高一数学课间练习(58)

合集下载

《高一数学《习题课》课件

《高一数学《习题课》课件

课后作业
布置课后作业,让学生能够独立巩固所学内容,并提供相应的答案和解析。
总结
困难与收获
回顾学习过程中遇到的困难,以及对数学知识的新收获。
如何提高学习效益
给出学习建议,帮助学生提高学习效率和学习成绩。
参考文献
提供相关参考书目和学习资源,以便学生进一步深入学习和拓展知识。
2
三角函数
ቤተ መጻሕፍቲ ባይዱ
讲解三角函数的弧度制和角度制,常用三角函数的性质以及图像和应用。
3
数列与数学归纳法
引导学生理解数列的定义、等差数列和等比数列等内容,以及数学归纳法的运用。
4
解析几何
介绍平面直角坐标系、距离公式、直线的方程和圆的方程等解析几何的基本概念。
课堂练习
通过一系列有趣的练习题和挑战,帮助学生巩固所学知识和提高解题能力。
高一数学《习题课》PPT 课件
本PPT课件旨在帮助高一学生更好地掌握数学知识。以直观的图像和清晰的内 容,帮助学生深入理解和应用数学概念。
导言
课程目标
明确学习目标,提高学生数学能力。
教学方法
采用互动式教学,通过示例和练习提高学生的 解题能力。
知识点梳理
1
函数与方程
介绍函数的定义、奇偶性,以及二次函数和一次函数等内容。

高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件

高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件

课 题:2.4.1 反函数(一)教学目的:掌握反函数的概念和表示法,会求一个函数的反函数教学重点:反函数的定义和求法教学难点:反函数的定义和求法授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:反函数是数学中的一个很重要的概念,它是我们以后进一步研究具体函数类即五大类基本初等函数的一个不可缺少的重要组成部分 反函数是函数中的一个特殊现象,对反函数概念的讨论研究是对函数概念和函数性质在认识上的进一步深化和提高反函数概念的建立,关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识 本节是反函数的第一节课围绕如何理解反函数概念这个重难点展开由于函数是一种对应关系,这个概念本身不好理解,而反函数又是函数中的一种特殊现象,它是两个函数之间的关系所以弄清函数与其反函数的关系,是正确理解反函数概念必不可少的重要环节教学设计中,通过对具体例子的求解,不但使学生掌握求反函数的方法步骤,并有意识地阐明函数与反函数的关系深化了对概念的理解和掌握教学过程: 一、复习引入:我们知道,物体作匀速直线运动的位移s 是时间t 的函数,即s=vt,其中速度v 是常量,定义域t ≥0,值域s ≥0;反过来,也可以由位移s 和速度v (常量)确定物体作匀速直线运动的时间,即vs t =,这时,位移s 是自变量,时间t 是位移s 的函数,定义域s ≥0,值域t ≥0.又如,在函数62+=x y 中,x 是自变量,y 是x 的函数,定义域x ∈R ,值域y ∈R. 我们从函数62+=x y 中解出x ,就可以得到式子32-=y x . 这样,对于y 在R 中任何一个值,通过式子32-=y x ,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为y 的函数,定义域是y ∈R ,值域是x ∈R.综合上述,我们由函数s=vt 得出了函数vs t =;由函数62+=x y 得出了函数32-=y x ,不难看出,这两对函数中,每一对中两函数之间都存在着必然的联系:①它们的对应法则是互逆的;②它们的定义域和值域相反:即前者的值域是后者的定义域,而前者的定义域是后者的值域. 我们称这样的每一对函数是互为反函数.二、讲解新课:反函数的定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=开始的两个例子:s=vt 记为vt t f =)(,则它的反函数就可以写为vt t f =-)(1,同样62+=x y 记为62)(+=x x f ,则它的反函数为:32)(1-=-x x f . 探讨1:所有函数都有反函数吗?为什么?反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一映射”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =探讨2:互为反函数定义域、值域的关系从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合C 到集合A 的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x fy -=的值域;函数)(x f y =的值域正好是它的反函数)(1x fy -=的定义域x x f f x x f f ==--)]([,)]([11(如下表):探讨3:)(1x f y -=的反函数是?若函数)(x f y =有反函数)(1x f y -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x fy -=互为反函数三、讲解例题:例1.求下列函数的反函数: ①)(13R x x y ∈-=; ②)(13R x x y ∈+=; ③)0(1≥+=x x y ; ④)1,(132≠∈-+=x R x x x y 且. 解:①由13-=x y 解得31+=y x ∴函数)(13R x x y ∈-=的反函数是)(31R x x y ∈+=, ②由)(13R x x y ∈+=解得x=31-y , ∴函数)(13R x x y ∈+=的反函数是)(13R x x y ∈-=③由y=x +1解得x=2)1(-y , ∵x ≥0,∴y ≥1. ∴函数)0(1≥+=x x y 的反函数是x=2)1(-y (x ≥1); ④由132-+=x x y 解得23-+=y y x ∵x χ{x ∈R|x ≠1},∴y ∈{y ∈R|y ≠2} ∴函数)1,(132≠∈-+=x R x x x y 且的反函数是)2,(23≠∈-+=x R x x x y 小结:⑴求反函数的一般步骤分三步,一解、二换、三注明 ⑵反函数的定义域由原来函数的值域得到,而不能由反函数的解析式得到 ⑶求反函数前先判断一下决定这个函数是否有反函数,即判断映射是否是一一映射例2.求函数23-=x y (R x ∈)的反函数,并画出原来的函数和它的反函数的图像解:由23-=x y 解得32+=y x∴函数)(23R x x y ∈-=的反函数是)(32R x x y ∈+=, 它们的图像为:例3求函数 211x y --=(-1<x<0)的反函数 解:∵ -1<x<0 ∴0<2x <1 ∴0<1 -2x < 1∴ 0 <21x -< 1 ∴0 < y <1 由:211x y --= 解得:22y y x --= (∵ -1< x < 0 ) ∴211x y --=(-1<x < 0)的反函数是:22x x y --=(0<x<1 )例4 已知)(x f = 2x -2x(x ≥2),求)(1x f -.解法1:⑴令y=2x -2x ,解此关于x 的方程得2442y x +±=, ∵x ≥2,∴2442y x ++=,即x=1+y +1--①, ⑵∵x ≥2,由①式知y +1≥1,∴y ≥0--②,⑶由①②得)(1x f -=1+x +1(x ≥0,x ∈R );解法2:⑴令y=2x -2x=2)1(-x -1,∴2)1(-x =1+y ,∵x ≥2,∴x-1≥1,∴x-1=y +1--①,即x=1+y +1,⑵∵x ≥2,由①式知y +1≥1,∴y ≥0,⑶∴函数)(x f = 2x -2x(x ≥2)的反函数是)(1x f -=1+x +1(x ≥0);说明:二次函数在指定区间上的反函数可以用求根公式反求x ,也可以用配方法求x ,但开方时必须注意原来函数的定义域.四、课堂练习:课本P63练习:已知函数)(x f y =,求它的反函数)(1x fy -= (1) 32+-=x y (x ∈R ) (2)x y 2-= (x ∈R ,且x ≠0) (3) 4x y = (x ≥0) (4)53+=x x y (x ∈R ,且x ≠35-) 五、小结 本节课学习了以下内容:反函数的定义及其注意点、求法步骤六、课后作业:课本第64习题2.4:1七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

2.1.1等式的性质与方程的解集(课件)高一数学(人教B版2019必修第一册)

2.1.1等式的性质与方程的解集(课件)高一数学(人教B版2019必修第一册)
(方法二)可以将和分别看成一个整体,然后使用平方差公式,即
(2 + 1)2 −( − 1)2 = [(2 + 1) + ( − 1)][(2 + 1) − ( − 1)]
= 3( + 2) = 3 2 + 6.
新知探索
下面我们介绍另外一个经常会用到的恒等式:对任意的,,,都有
2 + 5 + 6 =________________.
( + 2)( + 3)
新知探索
尝试与发现:证明恒等式( + )( + ) = 2 + ( + ) + .
并由此探讨 2 + + 的因式分解方法.
上述恒等式的证明,也只需将左边展开然后合并同类
不难知道,利用类似的方法可以得到所有一元一次方程的解集.
新知探索
从小学开始我们就知道,
任意两个非零的实数,它们的乘积不可能是零,因此:
如果 = 0,则 = 0或 = 0.
利用这一结论,我们可以得到一些方程的解集.例如,由方程
(4 + 1)( − 1) = 0可知4 + 1 = 0或 − 1 = 0,从而
2.1.1等式的性质与方程的解集
复习引入
我们已经学习过等式的性质:
(1)等式的两边同时加上同一个数或代数式,等式仍成立;
(2)等式的两边同时乘以同一个不为零的数或代数式,等式仍成立.
尝试与发现:请用符号语言和量词表示上述等式的性质:
+ =+
(1)如果 = ,则对任意,都有___________________;
项即可.据此也可进行因式分解.例如,对于3 2 + 11 + 10

