5)事实上利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.四、考向题型研究四:导函数之极值点偏移问题(2016新课标I 卷理科T21).(本小题满分12分)已知函数()()()221xf x x e a x =-+-有两个零点.(I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221xx +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f .五、考向题型研究五:导函数之恒成立求参问题(2017•新课标Ⅰ文科T21)已知函数f (x )=e x (e x ﹣a )﹣a 2x . (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.(2014高考新课标I 卷文科T 21)设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0(1)求b;(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。
2020年高考数学(文) 导数 (原卷版)
专题 导 数一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称2.函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是Ax BxC xD x3.若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.已知a 为函数3()12f x x x =-的极小值点,则a = A .-4 B .-2 C .4 D .25.(2018全国卷Ⅰ)设函数32()(1)=+-+f x x a x ax .若()f x 为奇函数,则曲线()=y f x 在点(0,0)处的切线方程为A .2=-y xB .y x =-C .2=y xD .=y x 6.若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x -= B .2()f x x = C .()3xf x -= D .()cos f x x =7.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是A .sin y x =B .ln y x =C .e x y =D .3y x =8.设直线1l ,2l 分别是函数ln ,01()ln ,1x x f x x x -<<⎧=⎨>⎩,图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A .(0,1)B .(0,2)C . (0,+∞)D .(1,+ ∞)9.已知函数()2x e f x t lnx x x x =-++⎛⎫ ⎪⎝⎭恰有一个极值点为1,则实数t 的取值范围是( ) A .1,33e ⎛⎤⎧⎫-∞⋃⎨⎬ ⎥⎝⎦⎩⎭ B .1,3⎛⎤-∞ ⎥⎝⎦ C .1,2⎛⎤-∞ ⎥⎝⎦ D .1,23e ⎛⎤⎧⎫-∞⋃⎨⎬ ⎥⎝⎦⎩⎭ 10.已知函数ln ,1()11,12x x f x x x >⎧⎪=⎨+≤⎪⎩,若()()f m f n =,则n m -的取值范围是( )A .[],3eB .[]42ln 2,3-C .3242ln 2,1e ⎡⎤-⎢⎥⎣⎦-D .[]22ln 2,3- 11.设函数()xf x x e =⋅,则( )A .()f x 有极大值1eB .()f x 有极小值1e -C .()f x 有极大值eD .()f x 有极小值e -12.已知函数321()13f x ax ax x =+++在R 上为增函数,则实数a 的取值范围是( )A .[)0,+∞B .(0,1)C .[]0,1D .[)0,1二、填空题13.已知函数()(2+1),()x f x x e f x '=为()f x 的导函数,则(0)f '的值为____.14.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数12,x x ,设m =1212()()f x f x x x --,n =1212()()g x g x x x --.现有如下命题: ①对于任意不相等的实数12,x x ,都有0m >;②对于任意的a 及任意不相等的实数12,x x ,都有0n >;③对于任意的a ,存在不相等的实数12,x x ,使得m n =;④对于任意的a ,存在不相等的实数12,x x ,使得m n =-.其中真命题有___________(写出所有真命题的序号).15.(2018全国卷Ⅱ)曲线2ln =y x 在点(1,0)处的切线方程为__________.16.(2018天津)已知函数()ln x f x e x =,()f x '为()f x 的导函数,则(1)f '的值为__. 17.曲线21y x x=+在点(1,2)处的切线方程为____________. 18.已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .三、解答题19.(2018全国卷Ⅰ)已知函数()ln 1=--x f x ae x .(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0≥f x .20.(2018浙江)已知函数()ln f x x =.(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-;(2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.21.