高一数学复习考点知识讲解课件58---等比数列的性质

高一数学复习考点知识讲解课件58---等比数列的性质

高一数学复习考点知识讲解课件等比数列的性质考点知识1.能根据等比数列的定义推出等比数列的性质,并能运用这些性质简化运算.2.灵活应用等比数列通项公式的推广形式及变形.导语在我们学习等比数列的过程中,发现它与等差数列有相似之处,这其实就是我们在这两类数列之间无形之中产生了类比思想,类比的前提大多为结论提供线索,它往往能把人的认知从一个领域引申到另一个共性的领域,由此推出另一个对象也具有同样的其他特定属性的结论,有人曾说“类比使人聪颖,数学使人严谨,数学使人智慧”,今天我们就用类比的思想来研究等比数列具有哪些性质.一、由等比数列构造新等比数列问题1结合我们所学,你能类比等差数列、等比数列的通项公式的结构特点及运算关系吗?提示等差数列等比数列定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫作等比数列符号表示 a n -a n -1=d (n ≥2,n ∈N *)a na n -1=q (n ≥2,n ∈N *) 通项公式 a n =a 1+(n -1)da n =a 1q n -1类比差⇒商;和⇒积,积⇒乘方性质等差数列首项a 1,公差d等比数列首项a 1,公比q把等差数列前k 项去掉,得到一个以a k +1为首项,以d 为公差的等差数列把等比数列前k 项去掉,得到一个以a k +1为首项,以q 公比的等比数列等差数列中,a k ,a k +m ,a k +2m …是以公差为md 的等差数列等比数列中,a k ,a k +m ,a k +2m …是以公比为q m 的等比数列等差数列中任意一项加上同一个常数,构成一个公差不变的等差数列等比数列中任意一项同乘一个非零常数,构成一个公比不变的等比数列两个等差数列相加,还是一个等差数列两个等比数列相乘,还是一个等比数列知识梳理1.在等比数列{a n }中,每隔k 项(k ∈N *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列.2.若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2.3.若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与⎩⎨⎧⎭⎬⎫a nb n 也都是等比数列,公比分别为pq 和pq .注意点:在构造新的等比数列时,要注意新数列中有的项是否为0,比如公比q =-1时,连续相邻偶数项的和都是0,故不能构成等比数列.例1如果数列{}a n 是等比数列,那么下列数列中不一定是等比数列的是()A.⎩⎨⎧⎭⎬⎫1a nB.⎩⎨⎧⎭⎬⎫3a n C.{}a n ·a n +1 D.{}a n +a n +1 答案D解析取等比数列a n =()-1n ,则a n +a n +1=0,所以{a n +a n +1}不是等比数列,故D 错误;对于其他选项,均满足等比数列通项公式的性质.反思感悟由等比数列构造新的等比数列,一定要检验新的数列中的项是否为0,主要是针对q <0的情况.跟踪训练1设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形面积(i =1,2,…),则{A n }为等比数列的充要条件为() A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同答案D解析因为A i 是边长为a i ,a i +1的矩形面积(i =1,2,…),所以A i =a i a i +1(i =1,2,3,…,n ,…), 则数列{A n }的通项为A n =a n a n +1.根据等比数列的定义,数列{A n }(n =1,2,3,…)为等比数列的充要条件是A n +1A n =a n +1a n +2a n a n +1=a n +2a n =q (常数).二、等比数列中任意两项之间的关系问题2结合上面的类比,你能把等差数列里面的a n =a m +(n -m )d 类比出等比数列中相似的性质吗?提示类比可得a n =a m q n -m ;由等比数列的定义可知a n =a 1q n -1,a m =a 1q m -1,两式相除可得a n a m =a 1q n -1a 1qm -1=q (n -1)-(m -1)=q n -m ,即a n =a m q n -m . 知识梳理等比数列通项公式的推广和变形a n =a m q n -m . 例2在等比数列{a n }中:(1)已知a 3+a 6=36,a 4+a 7=18,a n =12,求n ; (2)已知a 5=8,a 7=2,a n >0,求a n . 解设等比数列{a n }的公比为q .(1)由⎩⎪⎨⎪⎧a 4+a 7=q (a 3+a 6)=18,a 3+a 6=36,得q =12.再由a 3+a 6=a 3·(1+q 3)=36得a 3=32,则a n =a 3·qn -3=32×⎝ ⎛⎭⎪⎫12n -3=⎝ ⎛⎭⎪⎫12n -8=12,所以n -8=1,所以n =9. (2)由a 7=a 5·q 2得q 2=14.因为a n >0,所以q =12, 所以a n =a 5·qn -5=8×⎝ ⎛⎭⎪⎫12n -5=⎝ ⎛⎭⎪⎫12n -8.反思感悟等比数列的通项公式及变形的应用(1)在已知等比数列的首项和公比的前提下,利用通项公式a n =a 1q n -1(a 1q ≠0)可求出等比数列中的任意一项.(2)在已知等比数列中任意两项的前提下,利用a n =a m q n -m (q ≠0)也可求出等比数列中的任意一项.跟踪训练2(1)在等比数列{a n }中,如果a 1+a 4=18,a 2+a 3=12,那么这个数列的公比为()A .2B.12C .2或12D .-2或12(2)已知等比数列{a n }中,a 3=2,a 4a 6=16,则a 9-a 10a 5-a 6等于()A .16B .8C .4D .2 答案(1)C(2)C解析(1)设等比数列{a n }的公比为q (q ≠0),∵a 1+a 4=18,a 2+a 3=12,∴a 1(1+q 3)=18,a 1(q +q 2)=12,q ≠-1,化为2q 2-5q +2=0,解得q =2或12.故选C.(2)等比数列{a n }中,设其公比为q (q ≠0),a 3=2,a 4a 6=a 3q ·a 3q 3=a 23q 4=4q 4=16,∴q4=4.∴a 9-a 10a 5-a 6=a 1q 8-a 1q 9a 1q 4-a 1q 5=q 4=4,故选C.三、等比数列中多项之间的关系问题3结合上面的类比,你能把等差数列里面的a m +a n =a k +a l ,类比出等比数列中相似的性质吗?提示类比可得a m a n =a k a l ,其中m +n =k +l ,m ,n ,k ,l ∈N *. 推导过程:a m =a 1q m -1,a n =a 1q n -1,a k =a 1q k -1,a l =a 1q l -1,所以a m a n =a 1q m -1·a 1q n -1=a 21q m +n -2,a k a l =a 1q k -1·a 1q l -1=a 21qk +l -2, 因为m +n =k +l ,所以有a m a n =a k a l . 知识梳理设数列{a n }为等比数列,则:(1)若k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n . (2)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列.注意点:(1)性质的推广:若m +n +p =x +y +z ,有a m a n a p =a x a y a z ;(2)该性质要求下标的和相等,且左右两侧项数相同;(3)在有穷等比数列中,与首末两项等距离的两项之积都相等,即a 1·a n =a 2·a n -1=…. 例3已知{a n }为等比数列. (1)若{a n }满足a 2a 4=12,求a 1a 23a 5;(2)若a n >0,a 5a 7+2a 6a 8+a 6a 10=49,求a 6+a 8;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值. 解(1)在等比数列{a n }中, ∵a 2a 4=12,∴a 23=a 1a 5=a 2a 4=12, ∴a 1a 23a 5=14.(2)由等比中项,化简条件得a 26+2a 6a 8+a 28=49,即(a 6+a 8)2=49, ∵a n >0, ∴a 6+a 8=7.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2·…·a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10.反思感悟利用等比数列的性质解题(1)基本思路:充分发挥项的“下标”的指导作用,分析等比数列项与项之间的关系,选择恰当的性质解题.(2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.跟踪训练3(1)公比为32的等比数列{a n}的各项都是正数,且a3a11=16,则log2a16等于() A.4B.5C.6D.7答案B解析因为a3a11=16,所以a27=16.又因为a n>0,所以a7=4,所以a16=a7q9=32,即log2a16=5.(2)已知在各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=________. 答案5 2解析方法一因为{a n}是等比数列,所以a1a7=a24,a2a8=a25,a3a9=a26.所以a24·a25·a26=(a1a7)·(a2a8)·(a3a9)=(a 1a 2a 3)·(a 7a 8a 9)=5×10=50. 因为a n >0,所以a 4a 5a 6=5 2.方法二因为a 1a 2a 3=(a 1a 3)a 2=a 22·a 2=a 32=5,所以a 2=135.因为a 7a 8a 9=(a 7a 9)a 8=a 38=10,所以a 8=1310.同理a 4a 5a 6=a 35=1133312332222528()()(510)5052a a a ==⋅==.1.知识清单:(1)由等比数列构造新的等比数列. (2)等比数列中任意两项之间的关系. (3)等比数列中多项之间的关系. 2.方法归纳:公式法、类比思想.3.常见误区:构造新的等比数列易忽视有等于0的项.1.在等比数列{a n }中,若a 2=4,a 5=-32,则公比q 应为()A .±12B .±2C.12D .-2 答案D解析因为a 5a 2=q 3=-8,故q =-2.2.已知{a n },{b n }都是等比数列,那么() A .{a n +b n },{a n b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n b n }一定是等比数列D .{a n +b n },{a n b n }都不一定是等比数列 答案C解析当两个数列都是等比数列时,这两个数列的和不一定是等比数列,比如取两个数列是互为相反数的数列,两者的和就不是等比数列.两个等比数列的积一定是等比数列. 3.已知在等比数列{}a n 中,有a 3a 7a 10=9,则a 4a 28等于() A .3B .9C .20D .无法计算 答案B解析由等比数列多项之间的下标和的关系可知3+7+10=4+8+8,故a 4a 28=9.4.若正项等比数列{a n }满足a 1a 5=4,当1a 2+4a 4取最小值时,数列{}a n 的公比是________.答案2解析设正项等比数列{}a n 的公比为q ()q >0, 因为a 1a 5=4,所以由等比数列的性质可得a 2a 4=4,因此1a 2+4a 4≥21a 2·4a 4=2,当且仅当1a 2=4a 4,即a 4a 2=q 2=4,即q =2(负值舍去)时,等号成立. 所以数列{}a n 的公比是2.课时对点练1.已知数列{a n }满足a 1=5,a n a n +1=2n ,则a 7a 3等于() A .4B .2C .5D.52答案A解析因为a n a n +1=2n ,所以a n -1a n =2n -1(n ≥2),所以a n +1a n -1=2(n ≥2), 数列{a n }的奇数项组成等比数列,偶数项组成等比数列,故a 7a 3=22=4. 2.在等比数列{a n }中,a 2,a 18是方程x 2+6x +4=0的两根,则a 4a 16+a 10等于()A .6B .2C .2或6D .-2答案B解析由题意知a 2+a 18=-6,a 2·a 18=4,所以a 2<0,a 18<0,故a 10<0,所以a 10=-a 2·a 18=-2,因此a 4·a 16+a 10=a 210+a 10=2,故选B.3.在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于()A.32B.23C .-23D.23或-23答案C解析因为a 4=a 2·q 2,所以q 2=a 4a 2=818=49. 又因为a 1<0,a 2>0,所以q <0.所以q =-23. 4.在等比数列{a n }中,若a 2a 3a 6a 9a 10=32,则a 29a 12的值为() A .4B .2C .-2D .-4答案B解析由a 2a 3a 6a 9a 10=(a 2a 10)·(a 3a 9)·a 6=a 56=32=25,得a 6=2,则a 29a 12=a 6a 12a 12=a 6=2. 5.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等比数列,上面3节的容积之积为3,下面3节的容积之积为9,则第5节的容积为()A .2B.6766C .3D. 3答案D解析方法一依题意可设,竹子自上而下各节的容积成等比数列{a n },设其公比为q (q ≠0),由上面3节的容积之积为3,下面3节的容积之积为9,可知⎩⎪⎨⎪⎧a 1·a 1q ·a 1q 2=3,a 1q 6·a 1q 7·a 1q 8=9,解得a 1q =33,q 3=63,所以第5节的容积为a 1q 4=a 1q ·q 3=33·63= 3.故选D. 方法二依题意可设,竹子自上而下各节的容积成等比数列{a n },由上面3节的容积之积为3,下面3节的容积之积为9,可知a 1a 2a 3=3,a 7a 8a 9=9,由等比数列的性质可知a 1a 2a 3a 7a 8a 9=(a 1a 9)·(a 2a 8)·(a 3a 7)=a 65=27.所以a 5= 3.故选D.6.(多选)设{a n }是等比数列,有下列四个命题,其中正确的是()A .{a 2n }是等比数列B .{a n a n +1}是等比数列C.⎩⎨⎧⎭⎬⎫1a n 是等比数列 D .{lg|a n |}是等比数列答案ABC解析由{a n }是等比数列可得a na n -1=q (q 为定值,n >1).A 中,a 2n a 2n -1=⎝ ⎛⎭⎪⎫a n a n -12=q 2为常数,故A 正确;B 中,a n a n +1a n -1a n =a n +1a n -1=q 2,故B 正确; C 中,1a n 1a n -1=a n -1a n=1q 为常数,故C 正确; D 中,lg|a n |lg|a n -1|不一定为常数,故D 错误.7.在正项等比数列{a n }中,若3a 1,12a 3,2a 2成等差数列,则a 2021-a 2020a 2023-a 2022=________. 答案19解析设正项等比数列{a n }的公比q >0,∵3a 1,12a 3,2a 2成等差数列,∴2×12a 3=3a 1+2a 2,即a 1q 2=3a 1+2a 1q ,∴q 2-2q -3=0,q >0,解得q =3.则原式=a 2021-a 2020q 2(a 2021-a 2020)=1q 2=19. 8.已知数列{a n }为等比数列,且a 3+a 5=π,则a 4(a 2+2a 4+a 6)=________. 答案π2解析因为数列{a n }为等比数列,且a 3+a 5=π,所以a 4(a 2+2a 4+a 6)=a 4a 2+2a 24+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=π2.9.已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值. 解∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64.又∵a 3+a 7=20,∴a 3=4,a 7=16或a 3=16,a 7=4.①当a 3=4,a 7=16时,a 7a 3=q 4=4, 此时a 11=a 3q 8=4×42=64.②当a 3=16,a 7=4时,a 7a 3=q 4=14, 此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. 10.已知数列{a n }为等比数列.(1)若a n >0,且a 2a 4+2a 3a 5+a 4a 6=36,求a 3+a 5的值;(2)若数列{a n }的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项. 解(1)∵a 2a 4+2a 3a 5+a 4a 6=36,∴a 23+2a 3a 5+a 25=36,即(a 3+a 5)2=36,又∵a n >0,∴a 3+a 5=6.(2)设等比数列{a n }的公比为q ,∵a 2-a 5=42,∴q ≠1.由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168,a 1q -a 1q 4=42, ∴⎩⎪⎨⎪⎧a 1(1+q +q 2)=168,a 1q (1-q 3)=42, 解得⎩⎨⎧ a 1=96,q =12.若G 是a 5,a 7的等比中项,则有G 2=a 5·a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝ ⎛⎭⎪⎫1210=9, ∴a 5,a 7的等比中项为±3.11.设各项均为正数的等比数列{a n }满足a 4a 8=3a 7,则log 3(a 1a 2·…·a 9)等于()A .38B .39C .9D .7答案C 解析因为a 4a 8=a 5a 7=3a 7且a 7≠0,所以a 5=3,所以log 3(a 1a 2·…·a 9)=log 3a 95=log 339=9.12.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于()A .2B .1C.12D.18答案C解析方法一∵a 3,a 5的等比中项为±a 4,∴a 3a 5=a 24,a 3a 5=4(a 4-1),∴a 24=4(a 4-1),∴a 24-4a 4+4=0,∴a 4=2.又∵q 3=a 4a 1=214=8, ∴q =2,∴a 2=a 1q =14×2=12.方法二∵a 3a 5=4(a 4-1),∴a 1q 2·a 1q 4=4(a 1q 3-1),将a 1=14代入上式并整理,得q 6-16q 3+64=0,解得q =2,∴a 2=a 1q =12.13.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15等于()A.±2B.±4C.2D.4答案C解析∵T13=4T9,∴a1a2...a9a10a11a12a13=4a1a2 (9)∴a10a11a12a13=4.又∵a10·a13=a11·a12=a8·a15,∴(a8·a15)2=4,∴a8a15=±2.又∵{a n}为递减数列,∴q>0,∴a8a15=2.14.在等比数列{a n}中,若a7=-2,则此数列的前13项之积等于________.答案-213解析由于{a n}是等比数列,∴a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a27,∴a1a2a3…a13=(a27)6·a7=a137,而a7=-2.∴a1a2a3…a13=(-2)13=-213.15.在等比数列{a n }中,若a 7a 11=6,a 4+a 14=5,则a 20a 10=________. 答案23或32解析∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6,又a 4+a 14=5,∴⎩⎪⎨⎪⎧ a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=32或q 10=23. 而a 20a 10=q 10,∴a 20a 10=23或32. 16.已知{a n }是等差数列,满足a 1=2,a 4=14,数列{b n }满足b 1=1,b 4=6,且{a n -b n }是等比数列.(1)求数列{a n }和{b n }的通项公式;(2)若任意n ∈N *,都有b n ≤b k 成立,求正整数k 的值.解(1)设{a n }的公差为d ,则d =a 4-a 13=4,所以a n =2+(n -1)×4=4n -2,故{a n }的通项公式为a n =4n -2(n ∈N *).设c n =a n -b n ,则{c n }为等比数列.c1=a1-b1=2-1=1,c4=a4-b4=14-6=8,=8,故q=2.设{c n}的公比为q,则q3=c4c1则c n=2n-1,即a n-b n=2n-1.所以b n=4n-2-2n-1(n∈N*).故{b n}的通项公式为b n=4n-2-2n-1(n∈N*).(2)由题意得,b k应为数列{b n}的最大项.由b n+1-b n=4(n+1)-2-2n-4n+2+2n-1=4-2n-1(n∈N*).当n<3时,b n+1-b n>0,b n<b n+1,即b1<b2<b3;当n=3时,b n+1-b n=0,即b3=b4;当n>3时,b n+1-b n<0,b n>b n+1,即b4>b5>b6>…所以k=3或k=4.。

4.3.2-对数的运算-课件-高一数学同步精讲课件(人教A版2019必修第一册)原创精品

4.3.2-对数的运算-课件-高一数学同步精讲课件(人教A版2019必修第一册)原创精品
方法总结:1.关注底数与真数幂的结构;
2.关注常用对数中的lg2+lg5=1.
252+53
2.求值:




+




.
1
1
510+ 50.36+ 58
2
3
解析:
252+53
1
1
510+ 50.36+ 58
2
3
512
=
512
=
3
;
log232=
5 .
(2)log33=
1 ;
log381=
4
;
log3243= 5 .
(3)log55=
1 ;
log5125= 3
;
log5625= 4 .
2 对数的性质
如果a>0,且a≠1,M>0,N>0,那么
loga(MN)=logaM +logaN
2 对数的性质
如果a>0,且a≠1,M>0,N>0,那么
是1.01365;而把(1-1%)365看作每天的“落后”率都是1%,一
年后是0.99365.
利用计算工具计算并回答下列问题:
(1)一年后进步的是落后的多少倍?
(2)大约经过多少天后“进步”的分别是“落后”的10倍、
100倍、1000倍?
答案:(1)约为1480.7倍
(2)115天、230天、345天
lg2
×
lg2
lg3
= 1 ;
2lg3
3lg2
5lg2
×
3lg3
(2)log89×log532×log275

函数性质之复合函数课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册

函数性质之复合函数课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册
又u 1,函数y 2u在1,上单调递增【换元】
【分区间判断内外函数单调性】
函数的单调减区间为 , 2,增区间为 2, +
【下结论】
例4:讨论函数f x a3x2 2x1 a 0且a 1的单调性
解:依题意可得函数的定义域为 R
令 u 3x2 2x 1,则 y au
∵ u 3x2 2x 1在[1 , ) 为增函数,在 (, 1) 为减函数
【方法归纳】
①已知f (x)的定义域为 [a,b],求f [g(x)]的定义 域:令a≤g(x)≤b解出即可
例1:(2)已知f (2x)的定义域为[1,2],则f (x)的定义
域为______. [2,4]
【方法归纳】 ②已知f [g(x)]的定义域为[a,b],求f (x) 的定义域: g(x)在[a,b]上的值域即为f (x)的定义域
f2
x
1 4
3x2
,
f3
x
1 4
23 x
y1 4x 在R上 ,y2 =3x 2在R上 f1 x 在R上为增函数
y1
1 4
Байду номын сангаасx
在R上
y1
1 4
x
在R上
,y2 =3x 2在R上 ,y2 =2 3x在R上
f2 x在R上为减函数 f3 x在R上为增函数
复合函数f [g(x)]单调性的判断方法:同增异减
②求内函数g(x)的值域,即u的取值范围
③结合外层函数f (u)的图象或单调性推导 出y的取值范围
复合函数问题的求解
①定义域,值域问题:灵活利用换元法解题, 将内函数看成一个整体
②解析式问题:常用方法——换元法,构造法。 注意:记得求函数的定义域

人教高中数学必修一A版《集合间的基本关系》集合与常用逻辑用语说课教学复习课件

人教高中数学必修一A版《集合间的基本关系》集合与常用逻辑用语说课教学复习课件

C.v≤120 km/h
D.d≥10 m
A [v 的最大值为 120 km/h,即 v≤120 km/h,车间距 d 不得小
于 10 m,即 d≥10 m,故选 A.]
栏目导航
3.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍还要 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
一、知识讲解
2.真子集与空集的含义
例如 在(1)中,A⊆B,但 4∈B ,且
如果集合 A⊆B,但存在元素 4∈A,所以集合 A 是集合 B 的真子
x∈B,且 x∈A,就称集合 A 是集合 集.
B 的真子集(proper subset),记作
A⫋B(或 B≠⊃ A).
例如 方程 x2+1=0 没有实数根,所以 方程 x2+1=0 的实数根组成的集合中没
课件 课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m,要求菜园的面积不小于216 m2,靠墙的一边长为x m.试用不 等式(组)表示其中的不等关系.
栏目导航
[解] 由于矩形菜园靠墙的一边长为x m,而墙长为18 m,所以
0<x≤18,课件 课件 课件
栏目导航
[解] 设该单位职工有 n 人(n∈N*),全票价为 x 元,坐甲车需花
y1 元,坐乙车需花 课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件

高一数学(指数函数性质习题课).ppt

高一数学(指数函数性质习题课).ppt

1 3
2 3
1 2
指数函数性质应用二
x x 1
解不等式
例1、 解关于x的不等式:
(1) 2 4 3 x 1 2 x 4 ( 2) a a (a 0, a 1) 当a 1时, {x / x 3};
(3) a 2a 5 a 2a 5
2 3x 2
练习: 1.若函数f ( x) 3 a (a 0, a 1)在1,2上 a 的最大值与最小值相差 , 求a的值。 2
x
1 1 2.已知0 x 2, 试求函数y 4 2 的最大值和最小值。 1 3.求函数y 2
x2 2 x
x
x-2
1
的值域。
1 例1:求函数 y 3
x
x 2 -2 x 3
的单调区间。
例2:求函数y 4 - 2 1的单调区间。
x 1
思考: x x 1 已知关于x的方程 4 2 m 0 有两个 实数根,求m的取值范围。
四 指数函数图像应用
探究:
画出下列函数的图象,并说明他们是由函 数f(x)=2x的图象经过怎样的变换得到的。
1y 2
x 1 x
; 2y 2 1; (3) y 2
x x
x例1 要使函数 y 2 m 的图象不经过第 二象限,则实数m的取值范围是________.
x 1
例2 若0<a<1,b<-1,则函数 f ( x ) a b 的图象 不经过第______象限.
x
y
y ax (0 a 1)

(0,1)
o
y=1
x

o
(0,1)

正切函数的定义及其诱导公式-高一数学课件(北师大版2019必修第二册)

正切函数的定义及其诱导公式-高一数学课件(北师大版2019必修第二册)
tan α+1
导入课题 新知探究 典例剖析 课堂小结
一,正切函数的定义
二,正切函数的诱导公式
1,求任意角的三角函数值的方法
根据定义,寻求角的终边与单位圆的交点P的坐标,然后利用定义得出
该角的正弦、余弦、正切值.
第一步,取点:在角α的终边上任取一点P(x,y)(P与原点不重合);
第二步,计算r:r=|OP|= 2 + 2 ;


=



− = − ,所以正切函数是奇函数.
= − ,即
导入课题 新知探究 典例剖析 课堂小结
二、正切函数的诱导公式
2,正切函数的诱导公式可由正弦函数、余弦函数相应的诱导公式得到:
( + ) = ( ∈ )
(−) = −
思考一:(1)已知角的终边上一点坐标为(-3,a),且为第二象限角,cos
3
=− ,则sin =________,tan =________.
5
(2)已知角 的终边上一点 3, 4 ≠ 0 ,求角 的正弦、余弦和正切值.
解:(2)因为 x=3a,y=4a,所以 r= (3a)2+(4a)2=5|a|,
tan θ= = = .
x 3a 3
导入课题 新知探究 典例剖析 课堂小结
思考探究:正切函数的诱导公式
119π
思考二:(1)求下列三角函数值:①tan(-1 200°);②tan 945°;③tan
.
6
cos − ∙sin
(2)已知 f(α)=

f(α).
教材P58例题
例1 求下列角α的正切函数值.

(1) = − ;
⑵ =

人教版高一数学必修第二册(A版)电子课本课件【全册】

人教版高一数学必修第二册(A版)电子课本课件【全册】
人教版高一数学必修第二册(A版) 电子课本课件【全册】目录
0002页 0083页 0183页 0244页 0274页 0309页 0392页 0469页 0547页 0567页 0614页 0650页
第六章 平面向量及其应用 6.2 平面向量的运算 6.4 平面向量的应用 7.1 复数的概念 7.3 * 复数的三角表示 8.1 基本立体图形 8.3 简单几何体的表面积与体积 8.5 空间直线、平面的平行 第九章 统计 9.2 用样本估计总体 第十章 概率 10.2 事件的相互独立性
人教版高一数学必修第二册(A版)电 子课本课件【全册】6.3 平面向量基本定理及 Nhomakorabea标表 示
人教版高一数学必修第二册(A版)电 子课本课件【全册】
6.4 平面向量的应用
7.2 复数的四则运算
人教版高一数学必修第二册(A版)电 子课本课件【全册】
人教版高一数学必修第二册(A版)电 子课本课件【全册】
第七章 复数
人教版高一数学必修第二册(A版)电 子课本课件【全册】
7.1 复数的概念
人教版高一数学必修第二册(A版)电 子课本课件【全册】
第六章 平面向量及其应用
人教版高一数学必修第二册(A版)电 子课本课件【全册】
6.1 平面向量的概念
人教版高一数学必修第二册(A版)电 子课本课件【全册】
6.2 平面向量的运算