(2018全国卷Ⅱ)已知函数321()(1)3=-++f x x a x x . (1)若3=a ,求()f x 的单调区间;(2)证明:()f x 只有一个零点.22.(2018北京)设函数2()[(31)32]e xf x ax a x a =-+++.(1)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ;(2)若()f x 在1x =处取得极小值,求a 的取值范围.23.(2018全国卷Ⅲ)已知函数21()e xax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.24.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”;(2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值; (3)已知函数2()f x x a =-+,e ()xb g x x =.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.25.(2018天津)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(1)若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程;(2)若3d =,求()f x 的极值;(3)若曲线()y f x =与直线2()y x t =---d 的取值范围.26.已知函数()(x f x x e -=1()2x ≥. (Ⅰ)求()f x 的导函数;(Ⅱ)求()f x 在区间1[,)2+∞上的取值范围.27.已知函数32()1f x x ax bx =+++(0,)a b >∈R 有极值,且导函数()f x ' 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:23b a >;28.已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当2a =时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.29.已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.30.已知函数221()ln ()x f x a x a R x -=-∈(1)若0a >时,讨论()f x 的单调性;(2)设()()2g x f x x =-,若()g x 有两个零点,求a 的取值范围31.设函数()1ln f x x t x x=--,其中()0,1,x t ∈为正实数. (1)若不等式()0f x <恒成立,求实数t 的取值范围;(2)当)1(0x ∈,时,证明211ln x x x e x x+--<.32.已知()()x f x x m e =-. (1)当2m =时,求函数()f x 在点(0,(0))f 处的切线方程;(2)若函数()f x 在区间(1,0)-上有极小值点,且总存在实数m ,使函数()f x 的极小值与211[()]2m m a e m am e +--互为相反数,求实数a 的取值范围.33.已知函数()()22ln f x x x ax a R =+-∈有两个极值点1x ,2x ,其中12x x <. (Ⅰ)求实数a 的取值范围;(Ⅱ)当a≥()()12f x f x -的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学海无 涯 (2)若 f (x) 在 (0, ) 只有一个零点,求 a
2.(XXXX 新课标Ⅰ)已知函数 f (x) ae2x (a 2)ex x .
(1)讨论 f (x) 的单调性; (2)若 f (x) 有两个零点,求 a 的取值范围.
3.(XXXX 年全国Ⅰ) 已知函数 f (x) (x 2)ex a(x 1)2 有两个零点. I. 求 a 的取值范围;
(Ⅰ)当 a 4 时,求曲线 y f (x) 在 1, f (1) 处的切线方程; (Ⅱ)若当 x 1, 时, f (x)>0 ,求 a 的取值范围.
(三) 导数的零点问题
1.(XXXX 全国卷Ⅱ)已知函数 f (x) ex ax2 . (1)若 a 1,证明:当 x ≥ 0 时, f (x)≥1
(1)若 a 0 ,证明:当 1 x 0 时, f (x) 0 ;当 x 0 时, f (x) 0 ;
学海无 涯 (2)若 x 0 是 f (x) 的极大值点,求 a .
2. (XXXX 新课标)设函数 f (x) ex ax 2 .
(Ⅰ)求 f (x) 的单调区间; (Ⅱ)若 a 1, k 为整数,且当 x 0 时, (x k) f (x) x 1 0 ,求 k 的最大值.
2 (Ⅱ)若当 x ≥ 0 时 f (x)≥0 ,求 a 的取值范围.
学海无 涯
5. (XXXX 新课标Ⅱ)设 (x) 的单调性; (2)当 x ≥ 0 时, f (x) ≤ax 1,求 a 的取值范围
.
6. (XXXX 年全国 II 卷)已知函数 f (x) (x 1)ln x a(x 1) .
2.(XXXX 新课标Ⅰ)设函数 f x a ln x 1 a x2 bx a 1 ,曲线 y f (x) 在点
2 (1, f (1))处的切线斜率为 0.
(Ⅰ)求 b ;
(Ⅱ)若存在 x0 1, 使得 f x0
a ,求 a 的取值范围. a 1
3.(XXXX 新课标Ⅰ)已知函数 f (x) ex (ax b) x2 4x ,曲线 y f (x) 在点(0, f (0)) 处切线方程为 y 4x 4 .
e
4.(XXXX 全国卷Ⅲ)已知函数 f (x) ax2 x1 . ex
(1)求曲线 y f (x) 在点(0, 1) 处的切线方程; (2)证明:当 a ≥1时, f (x) e ≥ 0 .