人教版高一数学必修一同步练习

人教版高一数学必修一同步练习

人教版高一数学必修一同步练习(共59页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--集合的含义与表示课后作业· 练习案【基础过关】1.若集合A中只含一个元素1,则下列格式正确的是=A∈A∉A∈A 2.集合{A∈A∗|A−2<3}的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合{A∈A|A3=A},用列举法表示为{−1,0,l};②实数集可以表示为{A|A为所有实数}或{A};③方程组{A+A=3,A−A=−1的解集为{A=1,A=2}.个个个个4.直角坐标系中,坐标轴上点的集合可表示为A.{(A,A)|A=0,A≠0,或A≠0,A=0}B. {(A,A)|A=0且A=0}C.{(A,A)|AA=0}D.{(A,A)|A,A不同时为0}5.若集合A含有两个元素1,2,集合A含有两个元素1,A2,且A,A相等,则A=____.6.已知集合A={(A,A)|A=2A+1},A={(A,A)|A=A+3},A∈A且A∈A,则A为 .7.设方程AA2+2A+1=0(A∈R)的根组成的集合为A,若A只含有一个元素,求A的值.8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程A=|A|的所有x的值构成的集合B.【能力提升】集合A={A|A=2A,A∈A},A={A|A=2A+1,A∈A},A∈A,A∈A,设A=A+A,则A与集合A有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又A∈N∗,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.±√2【解析】由于P,Q相等,故A2=2,从而A=±√2.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组{A=2A+1,A=A+3,的解,解方程组,得{A=2,A=5,∴a为(2,5).7.A中只含有一个元素,即方程AA2+2A+1=0(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为A=-1;2(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为A1=A2=-1.∴a的值为0或1.【备注】误区警示:初学者易自然认为AA2+2A+1=0(a∈R)是一元二次方程,而漏掉对a的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设a=2k1,k1∈Z,b=2k2+1,k2∈Z,∴c=2k1+2k2+1=2(k1+k2)+1,又k1+k2∈Z∴c∈M.集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是A.a≤2 B.a≤1 C.a≥1 D.a≥22.设集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则=N⊆N⫌ M⫋3.已知集合A={1,−2,x2−1},B={1,x2−3x,0},若A=B,求实数x的值. 4.满足条件{1,2,3}⫋M⫋{1,2,3,4,5,6}的集合M的个数是5.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y>0},那么M与P的关系为 .6.含有三个实数的集合,既可表示成{a,ba,1},又可表示成{a2,a+b,0},则a2015+b2016= .7.设集合A={(x,y)|y=2x−1},B={(x,y)|y=x+3},求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N⫋M,求a的取值范围. 【能力提升】已知A={x||x−a|=4},B={1,2,b},是否存在实数a,使得对于任意实数b(b≠1,且b≠2),都有A⊆B若存在,求出对应的a的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵A⊆B,∴a≥22.D【解析】本题考查集合间的基本关系. M={x|x=2k+14,k∈Z}, N={x|x=k+24,k∈Z}={x|x=m4,m∈Z};而{x|x=2k+14,k∈Z}⫋{x|x=m4,m∈Z};即M⫋N.选D.3.由A=B,可得{x2-1=0x2-3x=-2,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C.5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得{a,ba,1}={a2,a+b,0},所以ba=0,即b=0;此时{a,0,1}={a2,a,0},所以a2=1,a=a,且a≠1,解得a=−1.所以a2015+b2016=−1+0=−1.7.{y=2x−1y=x+3,解得{x=4y=7;所以A∩B={(4,7)}.【解析】本题考查集合的基本运算.8.解:M={x | x2-2x-3=0}={3,-1};∵N⫋M,当N=时,N⫋M成立,N={x | x2+ax+1=0},∴a2-4<0, ∴-2<a<2;当N≠时,∵N ⫋M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -,N={3,},不满足N ⫋M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N ⫋M; ∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系.【能力提升】不存在.要使对任意的实数b 都有A ⊆B ,则1,2是A 中的元素,又∵A ={a -4,a +4},∴{a -4=1,a +4=2或{a +4=1,a -4=2.这两个方程组均无解,故这样的实数a 不存在.集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若A ⊆B ,A ⊆C ,B ={0,1,2,3,4},C ={0,2,4,8},则满足上述条件的集合A 的个数为2.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是∪B ∩B C.(∁U A )∩(∁U B ) D.(∁U A )∪(∁U B )3.若集合P={x ∈N |-1<x <3},Q={x|x=2a ,a ∈P },则P ∩Q=A.⌀B.{x|-2<x <6}C.{x|-1<x <3}D.{0,2} 310314.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P ∩Q={0,2}.4.B【解析】∁U M={x|-1≤x ≤1},结合数轴可得N ∩(∁U M )={x|0<x ≤1}.5.12【解析】设两项运动都喜爱的人数为x ,依据题意画出Venn 图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A ∩B={(x ,y )|{x +y =0x −y =2}={(1,-1)}. 7.因为A ={x |0<x -m <3},所以A ={x |m <x <m +3}.(1)当A ∩B =⌀时,需{m ≥0m +3≤3,故m =0.即满足A ∩B =⌀时,m 的值为0. (2)当A ∪B =B 时,A ⊆B ,需m ≥3,或m +3≤0,得m ≥3,或m ≤-3.即满足A ∪B =B 时,m 的取值范围为{m |m ≥3,或m ≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A ∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A ∪B=A ,所以B ⊆A ,故集合B 中至多有两个元素1,2.而方程x 2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有 ①当a-1=2,即a=3时,B={1,2},满足题意; ②当a-1=1,即a=2时,B={1},满足题意. 综上可知,a=2或a=3. (2)因为A ∩C=C ,所以C ⊆A.①当C=⌀时,方程x 2-x+2m=0无实数解,因此其根的判别式Δ=1-8m <0,即 m >18.②当C={1}(或C={2})时,方程x 2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=18,代入方程x 2-x+2m=0,解得x=12,显然m=18不符合要求.③当C={1,2}时,方程x 2-x+2m=0有两个不相等的实数解x 1=1,x 2=2,因此x 1+x 2=1+2≠1,x 1x 2=2=2m ,显然不符合要求.综上,m >18.函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( ) =√x=√x=1x=x 2+12.下列式子中不能表示函数y =f (x )的是 A.x =y 2+1B.y =2x 2+1C.x −2y =6D.x =√y3.函数y=√1−x 2+√x 2−1的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若f(x)满足f(a∙b)=f(a)+f(b),且f(2)=p,f(3)=q,则f(72)等于A.p+q B.3p+2q C.2p+3q D.p3+q25.若[a,3a−1]为一确定区间,则 a 的取值范围是 .6.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[f(3)]的值等于 .7.求下列函数的定义域.(1)y=√2x+1+√3−4x;(2)y=1|x+2|−1.8.已知f(x)=x1+x.(1)求f(2)+f(12),f(3)+f(13)的值;(2)求f(2)+f(3)+f(4)+⋯+f(2013)+f(12)+f(13)+f(14)+⋯+f(12013)的值.【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=√x 的值域为[0,+∞),y=1x的值域为(-∞,0)∪(0,+∞),y=x 2+1的值域为[1,+∞).故选B. 2.A【解析】一个x 对应的y 值不唯一. 3.D【解析】要使函数式有意义,需满足{1−x 2≥0x 2−1≥0,解得x=±1,故选D.4.B【解析】f (72)=f (8×9)=f (8)+f (9)=3f (2)+2f (3)=3p +2q . 5.(12,+∞)【解析】由题意3a -1>a ,则a >12.【备注】误区警示:本题易忽略区间概念而得出3a -1≥a ,则a ≥12的错误.6.2【解析】由图可知f (3)=1,∴f [f (3)]=f (1)=2.【备注】误区警示:本题在求解过程中会因不理解f [f (3)]的含义而出错. 7.(1)由已知得{2x +1≥0⇒x ≥-12,3-4x ≥0⇒x ≤34,∴函数的定义域为[−12,34].(2)由已知得:∵|x +2|-1≠0,∴|x +2|≠1, 得x ≠-3,x ≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞). 8.(1)f (2)+f (12)=21+2+121+12=23+13=1,f (3)+f (13)=31+3+131+13=34+14=1. (2)∵f(x)+f (1x)=x1+x+1x1+1x=x 1+x+1x +1=1,∴f (2)+f (3)+f (4)+⋯+f(2013)+f (12)+f (13)+f (14)+⋯+f (12013)=f (2)+f (12)+f (3)+f (13)+f (4)+f (14)+⋯+f (2013)+ f (12013)=1+1+1+⋯+1(共2012个1相加) =2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0; 令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0. (2)方法一 令a=b=2,得f(4)=f(2)+f(2)=2p, 令a=b=3,得f(9)=f(3)+f(3)=2q, 令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二 因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q.【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知y =f (x )是反比例函数,当x =2 时,y =1,则y =f (x ) 的函数关系式为 A.f (x )=1xB.f (x )=−1xC.f (x )=2xD.f (x )=−2x2.已知函数f (x )={2,x ∈[−1,1],x,x ∉[−1,1],若f [f (x )]=2,则x 的取值范围是A.∅B.[−1,1]C.(−∞,−1)∪(1.+∞)D.{2}∪[−1,1]3.已知函数f(x)={x +1,x ∈[−1,0]x 2+1,x ∈(0,1],则函数f(x)的图象是( )A. B. C. D.4.已知f (x )={3x +1,x ≥0,|x |,x <0,则f[f(−√2)]=C.3√2+1D.−3√2+15.已知函数f (2x +1)=3x +2,且f (a )=4,则a = . 6.已知函数f (x )对于任意实数x 满足条件f (x+2)=1f(x),若f (1)=-5,则f[f (5)]= .7.已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (x )=0,方程f (x )=x 有两个相等的实数根.求函数f (x )的解析式.8.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0) 左侧的图形的面积为f (t ),试求函数f (t ) 的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设f(x)=kx(k≠0),∵当x=2时,y=1,∴1=k2,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C 错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵f(-√2)=|-√2|=√2>0,∴f[f(-√2)]=f(√2)=3√2+1.【备注】无5.7 3【解析】f(2x+1)=3x+2=32(2x+1)+12,∴f(x)=32x+12,∴f(a)=32a+12=4,解得a=73 .6.-15【解析】由已知条件f (x+2)=1f(x)可得f (x+4)=1f(x+2)=f (x ),所以f (5)=f (1)=-5,所以f[f (5)]=f (-5)=f (-1)=1f(−1+2)=1f(1)=-15.7.∵f(x)=ax 2+bx ,且方程f (x )=x 有两个相等的实数根,∴∆=(b -1)2=0,∴b =1,又∵f (2)=0,∴4a +2=0,∴a =-12,∴f(x)=-12x 2+x .8.OB 所在的直线方程为y =√3x .当t ∈(0,1]时,由x =t ,求得y =√3t ,所以f (t )=√32t 2; 当t ∈(1,2]时,f (t )=√3-√32(2−t)2;当t ∈(2,+∞)时,f (t )=√3,所以{√32t 2,t ∈(0,1], √3-√32(2−t)2,t ∈(1,2],√3,t ∈(2,+∞).【能力提升】(1)由题意知y={(x +2)2,x ≥1x 2+2,x <1.(2)f (-3)=(-3)2+2=11, f (1)=(1+2)2=9.(3)若x ≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x 2+2=16,解得x=√14(舍去)或x=-√14.综上可得,x=2或x=-√14.单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数f(x)在区间(a,b)上是增函数,在区间(c,d)上也是增函数,则函数f(x)在区间(a,b)∪(c,d)上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A.y=1−2xB.y=−x2+2xC.y=5D.y=√x−13.函数f(x)={x+1,x≥0x−1,x<0,在R上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数f(x)=x2−2(1−a)x+1 在区间(−∞,2]上为减函数,则a 的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数f(x)=axx−1,若2f(2)=f(3)+5.(l)求a 的值.(2)利用单调性定义证明函数f(x)在区间(1,+∞)的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中y=√x-1的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得2×2a2−1=3×a3−1+5,解得a=2.(2)由(1)知f(x)=2xx−1.任取x 1,x 2∈(1,+∞)且x 1<x 2,f (x 1)<f (x 2)=2x 1x 1−1−2x 2x 2−1=2x 1(x 2−1)−2x 2(x 1−1)(x 1−1)(x 2−1)=2(x 2−x 1)(x1−1)(x 2−1),因为1<x 1<x 2,所以x 1-1>0,x 2-1>0,x 2-x 1>0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 所以f (x )在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令t (x )=y x=12x +80 000x-200,可以证明t (x )在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元. (2)设该单位每月获利为S ,则S =100x -y =100x -(12x 2-200x +80 000)=−12x 2+300x -80 000=−12(x -300)2-35 000.因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,12];单调减区间为(-∞,0)和(12,+∞).(2)观察图象可知,函数没有最大值和最小值.奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设f (x ) 在[-2,-1]上为减函数,最小值为3,且f (x ) 为偶函数,则f (x ) 在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数y =f (x ) 是偶函数,其图象与x 轴有四个交点,则方程f (x )=0 的所有实根之和是3.函数y =f(x)是奇函数,图象上有一点为(a ,f(a)),则图象必过点A. (a ,f(−a))B. (−a ,f(a))C. (−a ,−f(a))D. (a ,1f(a)))4.设f (x )=ax 3+bx −5,其中a ,b 为常数,若f (−3)=7,则f (3)的值为5.已知定义在R 上的奇函数f (x ),当x >0 时,f (x )=x 2+|x |−1,那么x <0 时,f (x )= . 6.若函数f (x )=x+abx+1为区间[-1,1]上的奇函数,则a = ;b = .7.作出函数y =|x −2|(x +1)的图象,并根据函数的图象找出函数的单调区间. 8.已知函数f (x )=ax 3+bx 2+cx +d 是定义在R 上的偶函数,且当x ∈[1,2]时,该函数的值域为[−2,1],求函数f (x )的解析式.【能力提升】已知函数f (x )=-12x 2+x ,是否存在实数m ,n (m <n ),使得当x ∈[m ,n ]时,函数的值域恰为[2m ,2n ]若存在,求出m ,n 的值;若不存在,说明理由.答案【基础过关】1.D 2.D 3.C【解析】奇函数f (x )满足f (-x )=-f (x),故有f (-a )=-f (a ).因为函数f (x )是奇函数,故点(a ,f (a ))关于原点的对称点(-a ,-f (a ))也在y =f (x )上,故选C. 4.D【解析】∵f(-3)=a(-3)3−3b -5=7, ∴27a +3b =-12, ∴f (3)=27a +3b -5=-17. 5.-x 2-|x |+1 6.0 07.当x -2≥0,即x ≥2时,y =(x -2)(x +1)=x 2-x -2=(x −12)2−94;当x -2<0,即x <2时,y =-(x -2)(x +1)=-x 2+x +2=−(x −12)2+94.所以y ={(x −12)2−94,x ≥2.−(x −12)2+94,x <2.这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中(−∞,12],[2,+∞)是函数的单调增区间;(12,2)是函数的单调减区间.8.由f (x )为偶函数可知f (x )=f (-x ),即ax 3+bx 2+cx +d =-ax 3+bx 2-cx +d ,可得ax 3+cx =0恒成立,所以a =c =0,故f(x)=bx 2+d .当b =0时,由题意知不合题意;当b >0,x ∈[1,2]时f (x )单调递增,又f (x )值域为[-2,1],所以{f(1)=-2,f (2)=1⟹ {b +d =-2,4b +d =1⟹{b =1, d =−3;当b <0时,同理可得{f (1)=1,f (2)=−2⟹ {b +d =1, 4b +d =-2⟹{b =−1,d =2.所以f(x)=x 2-3或f (x )=−x 2+2.【能力提升】假设存在实数m ,n ,使得当x ∈[m ,n ]时,y ∈[2m ,2n ],则在[m ,n ]上函数的最大值为2n .而f (x )=-12x 2+x =-12(x-1)2+12在x ∈R 上的最大值为12,∴2n ≤12,∴n ≤14.而f (x )在(-∞,1)上是增函数,∴f (x )在[m ,n ]上是增函数,∴{f(m)=2mf(n)=2n,即{−12m 2+m =2m −12n 2+n =2n.结合m <n ≤14,解得m =-2,n =0.∴存在实数m =-2,n =0,使得当x ∈[-2,0]时,f (x )的值域为[-4,0].指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简√−x 3x的结果为A.−√−xB.√x√x D.√−x2.计算[(−√2)−2]−12的结果是A.√2B.−√2C.√22D.−√223.设13<(13)b <(13)a <1,则有 A.a a <a b <b a B. a a <b a <a b C. a b <a a <b aD. a b <b a <a a4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)√a n n=a(a≥0);(3)(a b)5=a 5b15; (4)√(−3)26=(-3)13.5.若10m =2,10n=4,则102m−n 2=.6.已知x=12(2 0131n -2 013−1n ),n ∈N *,则(x+√1+x 2)n 的值为 .7.化简下列各式: (1)(√a 23·√a )÷√a 6;(2)(a 23b 12)·(-3a 12b13)÷(13a 16b56).8.求下列各式的值:(1)2532;(2)(254)−32;(3)√259+(2764)−13-π0.【能力提升】已知x12+x−12=3,求下列各式的值:(1)x+x -1;(2)x 32+x −32+2x 2+x −2+3.答案【基础过关】1.A【解析】要使式子有意义,需-x 3>0,故x <0,所以原式=-√-x . 2.A【解析】本题考查指数运算.注意先算中括号内的部分。

2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)

2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)

2021-2022学年度人教版高一数学必修一各章节同步练习(含答案)第一章 1.1 1.1.1集合的含义与表示基础巩固一、选择题1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是( )A .②B .③C .②③D .①②③[答案] C[解析] 高一数学中的难题的标准不确定,因而构不成集合,而正三角形标准明确,能构成集合,方程x 2-2=0的解也是确定的,能构成集合,故选C.2.已知集合A ={x |x ≤10},a =2+3,则a 与集合A 的关系是( ) A .a ∈A B .a ∉A C .a =A D .{a }∈A[答案] A[解析] 由于2+3<10,所以a ∈A .3.(2015·山东临沂检测)集合{x ∈N *|x -2<3}的另一种表示形式是( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{0,1,2,3,4,5} D .{1,2,3,4,5}[答案] B[解析] 由x -2<3,得x <5,又x ∈N *,所以x =1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.4.方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27的解集是( )A.⎩⎪⎨⎪⎧x =3y =-7B .{x ,y |x =3且y =-7}C .{3,-7}D .{(x ,y )|x =3且y =-7} [答案] D[解析] 解方程组⎩⎪⎨⎪⎧3x +y =22x -3y =27得⎩⎪⎨⎪⎧x =3y =-7,用描述法表示为{(x ,y )|x =3且y =-7},用列举法表示为{(3,-7)},故选D. 5.已知集合S ={a ,b ,c }中的三个元素是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形[答案] D[解析] 由集合中元素的互异性知a ,b ,c 互不相等,故选D.6.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3[答案] B[解析] 因为2∈A ,所以m =2或m 2-3m +2=2,解得m =0或m =2或m =3.又集合中的元素要满足互异性,对m 的所有取值进行一一检验可得m =3,故选B.二、填空题7.用符号∈与∉填空:(1)0________N *;3________Z ; 0________N ;(-1)0________N *; 3+2________Q ;43________Q .(2)3________{2,3};3________{(2,3)}; (2,3)________{(2,3)};(3,2)________{(2,3)}. (3)若a 2=3,则a ________R ,若a 2=-1,则a ________R . [答案] (1)∉ ∉ ∈ ∈ ∉ ∈ (2)∈ ∉ ∈ ∉ (3)∈ ∉[解析] (1)只要熟记常用数集的记号所对应的含义就很容易辨别.(2)中3是集合{2,3}的元素;但整数3不是点集{(2,3)}的元素;同样(2,3)是集合{(2,3)}的元素;因为坐标顺序不同,(3,2)不是集合{(2,3)}的元素.(3)平方等于3的数是±3,当然是实数,而平方等于-1的实数是不存在的.8.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,ba,b ,则b -a =________.[答案] 2[解析] 显然a ≠0,则a +b =0,a =-b ,b a=-1,所以a =-1,b =1,b -a =2. 三、解答题9.已知集合A 含有a -2,2a 2+5a,12三个元素,且-3∈A ,求a 的值. [解析] ∵-3∈A ,则-3=a -2或-3=2a 2+5a , ∴a =-1或a =-32.当a =-1时,a -2=-3,2a 2+5a =-3,不满足集合中元素的互异性,∴a =-1舍去. 当a =-32时,经检验,符合题意.故a =-32.[注意] (1)分类讨论意识的建立.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识,如本例按照元素-3与a -2,2a 2+5a,12的关系分类 ,即可做到不重不漏.(2)注意集合中元素的互异性.求解与集合有关的字母参数时,需利用集合元素的互异性来检验所求参数是否符合要求,如本例在求出a 的值后,需代入验证是否满足集合中元素的互异性.10.已知集合A ={x |ax 2-3x +2=0}. (1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.[分析] 将求集合中元素问题转化为方程根问题.(1)集合A 为单元素集合,说明方程有唯一根或两个相等的实数根.要注意方程ax 2-3x +2=0可能不是一元二次方程.(2)至少有一个元素,说明方程有一根或两根.[解析] (1)因为集合A 是方程ax 2-3x +2=0的解集,则当a =0时,A ={23},符合题意;当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根, 则Δ=9-8a =0,解得a =98,此时A ={43},符合题意.综上所述,当a =0时,A ={23},当a =98时,A ={43}.(2)由(1)可知,当a =0时,A ={23}符合题意;当a ≠0时,要使方程ax 2-3x +2=0有实数根, 则Δ=9-8a ≥0,解得a ≤98且a ≠0.综上所述,若集合A 中至少有一个元素,则a ≤98.[点评] “a =0”这种情况容易被忽视,如“方程ax 2+2x +1=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在这种情况下,才能用判别式“Δ”来解决.能力提升一、选择题1.(2015·河北衡水中学期末)下列集合中,不同于另外三个集合的是( ) A .{x |x =1} B .{x |x 2=1} C .{1} D .{y |(y -1)2=0}[答案] B[解析] {x |x 2=1}={-1,1},另外三个集合都是{1},选B.2.下列六种表示法:①{x =-1,y =2};②{(x ,y )|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y )|x =-1或y =2}.能表示方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥[答案] C[解析] 方程组⎩⎪⎨⎪⎧2x +y =0,x -y +3=0的解是⎩⎪⎨⎪⎧x =-1,y =2.故选C.3.已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .0∉MB .2∈MC .-4∉MD .4∈M[答案] D[解析] 当x >0,y >0,z >0时,代数式的值为4,所以4∈M ,故选D.4.设A ,B 为两个实数集,定义集合A +B ={x |x 1+x 2,x 1∈A ,x 2∈B },若A ={1,2,3},B ={2,3},则集合A +B 中元素的个数为( )A .3B .4C .5D .6[答案] B[解析] 当x 1=1时,x 1+x 2=1+2=3或x 1+x 2=1+3=4;当x 1=2时,x 1+x 2=2+2=4或x 1+x 2=2+3=5;当x 1=3时,x 1+x 2=3+2=5或x 1+x 2=3+3=6.∴A +B ={3,4,5,6},共4个元素.二、填空题5.已知P ={x |2<x <k ,x ∈N ,k ∈R },若集合P 中恰有3个元素,则实数k 的取值范围是________.[答案] {k |5<k ≤6}[解析] x 只能取3,4,5,故5<k ≤6.6.(2015·湖南郴州模拟)用列举法写出集合{33-x ∈Z |x ∈Z }=________.[答案] {-3,-1,1,3} [解析] ∵33-x∈Z ,x ∈Z , ∴3-x 为3的因数. ∴3-x =±1,或3-x =±3. ∴33-x =±3,或33-x=±1. ∴-3,-1,1,3满足题意. 三、解答题7.数集A 满足条件:若a ∈A ,则1+a 1-a ∈A (a ≠1).若13∈A ,求集合中的其他元素.[分析] 已知a ∈A ,1+a 1-a ∈A ,将a =13代入1+a1-a 即可求得集合中的另一个元素,依次,可得集合中的其他元素.[解析] ∵13∈A ,∴1+131-13=2∈A ,∴1+21-2=-3∈A ,∴1-31+3=-12∈A ,∴1-121+12=13∈A . 故当13∈A 时,集合中的其他元素为2,-3,-12.8.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.[解析] (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a,即a =±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.第一章 1.1 1.1.2集合间的基本关系基础巩固一、选择题1.对于集合A ,B ,“A ⊆B ”不成立的含义是( ) A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A [答案] C[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.2.下列命题中,正确的有( ) ①空集是任何集合的真子集;②若A B ,BC ,则A C ;③任何一个集合必有两个或两个以上的真子集;④如果不属于B 的元素也不属于A ,则A ⊆B .A .①②B .②③C .②④D .③④[答案] C[解析] ①空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.3.已知集合A ={x |x 是三角形},B ={x |x 是等腰三角形},C ={x |x 是等腰直角三角形},D ={x |x 是等边三角形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D[答案] B[解析] ∵正方形必为矩形,∴C ⊆B . 4.下列四个集合中,是空集的是( ) A .{0}B .{x |x >8,且x <5}C .{x ∈N |x 2-1=0} D .{x |x >4}[答案] B[解析] 选项A 、C 、D 都含有元素.而选项B 无元素,故选B.5.若集合A ⊆{1,2,3},且A 中至少含有一个奇数,则这样的集合A 有( )A.3个B.4个C.5个D.6个[答案] D[解析] 集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.6.设集合A={x|1<x<2},B={x|x<a},若A B,则实数a的取值范围为( )A.a≥2B.a≤1C.a≥1D.a≤2[答案] A[解析] 在数轴上表示出两个集合(图略),因为A B,所以a≥2.二、填空题7.用适当的符号填空:(1){x|x是菱形}________{x|x是平行四边形};{x|x是三角形}________{x|x是斜三角形}.(2)Z________{x∈R|x2+2=0};0________{0};Ø________{0};N________{0}.[答案] (1)(2)∈[解析] (1)判断两个集合之间的关系,可以根据子集的定义来加以判断,特别要注意判断出包含关系后,还要进一步判断是否具有真包含关系.(2)集合{x∈R|x2+2=0}中,由于实数范围内该方程无解,因此{x∈R|x2+2=0}=Ø;0是集合{0}中的元素,它们之间是属于关系;{0}是含有一个元素0的集合;Ø是不含任何元素的集合,故Ø{0};自然数集N 中含有元素0,但不止0这一个元素.8.(2012·大纲全国改编)已知集合A={1,2,m3},B={1,m},B⊆A,则m=________.[答案] 0或2或-1[解析] 由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m=0或2或-1.三、解答题9.判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤x<3},B={x|x=|y|,y∈A}.[解析] (1)∵A={x|x-3>2}={x|x>5},B ={x |2x -5≥0}={x |x ≥52},∴利用数轴判断A 、B 的关系. 如图所示,AB .(2)∵A ={x ∈Z |-1≤x <3}={-1,0,1,2},B ={x |x =|y |,y ∈A ,∴B ={0,1,2},∴BA .10.已知集合M ={x |x =m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z },P ={x |x =p 2+16,p ∈Z },试确定M ,N ,P 之间的关系.[解析] 解法一:集合M ={x |x =m +16,m ∈Z },对于集合N ,当n 是偶数时,设n =2t (t ∈Z ), 则N ={x |x =t -13,t ∈Z };当n 是奇数时,设n =2t +1(t ∈Z ),则N ={x |x =2t +12-13,t ∈Z }={x |x =t +16,t ∈Z }.观察集合M ,N 可知M N .对于集合P ,当p 是偶数时,设p =2s (s ∈Z ),则P ={x |x =s +16,s ∈Z },当p 是奇数时,设p =2s -1(s ∈Z ),则P ={x |x =2s -12+16,s ∈Z } ={x |x =s -13,s ∈Z }.观察集合N ,P 知N =P . 综上可得:MN =P .解法二:∵M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }={x |x =3×2m +16,m ∈Z },N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }={x |x =3n -1+16,n -1∈Z },P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z },比较3×2m +1,3(n -1)+1与3p +1可知,3(n -1)+1与3p +1表示的数完全相同, ∴N =P,3×2m +1只相当于3p +1中当p 为偶数时的情形, ∴MP =N .综上可知M P =N .能力提升一、选择题1.(2015·瓮安一中高一期末试题)设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k∈Z },则( )A .M =NB .M NC .M ND .M 与N 的关系不确定[答案] B[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得M ={…-34,-14,14,34,54…}, N ={…0,14,12,34,1…},∴MN ,故选B.解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整数,则k +m (m 是一个整数)也是任意整数,而2k +1,2k -1均为任意奇数,2k 为任意偶数.2.(2015·湖北孝感期中)集合A ={(x ,y )|y =x }和B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5,则下列结论中正确的是( )A .1∈AB .B ⊆AC .(1,1)⊆BD .Ø∈A[答案] B[解析] B =⎩⎨⎧⎭⎬⎫x ,y |⎩⎪⎨⎪⎧2x -y =1x +4y =5={(1,1)},故选B. 3.已知集合A ={1,2},B ={x |ax -2=0},若B ⊆A ,则a 的值不可能是( ) A .0B .1C .2D .3[答案] D[解析] 由题意知,a =0时,B =Ø,满足题意;a ≠0时,由2a∈A ⇒a =1,2,所以a 的值不可能是3.4.集合P ={3,4,5},Q ={6,7},定义P *Q ={(a ,b )|a ∈P ,b ∈Q },则P *Q 的子集个数为( )A .7B .12C .32D .64[答案] D[解析] 集合P *Q 的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P *Q 的子集个数为26=64.二、填空题5.已知集合M ={x |2m <x <m +1},且M =Ø,则实数m 的取值范围是________. [答案] m ≥1[解析] ∵M =Ø,∴2m ≥m +1,∴m ≥1.6.集合⎩⎨⎧x ,y ⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =-x +2,y =12x +2⊆{(x ,y )|y =3x +b },则b =________.[答案] 2[解析] 解方程组⎩⎪⎨⎪⎧y =-x +2y =12x +2得⎩⎪⎨⎪⎧x =0y =2,代入y =3x +b 得b =2. 三、解答题7.设集合A ={-1,1},集合B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求实数a 、b 的值.[解析] ∵B 中元素是关于x 的方程x 2-2ax +b =0的根,且B ⊆{-1,1},∴关于x 的方程x 2-2ax +b =0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B ={x |x 2-2ax +b =0}⊆A ={-1,1},且B ≠Ø, ∴B ={-1}或B ={1}或B ={-1,1}. 当B ={-1}时,Δ=4a 2-4b =0且1+2a +b =0,解得a =-1,b =1. 当B ={1}时,Δ=4a 2-4b =0且1-2a +b =0,解得a =b =1. 当B ={-1,1}时,有(-1)+1=2a ,(-1)×1=b , 解得a =0,b =-1.8.