5.(XXXX 新课标Ⅲ)已知函数 f (x) ln x ax2 (2a 1)x . (1)讨论 f (x) 的单调性; (2)当 a 0 时,证明 f (x) ≤ 3 2 .
(Ⅰ)求 a,b 的值; (Ⅱ)讨论 f (x) 的单调性,并求 f (x) 的极大值.
学海无 涯 4.(XXXX 新课标Ⅱ)已知函数 f (x) x2e x . (Ⅰ)求 f (x) 的极小值和极大值; (Ⅱ)当曲线 y f (x) 的切线l 的斜率为负数时,求 l 在 x 轴上截距的取值范围.
记 | f (x) | 的最大值为 A . (Ⅰ)求 f (x) ;(Ⅱ)求 A ;(Ⅲ)证明|f (x)|≤2A .
学海无 涯
3.(XXXX 全国卷Ⅰ)已知函数 f (x) aex ln x 1. (1)设 x 2 是 f (x) 的极值点.求 a ,并求 f (x) 的单调区间; (2)证明:当 a ≥ 1 时, f (x) ≥ 0 .
a
(四) 导数的不等式问题
1.(XXXX 新课标Ⅲ)已知函数 f (x) x 1 a ln x .
(1)若 f (x)≥0 ,求 a 的值;
(2)设 m 为整数,且对于任意正整数n , (1
1)(1 2
1 22
)
(1
21n) m ,求 m 的最小值.
2.(XXXX 年全国Ⅲ) 设函数 f (x) cos 2x ( 1)(cos x 1) ,其中 0 ,
3.(XXXX 新课标)已知函数 f (x) a ln x b ,曲线 y f (x) 在点(1, f (1))处的切线方程
x 1 x 为 x 2y 3 0. (Ⅰ)求 a , b 的值; (Ⅱ)证明:当 x 0 ,且 x 1 时, f (x) ln x .
x 1
4. (XXXX 新课标)设函数 f (x) x(ex 1) ax2 . (Ⅰ)若 a 1 ,求 f (x) 的单调区间;
5. (XXXX 全国卷Ⅱ)已知函数 f (x) 1 x3 a(x2 x 1) . 3
( 1 ) 若 a 3,求 f (x) 的单调区间; (2)证明: f (x) 只有一个零点.
学海无 涯
6. (XXXX 新课标 1)设函数 f x e2x a ln x . (Ⅰ)讨论 f x 的导函数 f x 零点的个数; (Ⅱ)证明:当 a 0 时 f x≥ 2a a ln 2 .
学海无 涯
(一) 导数的极最值问题
1.(XXXX 新课标Ⅱ)设函数 f (x) emx x2 mx . (Ⅰ)证明: f (x) 在 (,0) 单调递减,在 (0,) 单调递增; (Ⅱ)若对于任意 x1 , x2 [1,1],都有| f (x1) f (x2 ) | ≤ e 1,求 m 的取值范围.
II. 设 x1 , x2 是 f (x) 的两个零点,证明: x1 x2 2 .
4.(XXXX 新课标Ⅱ)已知函数 f (x) x3 3x2 ax 2 ,曲线 y f (x) 在点(0,2)处的 切线与 x 轴交点的横坐标为-2.
(Ⅰ)求 a ; (Ⅱ)证明:当 k 1 时,曲线 y f (x) 与直线 y kx 2 只有一个交点
5.(XXXX 新课标 2)已知函数 f (x) ln x a(1 x) . (Ⅰ)讨论 f (x) 的单调性; (Ⅱ)当 f (x) 有最大值,且最大值大于2a 2 时,求 a 的取值范围.
(二) 导数的恒成立问题 1.(XXXX 全国卷Ⅲ)已知函数 f (x) (2 x ax2 ) ln(1 x) 2x .