设集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若B ⊆A ,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. [解析] (1)当m +1>2m -1,即m <2时,B =Ø,满足B ⊆A . 当m +1≤2m -1,即m ≥2时,要使B ⊆A 成立,只需⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,即2≤m ≤3.综上,当B ⊆A 时,m 的取值范围是{m |m ≤3}. (2)当x ∈Z 时,A ={-2,-1,0,1,2,3,4,5}, ∴集合A 的非空真子集个数为28-2=254. (3)∵x ∈R ,且A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},又不存在元素x 使x ∈A 与x ∈B 同时成立, ∴当B =Ø,即m +1>2m -1,得m <2时,符合题意; 当B ≠Q ,即m +1≤2m -1,得m ≥2时,⎩⎪⎨⎪⎧m ≥2,m +1>5,或⎩⎪⎨⎪⎧m ≥2,2m -1<-2,解得m >4.综上,所求m 的取值范围是{m |m <2或m >4}.第一章 1.1 1.1.3 第一课时并集和交集基础巩固一、选择题1.下面四个结论:①若a ∈(A ∪B ),则a ∈A ;②若a ∈(A ∩B ),则a ∈(A ∪B );③若a ∈A ,且a ∈B ,则a ∈(A ∩B );④若A ∪B =A ,则A ∩B =B .其中正确的个数为( )A .1B .2C.3 D.4[答案] C[解析] ①不正确,②③④正确,故选C.2.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=( )A.{x|x>-3} B.{x|-3<x≤5}C.{x|3<x≤5}D.{x|x≤5}[答案] A[解析] 在数轴上表示集合M,N,如图所示,则M∪N={x|x>-3}.3.(2015·全国高考卷Ⅰ文科,1题)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2[答案] D[解析] A∩B={8,14},故选D.4.(2015·浙江省期中试题)集合A={1,2},B={1,2,3},C={2,3,4},则(A∩B)∪C=( )A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案] D[解析] A∩B={1,2},(A∩B)∪C={1,2,3,4},故选D.5.若A∪B=Ø,则( )A.A=Ø,B≠ØB.A≠Ø,B=ØC.A=Ø,B=ØD.A≠Ø,B≠Ø[答案] C6.设集合A={x|-1≤x≤2},集合B={x|x≤a},若A∩B=Ø,则实数a的取值集合为( )A.{a|a<2} B.{a|a≥-1}C.{a|a<-1} D.{a|-1≤a≤2}[答案] C[解析] 如图.要使A ∩B =Ø,应有a <-1. 二、填空题7.若集合A ={2,4,x },B ={2,x 2},且A ∪B ={2,4,x },则x =________. [答案] 0,1或-2[解析] 由已知得B ⊆A ,∴x 2=4或x 2=x ,∴x =0,1,±2,由元素的互异性知x ≠2,∴x =0,1或-2.8.已知集合A ={x |x ≥5},集合B ={x |x ≤m },且A ∩B ={x |5≤x ≤6},则实数m =________.[答案] 6[解析] 用数轴表示集合A 、B 如图所示.由于A ∩B ={x |5≤x ≤6},得m =6.三、解答题9.设集合A ={a 2,a +1,-3},B ={a -3,2a -1,a 2+1},A ∩B ={-3},求实数a 的值.[解析] ∵A ∩B ={-3},∴-3∈B . ∵a 2+1≠-3,∴①若a -3=-3,则a =0, 此时A ={0,1,-3},B ={-3,-1,1}, 但由于A ∩B ={1,-3}与已知A ∩B ={-3}矛盾, ∴a ≠0.②若2a -1=-3,则a =-1,此时A ={1,0,-3},B ={-4,-3,2},A ∩B ={-3}. 综上可知a =-1.10.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. [解析] (1)∵B ={x |x ≥2},A ={x |-1≤x <3}, ∴A ∩B ={x |2≤x <3}.(2)∵C ={x |x >-a2},B ∪C =C ⇔B ⊆C ,∴-a2<2,∴a >-4.能力提升一、选择题1.已知集合M ={-1,0,1},N ={x |x =ab ,a ,b ∈M 且a ≠b },则M ∪N =( ) A .{0,1} B .{-1,0} C .{-1,0,1} D .{-1,1}[答案] C[解析] 由题意可知,集合N ={-1,0},所以M ∪N =M .2.若集合M ={(x ,y )|x +y =0},P ={(x ,y )|x -y =2},则M ∩P 等于( ) A .(1,-1) B .{x =1或y =-1} C .{1,-1} D .{(1,-1)}[答案] D[解析] M ∩P 的元素是方程组⎩⎪⎨⎪⎧x +y =0x -y =2的解∴M ∩P ={(1,-1)}.3.(2015·衡水高一检测)若集合A ,B ,C 满足A ∩B =A ,B ∪C =C ,则A 与C 之间的关系为( )A .C AB .AC C .C ⊆AD .A ⊆C[答案] D[解析] ∵A ∩B =A ,∴A ⊆B ,又B ∪C =C ,∴B ⊆C ,∴A ⊆C ,故选D.4.当x ∈A 时,若x -1∉A ,且x +1∉A ,则称x 为A 的一个“孤立元素”,由A 的所有孤立元素组成的集合称为A 的“孤星集”,若集合M ={0,1,3}的孤星集为M ′,集合N ={0,3,4}的孤星集为N ′,则M ′∪N ′=( )A .{0,1,3,4}B .{1,4}C .{1,3}D .{0,3}[答案] D[解析] 由条件及孤星集的定义知,M ′={3},N ′={0},则M ′∪N ′={0,3}. 二、填空题5.以下四个推理:①a ∈(A ∪B )⇒a ∈A ;②a ∈(A ∩B )⇒a ∈(A ∪B );③A ⊆A ⇒A ∪B =B ;④A ∪B =A ⇒A ∩B =B .其中正确的为________.[答案] ②③④[解析] ①是错误的,a ∈(A ∪B )时可推出a ∈A 或a ∈B ,不一定推出a ∈A .6.已知集合A ={x |x 2+px +q =0},B ={x |x 2-px -2q =0},且A ∩B ={-1},则A ∪B =________.[答案] {-2,-1,4}[解析] 因为A ∩B ={-1},所以-1∈A ,-1∈B ,即-1是方程x 2+px +q =0和x 2-px -2q =0的解,所以⎩⎪⎨⎪⎧-12-p +q =0,-12+p -2q =0,解得⎩⎪⎨⎪⎧p =3,q =2,所以A ={-1,-2},B ={-1,4}, 所以A ∪B ={-2,-1,4}. 三、解答题7.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},A ∪B =R ,求a 的取值范围. [解析] ∵B ={x |x <-1或x >5},A ∪B =R ,∴⎩⎪⎨⎪⎧2a <-1,a +8≥5,解得-3≤a <-12.8.设A ={x |x 2+8x =0},B ={x |x 2+2(a +2)x +a 2-4=0},其中a ∈R .如果A ∩B =B ,求实数a 的取值范围.[解析] ∵A ={x }x 2+8x =0}={0,-8},A ∩B =B ,∴B ⊆A . 当B =Ø时,方程x 2+2(a +2)x +a 2-4=0无解, 即Δ=4(a +2)2-4(a 2-4)<0,得a <-2. 当B ={0}或{-8}时,这时方程的判别式Δ=4(a +2)2-4(a 2-4)=0,得a =-2.将a =-2代入方程,解得x =0,∴B ={0}满足.当B ={0,-8}时,⎩⎪⎨⎪⎧Δ>0,-2a +2=-8,a 2-4=0,可得a =2.综上可得a =2或a ≤-2.[点评] (1)当集合B ⊆A 时,如果集合A 是一个确定的集合,而集合B 不确定,运算时,要考虑B =Ø的情形,切不可漏掉.(2)利用集合运算性质化简集合,有利于准确了解集合之间的关系.第一章 1.1 1.1.3 第二课时补集基础巩固一、选择题1.(2015·重庆三峡名校联盟)设全集I={1,2,3,4,5},集合A={2,3,5},集合B={1,2},则(∁I B)∩A为( )A.{2} B.{3,5}C.{1,3,4,5} D.{3,4,5}[答案] B[解析] 因为全集I={1,2,3,4,5},集合B={1,2},则∁I B={3,4,5}.所以(∁I B)∩A为{3,5}.故选B.[易错警示] 本小题的关键是先求出集合B的补集,再求交集.集合的运算是集合关系的基础知识,要理解清楚,可能渗透在一个大题中,不熟练会导致整体看不懂或理解错误.2.设全集U={1,2,3,4,5},A={1,3,5},则∁U A的所有非空子集的个数为( )A.4 B.3C.2 D.1[答案] B[解析] ∵∁U A={2,4},∴非空子集有22-1=3个,故选B.3.若P={x|x<1},Q={x|x>-1},则( )A.P⊆Q B.Q⊆PC.(∁R P)⊆Q D.Q⊆∁R P[答案] C[解析] ∵P={x|x<1},∴∁R P={x|x≥1}.又Q={x|x>-1},∴(∁R P)⊆Q,故选C.4.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( )A.M∪N B.M∩NC.(∁U M)∪(∁U M) D.(∁U M)∩(∁U N)[答案] D[解析] ∵M∪N={1,2,3,4},∴(∁U M)∩(∁U N)=∁U(M∪N)={5,6},故选D.5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∪(∁U B)等于( )A.{x|-2≤x≤4}B.{x|x≤3,或x≥4}C.{x|-2≤x<-1}D.{x|-1≤x≤3}[答案] A[解析] 由题意可得∁U B={x|-1≤x≤4},A={x|-2≤x≤3},所以A∪(∁U B)={x|-2≤x≤4},故选A.6.已知集合A={x|x<a},B={x|x<2},且A∪(∁R B)=R,则a满足( )A .a ≥2B .a >2C .a <2D .a ≤2[答案] A[解析] ∁R B ={x |x ≥2},则由A ∪(∁R B )=R 得a ≥2,故选A. 二、填空题7.已知集合A ={3,4,m },集合B ={3,4},若∁A B ={5},则实数m =________. [答案] 58.U =R ,A ={x |-2<x ≤1或x >3},B ={x |x ≥4},则∁U A =________,∁A B =________. [答案] {x |x ≤-2或1<x ≤3} {x |-2<x ≤1或3<x <4} 三、解答题9.已知全集U ={2,3,a 2-2a -3},A ={2,|a -7|},∁U A ={5},求a 的值. [解析] 解法1:由|a -7|=3,得a =4或a =10.当a =4时,a 2-2a -3=5,当a =10时,a 2-2a -3=77∉U ,∴a =4.解法2:由A ∪∁U A =U 知⎩⎪⎨⎪⎧|a -7|=3a 2-2a -3=5,∴a =4.10.(2015·唐山一中月考试题)已知全集U ={x |x ≤4},集合A ={x |-2<x <3},B ={x |-3≤x ≤2},求A ∩B ,(∁U A )∪B ,A ∩(∁U B ).[分析] 利用数轴,分别表示出全集U 及集合A ,B ,先求出∁U A 及∁U B ,然后求解. [解析] 如图所示,∵A ={x |-2<x <3},B ={x |-3≤x ≤2}, ∴∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. ∴A ∩B ={x |-2<x ≤2}, (∁U A )∪B ={x |x ≤2或3≤x ≤4},A ∩(∁UB )={x |2<x <3}.[点评] (1)数轴与Venn 图有同样的直观功效,在数轴上可以直观地表示数集,所以进行数集的交、并、补运算时,经常借助数轴求解.(2)不等式中的等号在补集中能否取到要引起重视,还要注意补集是全集的子集.能力提升一、选择题1.如图,阴影部分用集合A 、B 、U 表示为( )A.(∁U A)∩B B.(∁U A)∪(∁U B)C.A∩(∁U B) D.A∪(∁U B)[答案] C[解析] 阴影部分在A中,不在B中,故既在A中也在∁U B中,因此是A与∁U B的公共部分.2.设S为全集,则下列说法中,错误的个数是( )①若A∩B=Ø,则(∁S A)∪(∁S B)=S;②若A∪B=S,则(∁S A)∩(∁S B)=Ø;③若A∪B=Ø,则A=B.A.0 B.1C.2 D.3[答案] A[解析] 借助文氏图可知,①②正确,对于③于由A∪B=Ø,∴A=Ø,B=Ø,∴A=B,故选A.3.设全集U={1,2,3,4,5},集合S与T都是U的子集,满足S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5}则有( )A.3∈S,3∈T B.3∈S,3∈∁U TC.3∈∁U S,3∈T D.3∈∁U S,3∈∁U T[答案] B[解析] 若3∈S,3∈T,则3∈S∩T,排除A;若3∈∁U S,3∈T,则3∈(∁U S)∩T,排除C;若3∈∁U S,3∈∁U T,则3∈(∁U S)∩(∁U T),排除D,∴选B,也可画图表示.4.(2008·北京)已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(∁U B)等于( )A.{x|-2≤x<4} B.{x|x≤3或x≥4}C.{x|-2≤x<-1} D.{x|-1≤x≤3}[答案] D[解析] ∁U B={x|-1≤x≤4},A∩∁U B={x|-1≤x≤3},故选D.二、填空题5.已知全集为R ,集合M ={x ∈R |-2<x <2},P ={x |x ≥a },并且M ⊆∁R P ,则a 的取值范围是________.[答案] a ≥2[解析] M ={x |-2<x <2},∁R P ={x |x <a }. ∵M ⊆∁R P ,∴由数轴知a ≥2.6.已知U =R ,A ={x |a ≤x ≤b },∁U A ={x |x <3或x >4},则ab =________. [答案] 12[解析] ∵A ∪(∁U A )=R ,∴a =3,b =4,∴ab =12. 三、解答题7.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁U A )∩B ={2},A ∩(∁UB )={4},U =R ,求实数a ,b 的值.[提示] 由2∈B,4∈A ,列方程组求解.[解析] ∵(∁U A )∩B ={2},∴2∈B ,∴4-2a +b =0.① 又∵A ∩(∁U B )={4},∴4∈A ,∴16+4a +12b =0.②联立①②,得⎩⎪⎨⎪⎧4-2a +b =0,16+4a +12b =0,解得⎩⎪⎨⎪⎧a =87,b =-127.经检验,符合题意:∴a =87,b =-127.[点评] 由题目中所给的集合之间的关系,通过分析得出元素与集合之间的关系,是解决此类问题的关键.8.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B ⊆∁R A ,求a 的取值范围.[分析] 本题从条件B ⊆∁R A 分析可先求出∁R A ,再结合B ⊆∁R A 列出关于a 的不等式组求a 的取值范围.[解析] 由题意得∁R A ={x |x ≥-1}.(1)若B =Ø,则a +3≤2a ,即a ≥3,满足B ⊆∁R A . (2)若B ≠Ø,则由B ⊆∁R A ,得2a ≥-1且2a <a +3, 即-12≤a <3.综上可得a ≥-12.第一章 1.1 1.1.3第三课时习题课基础巩固一、选择题1.(2015·全国高考卷Ⅱ文科,1题)已知集合A={x|-1<x<2},B={x|0<x<3},则A∩B =( )A.{x|-1<x<3} B.{x|-1<x<0}C.{x|0<x<2} D.{x|2<x<3}[答案] A[解析] A∪B={x|-1<x<3},故选A.2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)等于( )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[答案] B[解析] 画出数轴,如图所示,∁U B={x|x≤1},则A∩∁U B={x|0<x≤1},故选B.3.图中阴影部分所表示的集合是( )A.B∩(∁U(A∪C))B.(A∪B)∪(B∪C)C.(A∪C)∩(∁U B)D.[∁U(A∩C)]∪B[答案] A[解析] 阴影部分位于集合B内,且位于集合A、C的外部,故可表示为B∩(∁U(A∪C)),故选A.4.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-2或x>4},那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}[答案] A[解析] 方法1:∁U A={x|x<-2或x>3},∁U B={x|-2≤x≤4}∴(∁U A )∩(∁U B )={x |3<x ≤4},故选C.方法2:A ∪B ={x |x ≤3或x >4},(∁U A )∩(∁U B )=∁U (A ∪B )={x |3<x ≤4}.故选A. 5.已知集合A ={x |-1≤x ≤1},B ={x |-1≤x ≤a },且(A ∪B )⊆(A ∩B ),则实数a =( )A .0B .1C .2D .3[答案] B[解析] ∵(A ∪B )⊆(A ∩B ),∴(A ∪B )=(A ∩B ), ∴A =B ,∴a =1.6.设U 为全集,对集合X ,Y 定义运算“*”,X *Y =∁U (X ∩Y ),对于任意集合X ,Y ,Z ,则(X *Y )*Z =( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z [答案] B[解析] X *Y =∁U (X ∩Y )(X *Y )*Z =∁U [∁U (X ∩Y )∩Z ]=∁U (∁U (X ∩Y ))∪∁U Z =(X ∩Y )∪∁U Z ,故选B. 二、填空题7.(河北孟村回民中学2014~2015学年高一九月份月考试题)U ={1,2},A ={x |x 2+px +q =0},∁U A ={1},则p +q =________.[答案] 0[解析] 由∁U A ={1},知A ={2}即方程x 2+px +q =0有两个相等根2,∴p =-4,q =4,∴p +q =0.8.已知集合A ={(x ,y )|y =2x -1},B ={(x ,y )|y =x +3},若m ∈A ,m ∈B ,则m 为________.[答案] (4,7)[解析] 由m ∈A ,m ∈B 知m ∈(A ∩B ),由⎩⎪⎨⎪⎧y =2x -1y =x +3,得⎩⎪⎨⎪⎧x =4y =7,∴A ∩B ={(4,7)}.三、解答题9.已知全集U =R ,A ={x |2≤x <5},B ={x |3≤x <7},求: (1)(∁R A )∩(∁R B ) (2)∁R (A ∪B )(3)(∁R A )∪(∁R B ) (4)∁R (A ∩B )[分析] 在进行集合运算时,充分利用数轴工具是十分有效的手段,此例题可先在数轴上画出集合A 、B ,然后求出A ∩B ,A ∪B ,∁R A ,∁R B ,最后可逐一写出各小题的结果.[解析] 如图所示,可得A ∩B ={x |3≤x <5},A ∪B ={x |2≤x <7}.∁R A ={x |x <2或x ≥5}, ∁R B ={x |x <3或x ≥7}. 由此求得(1)(∁R A )∩(∁R B )={x |x <2或x ≥7}. (2)∁R (A ∪B )={x |x <2或x ≥7}.(3)(∁R A )∪(∁R B )={x |x <2或x ≥5}∪{x <3或x ≥7}={x |x <3或x ≥5}. (4)∁R (A ∩B )={x |x <3或x ≥5}.[点评] 求解集合的运算,利用数轴是有效的方法,也是数形结合思想的体现. 10.已知U =R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},(∁UB )∩A ={4},求A ∪B .[分析] 先确定p 和q 的值,再明确A 与B 中的元素,最后求得A ∪B . [解析] ∵(∁U A )∩B ={2},∴2∈B 且2∉A . ∵A ∩(∁U B )={4},∴4∈A 且4∉B .∴⎩⎪⎨⎪⎧42+4p +12=0,22-5×2+q =0.解得p =-7,q =6,∴A ={3,4},B ={2,3},∴A ∪B ={2,3,4}.能力提升一、选择题1.设A 、B 、C 为三个集合,(A ∪B )=(B ∩C ),则一定有( ) A .A ⊆C B .C ⊆A C .A ≠C D .A =Ø[答案] A[解析] ∵A ∪B =(B ∩C )⊆B , 又B ⊆(A ∪B ),∴A ∪B =B ,∴A ⊆B , 又B ⊆(A ∪B )=B ∩C ,且(B ∩C )⊆B , ∴(B ∩C )=B ,∴B ⊆C ,∴A ⊆C .2.设P ={3,4},Q ={5,6,7},集合S ={(a ,b )|a ∈P ,b ∈Q },则S 中元素的个数为( )A.3 B.4C.5 D.6[答案] D[解析] S={(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)}共6个元素,故选D.3.(2015·陕西模拟)已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x =2a,a∈A},则集合∁U(A∪B)中元素的个数为( )A.1 B.2C.3 D.4[答案] B[解析] 因为集合A={1,2},B={2,4},所以A∪B={1,2,4},所以∁U(A∪B)={3,5}.4.设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k<2},且B∩(∁U A)≠Ø,则( )A.k<0 B.k<2C.0<k<2 D.-1<k<2[答案] C[解析] ∵U=R,A={x|x≤1或x≥3},∴∁U A={x|1<x<3}.∵B={x|k<x<k+1,k<2},∴当B∩(∁U A)=Ø时,有k+1≤1或k≥3(不合题意,舍去),如图所示,∴k≤0,∴当B∩(∁U A)≠Ø时,0<k<2,故选C.二、填空题5.(2014·福建,理)若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2,④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.[答案] 6[解析] 根据题意可分四种情况:(1)若①正确,则a=1,b=1,c≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a≠1,b≠1,c≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a≠1,b=1,c≠2,d≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.6.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是________.[答案]112[解析] 如图,设AB 是一长度为1的线段,a 是长度为34的线段,b 是长度为13的线段,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N 的“长度”,显然,当a ,b各自靠近线段AB 两端时,重叠部分最短,其值为34+13-1=112.三、解答题7.已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},试探求a 取何实数时,(A ∩B )Ø与A ∩C =Ø同时成立.[解析] B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={2,-4},由A ∩BØ与A ∩C =Ø同时成立可知,3是方程x 2-ax +a 2-19=0的解,将3代入方程得a 2-3a -10=0,解得a =5或a =-2.当a =5时,A ={x |x 2-5x +6=0}={2,3},此时A ∩C ={2},与此题设A ∩C =Ø矛盾,故不适合.当a =-2时,A ={x |x 2+2x -15=0}={3,-5},此时(A ∩B )Ø与A ∩C =Ø同时成立,则满足条件的实数a =-2.8.设A ,B 是两个非空集合,定义A 与B 的差集A -B ={x |x ∈A ,且x ∉B }. (1)试举出两个数集,求它们的差集;(2)差集A -B 与B -A 是否一定相等?说明理由;(3)已知A ={x |x >4},B ={x |-6<x <6},求A -(A -B )和B -(B -A ). [解析] (1)如A ={1,2,3},B ={2,3,4}, 则A -B ={1}. (2)不一定相等,由(1)B -A ={4},而A -B ={1}, 故A -B ≠B -A .又如,A =B ={1,2,3}时,A -B =Ø,B -A =Ø,此时A -B =B -A ,故A -B 与B -A 不一定相等. (3)因为A -B ={x |x ≥6},B -A ={x |-6<x ≤4}, A -(A -B )={x |4<x <6}, B -(B -A )={x |4<x <6}.第一章 1.2 1.2.1函数的概念基础巩固一、选择题1.下列四种说法中,不正确的是( )A .在函数值域中的每一个数,在定义域中都至少有一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域中只含有一个元素,则值域也只含有一个元素 [答案] B2.f (x )=1+x +x1-x 的定义域是( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)∪(1,+∞)[答案] D[解析] ⎩⎪⎨⎪⎧1+x ≥01-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1,故定义域为[-1,1)∪(1,+∞),选D.3.各个图形中,不可能是函数y =f (x )的图象的是( )[答案] A[解析] 因为垂直x 轴的直线与函数y =f (x )的图象至多有一个交点,故选A. 4.(2015·曲阜二中月考试题)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f x →y =12xB .f x →y =13xC .f x →y =23xD .f x →y =x[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C.5.下列各组函数相同的是( )A .f (x )=x 2-1x -1与g (x )=x +1B .f (x )=-2x 3与g (x )=x ·-2x C .f (x )=2x +1与g (x )=2x 2+xxD .f (x )=|x 2-1|与g (t )=t 2-12[答案] D[解析] 对于A.f (x )的定义域是(-∞,1)∪(1,+∞),g (x )的定义域是R ,定义域不同,故不是相同函数;对于B.f (x )=|x |·-2x ,g (x )=x ·-2x 的对应法则不同;对于C ,f (x )的定义域为R 与g (x )的定义域是{x |x ≠0},定义域不同,故不是相同函数;对于D.f (x )=|x 2-1|,g (t )=|t 2-1|,定义域与对应关系都相同,故是相同函数,故选D.6.函数y =f (x )的图象与直线x =a 的交点个数有( ) A .必有一个 B .一个或两个 C .至多一个 D .可能两个以上[答案] C[解析] 当a 在f (x )定义域内时,有一个交点,否则无交点. 二、填空题 7.已知函数f (x )=11+x,又知f (t )=6,则t =________. [答案] -56[解析] f (t )=1t +1=6.∴t =-568.用区间表示下列数集: (1){x |x ≥1}=________; (2){x |2<x ≤4}=________; (3){x |x >-1且x ≠2}=________.[答案] (1)[1,+∞) (2)(2,4] (3)(-1,2)∪(2,+∞)三、解答题9.求下列函数的定义域,并用区间表示:(1)y =x +12x +1-1-x ;(2)y =5-x|x |-3.[分析] 列出满足条件的不等式组⇒解不等式组⇒求得定义域[解析] (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠01-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}=(-∞,-1)∪(-1,1].(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}=(-∞,-3)∪(-3,3)∪(3,5]. [规律总结] 定义域的求法:(1)如果f (x )是整式,那么函数的定义域是实数集R ;(2)如果f (x )是分式,那么函数的定义域是使分母不为0的实数的集合;(3)如果f (x )为偶次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;(4)如果f (x )是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合.(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况. 函数定义域要用集合或区间形式表示,这一点初学者易忽视. 10.已知函数f (x )=x +3+1x +2. (1)求函数的定义域; (2)求f (-3),f (23)的值;(3)当a >0时,求f (a ),f (a -1)的值.[解析] (1)使根式x +3有意义的实数x 的集合是{x |x ≥-3},使分式1x +2有意义的实数x 的集合是{x |x ≠-2},所以这个函数的定义域是{x |x ≥-3}∩{x |x ≠-2}={x |x ≥-3,且x ≠-2}.(2)f (-3)=-3+3+1-3+2=-1; f (23)=23+3+123+2=113+38=38+333. (3)因为a >0,故f (a ),f (a -1)有意义.f (a )=a +3+1a +2;f (a -1)=a -1+3+1a -1+2=a +2+1a +1.能力提升一、选择题1.给出下列从A 到B 的对应:①A =N ,B ={0,1},对应关系是:A 中的元素除以2所得的余数 ②A ={0,1,2},B ={4,1,0},对应关系是f :x →y =x 2③A ={0,1,2},B ={0,1,12},对应关系是f :x →y =1x其中表示从集合A 到集合B 的函数有( )个.( ) A .1 B .2 C .3 D .0[答案] B[解析] 由于③中,0这个元素在B 中无对应元素,故不是函数,因此选B. 2.(2012·高考安徽卷)下列函数中,不满足:f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x [答案] C[解析] f (x )=kx 与f (x )=k |x |均满足:f (2x )=2f (x )得:A ,B ,D 满足条件. 3.(2014~2015惠安中学月考试题)A ={x |0≤x ≤2},B ={y |1≤y ≤2},下列图形中能表示以A 为定义域,B 为值域的函数的是( )[答案] B[解析] A 、C 、D 的值域都不是[1,2],故选B. 4.(2015·盘锦高一检测)函数f (x )=11-2x 的定义域为M ,g (x )=x +1的定义域为N ,则M ∩N =( )A .[-1,+∞)B .[-1,12)C .(-1,12)D .(-∞,12)[答案] B 二、填空题5.若函数f (x )的定义域为[2a -1,a +1],值域为[a +3,4a ],则a 的取值范围是________. [答案] (1,2)[解析] 由区间的定义知⎩⎪⎨⎪⎧2a -1<a +1,a +3<4a ⇒1<a <2.6.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;其中只与x 的一个值对应的y 值的范围是________.[答案] [-3,0]∪[2,3] [1,2)∪(4,5] [解析] 观察函数图象可知f (x )的定义域是[-3,0]∪[2,3];只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 三、解答题7.求下列函数的定义域: (1)y =31-1-x;(2)y =x +10|x |-x;(3)y =2x +3-12-x +1x.[解析] (1)要使函数有意义,需⎩⎨⎧1-x ≥0,1-1-x ≠0⇔⎩⎪⎨⎪⎧x ≤1,x ≠0⇔x ≤1且x ≠0,所以函数y =31-1-x的定义域为(-∞,0)∪(0,1].(2)由⎩⎪⎨⎪⎧x +1≠0,|x |-x ≠0得⎩⎪⎨⎪⎧x ≠-1,|x |≠x ,∴x <0且x ≠-1,∴原函数的定义域为{x |x <0且x ≠-1}. (3)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0.解得-32≤x <2且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为[-32,0)∪(0,2).[点评] 求给出解析式的函数的定义域的步骤为:(1)列出使函数有意义的x 所适合的式子(往往是一个不等式组);(2)解这个不等式组;(3)把不等式组的解表示成集合(或者区间)作为函数的定义域.8.已知函数f (x )=1+x 21-x 2,(1)求f (x )的定义域. (2)若f (a )=2,求a 的值.(3)求证:f ⎝ ⎛⎭⎪⎫1x=-f (x ). [解析] (1)要使函数f (x )=1+x 21-x 2有意义,只需1-x 2≠0,解得x ≠±1,所以函数的定义域为{x |x ≠±1}. (2)因为f (x )=1+x21-x2,且f (a )=2,所以f (a )=1+a 21-a 2=2,即a 2=13,解得a =±33.(3)由已知得f ⎝ ⎛⎭⎪⎫1x =1+⎝ ⎛⎭⎪⎫1x 21-⎝ ⎛⎭⎪⎫1x 2=x 2+1x 2-1,-f (x )=-1+x 21-x 2=x 2+1x 2-1, ∴f ⎝ ⎛⎭⎪⎫1x =-f (x ).第一章 1.2 1.2.2 第一课时函数的表示方法基础巩固一、选择题1.已知y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[答案] C[解析] 设y =k x ,由1=k 2得,k =2,因此,y 关于x 的函数关系式为y =2x.2.一等腰三角形的周长是20,底边长y 是关于腰长x 的函数,则它的解析式为( ) A .y =20-2xB .y =20-2x (0<x <10)C .y =20-2x (5≤x ≤10)D .y =20-2x (5<x <10)[答案] D[解析] 由题意得y +2x =20,∴y =20-2x .又∵2x >y ,∴2x >20-2x ,即x >5.由y >0,即20-2x >0得x <10,∴5<x <10.故选D.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是( ) A .g (x )=2x +1 B .g (x )=2x -1 C .g (x )=2x -3 D .g (x )=2x +7 [答案] B[解析] ∵g (x +2)=f (x )=2x +3,∴令x +2=t ,则x =t -2,g (t )=2(t -2)+3=2t -1.∴g (x )=2x -1.4.(2015·安丘一中月考)某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:考试次数x12345。

高一数学练习讲解(课件)

高一数学练习讲解(课件)

湖南长郡卫星远程学校
制作06
2009年下学期
P7 9.集 合A1 , A2满 足A1 A2 A,则 称
( A1 , A2 )为 集 合A的 一 种 分 拆, 并 规 定: 当A1 A2时, ( A1 , A2 )与( A2 , A1 )为 集 合 A的 同 一 种 分 拆,则 集 合A {a, b, c}的 不 同 分 拆 种 数 为 多 少?
湖南长郡卫星远程学校
制作06
2009年下学期
学法大视野
P7
4.若A、B、C为 三 个 集,合AB
BC,则 一 定 有 ( )
A.A C
B.C Aபைடு நூலகம்
C.A C
湖南长郡卫星远程学校
D.A
制作06
2009年下学期
P7
7.已知集M 合{y| y x2 1, xR},N{y| y5x2, xR}. 则MN _ __ _ __ _______.
湖南长郡卫星远程学校
制作06
2009年下学期
13.若A{x|0x2ax54} 为单元素 ,则集实合 a的 数值_为 __. _
湖南长郡卫星远程学校
制作06
2009年下学期
15.已知集合 A{x| 2 x a}, B{y| y 2x3, xA},C {z | z x2, xA},且C B,求a的取值范.围
{x | x a 6b,a Q,bQ}
湖南长郡卫星远程学校
制作06
2009年下学期
8.若 集 合A{x| x 6, xN}, B {x| x是 非 质 数 },C AB,则 C的 非 空 子 集 的 个_数__为____._
湖南长郡卫星远程学校
制作06
2009年下学期

82020-2021学年高一数学新教材配套课件(人教A版2019必修第二册)

82020-2021学年高一数学新教材配套课件(人教A版2019必修第二册)

C 两点,过点 P 的直线 n 与 α,β 分别交于 B,D 两点,且 PA=6,AC=9,PD
=8,则 BD 的长为( )
A.16
B.24 或254
C.14
D.20
B 解析:选 B.由 α∥β 得 AB∥CD.分两种情况: 若点 P 在 α,β 的同侧,则PPAC=PPDB,所以 PB=156,所以 BD=254; 若点 P 在 α,β 之间,则有PPAC=PPDB,所以 PB=16,所以 BD=24.
因为 MP∥BB1,所以MCMB1=CPBP. 因为 BD=B1C,DN=CM, 所以 B1M=BN, 所以MCMB1=DNNB,
因为 NP⊄平面 AA1B1B,AB⊂平面 AA1B1B, 所以 NP∥平面 AA1B1B. 因为 MP∥BB1,MP⊄平面 AA1B1B,BB1⊂平面 AA1B1B. 所以 MP∥平面 AA1B1B.
小试牛刀
1.思考辨析(正确的画“√”,错误的画“×”)
(1)α 内有无数多条直线与 β 平行,则 α∥β. ( × )
√ (2)α 内的任何直线都与 β 平行,则 α∥β. ( )
(3)直线 a∥α,a∥β,则 α∥β. ( × )
(4)直线 a⊂α,直线 b⊂β,且 a∥β,b∥α,则 α∥β. ( × )
注意:等价转化思想,即把面面平行转化为线面平行.
二.平面与平面平行的性质定理 (1)文字语言:两个平面平行,如果另一个平面与这两个平面相交,那么两条交
线 平行. (2)符号语言:α∥β,α∩γ=a,β∩γ=b ⇒a∥b.
(3)图形语言:如图所示.
(4)作用:证明两直线平行 .
思考:如果两个平面平行,那么这两个平面内的所有直线都相互平行吗? 不一定.它们可能异面.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学课间练习(五十八)
命题人:刘小明 审核人:顾永建
1. 已知扇形的中心角为120o
,半径为3,则此扇形的面积为__________.
2.在[0,2]π内满足2
sin 2
x ≥的x 的取值范围是___________.
3.函数2
()2f x x x =++的单调增区间是_____________.
4.在平面直角坐标系xoy 中,已知以x 轴为始边的角α、β的终边分别经过点(4,3)-、(3,4),则
tan()αβ+=____________.
5. 关于x 的方程,022
=++ax x 的两根都小于1,则实数a 的取值范围为 .
6.已知3log 2a =,那么将33log 82log 6-用a 表示的结果是 _______ .
7.如图,在44⨯的方格纸中,若起点和终点均在格点的向量p n m ,,满足n y m x p +=(R y x ∈,),
则y x +4的值为 .
8.已知点G 、H 分别为ABC ∆的重心(三条中线的交点)、垂心(三条高所在直线的交
点),若4,6AC AB ==u u u r u u u r
,则HG BC ⋅u u u r u u u r 的值为 .
p n
m
第10题图。

相关文档
最新文档